Evaluation of the biomechanical stress in the neck and shoulders during augmented reality interactions

Publication Title

Applied Ergonomics

ISSN

00036870

E-ISSN

44105

Document Type

Article

Abstract

This study aimed to characterize the biomechanical stresses in the neck and shoulder, self-reported discomfort, and usability by different target distance or size during augmented reality (AR) interactions. In a repeated-measures laboratory-based study, 20 participants (10 males) performed three standardized AR tasks (3-dimensional (3-D) cube, omni-directional pointing, and web-browsing tasks) with three target distances (0.3, 0.6, and 0.9 m from each participant denoted by near, middle, far targets) for the 3-D cube and omni-directional pointing tasks or three target sizes: small (30% smaller than default), medium (default: 1.0 × 1.1 m), and large (30% larger than default) for the web-browsing task. Joint angle, joint moment, muscle activity, self-reported discomfort and comfort in the neck and shoulders; and subjective usability ratings were measured. The results showed that shoulder angle (flexion and abduction), shoulder moment (flexion), middle deltoid muscle activity significantly increased as the target distance increased during the 3-D cube task (p's < 0.001). Self-reported neck and shoulder discomfort significantly increased after completing each task (p's < 0.001). The participants preferred the near to middle distance (0.3–0.6 m) or the medium to large window size due to task easiness (p's < 0.005). The highest task performance (speed) was occurred at the near distance or the large window size during the 3-D cube and web-browsing tasks (p's < 0.001). The results indicate that AR interactions with the far target distance (close to maximum reach envelop) may increase the risk for musculoskeletal discomfort in the shoulder regions. Given the increased usability and task performance, the near to middle distance (less than 0.6 m) or the medium to large window size (greater than 1.0 × 1.1 m) would be recommended for AR interactions.

Publication Date

10-1-2020

DOI

10.1016/j.apergo.2020.103175

PubMed ID

32678782

Keywords

Augmented reality, Computer-related musculoskeletal disorders, Electromyography, Joint angle, Joint moment, Usability

Department

Department of Industrial and Systems Engineering

Share

COinS