LixNiO/Ni Heterostructure with Strong Basic Lattice Oxygen Enables Electrocatalytic Hydrogen Evolution with Pt-like Activity
Author ORCID Identifier
Ke Lu:https://orcid.org/0000-0001-8086-9687
Bomin Li:https://orcid.org/0000-0002-7457-0204
Haiping Xu:https://orcid.org/0000-0003-1930-0401
Jacob Kaelin:https://orcid.org/0000-0002-8136-0221
Yingwen Cheng:https://orcid.org/0000-0002-0778-5504
Publication Title
Journal of the American Chemical Society
ISSN
00027863
E-ISSN
15205126
Document Type
Article
Abstract
The low-cost hydrogen production from water electrolysis is crucial to the deployment of sustainable hydrogen economy but is currently constrained by the lack of active and robust electrocatalysts from earth-abundant materials. We describe here an unconventional heterostructure composed of strongly coupled Ni-deficient LixNiO nanoclusters and polycrystalline Ni nanocrystals and its exceptional activities toward the hydrogen evolution reaction (HER) in aqueous electrolytes. The presence of lattice oxygen species with strong Brønsted basicity is a significant feature in such heterostructure, which spontaneously split water molecules for accelerated Volmer H-OH dissociation in neutral and alkaline HER. In combination with the intimate LixNiO and Ni interfacial junctions that generate localized hotspots for promoted hydride coupling and hydrogen desorption, the catalysts produce hydrogen at a current density of 10 mA cm-2 under overpotentials of only 20, 50, and 36 mV in acidic, neutral, and alkaline electrolytes, respectively, making them among the most active Pt-free catalysts developed thus far. In addition, such heterostructures also exhibited superior activity toward the hydrogen oxidation reaction in alkaline electrolytes.
First Page
12613
Last Page
12619
Publication Date
7-22-2020
DOI
10.1021/jacs.0c00241
PubMed ID
32090553
Recommended Citation
Lu, Ke; Liu, Yuzi; Lin, Fan; Cordova, Isvar A.; Gao, Siyuan; Li, Bomin; Peng, Bo; Xu, Haiping; Kaelin, Jacob; Coliz, Daniel; Wang, Cheng; Shao, Yuyan; and Cheng, Yingwen, "LixNiO/Ni Heterostructure with Strong Basic Lattice Oxygen Enables Electrocatalytic Hydrogen Evolution with Pt-like Activity" (2020). NIU Bibliography. 312.
https://huskiecommons.lib.niu.edu/niubib/312
Department
Department of Chemistry and Biochemistry