Gas-Phase Models for the Nickel- and Palladium-Catalyzed Deoxygenation of Fatty Acids
Author ORCID Identifier
Kevin Parker:https://orcid.org/0000-0002-8505-8468
Victor Ryzhov:https://orcid.org/0000-0001-6041-9821
Publication Title
ChemCatChem
ISSN
18673880
E-ISSN
18673899
Document Type
Article
Abstract
Using fatty acids as renewable sources of biofuels requires deoxygenation. While a number of promising catalysts have been developed to achieve this, their operating mechanisms are poorly understood. Here, model molecular systems are studied in the gas phase using mass spectrometry experiments and DFT calculations. The coordinated metal complexes [(phen)M(O2CR)]+ (where phen=1,10-phenanthroline; M=Ni or Pd; R=CnH2n+1, n≥2) are formed via electrospray ionization. Their collision-induced dissociation (CID) initiates deoxygenation via loss of CO2 and [C,H2,O2]. The CID spectrum of the stearate complexes (R=C17H35) also shows a series of cations [(phen)M(R’)]+ (where R’ < C17) separated by 14 Da (CH2) corresponding to losses of C2H4-C16H32 (cracking products). Sequential CID of [(phen)M(R’)]+ ultimately leads to [(phen)M(H)]+ and [(phen)M(CH3)]+, both of which react with volatile carboxylic acids, RCO2H, (acetic, propionic, and butyric) to reform the coordinated carboxylate complexes [(phen)M(O2CR)]+. In contrast, cracking products with longer carbon chains, [(phen)M(R)]+ (R>C2), were unreactive towards these carboxylic acids. DFT calculations are consistent with these results and reveal that the approach of the carboxylic acid to the “free” coordination site is blocked by agostic interactions for R > CH3.
First Page
5476
Last Page
5485
Publication Date
11-5-2020
DOI
10.1002/cctc.202000908
Keywords
Biomass conversion, Density Functional Theory calculation, gas-phase reactions, homogeneous catalysis, Mass spectrometry
Recommended Citation
Parker, Kevin; Weragoda, Geethika K.; Pho, Victoria; Canty, Allan J.; Polyzos, Anastasios; O'Hair, Richard A.J.; and Ryzhov, Victor, "Gas-Phase Models for the Nickel- and Palladium-Catalyzed Deoxygenation of Fatty Acids" (2020). NIU Bibliography. 282.
https://huskiecommons.lib.niu.edu/niubib/282
Department
Department of Chemistry and Biochemistry