Publication Date
2019
Document Type
Dissertation/Thesis
First Advisor
Wang, Ziteng
Second Advisor
Damodaran, Purushothaman
Degree Name
M.S. (Master of Science)
Legacy Department
Department of Industrial and Systems Engineering
Abstract
Cubic $L^1$ spline fits, as a type of $L^1$ approximating splines, have shown superior performance in shape preservation of geometric data with great changes. To better construct a cubic $L^1$ spline fit, the number and the location of the spline knots should be optimized rather than predetermined. This research investigates knot optimization methods for univariate cubic $L^1$ spline fits. When the number of knots is given, we design an optimization-based method to determine the best location of the knots. When the number and the location are unknown, we propose a heuristic method to find proper knot number and location. Numerical experiments show that cubic $L^1$ spline fits with optimized knots can better approximate data and preserve shapes. The cubic $L^1$ spline fits with optimized knots show good potential when applied in change point detection.
Recommended Citation
Xie, Manfei, "Knot Optimization For Univariate Cubic L^1 Spline Fits with Application in Change Point Detection" (2019). Graduate Research Theses & Dissertations. 7793.
https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations/7793
Extent
75 pages
Language
eng
Publisher
Northern Illinois University
Rights Statement
In Copyright
Rights Statement 2
NIU theses are protected by copyright. They may be viewed from Huskie Commons for any purpose, but reproduction or distribution in any format is prohibited without the written permission of the authors.
Media Type
Text