Characterizing optimal allocations in quantile-based risk sharing
Author ORCID Identifier
Yunran Wei:https://orcid.org/0000-0002-9616-9454
Publication Title
Insurance: Mathematics and Economics
ISSN
01676687
E-ISSN
44013
Document Type
Article
Abstract
Unlike classic risk sharing problems based on expected utilities or convex risk measures, quantile-based risk sharing problems exhibit two special features. First, quantile-based risk measures (such as the Value-at-Risk) are often not convex, and second, they ignore some part of the distribution of the risk. These features create technical challenges in establishing a full characterization of optimal allocations, a question left unanswered in the literature. In this paper, we address the issues on the existence and the characterization of (Pareto-)optimal allocations in risk sharing problems for the Range-Value-at-Risk family. It turns out that negative dependence, mutual exclusivity in particular, plays an important role in the optimal allocations, in contrast to positive dependence appearing in classic risk sharing problems. As a by-product of our main finding, we obtain some results on the optimization of the Value-at-Risk (VaR) and the Expected Shortfall, as well as a new result on the inf-convolution of VaR and a general distortion risk measure.
First Page
288
Last Page
300
Publication Date
7-1-2020
DOI
10.1016/j.insmatheco.2020.06.001
Keywords
Expected Shortfall, Non-convexity, Pareto optimality, Risk sharing, Value-at-Risk
Recommended Citation
Wang, Ruodu and Wei, Yunran, "Characterizing optimal allocations in quantile-based risk sharing" (2020). NIU Bibliography. 488.
https://huskiecommons.lib.niu.edu/niubib/488
Department
Department of Statistics and Actuarial Science