Design Principles of Single Atoms on Carbons for Lithium–Sulfur Batteries

Publication Title

Small Methods

E-ISSN

23669608

Document Type

Article

Abstract

The study of lithium–sulfur (Li-S) batteries has generated various rationally designed cathodes and modified separators. However, the shuttle of soluble lithium polysulfides (LiPSs) and the sluggish kinetics of transformation of LiPSs to Li2S2/Li2S still hinder the achievement of long-life cycling and high-rate of Li-S batteries. Even though several kinds of nanocatalysts have been studied, the catalytic effects for Li-S batteries are not ideal. Single atoms (SAs) with high surface free energy are found to serve as both anchoring and electrocatalytic centers for LiPSs. Atomically dispersed metal catalysts on carbon provide conductive and flexible hosts for dielectric sulfur. Moreover, SAs as the uniform lithiophilic sites can reduce the nucleation overpotential and ensure uniform plating of Li. In this review, the latest strategies for preparation of SAs supported on carbons are provided for the application of Li-S batteries, including cathodes, modified separators, and Li metal anodes. In addition, it also discusses how SAs with high catalytic activity can help build better Li-S batteries and the design principles for SAs. Finally, the future directions of SAs in energy storage applications are proposed.

Publication Date

6-17-2020

DOI

10.1002/smtd.202000315

Keywords

catalysis, electrochemistry, lithium–sulfur batteries, nanostructures, single atoms

Department

Department of Chemistry and Biochemistry

Share

COinS