Publication Title

International Journal of Advanced Manufacturing Technology

ISSN

2683768

E-ISSN

14333015

Document Type

Article

Abstract

The conventional theoretical method to calculate deformations and stress states is only limited to a few cases of simple extrusion dies due to a number of assumptions and simplifications. A coupled thermal-structural modelling framework incorporating finite element method is thus developed and implemented to determine the mechanical performances of the complicated spiral mandrel die, which has a complex geometrical feature of spiral grooves and is exposed to severe conditions of thermal load and high pressure. The steady-state thermal analysis is carried out by mapping the temperature load on the flow channel from previously simulated flow characteristics of polymer melt. The structural analysis takes inputs from both thermal analysis and previously simulated pressure on polymer melt. Both the temperature and pressure loads on flow channel are transferred via the Smart Bucket Surface mapping algorithm. The mechanical properties of the spiral mandrel die are evaluated by analysing the deformation and stress distribution. The experimental validation is conducted to demonstrate the effectiveness of the numerical model. The effects of both structure parameters of the spiral mandrel and processing parameters upon the maximum stress in the die body and the maximum pressure induced deformation at the die orifice are investigated.

First Page

3047

Last Page

3061

Publication Date

11-6-2020

DOI

10.1007/s00170-020-06183-z

Keywords

Coupled thermal-structural modelling, Finite element simulation, Pipe extrusion, Spiral mandrel die

Comments

This copy of the published article is made available through a CC BY 4.0 license. The version of record can be found at https://doi.org/10.1007/s00170-020-06183-z

Original Citation

Nie, Y., Cameron, I.M., Sienz, J. et al. Coupled thermal-structural modelling and experimental validation of spiral mandrel die. Int J Adv Manuf Technol 111, 3047–3061 (2020). https://doi.org/10.1007/s00170-020-06183-z

Fulltext File with Record

1

Department

Department of Mechanical Engineering

Rights Statement

Creative Commons Attribution 4.0 International

Share

COinS