Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells

Author ORCID Identifier

Yingwen Cheng:https://orcid.org/0000-0002-0778-5504

Publication Title

Nature Catalysis

E-ISSN

44165

Document Type

Article

Abstract

The development of catalysts free of platinum-group metals and with both a high activity and durability for the oxygen reduction reaction in proton exchange membrane fuel cells is a grand challenge. Here we report an atomically dispersed Co and N co-doped carbon (Co–N–C) catalyst with a high catalytic oxygen reduction reaction activity comparable to that of a similarly synthesized Fe–N–C catalyst but with a four-time enhanced durability. The Co–N–C catalyst achieved a current density of 0.022 A cm−2 at 0.9 ViR-free (internal resistance-compensated voltage) and peak power density of 0.64 W cm−2 in 1.0 bar H2/O2 fuel cells, higher than that of non-iron platinum-group-metal-free catalysts reported in the literature. Importantly, we identified two main degradation mechanisms for metal (M)–N–C catalysts: catalyst oxidation by radicals and active-site demetallation. The enhanced durability of Co–N–C relative to Fe–N–C is attributed to the lower activity of Co ions for Fenton reactions that produce radicals from the main oxygen reduction reaction by-product, H2O2, and the significantly enhanced resistance to demetallation of Co–N–C.

First Page

1044

Last Page

1054

Publication Date

12-1-2020

DOI

10.1038/s41929-020-00546-1

Department

Department of Chemistry and Biochemistry

Share

COinS