Flow-Field Geometry Effect on H2-Iron Redox Flow Battery
Author ORCID Identifier
Tiffany Puckett:https://orcid.org/0000-0001-7446-5925
Publication Title
Journal of Energy Engineering
ISSN
07339402
E-ISSN
19437897
Document Type
Article
Abstract
The redox flow battery is getting intense attention these days as one of the most promising systems to store energy generated from weather-dependent renewable energy sources such as solar and wind energies. In this research, the geometry-related performance of the hydrogen-iron redox flow battery is analyzed with five different flow-field geometries (parallel, serpentine, crisscross, interdigitated, and porous) to determine the best geometry leading to the maximum cell power and fuel efficiency. Diffusion-dominant flow-by mode, convection-dominant flow-through mode, and the hybrid combining both modes are investigated in detail to understand the characteristic transport modes of reactive species and underlying flow physics. In particular, the effects of the flow geometries are analyzed with respect to system-based as well as cell-based performance. It is found that the best net power gain is achieved from the porous flow field, which has excellent fuel utilization and cell power with a low electrolyte supply rate.
Publication Date
12-1-2020
DOI
10.1061/(ASCE)EY.1943-7897.0000699
Keywords
Flow battery, Flow field, Flow-by, Flow-through, Fuel utilization, Hydrogen-iron, Parasitic loss
Recommended Citation
Cho, Seo Yeon; Janis, Chris; Inc, Christopher; and Cho, Kyu Taek, "Flow-Field Geometry Effect on H2-Iron Redox Flow Battery" (2020). NIU Bibliography. 576.
https://huskiecommons.lib.niu.edu/niubib/576
Department
Department of Mechanical Engineering