Publication Date
1988
Document Type
Dissertation/Thesis
First Advisor
Lingham, Rama
Degree Name
M.S. (Master of Science)
Legacy Department
Department of Mathematical Sciences
LCSH
Estimation theory; Monte Carlo method; Distribution (Probability theory)
Abstract
The theory of first passage times finds many applications in applied probability, engineering, and the physical and natural sciences. Oftentimes, it is computationally tedious, if not impossible, to determine parameters of first passage time distributions. This thesis investigates crude and conditional Monte Carlo estimators of some properties of first passage time distributions of discrete state space Markov processes. The conditional Monte Carlo estimators are based on observed hazard rates, which are defined as conditional probabilities of failure at time t given survival up to that time and a complete history of the process. This thesis includes numerical examples of the estimation procedures and comparisons of the crude and Monte Carlo estimators. Specifically, the relative efficiency over the crude estimator of each conditional estimator is computed. Plots of the empirical distribution function of each estimator are also given. Results show that, under certain conditions, the conditional Monte Carlo estimators are more efficient than the crude Monte Carlo estimator.
Recommended Citation
Aragon, Ma. Elvessa D., "Estimation of first passage time distributions by Monte Carlo methods" (1988). Graduate Research Theses & Dissertations. 2912.
https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations/2912
Extent
viii, 169 pages
Language
eng
Publisher
Northern Illinois University
Rights Statement
In Copyright
Rights Statement 2
NIU theses are protected by copyright. They may be viewed from Huskie Commons for any purpose, but reproduction or distribution in any format is prohibited without the written permission of the authors.
Media Type
Text
Comments
Bibliography: pages [131]-133.