Integrating photocatalysis and thermocatalysis to enable efficient CO2 reforming of methane on Pt supported CeO2 with Zn doping and atomic layer deposited MgO overcoating

Publication Title

Applied Catalysis B: Environmental

ISSN

09263373

E-ISSN

43831

Document Type

Article

Abstract

CO2 reforming or dry reforming of methane (DRM) produces syngas with a low carbon footprint, but the efficiency and stability of DRM remains a challenge. Herein, we report an efficient photo-thermo-chemical DRM (PTC-DRM) process on a Pt supported CeO2 catalyst with Zn doping and surface atomic layer deposition (ALD)-enabled MgO overcoating using concentrated sunlight as the energy input. Under 30 suns irradiation at 600 °C, high syngas production rates of 356 and 516 mmol g−1 h−1 for H2 and CO are achieved, which are more than 9 and 3 times larger than those obtained in the thermally driven DRM. Moreover, the light illumination stabilizes the dry reforming process without deactivation, which results from the in situ generation of oxygen vacancy on CeO2 by photo-induced electrons that enables stable CO2 thermo-activation. The ALD coating also reduces surface charge recombination through passivating surface states, thereby enhancing photocatalytic activity.

Publication Date

1-1-2020

DOI

10.1016/j.apcatb.2019.118189

Keywords

Atomic layer deposition, Doping, Dry reforming, Photocatalysis, Stability

Department

Department of Chemistry and Biochemistry

Share

COinS