Publication Date

2017

Document Type

Dissertation/Thesis

First Advisor

Salehinia, Iman

Degree Name

M.S. (Master of Science)

Legacy Department

Department of Mechanical Engineering

LCSH

Mechanical engineering

Abstract

Ceramics are brittle material and possess lower toughness when compared to metals. This brittle nature results in the formation of cracks and cutting tool fracture when tried to machine conventionally. Thus, diamond grinding was the only method of processing ceramics until the development of Laser Assisted Machining (LAM). In LAM, a laser is used to rise the temperature of the surface of the component which is later machined conventionally. LAM yields in higher material removal rate and superior surface finish while reducing the total machining cost. At elevated temperatures ceramics act as a ductile material thereby enabling plastic deformation and generation of continuous chip. Temperatures attained during LAM has a huge impact on the end results, i.e. low temperatures lead to the formation of cracks whereas extremely high temperatures cause a change of microstructure. Thus, a study of thermal history is of utmost importance in LAM and performing such study through Finite Element Method (FEM) would help in predicting the temperature distribution in the sample. The temperature distribution is highly affected by the laser power, laser spot size, the rotation speed of the workpiece, translational velocity, and pre-heat time. Extensive research has been performed on LAM of solid cylinder both experimentally and theoretically but there hasn't been any research on LAM of hollow cylinders. A study of temperature histories for a hollow cylinder will be performed in this research to analyze its variation of temperature along the depth and distribution of temperature with varying depth. The employed procedure will be verified with the available data in the literature, either for solid or hollow cylinders.

Comments

Advisors: Iman Salehinia.||Committee members: Jenn-Terng Gau; Federico Sciammarella.||Includes illustrations.||Includes bibliographical references.

Extent

61 pages

Language

eng

Publisher

Northern Illinois University

Rights Statement

In Copyright

Rights Statement 2

NIU theses are protected by copyright. They may be viewed from Huskie Commons for any purpose, but reproduction or distribution in any format is prohibited without the written permission of the authors.

Media Type

Text

Share

COinS