Authors

Alex Garivaltis

Document Type

Article

Abstract

This paper derives a robust on-line equity trading algorithm that achieves the greatest possible percentage of the final wealth of the best pairs rebalancing rule in hindsight. A pairs rebalancing rule chooses some pair of stocks in the market and then perpetually executes rebalancing trades so as to maintain a target fraction of wealth in each of the two. After each discrete market fluctuation, a pairs rebalancing rule will sell a precise amount of the outperforming stock and put the proceeds into the underperforming stock. Under typical conditions, in hindsight one can find pairs rebalancing rules that would have spectacularly beaten the market. Our trading strategy, which extends Ordentlich and Cover’s (1998) “max-min universal portfolio,” guarantees to achieve an acceptable percentage of the hindsight-optimized wealth, a percentage which tends to zero at a slow (polynomial) rate. This means that on a long enough investment horizon, the trader can enforce a compound-annual growth rate that is arbitrarily close to that of the best pairs rebalancing rule in hindsight. The strategy will “beat the market asymptotically” if there turns out to exist a pairs rebalancing rule that grows capital at a higher asymptotic rate than the market index. The advantages of our algorithm over the Ordentlich and Cover (1998) strategy are twofold. First, their strategy is impossible to compute in practice. Second, in considering the more modest benchmark (instead of the best all-stock rebalancing rule in hindsight), we reduce the “cost of universality” and achieve a higher learning rate.

Publication Date

1-11-2019

Original Citation

Alex Garivaltis (2019) Super-replication of the best pairs trade in hindsight, Cogent Economics & Finance, 7:1, 1-14, DOI: 10.1080/23322039.2019.1568657

Department

Department of Economics

Legacy Department

Department of Economics

Sponsorship

NIU Open Access Publishing Fund

Language

eng

Publisher

Cogent Economics and Finance

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.