Author ORCID Identifier

Elizabeth Moxley: https://orcid.org/0000-000200929-4717

Lichuan Liu: https://orcid.org/0009-0009-2005-6902

Document Type

Article

Publication Title

Applied Sciences

Abstract

Context: Respiratory morbidity is a leading cause of children’s consultations with general practitioners. Auscultation, the act of listening to breath sounds, is a crucial diagnostic method for respiratory system diseases. Problem: Parents and caregivers often lack the necessary knowledge and experience to identify subtle differences in children’s breath sounds. Furthermore, obtaining reliable feedback from young children about their physical condition is challenging. Methods: The use of a human–artificial intelligence (AI) tool is an essential component for screening and monitoring young children’s respiratory diseases. Using clinical data to design and validate the proposed approaches, we propose novel methods for recognizing and classifying children’s breath sounds. Different breath sound signals were analyzed in the time domain, frequency domain, and using spectrogram representations. Breath sound detection and segmentation were performed using digital signal processing techniques. Multiple features—including Mel–Frequency Cepstral Coefficients (MFCCs), Linear Prediction Coefficients (LPCs), Linear Prediction Cepstral Coefficients (LPCCs), spectral entropy, and Dynamic Linear Prediction Coefficients (DLPCs)—were extracted to capture both time and frequency characteristics. These features were then fed into various classifiers, including K-Nearest Neighbor (KNN), artificial neural networks (ANNs), hidden Markov models (HMMs), logistic regression, and decision trees, for recognition and classification. Main Findings: Experimental results from across 120 infants and preschoolers (2 months to 6 years) with respiratory disease (30 asthma, 30 croup, 30 pneumonia, and 30 normal) verified the performance of the proposed approaches. Conclusions: The proposed AI system provides a real-time diagnostic platform to improve clinical respiratory management and outcomes in young children, thereby reducing healthcare costs. Future work exploring additional respiratory diseases is warranted.

DOI

10.3390/app15137145

Publication Date

7-1-2025

Original Citation

Liu, L.; Li, W.; Moxley, B. AI-Based Classification of Pediatric Breath Sounds: Toward a Tool for Early Respiratory Screening. Appl. Sci. 2025, 15, 7145. https://doi.org/10.3390/app15137145

Department

Department of Electrical Engineering| School of Nursing

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.