Publication Date
2017
Document Type
Dissertation/Thesis
First Advisor
Dodd, Justin P.
Degree Name
M.S. (Master of Science)
Legacy Department
Department of Geology and Environmental Geosciences
LCSH
Geochemistry
Abstract
Oxygen isotope values (δ¹⁸O) preserved in biogenic silica (opal-A) are commonly used to reconstruct paleoenvironmental conditions; however, diagenesis and the chemistry of host sediments may alter initial δ¹⁸O values. During sedimentation and diagenesis, opal-A dissolves and reprecipitates in the form of opal-CT and microcrystalline quartz, which may partially or completely overwrite the initial δ¹⁸O values of opal-A. Previous studies have suggested that the presence of metal cations in host sediments impede the rate of transition from opal-A to opal-CT during diagenesis, but none have evaluated this effect on the δ¹⁸O values. Based on the results from this study, the δ¹⁸O values and temperature of the diagenetic water are controlling factors for oxygen isotope variation of sedimentary diatom silica regardless of pore water chemistry or phase transitions. The mechanism responsible for the oxygen isotope variation is likely due to 1) opal-A' precipitation or 2) exchange of oxygen atoms between opal-A and water during structural condensation. Since the amount of equilibrated silica varied for each unique experiment, the time and temperature that is required to complete the reequilibration of the diatom silica with surrounding water may be impacted by the chemistry of the pore water. Although the initial δ¹⁸O values of diatom silica are not preserved in the sediment at the higher end of diagenic temperatures (>100 °C), the opportunity to use biogenic silica as a proxy for paleoenvironmental conditions may still exist if the relationship between diatom silica and diagenic water is better constrained and applied to natural settings.
Recommended Citation
Lehman, Audrina D., "The effects of Mg, Al, and Fe on diagenetically induced phase changes in biogenic opal-A : implications for diatom silica [delta]¹⁸O values as a paleoenvironmental proxy" (2017). Graduate Research Theses & Dissertations. 5665.
https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations/5665
Extent
xii, 104 pages
Language
eng
Publisher
Northern Illinois University
Rights Statement
In Copyright
Rights Statement 2
NIU theses are protected by copyright. They may be viewed from Huskie Commons for any purpose, but reproduction or distribution in any format is prohibited without the written permission of the authors.
Media Type
Text
Comments
Advisors: Justin P. Dodd.||Committee members: Mark Frank; Lee Sunderlin.||Includes bibliographical references.||Includes illustrations.