Publication Date
2015
Document Type
Dissertation/Thesis
First Advisor
Gupta, Abhijit
Degree Name
M.S. (Master of Science)
Legacy Department
Department of Mechanical Engineering
LCSH
Mechanical engineering; Statistics; Gas-turbines--Performance--Research; Big data--Statistical methods
Abstract
Gas turbines have many important variables such as the load, turbine speed, fuel gas flow, and inlet and outlet pressures. The volume, velocity, variability and complexity of the data from various sensors are huge. Monitoring of gas turbines consequently needs big data analytics which is the process of collecting, organizing and analyzing large data sets. The need for big data analytics stems from the need to increase the efficiency, improve operations and predict various trends and comment on the performance. Big data implies that the data sets are too large to be analyzed or even viewed by conventional methods and software. The gas turbine data set is a time series data.;In this thesis, a large data set from gas turbines is first made readable by converting it into the CSV format, as it is beyond the dimensional capability of Microsoft excel. The data is then analyzed using various statistical tools such as R-software. Combustion instabilities have been observed in the units and units with high dynamics have been determined. Data quality issues and missing data were observed. The limits of the blade path temperature spreads have been determined and the correlation of operational parameters were determined. Principle.;Component analysis was performed to reduce the dimensionality of the data and observe health of the gas turbine operation in terms of dynamic behavior.
Recommended Citation
Jandhyala, Srikanth Kashyap, "Big data analytics for gas turbines" (2015). Graduate Research Theses & Dissertations. 1639.
https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations/1639
Extent
57 pages
Language
eng
Publisher
Northern Illinois University
Rights Statement
In Copyright
Rights Statement 2
NIU theses are protected by copyright. They may be viewed from Huskie Commons for any purpose, but reproduction or distribution in any format is prohibited without the written permission of the authors.
Media Type
Text
Comments
Advisors: Abhijit Gupta.||Committee members: Sanjib Basu; Jenn-Terng Gau.