Author

Qian Cheng

Alt Title

Wavelet based image enchancement

Publication Date

1998

Document Type

Dissertation/Thesis

First Advisor

Bow, Sing-Tze, 1924-

Degree Name

M.S. (Master of Science)

Legacy Department

Department of Electrical Engineering

LCSH

Image processing--Digital techniques--Mathematics; Wavelets (Mathematics)

Abstract

This thesis proposes the novel wavelet-based digital image denoising methods to solve the problems which are difficult for the best known two-dimension adaptive Wiener filtering technique. Because the two-dimension Wiener filtering requires a lot of computations, it becomes unsuitable for real-time processing environments. Our algorithm solves this problem by first transforming the image into wavelet transform domain subimages, then we process the reduce-sized subimage with fewer operations for one pixel and fewer total pixels to be processed. After processing the subimage, we transform it back to the spatial domain. Experiments show that our algorithm is much faster at processing the images degraded by Additive Gaussian White Noise (AGWN) than the two-dimension adaptive Wiener filtering technique while achieving the same processing qualities. Further, the Wiener filtering technique is a frequency selective attenuation method. It performs a certain amount of attenuation at fixed SNR( f ) frequency according to the ratio (SNR(f))/(SNR(f) + 1) where SNR(f) is the signal to noise ration at that frequency. So, for images degraded by AGWN with extremely high power, the Wiener filtering technique will perform severe attenuation at each frequency. Thus, the two-dimension Wiener filtering cannot achieve satisfactory result in this case. Our novel algorithm solves this difficulty by two-level wavelet transforming the noisy image first, then we transform the wavelet coefficients to the range of 0-255 gray levels and treat the resulting subimage as an ordinary spatial domain image. Based on that spatial domain image, several modified conventional spatial domain denoising techniques are applied to it. Experiments show that our algorithm can improve the image quality a lot while the two-dimension adaptive Wiener filtering cannot.

Comments

Includes bibliographical references (pages [94]-96)

Extent

viii, 96 pages

Language

eng

Publisher

Northern Illinois University

Rights Statement

In Copyright

Rights Statement 2

NIU theses are protected by copyright. They may be viewed from Huskie Commons for any purpose, but reproduction or distribution in any format is prohibited without the written permission of the authors.

Media Type

Text

Share

COinS