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ABSTRACT 

ADAPTIVE OBJECT DETECTION FOR AUTONOMOUS VEHICLES 

Christopher Wolfe, MS 

Department of Electrical Engineering 

Northern Illinois University, 2020 

Hasan Ferdowsi, Director 

Autonomous vehicles are gradually entering our daily lives. The goal of fully autonomous 

commercially available vehicles is becoming closer to reality each day as the contributions from 

researchers and various institutions are being added to the overall body of knowledge. Object 

detection is a critical component of an autonomous or semi-autonomous vehicle and draws 

extensively on results from many fields such as image processing and statistics. In this thesis, we 

consider ideas from the study of real-time computing and control systems to present a novel 

method of real-time adaptive object detection. We present a conceptual framework of the method 

as it applies to an automated vehicle control system. The application controls an object recognition 

detection sequence through using the aggregate channel features (ACF) detection algorithm. Our 

proposed method incorporates awareness of computational resources and feedback from the 

vehicle motion planner as inputs to the perception algorithm. We provide a complete model for 

analysis and simulation in MATLAB and Simulink environment. Experimental results are 

provided across a set of parameters, showing results consistent with the expectations in the 

proposed framework. The results show promising performance in the simulated scenario of 

highway driving on a straight road. Several possibilities for extension of the model are possible.
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1. BACKGROUND

Autonomous Vehicle Technology 

Modern automobiles are becoming increasingly automated.  The U.S. Department of 

Transportation (DOT) has recently issued several publications addressing the growing need for 

research in Automated Driving Systems (ADS) [1][2]. These publications provide guidance for 

industry and nonprofit institutions in realizing the future of transportation. The agency 

recognizes that this technological progression can only be safely achieved through extensive 

research and validation of the proposed technologies. Development in ADS is expected to bring 

benefits to the public including reduction of traffic accidents, improved mobility for persons with 

disabilities, and increased economic output. At present, there are no ADS-dedicated (fully 

autonomous) commercial vehicles available. However, many existing vehicles already include 

semi-autonomous elements to improve vehicle safety [3]. 

Research institutions and many large technology companies worldwide are now 

participating in the study of autonomous vehicles [4], [5]. Vehicle autonomy overlaps 

significantly with the general study of mobile robotics; this in turn borrowing results from 

dynamic control, computer vision, artificial intelligence, and optimization, among others. Many 

research objectives can be carried out in laboratory environments and on test tracks using scaled 

representations of traffic environments. Accurate simulations also are increasingly valuable in 

the development of autonomous vehicles. 
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It should be noted that creating autonomous vehicles is a non-trivial task, even in a 

laboratory environment. Several hardware and software systems must operate concurrently and 

in real-time. Figure 1 illustrates the flow of information through the components of a typical 

autonomous vehicle control system: 

Figure 1: Elements of an autonomous vehicle control system 

Perception and Object Detection 

This research explores object detection, which is part of a vehicle’s perception system. 

Object detection includes design and construction of an adequate sensor network, integration into 

the vehicle’s real-time perception system, and appropriate handling of all data generated.  

Object detection is critical in automated driving. The perceived environment must be a 

suitable representation of the physical environment, including the hazards and unknowns 

encountered by human drivers. The required system must be capable of measuring relative 

Information can also be shared and combined  

with other automated vehicles through  

vehicle-to-vehicle (V2V) communication. 

Each vehicle must be equipped with hardware and software 

to operate independently, quickly, and safely: 

Moving vehicle 

Distance: 2 meters 
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distance, position, and size of objects, as well as heading and predicted position in the case of 

moving objects. 

Many different types of sensors are useful in object detection. Examples are visual 

imaging (camera), laser range-finders (LiDAR), infrared imaging, ultrasonic, and radar [6]. Each 

of these rely on different measurement media that may perform better or worse depending on the 

vehicle’s environment, especially considering various weather conditions.  

Multi-Sensor Data Fusion 

Research in object detection focuses on the use of multiple sensors (Figure 2). Practical 

sensors have limitations on useful range and coverage area. Because of this, multiple sensors are 

necessary to achieve adequate coverage under all foreseeable conditions, so consideration must 

be given to the sensor network design [7]. 

The presence of multiple sensors gives rise to another non-trivial problem: handling 

overlaps in sensor coverage. In this competitive configuration, the agreement or disagreement of 

two different sensors can be used to create a measure of confidence among individual 

measurements [8]. 

The preceding concepts all fall under the study of multi-sensor data fusion. There is no 

single unifying set of rules on how to handle the combination of sensor data. Instead, automated 

vehicle engineers must carefully justify the data-joining process through appropriate reasoning 

and supporting logic, hence the need for continued research. 
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Figure 2: Sensor data fusion example 

Vehicle Reaction Time 

A 2019 study estimates human driver reaction time between 0.22 and 0.44 seconds to 

identify a road hazard, with roughly 0.2 additional seconds needed to decide how to respond [9]. 

This is analogous to autonomous vehicles – faster perception algorithms result in lower overall 

vehicle reaction time. 

To illustrate, one can consider a basic kinematics problem. Suppose two physically 

identical vehicles are travelling side-by-side along a straight highway at a constant speed of 70 

mph (31.29 m/s), and both drivers start to notice a road hazard at the same time. Let vehicle A 
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have reaction time 0.5 s and let vehicle B have reaction time 0.2 s. After their respective reaction 

times have passed, the vehicles brake with maximum deceleration such that the tires do not slip. 

Let us compare the stopping distance of the two vehicles. To determine the total stopping 

distance for each vehicle, we need to model this scenario and solve an initial value problem 

(IVP) with one or more kinematic equations of rigid body motion which could reasonably 

depend on the following parameters: 

• mu – coefficient of static friction between road and tire

• Cd – longitudinal air drag coefficient of the vehicles

• m – mass of vehicle as a single rigid body

Certainly, each of these parameters receives considerable attention in the mechanical design of 

the vehicles. However, it is easy to see that the IVP has the same solution for both vehicles if 

defined to begin at moment the physical braking mechanism begins. Before braking, the physical 

parameters are irrelevant since the velocity is constant. Thus, if we only wish to compare the 

stopping distance between these two vehicles, we do not need to solve the IVP, and the relative 

stopping distance is independent of the vehicle physics. In the scenario considered, we can 

simply multiply each vehicle’s velocity and reaction time:  

For vehicle A, we have 31.3 m/s * 0.5 s ≈ 15.6 m. 

For vehicle B, we have 31.3 m/s * 0.3 s ≈ 9.4 m. 

Subtracting the two quantities, we see the difference in stopping distance strictly due to reaction 

time is six meters  – roughly the length of a full-size truck. The conclusion here from this simple 

problem is that there is no substitute for good vehicle reaction time – any seemingly small 
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improvements in reaction time can directly improve stopping distance regardless of the vehicle’s 

mechanical properties. 

Visual Object Detection 

Researchers in object detection classify objects based on the methods used to successfully 

identify them, as object detectors may be well suited only for certain types of objects. Many early 

attempts at visual object recognition were motivated by the difficult problems of facial recognition 

and terrain identification. While many facets of image processing have advanced significantly in 

recent decades, this initial research has seeded the methods that we use today in autonomous 

systems. 

In 1973, Fischler and Elschager proposed an image-matching algorithm that detects objects 

based on the success or value of expected feature detection in the presence of noise using learned 

data [10]. Despite initially being used in facial recognition, this is one of the earliest examples of 

an algorithm that has the basic structure of modern object detection methods useful in the context 

of autonomous vehicles: statistical image processing based on feature finding with a trained 

reference data set. 

Object detection, like all other digital processing, had made the most significant 

advancements through computational power and storage of the past few decades. However, the 

key improvements are based in machine learning methods, such as convolutional neural networks 

(CNN). In 1995, LeCun and Bengio apply CNN to image processing in the well-known article in 

[11]. Recently, region-based convolutional neural networks (R-CNN) have become an 

increasingly popular method for machine learning in object detection as used in the widely-known 

Fast-R-CNN and Faster-R-CNN [12] detectors. The popular YOLO object detector was designed 
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for real-time detection performance and uses a simpler network compared to R-CNN [13]. 

Despite these advancements, it is still widely accepted that occluded objects remain a difficult 

problem in object detection. In 2017, Wang et al provide an adversarial alternative to R-CNN 

that is much better suited for occluded objects [14]. Also, in 2017, Dollar et. al introduce the 

method of fast feature pyramids with the aggregate channel features (ACF) object detector [15].  

Vehicle Controller Performance 

Modern vehicles depend on robust hardware and software called real-time systems where 

the controlling processor must be capable of performing time-critical tasks. This type of system 

is already a requirement for non-autonomous vehicles, and is also found in avionics and 

industrial control [16], [17]. 

A familiar example of this type of system is anti-lock brakes (ABS). Several sensors 

monitor the vehicle’s motion and the speed of the driving wheels. The electrical control unit 

(ECU) collects data and based on a programmed control law drives a valve and pump to limit the 

braking torque delivered to the wheels. To achieve a safe and reliable response, this entire 

process must be completed in a few milliseconds, repeatedly and without interruption [18].  

In autonomous vehicles, the required hardware and software demands are far greater, 

especially considering the complexity of visual object detection. However, we can combine some 

results from related areas. We next look at some existing work that has results useful to 

investigating the computational aspects of object detection. 
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Related Work 

Here we consider a selection of published work involving the general study of visual 

object detection, and robot/vehicle localization. In particular, the papers chosen here demonstrate 

an adaptive component based on feedback of a computation time. 

In 1994, Kelly [19] describes an approach to vehicle perception described as a throughput 

problem, considering the tradeoffs between the perception algorithm complexity and safe vehicle 

speed as a resulting increase or decrease in processing time, measured in flops. In 2003, Kwok, 

et al. present a localization algorithm that reduces the number of used samples in real-time based 

on computational load [20]. In this case, the computational load is measured as a percent total 

available, and performance of several load capacities are given. In 2013, Kim et al. provide a 

framework for vehicle system management focusing mainly on graceful degradation. 

Additionally, the framework proposes automatic selection of sensors based on the situation. In 

2016, Lu et al. propose an adaptive object method not specific to autonomous driving, but clearly 

useful for real-time visual object detection in autonomous vehicles. The method extends on the 

region-based proposals such as those of the popular Fast R-CNN, by training a network to 

consider specific areas for zoom and nearby regions of existing objects in forming proposal 

regions. 

In Table 1, some of the developments and challenges are identified. We find that several 

key ideas developed in these methods can be applied to adaptive object detection for autonomous 

vehicles. 
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Table 1: Table of Significant Works Related to Adaptive Object Detection 

Article Original 

Application 

Major 

Developments 

Challenges and 

possible extension 

Key Adaptive 

Elements 

Kelly, 1994 

“Adaptive perception 

for autonomous 

vehicles” [19] 

Environment 

mapping for 

mobile robots 

with laser 

rangefinder 

Discussion of 

general throughput 

problem (tradeoffs). 

Determines 

maximum safe 

vehicle speed as a 

function of 

resources 

Limited 

computational 

power available in 

1994.  

Application limited 

to simple mobile 

robot. 

Algorithm tracks 

its own cycle 

time and adjusts 

complexity 

accordingly 

Kwok et. al, 2003 

“Adaptive real-time 

particle filters for 

robot localization” 

[20] 

Robot 

localization 

with laser 

rangefinder 

Complete statistical 

model provided. 

Identifies optimum 

computational 

power for least 

localization error 

Mixes sample sets 

due to time-

varying 

environment 

characteristics. 

Sample size 

adjusted in real-

time to optimize 

computational 

efficiency 

Kim et al., 2013 

“Towards 

Dependable 

Autonomous Driving 

Vehicles: 

A System-Level 

Approach”[21] 

Fault 

recovery and 

sensor 

management 

for automated 

driving 

Complete 

framework for 

adaptive graceful 

degradation. 

Software library for 

process scheduling 

timing feedback. 

Complete selection 

scheme for sensor 

modalities needs 

development. 

Feedback from 

recent task cycle 

time leading to 

appropriate 

vehicle action 

Lu et al., 2016 

“Adaptive Object 

Detection Using 

Adjacency and Zoom 

Prediction”[22] 

General 

object 

detection 

Model is trained and 

adapted to identify 

important regions of 

interest. 

Region proposals 

based only on prior 

image data.  

Can be expanded 

to additional prior 

knowledge.   

Computational 

resources 

focused on 

image area of 

interest 
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In addition to the key works above, there are continual developments both inside and 

outside the realm of autonomous driving. More recently, a 2017 patent describes an adaptive 

object detection system intended for detecting and tracking faces with mobile devices in real-

time [23]. The system manages computational resources by selecting images from a queue which 

will undergo the computationally expensive detection algorithm. Although this is not intended 

for use in automated vehicles, it illustrates a need for management of computational resources in 

the general problem of object detection and tracking. In a 2018 dissertation, Merfels describes a 

localization system that maintains a constant computational time for the algorithm, by adjusting 

the number of hidden nodes in a probabilistic graph [24]. This is done to prevent situations 

where the algorithm cannot keep up with the incoming sensor data as other algorithms are 

sharing the same processor. In this case, a PID controller is used to regulate deviations in 

computation time by adjusting algorithm complexity. 

Reflection of Literature 

While there are many sources in literature for embedded systems with an awareness of 

available computational resources, the availability of complete frameworks unifying adaptive 

object detection in the context of autonomous vehicles is lacking. Thus, there are opportunities 

for further research in the framework surrounding these systems. Based on the challenges and 

key ideas from Table 1, we arrive at the following questions: 

1. Can a general framework be developed for adaptive object detection considering

computational resources and sensor selection?

2. Can the method be applied to an existing object recognition algorithm without

modification?
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3. How can the method incorporate feedback from the rest of the vehicle control system?

Each of these questions can be their own topic of study. However, with the growing

complexity of autonomous vehicles and the increased interest and participation of researchers, 

we can see the significance of a framework unifying the adaptive techniques with the vehicle 

control system model that is applicable to a modern autonomous vehicle. Our work here focuses 

on this need. 

Problem Statement and Objectives 

We consider the ideas present in the previous related literature, and the general concepts 

mentioned in the introduction to formulate a complete model to represent a modern automated 

driving system. In this thesis, we seek the following objectives:  

1. Design a framework to optimize a real-time perception system, by managing algorithm

execution and sensor selection, determining system parameters, and observing

computational time.

2. Focus on a practical, real-time implementation in a simulated environment.

3. Determine the resulting performance and tradeoffs given the above variations.

For the first objective, we focus our attention to the concepts described in the study of

and control systems and real-time embedded systems. Chapter 2 is dedicated to the construction 

of this framework. Here we discuss a detailed vehicle controller model space and a temporal 

model of the vehicle algorithm processing and task scheduling. We present an algorithm for 

automated detection sequence generation based on a priori knowledge of the object recognition 

processing time. 
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Regarding the second objective, we present a complete vehicle and environment model in 

Chapter 3 built in the MATLAB® and Simulink® software environment. Where necessary, we 

describe the background and mathematical framework for each component of the model. 

Finally, for the third objective, we assess the feasibility of the presented framework by 

introducing performance metrics for the detection algorithm and run multiple simulations in the 

Simulink model. In Chapter 4, we see the numerical results and comparison for the simulations. 



2. CONCEPTUAL FRAMEWORK

Controller Model 

Controls engineers often think of systems in terms of a controller model where inputs and 

outputs are physical devices. Figure 3 shows an autonomous vehicle system described with such 

a model. 

Figure 3: Vehicle controller conceptual model 

Inputs to the control system of an autonomous vehicle are commonly visible light 

imaging (camera), laser imaging (LIDAR), radar, or acoustic (sonar) form the inputs to an 

autonomous vehicle. The handling of sensor input data is called perception, which includes all 

image processing elements. The next stage, motion planning, consists of localization, motion 

behavior, and environment mapping. The general vehicle trajectory is supplied by the motion 

planner to the low-level control system, consisting of lateral and longitudinal control. Outputs to 

the system are steering, throttle, and brake. 

As most of the vehicle control system is implemented in dedicated devices, we next turn 

our attention to the effects of realizing vehicle control in hardware and software. 
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Adaptive Techniques 

The discussion so far shows that individual perception component processing time is 

additive and not constant. Algorithms have long been proposed to have different behavior or 

results depending on the actual elapsed algorithm running time. We consider some classes of 

these algorithms in the following sections. 

Anytime Algorithms 

There are several ways to incorporate algorithm processing time in the design of real-

time systems. One subclass of resource-aware algorithm is called anytime algorithms. In 

Anytime algorithms, the quality of results generally improves as a function of computation time 

[25]. 

In the context of autonomous vehicles, Anytime algorithms have been successfully 

developed for tree-search motion planning algorithms such as D* and RRT* [26]. In the case of 

Anytime motion planning, it is easy to imagine why Anytime algorithms are useful: there may be 

many feasible solutions to reach the desired target, but finding the optimal solution is not as 

critical as finding a feasible solution quickly.  

Resource-Bounded Algorithms 

Extending this idea to a feedback control system, algorithm parameters can be adjusted in 

real-time such that computational load is maintained to some level. In 2005, Thrun, et al. present 

such algorithms as resource-adaptive in the context of robot localization. [27] 

In other parts of the vehicle control system, there may be no output available until the 

algorithm is completely finished processing. In this case, an Anytime algorithm is not useful. 

However, we can instead consider a collection of processes and examine their contributions to 
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the system both in process results and process time. An abstract treatment of resource-bounded 

algorithms is presented in [28]. 

Evaluation of Algorithm Processing Time 

Algorithm performance and efficiency has historically been considered in the computed 

number of floating-point operations per second (FLOPS). However, complicated processes such 

as those used in computer vision or autonomous vehicles may be difficult or impossible to 

measure due to the large number of system states available. Additionally, system resources may 

not be completely dedicated to the task under consideration, and the computation time could 

further vary depending on other system task requirements. 

Instead, we can estimate process time by recording the system clock value before the 

process (𝜏𝑠𝑡𝑎𝑟𝑡) and after the process (𝜏𝑒𝑛𝑑), and subtracting the difference: 

𝜏 =  𝜏𝑒𝑛𝑑 − 𝜏𝑠𝑡𝑎𝑟𝑡. 

Further, we can record a finite quantity of the computed values 𝜏 to a list in memory. Taking the 

mean of several recent process times can be used as a predictor for future values. 

Imaging Sequence Manipulation 

Suppose a priori knowledge of image processing time is available for four different 

inputs, A, B,C, and D, such that each are predicted to finish in 25 ms. Then, assuming each 

sensor is processed sequentially, we have the following sequence, with total processing time of 

100 ms as illustrated in Figure 4. 
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Figure 4: Sequence of primary processes 

At this point, the system integrator must assess the predicted figures with regards to the 

overall system design. The 100 ms value implies that each sensor will be processed periodically 

every 100 ms. If this period is too high, the designer must find a way to free up resources 

elsewhere or revise the image processing algorithm. If the value is acceptable, then there may be 

a small excess time available. We seek to make use of these small time segments. 

Suppose for example, that 125 ms is acceptable for the full processing sequence. Then we 

may choose how to allocate an additional 25 ms. This is illustrated in Figure 5. 



17 

Figure 5: Sequence of primary processes with secondary process 

The questions the system designer may ask at this point are: 

1. What is the best use of free processing time in different machine states?

2. What is an acceptable upper bound for the processing sequence?

In the context of autonomous vehicles, both of these questions may not have an obvious 

answer as they are two variables in already complicated system. However, in the following 

section, we formulate an algorithm to determine the time allocation automatically, and we 

experimentally see results different values of upper bounds in Chapter 4. Ultimately, the system 

designer must accept a lower detection frequency of certain sensors while others are raised. 
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Vision Detection Sequence 

Consider a vehicle equipped with multiple imaging sensors and denote each with a letter, 

as shown in the example in Figure 6. 

Figure 6: Vehicle with multiple sensors 

Now consider a detection coming from one of the sensors. Define the complete detected 

image as the primary detection and define a subset of the image the secondary detection. Denote 

the primary detection by an uppercase letter, and the secondary detection by a lowercase letter. 
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Figure 7 shows an example of a forward-facing sensor image with primary and secondary 

regions. 

Figure 7: Primary and secondary detection regions 

We can then define a sequence of 𝑛 primary detections as entries from the set of primary 

or secondary detections, where the sequence proceeds from left to right. For example, the 

sequences 𝑠1 = {𝐴, 𝐵, 𝐶, 𝐷} or 𝑠2 = {𝑎, 𝑏, 𝑐, 𝑑} visit each of the four sensors listed in Figure 6.

We can also combine primary detections such as in the sequence 𝑠3 = {𝐴, 𝑎, 𝐵, 𝑏} .

Ideally, the detections should be fast (multiple times per second). Because of this, we 

may look at the infinite sequence consisting of combined frames, or elementary sequences. For 

example, the infinite sequence  

𝑠4 = {𝐴, 𝑎, 𝐵, 𝑏⏞    
𝑓𝑟𝑎𝑚𝑒 0

, 𝐴, 𝑎, 𝐵, 𝑏⏞    
𝑓𝑟𝑎𝑚𝑒 1

, ⋯ } 

can be thought of as successive frames of 𝑠3. 
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Additionally, the detections from each sensor should occur at regular intervals, meaning 

variance among the time between detections should be minimized. 

Define the detection period 𝑡𝑖 of sensor 𝑖 as the difference between the two consecutive 

detections (primary or secondary) originating from the same sensor.  

Further define the average detection period 𝑡𝑖 for sensor 𝑖 as 

𝑡𝑖 = 
1

𝑛
∑ 𝑡𝑖𝑘

𝑛

𝑘=1

and the detection time variance 𝜎𝑖
2 as

𝜎𝑖
2 =

1

𝑛 − 1
∑(𝑡𝑖𝑘 − 𝑡𝑖)

2
𝑛

𝑘=1

where 𝑛 samples are taken over many frames. We can extend these definitions to infinite 

sequences by taking the limit as 𝑛 approaches infinity. 

For example, if the time between each element of the sequence in 𝑠4 is τ, then for sensor 

A, we have a detection period 1τ within each frame (from 𝐴 to 𝑎), and a detection period 3τ of 

between frames (from 𝑎 to 𝐴 in the next frame). This yields the sequence of time intervals 

{1τ, 3τ, 1τ, 3τ,⋯ } and the average detection period is 

𝑡𝑖 = lim
𝑛→∞

(
1

𝑛
∑𝑡𝑖𝑘

𝑛

𝑘=1

) 

= lim
𝑛→∞

1

𝑛
(1τ + 3τ + 1τ + 3τ +⋯) 

= lim
𝑛→∞

2𝑛τ

𝑛

= 2τ . 
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The detection time variance is 

𝜎𝑖
2 = lim

𝑛→∞

1

𝑛 − 1
∑(𝑡𝑖𝑘 − 𝑡𝑖)

2
𝑛

𝑘=1

= lim
𝑛→∞

1

𝑛 − 1
∑(𝑡𝑖𝑘 − 2τ )

2
𝑛

𝑘=1

= lim
𝑛→∞

1

𝑛 − 1
𝑛τ2 

=  τ2.

We can reduce the variance by rearranging the sequence. If we instead use sequence {𝐴, 𝐵, 𝑎, 𝑏} 

for each frame, we have the infinite sequence {𝐴, 𝐵, 𝑎, 𝑏, 𝐴, 𝐵, 𝑎, 𝑏,⋯ } and sensor A (and also B) 

has detection intervals {2τ, 2τ, 2τ, 2τ,⋯ }. In this arrangement, we still have detection period 𝑡𝑖 =

2τ, but the variance 𝜎𝑖
2 has been reduced to zero. In practice, there will be small variations in the

sensor acquisition and system processing time regardless of whatever sequence we use, so 𝜎𝑖
2 can

never be completely reduced. 

Automated Sequence Generation 

We can automate the sequence creation process given an arbitrary number of sensors and 

secondary detections. Assume that each sensor must include its primary detection once in each 

frame. Then let 𝑚𝑝 = quantity of primary detections per frame = quantity of sensors and let 𝑚𝑠 be

the number of secondary detections per frame. Let β be the desired upper bound for frame 

processing time. We use the word “desired” here as the resulting processing time may not exactly 

match the calculated time when the sequence is executed. We can estimate the time needed for 



  

running the primary or secondary detections by looking at prior data as described in 

previous sections. Assume for now that these estimated values are available as inputs to the 

system.  

Let 𝑡1 represent the estimated time for a primary detection and 𝑡2 represent the estimated 

time for a secondary detection. From this, we can determine the amount of available time,  𝑡𝑓𝑟𝑒𝑒, 

by 

 𝑡𝑓𝑟𝑒𝑒 = 𝑚𝑎𝑥(𝛽 − 𝑚𝑝𝑡1, 0) 

And the number of available partitions or “slots” 𝑚𝑓𝑟𝑒𝑒 by: 

𝑚𝑓𝑟𝑒𝑒 = 𝑓𝑙𝑜𝑜𝑟 (
𝑡𝑓𝑟𝑒𝑒

𝑡2
) + 1 

Note the 𝑚𝑎𝑥 function in the definition of  𝑡𝑓𝑟𝑒𝑒 is to handle the possibility of no available time. 

In this case we cannot run any secondary detections and must force the system to run a sequence 

consisting of only primary sensor process. 

Distribution of Secondary Detections 

Now we must handle the distribution of secondary sequences. Recall in the earlier example, 

{𝐴, 𝐵, 𝑎, 𝑏} outperformed {𝐴, 𝑎, 𝐵, 𝑏} in terms of detection time variance as the measurements were 

more evenly distributed. We can extend this idea to arbitrary numbers of sensors by defining a 

permutation (or arrangement of values) from 1 to n such that the numbers are visited non-

sequentially. By letting 𝑛 = 𝑚𝑝 we can create a permutation to distribute secondary detections in 

between primary detections with lowered detection time variance. Let 𝑠𝑝 = {1, 2,⋯ ,𝑚𝑝} . Then 

define a permutation 𝑤𝑝 as 

𝑤𝑝 = {𝑥𝑖|𝑥𝑖 = {
𝑠𝑖 𝑖 𝑒𝑣𝑒𝑛

𝑠𝑖 + 𝑐 𝑖 𝑜𝑑𝑑
 , 𝑐 = 𝑐𝑒𝑖𝑙(𝑚𝑝/2) , 𝑖 ∈ 𝑠𝑝}. 

22
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This is just one scheme for permutation, but others are possible, such as no permutation, or simply 

reversing the entries. To illustrate the effect of 𝑤𝑝, the sequence {1, 2, 3, 4, 5, 6} can be permuted 

by 𝑤𝑝 = {1, 4, 2, 5, 3, 6}.

Now define the origin sequence 𝑠0 by: 

𝑠0 = {𝑥𝑖|𝑥𝑖 = 𝑐𝑒𝑖𝑙 (
𝑖 𝑚𝑠

𝑚𝑓𝑟𝑒𝑒
) + 1, 𝑖 ∈  {1, 2,⋯ ,𝑚𝑓𝑟𝑒𝑒}}.

and define permuted sequence 𝑠𝑤 by 

𝑠𝑤 = {𝑥𝑖|𝑥𝑖 = 𝑠0𝑗 , 𝑗 = 𝑚𝑜𝑑 (𝑤𝑝𝑖,𝑚𝑝) , 𝑖 ∈  {1, ,⋯ ,𝑚𝑓𝑟𝑒𝑒} }.

The origin sequence is necessary for when the number of free slots exceeds the number of 

secondary detections. For example, suppose for sensors A through E we have 𝑚𝑓𝑟𝑒𝑒 = 10, 𝑚𝑝 =

5, and 𝑚𝑠 = 3. This results in the origin sequence 

𝑠0 = {1 ,1 ,1 ,2, 2, 2, 3, 3, 3, 3}

and the permutation 𝑤𝑝 = {1, 4, 2, 5, 3}, we assign them to the sensors according to sensor

number in order given by 𝑤𝑝. This can be represented by the augmented matrix with 

[

1
2
3
4
5

|
|

1 2
2 3
1 3
2 3
1 3]

. 

Replacing the numerical values with the alphabetic sensor designations, we have: 
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[

𝐴
𝐵
𝐶
𝐷
𝐸

|
|

𝑎 𝑏
𝑎 𝑐
𝑏 𝑐
𝑎 𝑏
𝑎 𝑐]

. 

Reshaping this matrix into a row vector of size 𝑚𝑝 + 𝑚𝑓𝑟𝑒𝑒, we have: 

[𝐴 𝑎 𝑏 𝐵 𝑎 𝑐 𝐶 𝑏 𝑐 𝐷 𝑎 𝑏 𝐸 𝑎 𝑐]. 

We have reached a solution for the detection distribution where the primary detections are evenly 

distributed, and the secondary detections are distributed throughout the primary distributions. Note 

it is not always possible to perfectly distribute all detections, and even under an ideal distribution 

may not exactly follow the expected frame execution times. Additionally, this method does not 

necessarily provide an optimal distribution for sequences. However, it is easy to see that by 

rearranging the sequence, there will be reduction in mean detection time and detection time 

variance for a given sensor (for example ‘A’ and ‘a’ being of the same sensor). 



3. MODEL CONSTRUCTION

MATLAB and Simulink

MATLAB (MathWorks, Natick, MA) is a software package for numerical calculation 

[29]. Widely used in education and research, the software has many built in functions for use in 

statistics, automatic control, and image processing, making it an attractive choice for 

autonomous systems. Recently, MATLAB has introduced the Automated Driving Toolbox 

specifically for the study of autonomous and semi-autonomous vehicles [30]. 

Simulink is a component of MATLAB designed for modeling and control of dynamical systems 

[31]. Simulink projects are created in the form of “models”, which are edited using a very 

convenient graphical user interface similar to control flow diagrams. 

According to the conceptual model discussed in Chapter 2, we now introduce the 

Simulink model shown in Figure 8. In the model, we represent each major component of the 

vehicle control system with a Simulink subsystem. The plant to be manipulated (vehicle state) is 

considered in the vehicle dynamics modelling. The vehicle interacts in the simulated 

environment and is updated in the next simulation cycle. The simulated environment is merely a 

visual rendering using the Unreal Engine for purposes of visual object detection, which includes 

the road, ground, sky, and other vehicles. Each sensor input sensor is implemented with an 

individual block that generates sensor data based on the defined properties such as sensor type, 

orientation, and update frequency. 
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Figure 8: Simulink model for simulation of autonomous vehicle control 
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Note that the interconnections shown in Figure 8 are not exhaustive. In particular, vehicle 

localization and odometry are assumed available at all times. In an actual vehicle, localization 

and odometry are estimates of the true values using dedicated sensors. In our model, localization 

and odometry are available by the position and velocity components of the bus signal BusEgoPos 

providing values that are always accurate to the simulation. 

Additionally, special attention is given to the feedback loop between the motion planning 

and perception subsections. A novelty of this model is the introduction of direct feedback from 

the motion planner module so as to provide the regions of interest for the adaptive detection 

module with resource awareness. We now present a detailed discussion of each subsystem. 

Visual Object Detector 

Vehicle detection from RGB camera images can be achieved according to the methods 

described in [32] and [15]. For a given image, several image channels are computed based on 

histograms of oriented gradients. Feature pyramids are constructed based on the channel 

information, allowing the algorithm to detect multiple scales without rescaling the original 

image. The detector compares the aggregated channel features (ACF) from the image to that of a 

known (training) dataset. 

The MATLAB Computer Vision Toolbox includes an implementation of the ACF object 

detector instantiated by function vehicleDetectorACF(). The detector is pre-trained with images 

of actual vehicles to detect vehicle features. After instantiation, the detector is called with 

detect() function and returns a list of bounding box coordinates and confidence levels. An 

example image with bounding box is shown in Figure 9. 
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Figure 9: Example of camera image with bounding box, as result of ACF object detector 

Using the bounding box information, we can estimate vehicle position by using our 

knowledge the camera orientation, width, and focal length. The MATLAB function, 

imageToVehicle() can be used to convert the bounding box edges to vehicle coordinates [33]. 

The Simulink model for the perception module is shown in Figure 10. 

Figure 10: Simulink model of vehicle perception 



29 

Object Tracking 

In our model, we are initially considering only other vehicles detected with vision 

sensors, which means we can strictly use visual bounding boxes as input data to the next stage in 

the vehicle perception. The bounding boxes are expected to have considerable variation, 

occasional missing measurements, and double measurements (multiple bounding boxes for a 

single object). Thus, we need an object tracking module to assess the state of the environment by 

keeping track of candidate and confirmed detected objects.  The Global Nearest Neighbor (GNN) 

object detection method is based on the Munkres assignment problem described in [34]. The 

GNN method is shown to be superior in correctly tracking multiple overlapping targets [35]. 

The MATLAB Automated Driving Toolbox includes an implementation of GNN 

tracking that includes object state estimation with Kalman Filtering [36]. The function 

multiObjectTracker() allows for a state estimation function handle. Here we use the extended 

Kalman filter for its feasibilities in nonlinear state space models described by [37]: 

�⃑�𝑘+1 = 𝑓(𝑘, 𝑥𝑘) + �⃑⃑⃑�𝑘 (state transition function)

�⃑�𝑘+1 = ℎ(𝑘, 𝑥𝑘) + �⃑�𝑘 (measurement function)

 where 𝑓, 𝑔 are nonlinear functions of the current state 𝑥𝑘, and 𝑤𝑘 and 𝑣𝑘 are white Guassian 

noise describing the measurement and state transition process noise, respectively. In this case, 

the state vectors have four elements [𝑥, �̇� , 𝑦, �̇�] which will be the resulting form of our tracker 

output. 

In our model, the object tracking function is encapsulated as a MATLAB System block 

we call motekf for “multi object tracker with extended Kalman filter”. This block simplifies the 
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object tracker results into a five column matrix, the first column being the confirmed track ID, 

and the four remaining columns as the elements of the vector [𝑥, �̇� , 𝑦, �̇�] describing the tracked 

object state. 

Radar Simulation 

We include an optional radar simulation. Radar detections are generated with the 

Simulink block Radar Detection Generator [38]. This block models radar detections with 

simulated noise, false positives, specific locations of vehicle edges, and sensor properties. The 

detection frequency can also be adjusted. We fuse the vision and radar data using a custom 

MATLAB function called combine, which considers measurements from the bus output of the 

radar detection generator, and from the matrix output of the adaptive vision detector. The two 

trigger sources are also combined, updating the object tracker when either type of detection is 

ready. 

Motion Planning 

The vehicle motion planner is responsible for assessing the operating state of the vehicle 

and determining the necessary actions. The motion planner curve layer generates trajectories 

based on the vehicle’s knowledge of the roadway geometry and the behavioral layer calculates 

the appropriate reference (setpoint) values to send to the motion planner. To make these 

assessments, the motion planner must relate objects detected in the ego vehicle’s frame of 

reference 𝐹𝐸 to the world frame of reference 𝐹𝑂. Let 𝑅 be the rotation matrix defined by 

𝑹 = [
sin (𝜓) 𝑐𝑜𝑠(𝜓)

𝑐𝑜𝑠(𝜓) −sin (𝜓)
] 

Where 𝜓 is the angle of the vehicle with respect to the x-axis. 
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Now let 𝑑𝑝 = [𝑥, 𝑦]
𝑇  and 𝑑𝑣 = [�̇�, �̇�]

𝑇 be the ego vehicle position and velocity in world

coordinates. Further, let 𝑇𝑝 be the position transformation matrix and 𝑇𝑣 as the velocity 

transformation matrix, defined as:  

𝑻𝑝 = [
𝑅 𝑑𝑝
02×1 1

]  and 

 𝑻𝑣 = [
𝑅 𝑑𝑣
02×1 1

]. 

Then, a point 𝑠𝐸 = [𝑠𝑥, 𝑠𝑦 , 1]
𝑇
in the ego frame 𝐹𝑂 is transformed to a point 𝑠𝑂 in the world frame

by 

𝑠𝑂 = 𝑻𝑝 𝑠
𝐸.

Similarly, a velocity 𝑣𝐸 = [𝑣𝑥, 𝑣𝑦, 1]
𝑇
in the ego frame 𝐹𝐸 is transformed to velocity 𝑣𝑂 in the

world frame by 

𝑣𝑂 = 𝑻𝑝 𝑣
𝐸.

Applying these transformations to the incoming tracked objects presents their complete state in 

world coordinates. These transformations are implemented in the model as a MATLAB Function 

block tracks_to_world. 

In the curve layer, the motion planner generates a trajectory curve based on the current 

state of the vehicle (localization), desired pose of the vehicle (destination), and curvature of the 

road in world coordinates. For a straight road, this is simply a line positioned in between the lane 

nines. 

The behavioral layer contains the vehicle decision-making process. In our model, the ego 

vehicle must respond to objects observed to be in its path. In the case of multiple objects detected 
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in lane, the behavioral layer determines which is the most important object (MIO), defined as the 

object closest to the ego vehicle. For our model, the behavioral layer functions similarly to 

Adaptive Cruise Control (ACC) found on modern autonomous and many commercial semi-

autonomous vehicles [39]. In the implementation in [40], the module depends on velocity control 

and obeys a set of fuzzy membership rules for the position control. In our model, we use a 

simplified implementation with state transition logic, as shown in Table 2. 

Table 2: Motion Planner State Logic Table 

Present State Transition Logic Next State 

-1 (Decelerate) Maximum distance reached 0 

0 (Hold) Min or max. distance reached -1 or 1

1 (Accelerate) Minimum distance reached 0 

2 (Full Stop) None 2 

Any Followed vehicle velocity drops 

below threshold 

2 

Additionally, the motion planner includes a trajectory output for direct connection to the 

perception module. In the case of a straight road scenario it is represented by a matrix of 

constants defining a straight-ahead reduced detection window in the object recognition system. 

Our Simulink model for motion planning is shown in Figure 11. 
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Figure 11: Simulink model for motion planning 
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Low level Control 

Low level lateral control is accomplished with the Stanley method as described by 

Hoffman et al. in [41]. The method was named after the Stanford Racing Team’s “Stanley” 

vehicle used by in the DARPA Grand Challenge 2005. In this method, the steering control law 

for the wheel angle 𝛿(𝑡) is given by  

𝛿(𝑡) = (𝜓(𝑡) − 𝜓𝑠𝑠(𝑡)) + tan
−1

𝑘𝑒(𝑡)

𝑘𝑠𝑜𝑓𝑡 + 𝑣(𝑡)

+ 𝑘𝑑,𝑦𝑎𝑤(𝑟𝑚𝑒𝑎𝑠 − 𝑟𝑡𝑟𝑎𝑗) + 𝑘𝑑,𝑠𝑡𝑒𝑒𝑟(𝛿𝑚𝑒𝑎𝑠(𝑖) − 𝛿𝑚𝑒𝑎𝑠(𝑖 + 1)).

where 𝜓(𝑡) is yaw angle 𝜓𝑠𝑠(𝑡) is steady state yaw angle (which depends on vehicle mass 𝑚 and

tire stiffness 𝐶𝑦). The constant 𝑘 is determined experimentally, 𝑘𝑠𝑜𝑓𝑡 tuned to low speed 

performance, and gains  𝑘𝑑,𝑦𝑎𝑤, 𝑘𝑑,𝑠𝑡𝑒𝑒𝑟 are yaw rate feedback gain, and steering angle feedback 

gain. Included in MATLAB is an implementation of the Stanley lateral control. The MATLAB 

default values of  𝑘𝑑,𝑦𝑎𝑤 = 𝑘𝑑,𝑠𝑡𝑒𝑒𝑟 = 0.1 are used, with 𝑚 and 𝐶𝑦 matched to the kinematic 

model properties (discussed in the next section). 

For longitudinal control, the Stanley method is a PI controller with integrated anti-

windup on the integral term. Included in MATLAB is an implementation of the Stanley 

longitudinal control. The MATLAB default values of  𝑘𝑝 = 2.5, and  𝑘𝑖 = 1 are used. This 

implementation also limits the acceleration and deceleration to adjustable maximum values. The 

default values of 3 𝑚/𝑠2 and 6 𝑚/𝑠2 are chosen, respectively.

The Simulink model for low level control is shown in Figure 12. 
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Figure 12: Simulink model of low-level control 

Vehicle Dynamics Modeling 

In our simulation, the vehicle physics model should accurately represent real-world 

vehicle dynamics. As is commonly used in the study of automated driving, we use the bicycle 

model [42] which relates the vehicle x-axis state in world coordinates, �̇�(𝑡), y-axis state in world

coordinates �̇�(𝑡), vehicle heading angle 𝜓(𝑡), side-slip angle 𝛽, and velocity 𝑣 in the body frame

of reference, with respect to the vehicle center of gravity. 

There are two well-known implementations of bicycle model – kinematic and dynamic. 

The kinematic bicycle model assumes the vehicle direction of motion is along the same axis as 

the front wheels, which is suitable for low-speed driving. The dynamic bicycle model operates 
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without this assumption, instead accounting for inertial dynamics. This is important at highway 

speeds as the angle assumption can no longer be made[43]. 

The dynamic bicycle model is described by the following system of differential equations [44]: 

{

�̇� = �̇��̇� + 𝑎𝑥

𝑦 = − �̇��̇� = 𝜓�̇� + 
2

𝑚
(𝐹𝑐,𝑓 cos 𝛿𝑓 + 𝐹𝑐,𝑟)

�̈� =
2

𝐼𝑧
(𝑙𝑓𝐹𝑐,𝑓 − 𝑙𝑟𝐹𝑐,𝑟)

�̇� = �̇� cos𝜓 − �̇� cos𝜓

�̇� = �̇� sin𝜓 − �̇� cos𝜓

Where 𝑚 is the vehicle mass, 𝐼𝑧 is yaw inertia. 𝐹𝑐,𝑓 and 𝐹𝑐,𝑟 are the lateral tire forces at 

the front and rear wheels, respectively. 

The MATLAB Autonomous Driving Toolbox includes an implementation of the dynamic 

bicycle model. We use default values for the block parameters, described by [45]. 

In the simulated model, we use the “Vehicle Body 3DOF” block with force calculated by 

the product of vehicle mass and acceleration (Newton’s second law). To avoid discontinuities 

caused by abrupt changes in input, the incoming acceleration signal is dampened slightly by a 

filter with transfer function: 

𝐻(𝑠) =
0.5

0.5𝑠+1
. 

The Simulink model for vehicle dynamics is shown in Figure 13. 
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Figure 13: Simulink model for vehicle dynamics 

We choose the Simulink environment sampled at a fixed period of 𝑇𝑠 = 10 𝑚𝑠. The 

sampling rate for all Simulink blocks is also set to 𝑇𝑠. The simulation ends after 20 s. Automatic 

solver selection is used for numerical solutions of differential equations as described in the 

preceding sections.  

Model Summary and Contributions 

The completed model uses a combination of premade components and original 

components with the goal of being simple yet flexible enough to be extended to several 

scenarios. Table 3 summarizes the main components of each subsystem and lists our original 

contributions to the model to distinguish the blocks and functions provided with MATLAB. For 

our developed components, complete MATLAB code for each component is provided in the 

appendix. 
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Table 3: Summary of Simulink Model Components 

Subsystem MATLAB Provided 

Components 

Developed Components 

Perception Functions used in  

Detector_multi_adaptive: 

vehicleDetectorACF(), 

imageToVehicle() 

Functions used in motekf 

block: multiObjectTracker() 

Detector_multi_adaptive 

block (sequence generation 

algorithm, image preparation, 

process time evaluation) 

combine function 

Motekf block: (encapsulation 

only) 

Motion Planning None tracks_to_world block 

(coordinate transformations) 

motion_decision block 

(behavioral layer and velocity 

output) 

Low-Level Control Stanley lateral and 

longitudinal control blocks 

None 

Actuators/Dynamics Bicycle model block None 



4. EXPERIMENT RESULTS AND REFLECTION

Straight Road Scenario 

In this scenario, we consider an automated vehicle following another vehicle as in Figure 

14. Images from the cameras are used to detect and track other vehicles. The relative position

and velocities of the tracked objects are estimated. Using this estimated information, we can 

control the ego vehicle motion based on the observed environment. All simulations are 

performed on an Intel i7-8650U processor with 16GB RAM and nVIDIA GeForce GTX 1060 

graphics. The GPU is only used for the scenario rendering. It is not used in the detection 

algorithm. Measured detection times are scaled (multiplied) by a factor of 0.2 to closer represent 

an on-board vision processing system. 

Figure 14: Straight road highway driving scenario 

The scenario starts with both vehicles cruising at 29 m/s (65 mph). The autonomous 

vehicle is using adaptive cruise control (ACC). After some time has passed, the followed vehicle 

rapidly decelerates and comes to a complete stop. The automated vehicle must respond to the 

slowdown and decelerate to avoid a crash. We define the reaction time in all experiments as the 

time it takes between the moment where the followed vehicle reaches 27 m/s, and the ego 

vehicle estimating the velocity at 27 m/s (and therefore responding). 
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Experiments I – III 

The automated vehicle is equipped with three front facing sensors at angles of -30, 0 and 

+30 degrees with respect to the vehicle’s longitudinal axis as illustrated in Figure 15. We assess

the performance of the adaptive perception system by comparing the vehicle response under 

different configurations of sequence generation. First, for experiment I, we let 𝛽 = 0, which is 

more accurate to say we wish 𝛽 minimized. In this case, the sequence is not adaptive. We simply 

process the frames in order of sensor designation: A-B-C. We then increase 𝛽 to 0.2 and 0.3 in 

Experiments II and III, respectively. There are only vision detections considered in experiments I 

through III. Figure 16, Figure 17, and Figure 18 show the results of experiments I, II, and III, 

respectively. The top plot compares the estimated and true positions of the vehicles. The middle 

plot compares the estimated and true positions of the vehicles. The bottom plot shows the 

measured sequence length vs. the desired sequence length. 

Figure 15: Experiment I, II, and III sensor layout 
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Figure 16: Experiment I (β = 0, vision only) 
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Figure 17: Experiment II (β = 0.2, vision only) 
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Figure 18: Experiment III (β = 0.3, vision only) 
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Experiments IV – VI 

We repeat the previous three experiments with the three vision sensors, but this time we 

add a simulated radar sensor to the front of the vehicle (Figure 19). The radar sensor operates at 

10 Hz and has a 20 degree detection angle. Again we start with 𝛽=0, and increase 𝛽 to 0.2 and 

0.3. Figure 20, Figure 21, and Figure 22 show the results of experiments IV, V, and VI, 

respectively. The top plot compares the estimated and true positions of the vehicles. The middle 

plot compares the estimated and true positions of the vehicles. The bottom plot shows the 

measured sequence length vs. the desired sequence length. 

Figure 19:  Experiment IV, V, and VI sensor layout 
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Figure 20: Experiment IV (β = 0.0, vision and radar) 
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Figure 21: Experiment V (β = 0.2, vision and radar) 
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Figure 22: Experiment VI (β = 0.3, vision and radar) 
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The results of the six experiments are collected in Table 4. 

Table 4: Summary of Results 

Visual 

Detections 

Desired 

frame time 

𝛽 

Actual 

 frame time 

(mean, s) 

Generated 

Sequence 

(typical) 

Mean 

Detection 

Interval 

sensor A 

(s) 

Detection 

Interval 

Std. Dev. 

sensor A 

(s) 

Reaction 

Time (s) 

(vision) 

Reaction 

Time (s) 

(vision + 

radar) 

Primary 

Only 

0 

(minimized) 

0.139 ABC 0.154 0.026 1.51 1.27 

Primary + 

Secondary 

0.2 0.195 AaBaCa 0.061 0.026 1.01 1.37 

Primary + 

Secondary 

0.3 0.305 AaaBaaCaa 0.042 0.024 0.88 0.96 

Discussion 

The first point of discussion is the generated sequence. As expected, we see the generated 

sequence length grows with increasing frame bound 𝛽. Additionally, resulting frame time value 

0.195 when 𝛽 = 0.2 and 0.305 when 𝛽 = 0.3 very closely match the desired frame time. Further, 

the mean detection interval decreases as expected. This shows reasonable performance in 

prediction of frame processing time with the available hardware configuration. The deviation in 

detection intervals appears close in all three configurations, indicating there will be variance no 

matter what, and it is generally unaffected by the change in sequence. However, it is likely that 

more complicated sequences will have greater detection variance for a particular sensor. 

Our next topic of discussion is the vehicle reaction time. With vision only, we see an 

inverse relationship between mean detection interval and reaction time. Qualitatively, we see the 

least artifacts (large sections of noise) in the velocity plots when 𝛽 = 0.3 increases. This is an 
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expected result. However, the presence of such artifacts shows a revised metric for vehicle 

reaction time may be necessary. When radar is added, the reaction time is reduced even without 

the adaptive algorithm applied. This is to be expected, as modern vehicles use radar for distance 

estimation for this reason – increased sensing reliability. However, the presence of these 

additional measurements is not without a cost. There tends to be more artifacts in the velocity 

plots for experiments IV through VI. Further, the reaction time actually increased when 𝛽 

increased from 0 to 0.2. This is likely because of the high error in the vision measurements 

competing with the more regular radar measurements resulting in an overall increase in object 

tracker state covariance. Therefore, the noise characteristics and measurement frequency of the 

radar and vision detection algorithm must be considered. Under different conditions, such as low 

light, there may be even further discrepancy, however, the radar will continue to function even if 

the vision sensor cannot. We conclude with the following: 

1. Vision-based position and velocity estimates can be improved by the adaptive

technique and/or radar measurements.

2. The characteristics of the different types of sensor object tracker play a significant

role in the estimate, which may help or hinder the result.

3. The best choice for overall reliability is to combine the vision and radar with the

adaptive algorithm, and, if permissible, a large value for 𝛽.

Finally, we relate this work back to the objectives listed in Chapter 1. We have provided 

a method of object detection that exhibits adaptive qualities in terms of the perceived 

environment and available computational resources. The method is shown to be effective using 

an existing visual object recognition algorithm. The Simulink model, although simplified 
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compared to an actual automated driving system, demonstrates a complete feedback network 

including all major subsystems of the vehicle controller conceptual model. We see that by 

increasing the upper bound for frame processing time 𝛽, we find the tradeoff between decreased 

primary image detection frequency and increased secondary image detection frequency can be 

valuable to the vehicle reaction time.  

Certainly, this particular set of experiments is considered under specific conditions, but 

the concept can easily be extended. Especially in research environments, the availability of 

complete reference models is invaluable, and our proposed model provides students and 

researchers interested in autonomous vehicles with a platform to evaluate adaptive perception, 

while easily being adapted and extended to different tasks. We consider some extensions in the 

next section. 

Future Work 

In this model, we only considered a straight road model with an ego vehicle and one 

other vehicle. The most obvious extension to this work is additional scenarios. We can also 

investigate a generalization of the adaptive techniques described here and generalize it to other 

types of sensors and different models of subsequent control components in the vehicle. 

For the straight road, additional vehicles can be added to test the system performance 

with multiple objects. We can also vary the speed of the vehicles and assess the system 

performance against stationary and moving objects. We may also consider a curved road. Given 

the adaptive nature of the proposed system and feedback from motion planner, as well as the 

multiple sensor capability, this is a natural extension of the work presented here.  
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A physical implementation with laboratory vehicle is also important for verifying the 

results in a practical setting. A physical environment provides the optimal challenge for the 

proposed algorithm, as many artifacts must be considered that are not easily simulated: such as 

weather, varying lighting condition, and sensor noise. 

Summary 

In this research, we have explored the feasibility of a situationally aware object detection 

method for use in autonomous vehicle control. We introduced a general framework for process 

feedback and resource allocation in real-time, with an application to visual object detection. A 

complete simulation model was presented containing several detailed elements of an autonomous 

vehicle control system. We performed experiments showing feasibility among a range of 

parameters.  

This work illustrates the growing complexity of modern control and automation 

applications, and the ever-important need to stay current on the latest techniques in related areas 

such as image processing, feedback control, real-time embedded systems, artificial intelligence, 

and optimization. The study of autonomous vehicles is not limited to these areas. 

Intelligent systems are increasingly becoming integral to everyday life. It is a very 

exciting opportunity to participate in the study and development of autonomous driving 

technology. In our work, we illustrated how the additions of seemingly tiny increments of 

information to autonomous vehicle are what allows it to grow in performance. In the same way, 

the combined contributions of universities and institutions across the world are what will realize 

the intelligent and automated world of the future.
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classdef motion_decision < matlab.System 

% Block Memory 

properties (GetAccess='private', SetAccess='private', Hidden) 

MIOvel; 

MIOvel_last; 

mode; 

MIOstate; 

MIOvalid_last; 

MIOvalid;   %Same as isLaneClear 

vel; 

accum; 

end 

% Block settings 

properties 

cruisevel = 30; 

mindist = 37; 

maxdist = 43; 

Ts = 0.01; %sample time 

cutoff_vel = 28; % E-stop condition 

v0 = 30; % Initial ego velocity 

tstartup = 2.5; % Time to reach steady state condition 

end 

methods (Access = protected) 

% Setup 

function setupImpl(obj) 

obj.mode = 0; 

obj.MIOvel = 0; 

obj.MIOvel_last = 0; 

obj.MIOstate = [0 0 0 0]; %[x xdot y xdot xdotdot 0] 

obj.MIOvalid = false; 

obj.MIOvalid_last = false; 

obj.vel = obj.v0; 

end 

% Step 

function [vel,miostate,mode] = stepImpl(obj, trigger, tracks, pos_ego, clock) 

if trigger

obj.MIOvel_last = obj.MIOvel; 

obj.MIOvalid_last = obj.MIOvalid;

numtracks = 0; 

isLaneClear = true; 

% Count valid tracks 

laneboundaries = [-1 -5]; 

veh_width = 1.8; 

for i = 1:(size(tracks,1)) 

if tracks(i,1)>0 

numtracks = numtracks + 1; 
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% Check if each track is in our lane 

tracky = tracks(i,4); 

if tracky <= laneboundaries(1) + veh_width / 2 ... 

& tracky >= laneboundaries(2) - veh_width / 2 

% MIO exists 

isLaneClear = false; 

obj.MIOvalid = true; 

end 

end 

end 

obj.MIOvel = -1; 

if ~isLaneClear 

% Find index of MIO 

[MIOnearest, MIOindex] = min(tracks(1:numtracks,2)); 

reldist = pos_ego(1) - tracks(MIOindex,1); 

% Find x velocity of MIO 

obj.MIOvel = tracks(MIOindex,3); 

obj.MIOstate(1:4) = tracks(MIOindex,2:5); 

else 

obj.vel = obj.cruisevel; 

end 

reldist = 0; 

% Settling timer 

if clock >= obj.tstartup 

steadystate = true; 

else 

steadystate = false; 

end 

% Estimate MIO acceleration 

if obj.MIOvalid_last & obj.MIOvalid 

disp('MIOvel') 

disp(obj.MIOvel)  

disp('MIOvel_last') 

disp(obj.MIOvel_last) 

if obj.MIOvel_last > obj.cutoff_vel... 

& obj.MIOvel < obj.cutoff_vel &... 

steadystate 

obj.mode = 2; 

end 

end 

% If steady state reached, allow mode transitions 

if steadystate 

% Mode transitions 

switch obj.mode 
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% State -1 

case -1 

if reldist < obj.maxdist | isLaneClear 

obj.mode = 0; 

end 

% State 0 

case 0 

if ~isLaneClear & reldist < obj.mindist 

obj.mode = -1; 

elseif ~isLaneClear & reldist > obj.maxdist 

obj.mode = 1; 

end 

% State 1 

case 1 

if reldist > obj.mindist | isLaneClear 

obj.mode = 0; 

end 

% State 2 

case 2 

; 

end 

obj.vel = 0; 

% Decide velocity 

switch obj.mode 

% Decelerate 

case -1 

obj.vel = obj.MIOvel - 0.5; 

% Hold speed 

case 0 

if isLaneClear | steadystate 

obj.vel = obj.cruisevel; 

else 

obj.vel = obj.MIOvel; 

end 

% Accelerate 

case 1 

obj.vel = obj.MIOvel + 0.5; 

% Emergency Braking 

case 2 

obj.vel = 0; 

end 

end 

end 

vel = obj.vel; 

mode = obj.mode; 

miostate = obj.MIOstate; 

end 

function [vel,miostate,mode] = getOutputSizeImpl(obj) 

% Return size for each output port 

%y = [10 2]; 

vel = [1 1]; 

miostate = [1 4]; 

mode = [1 1];
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end 

function [vel,miostate,mode] = getOutputDataTypeImpl(obj) 

% Return data type for each output port 

%y = 'string'; 

vel = 'double'; 

miostate = 'double'; 

mode = 'double'; 

end 

function [vel,miostate,mode] = isOutputComplexImpl(obj) 

% Return true for each output port with complex data 

%y = false; 

vel = false; 

miostate = false; 

mode = false; 

end 

function [vel,miostate,mode] = isOutputFixedSizeImpl(obj) 

% Return true for each output port with fixed size 

%y = true; 

vel = true; 

miostate = true; 

mode = true; 

end 

end 

end 
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function seq = 

create_vision_sequence(classes,classes_which_priority,t1sum,t2ave,max_frame_time) 

classeslower = lower(classes); 

mp = size(classes,2); 

ms = 0; 

for i=1:mp

if classes_which_priority(i) 

ms = ms + 1; 

classes_priority(i) = lower(classes(i)); 

else 

classes_priority(i) = ' '; 

end 

end 

% Determine available time to stay within bound 

free_space = max(max_frame_time - t1sum,0); 

% Find number of available slots 

if ms >0 

mfree = floor(free_space/t2ave); 

else 

mfree = 0; 

end 

% Find next lowest number of free spots, as a 

% multiple of mp and  

mfree_sup = ceil(mfree/mp)*mp; 

% Distribute secondary detections appropriately 

origin_sequence = [ceil([1:mfree]*ms/mfree) zeros(1, mfree_sup-mfree)]; 

% Walk through the classes 1 through n in a staggered order 

class_nums = 1:ceil(mp/2)*2; 

walk_order = zeros(1,mp); 

w1 = class_nums(1:ceil(mp/2)); 

w2 = [class_nums(ceil(mp/2)+1:end) 0]; 

for i=1:mp 

is_even = mod(i-1,2); 

walk_order(mp-i+1) = 

class_nums((~is_even)*w1(ceil(i/2))+is_even*w2(ceil(i/2))); 

end 

% Create a new sequence 

num_new_bins_per_primary = ceil(mfree/mp); 

total_new = mp + num_new_bins_per_primary*mp; 

detection_sequence_new = strings([1,total_new]); 

% Distribute primary 

for i = 1:mp

detection_sequence_new((i-1)*num_new_bins_per_primary+1)=classes(i); 

for k=1:num_new_bins_per_primary; 

end 

end 
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% Distribute Secondary 

for i = 1:mp   

detection_sequence_new((i-1)*num_new_bins_per_primary+1)=classes(i); 

end 

walk_order = mp:-1:1; 

sw = zeros(1,mfree_sup); 

i = 1:mfree_sup; 

k = mod(i-1, mp)+1 ; 

j = walk_order(k) + floor((i-1)./mp)*mp; 

sw(i) = origin_sequence(j); 

aug = [[1:mp]' , reshape(sw,[mp,ceil(mfree_sup/mp)])]; 

augstr = strings(size(aug)); 

for i = 1:mp 

for j = 1:ceil(mfree_sup/mp)+1 

if j==1 

augstr(i,j) = classes(aug(i,j)); 

else 

if aug(i,j) > 0 

augstr(i,j) = classeslower(aug(i,j)); 

else 

augstr(i,j) = ' '; 

end 

end 

end 

end 

swstr = reshape(augstr',[1 mp + mfree_sup]); 

% Matlab converts single entry string arrays to just a string 

% Workaround 

if size(swstr,2)>1 

swstr2 = convertStringsToChars(swstr); 

swstr3 = [swstr2{:}]; 

else 

swstr3 = swstr; 

end 

%Purge blank slots 

whereis_blank = strfind(lower(swstr3)," "); 

for i = flip(whereis_blank) 

swstr3(i)=[]; 

end 

%swstrtotal = swstrtotal + "_" + swstr3; 

seq=swstr3; 

end 
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classdef detector_multi_adaptive < matlab.System 

% Adaptive Multi-Sensor Visual Object Detector 

% Block Memory 

properties (GetAccess='private', SetAccess='private', Hidden) 

detector; 

storage; 

ylast; 

Tpd; 

Tp;  

ready; 

process_acc; 

request_sequence; 

sequence; 

sequence_length; 

sequence_step; 

t1ave; 

t2ave; 

sequence_accum_time; 

sequence_complete_time; 

primary_times_hist; 

secondary_times_hist; 

detections; 

num_detections; 

sensor; 

image_result; 

bInit; 

current_sensor; 

meas_interest_mean; % Sensor interval mean  

meas_interest_stdev; % Sensor interval stdev 

meas_interest_last; % Storage for mean sensor metric measurement 

meas_interest_hist; 

frame_time_mean; % Average Frame time 

frame_time_last; % Storage forAverage Frame time measurement 

frame_time_hist; 

end 

% Block settings 

properties 

Ts = 0.01; % Sample time 

singlegrid = 0; % For legacy plot output 

display = 0; % For legacy plot output 

num_sensors = 1; %Number of sensors 

max_frame_time = 0.5; %Upper bound for sequence time 

Tp0 = 0.25; %Initial detection time (scaled) 

tscale = 1; %Hardware time scaling factor 

camera_resolution = [720 720]; 

sensor_of_interest; % Sensor selection for mean sensor metric 

end 

methods (Access = protected) 
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% Setup 

function setupImpl(obj) 

obj.bInit = 0; 

obj.ready = 1; 

obj.request_sequence = 1; 

obj.detector = vehicleDetectorACF(); 

obj.primary_times_hist = zeros(10,5); 

obj.primary_times_hist(:,1:obj.num_sensors)=obj.Tp0; 

obj.secondary_times_hist = zeros(10,5); 

obj.t1ave=0; 

obj.sequence_accum_time=0; 

obj.sequence_complete_time=0; 

obj.image_result = uint8(zeros(720,720,3)); 

reltranslation = [1, 0, 1.4]; 

focalLength = [1109, 1109]; 

opticalCenter = [360, 360]; 

imageSize = [720, 720]; 

intrinsics = cameraIntrinsics(focalLength,opticalCenter,imageSize);

obj.sensor = monoCamera(intrinsics,reltranslation(3)); 

obj.current_sensor = uint8('A'); 

obj.meas_interest_mean=0; % Sensor interval mean 

obj.meas_interest_stdev=0; % Sensor interval stdev 

obj.meas_interest_hist=zeros(20,1); % Storage for mean sensor metric 

measurement 

obj.meas_interest_last=0; % Storage for mean sensor metric measurement 

obj.frame_time_mean=0; % Average Frame time 

obj.frame_time_hist=zeros(20,1); % Storage for Average Frame time 

measurement 

end 

% Step 

function [status] = stepImpl(obj, inA, inB, inC, inD, inE, sub_rects, clock) 

% Assume we are not sending any new detections, until 

% a detection process finishes 

sendDetections = false; 

% Assume no detections until we find some 

num_valid_detections = 0; 

if obj.request_sequence 

% Generate new sequence 

classes = convertCharsToStrings({'A' 'B' 'C' 'D' 'E'}); 

classes = classes(1:obj.num_sensors); 

classes_which_priority = (sum(sub_rects,1)~=0)'; 

num_sec = sum(classes_which_priority) 

t1sum = sum(mean(obj.primary_times_hist)) 

area_pri = obj.camera_resolution(1)*obj.camera_resolution(2) 

ave_area_sec = sum(sub_rects(3,:).*sub_rects(4,:))/num_sec 

% Estimate t2 time by ratio of pixels covered 

  if num_sec > 0 

t2est = t1sum * (ave_area_sec/area_pri)/obj.num_sensors 

else 

t2est = 0; 

end 
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% Call sequence generator 

obj.sequence = 

create_vision_sequence(classes,classes_which_priority,t1sum,t2est,obj.max_frame_time); 

disp("Sequence " + obj.sequence); 

obj.sequence_length = strlength(obj.sequence); 

obj.sequence_step = 1; 

obj.request_sequence = 0; 

end 

% If we are ready, continue a sequence 

if obj.ready | ~obj.bInit 

obj.bInit = true; 

% Send to status 

% Decide which sensor to capture from 

ch = char(obj.sequence); 

out.current_sensor = ch(obj.sequence_step); 

% Record time 

before = cputime; 

isPrimary = false; 

% Set up detection based on current sequence position 

switch(out.current_sensor) 

case 'A' 

imageIn = inA; sensor_index = 1; isPrimary = true; 

case 'B' 

imageIn = inB; sensor_index = 2; isPrimary = true; 

case 'C' 

imageIn = inC; sensor_index = 3; isPrimary = true; 

case 'D' 

imageIn = inD; sensor_index = 4; isPrimary = true; 

case 'E' 

imageIn = inE; sensor_index = 5; isPrimary = true; 

case 'a' 

imageIn = imcrop(inA,sub_rects(:,1)); sensor_index = 1; 

case 'b' 

imageIn = imcrop(inB,sub_rects(:,2)); sensor_index = 2;

case 'c' 

imageIn = imcrop(inC,sub_rects(:,3)); sensor_index = 3; 

case 'd' 

imageIn = imcrop(inD,sub_rects(:,4)); sensor_index = 4; 

case 'e' 

imageIn = imcrop(inE,sub_rects(:,5)); sensor_index = 5; 

otherwise 

disp('error') 

end   

% Get sensing interval metric 

if obj.sensor_of_interest == sensor_index 

meas_diff = clock - obj.meas_interest_last; 

obj.meas_interest_last = clock; 

obj.meas_interest_hist = ... 

circshift(obj.meas_interest_hist,1,1); 

obj.meas_interest_hist(1) = meas_diff; 
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disp(obj.meas_interest_hist) 

obj.meas_interest_mean = mean(obj.meas_interest_hist); 

obj.meas_interest_stdev = std(obj.meas_interest_hist); 

end 

[bboxes,scores] = detect(obj.detector,imageIn); 

now = cputime; 

obj.Tp=(now-before)*obj.tscale; 

%Tp = toc(before); 

 obj.Tpd=uint16(ceil(obj.Tp/obj.Ts)); 

% Compute object locations 

bboxes2=[]; 

which = find(scores>20); 

y = zeros(10,2); 

num_valid_detections = size(which,1); 

% Gather significant detections and draw bounding boxes if 

if num_valid_detections > 0 

bboxes2 = bboxes(which,:); 

scores2 = scores(which,:); 

% Draw bounding boxes 

image_result = 

insertObjectAnnotation(imageIn,'rectangle',bboxes2,scores2); 

else 

image_result = imageIn; 

end 

r =sub_rects(:,sensor_index); 

if isPrimary 

% If primary, just copy the annoted image 

obj.image_result = image_result; 

else 

% if secondary, paste input image into black image 

obj.image_result = zeros(obj.camera_resolution(1), ... 

obj.camera_resolution(2), 3); 

obj.image_result(r(2):r(2)+r(4),r(1):r(1)+r(3),:) = image_result; 

end 

% Image offset from reduced detection 

offset = [0 0]; 

if ~isPrimary 

offset = [r(1) r(2)]; 

end 

obj.detections = zeros(10,2); 

% Compute Object Locations 
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for i = 1:(min(num_valid_detections,10)) 

ctr = bboxes2(i,1)+bboxes2(i,3)/2; 

hgt = bboxes2(i,2)+bboxes2(i,4); 

loc = imageToVehicle(obj.sensor,[ctr,hgt]+offset); 

obj.detections(i,:) = loc; 

 end 

obj.num_detections = num_valid_detections; 

%disp(obj.detections); 

% Add to total sequence time counter 

obj.sequence_accum_time = obj.sequence_accum_time + obj.Tp; 

% Store process time in appropriate matrix

disp('Detected in ' + string(obj.Tp) + ' sec('+ string(obj.Tpd) + ' 

cycles)'); 

if isPrimary 

% Roll matrix column by 1 

obj.primary_times_hist(:,sensor_index) = ... 

circshift(obj.primary_times_hist(:,sensor_index), 1, 1); 

% Store value 

obj.primary_times_hist(1,sensor_index) = obj.Tp; 

else 

% Roll matrix column by 1 

obj.secondary_times_hist(:,sensor_index) = ... 

circshift(obj.secondary_times_hist(:,sensor_index), 1, 1); 

% Store value 

obj.secondary_times_hist(1,sensor_index) = obj.Tp;

end 

% Update summaries 

obj.t1ave = mean(obj.primary_times_hist); 

obj.t2ave = mean(obj.secondary_times_hist); 

% Update status 

obj.ready = 0; 

obj.process_acc = 1; 

else 

% Increment time step 

obj.process_acc = obj.process_acc + 1; 

   % Check if detection is complete 

if obj.process_acc >= obj.Tpd; 

%disp('Detect complete'); 

obj.ready = 1; 

obj.process_acc = 0; 

sendDetections = true; 

% Increment sequence step 

obj.sequence_step = obj.sequence_step + 1; 

% Check if sequence is complete 

if obj.sequence_step > obj.sequence_length 

obj.sequence_step = 1; 

obj.request_sequence = 1; 

obj.sequence_complete_time = obj.sequence_accum_time; 

obj.sequence_accum_time = 0; 
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% Update frame time history matrix 

obj.frame_time_hist = ... 

circshift(obj.frame_time_hist,1,1); 

obj.frame_time_hist(1) = obj.sequence_complete_time; 

% Compute mean 

obj.frame_time_mean = mean(obj.frame_time_hist) 

end 

end 

end

% Send status to bus 

status.ready = uint8(obj.ready); 

status.current_sensor = obj.current_sensor; 

status.primary_times_hist = obj.primary_times_hist; 

status.secondary_times_hist = obj.secondary_times_hist; 

status.sequence_complete_time = obj.sequence_complete_time; 

status.t1ave = obj.t1ave; 

status.t2ave = obj.t2ave; 

status.max_frame_time = obj.max_frame_time; 

% Send the results from previously completed detection 

status.detections = obj.detections * sendDetections; 

status.detections_preview = obj.detections; 

status.detection_complete = logical(obj.ready); 

status.numdetections = obj.num_detections * sendDetections; 

status.image_result = uint8(obj.image_result); 

status.meas_interest_mean = obj.meas_interest_mean; 

status.meas_interest_stdev = obj.meas_interest_stdev; 

status.frame_time_mean = obj.frame_time_mean; 

end 

function [status] = getOutputSizeImpl(obj) 

% Output port size 

status = 1; 

end 

function [status] = getOutputDataTypeImpl(obj) 

% Output data type 

status = 'Bus: BusDetectorStatus2'; 

end 

function [status] = isOutputComplexImpl(obj) 

% Output complexity 

status = false; 

end 

function [status] = isOutputFixedSizeImpl(obj) 

% Output fixed/variable 

status = true; 

end 

end 

end 
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classdef motekf < matlab.System 

% Encapsulates the multi-object tracker function 

% With simplified output 

% Block Memory 

properties (GetAccess='private', SetAccess='private', Hidden) 

tracker; 

tracks_last; 

end 

% Block settings 

properties(Nontunable) 

FilterInitializationFcn = 'initcvkf'; 

ConfirmationThreshold = [2 3]; 

DeletionThreshold = [5 5];  

end 

methods (Access = protected) 

% Block Setup 

function setupImpl(obj) 

obj.tracker = multiObjectTracker('FilterInitializationFcn', ... 

obj. FilterInitializationFcn, ... 

'ConfirmationThreshold', ... 

obj.ConfirmationThreshold, ... 

'DeletionThreshold', ... 

obj.DeletionThreshold); 

obj.tracks_last = zeros(10,5); 

end 

% Step 

function [trigout, tracks] = stepImpl(obj, trigger, numdetections, detections, 

clock) 

if trigger 

% Assume no confirmed tracks until we determine some 

confirmedtracks = {}; 

if numdetections>0 

dets = {}; 

for i = 1:numdetections 

loc = [detections(i,1),detections(i,2),0]; 

dets(i) = { ... 

objectDetection(clock,loc, ... 

'SensorIndex',1) ... 

};

end 

% Send detections to tracker 

[confirmedtracks,tentativetracks] = obj.tracker(dets, clock); 

else 

if obj.tracker.NumTracks > 0 

[confirmedtracks,tentativetracks] = obj.tracker({}, clock); 

end 

end 
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% Get Tracks 

tracks = zeros(10,5); 

numconf = size(confirmedtracks,1); 

if numconf>0 

for i = 1:size(confirmedtracks) 

tracks(i,1) = double(confirmedtracks(i).TrackID);

tracks(i,2:5) = confirmedtracks(i).State(1:4); 

end

end 

obj.tracks_last = tracks; 

else 

tracks = obj.tracks_last; 

end 

trigout = trigger; 

end 

function [trigout, tracks] = getOutputSizeImpl(obj) 

% Return size for each output port 

%y = [10 2]; 

tracks = [10 5]; 

trigout = [1 1]; 

end 

function [trigout, tracks] = getOutputDataTypeImpl(obj) 

% Return data type for each output port 

%y = 'string'; 

tracks = 'double'; 

trigout = 'boolean'; 

end 

function [trigout, tracks] = isOutputComplexImpl(obj) 

% Return true for each output port with complex data 

%y = false; 

tracks = false; 

trigout = false; 

end 

function [trigout, tracks] = isOutputFixedSizeImpl(obj) 

% Return true for each output port with fixed size 

%y = true; 

tracks = true; 

trigout = true; 

end 

end 

end 

function [trig_out,numdet_out,det_out] = 

combine(vis_trig,vis_numdet,vis_det,radar_det,radar_trig) 

%Combine radar and vision measurements 

det_buffer = zeros(10,2); 

radar_numdet=0; 

vision_numdet=0; 

%Radar bias offset value 

radar_offset=[1 0]; 
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% Combine vision measurements when triggered 

if(vis_trig) 

vision_numdet = vis_numdet; 

det_buffer(1:vision_numdet,:) = vis_det(1:vision_numdet,:); 

end 

% Combine radar measurements when triggered 

if(radar_trig) 

radar_numdet = radar_det.NumDetections; 

for i = 1:radar_numdet; 

variance = 0.2; 

radar_noise = sqrt(variance)*randn(1,2); 

det_buffer(vision_numdet+i,:) = ... 

radar_det.Detections(i).Measurement(1:2)' + ... 

radar_offset + radar_noise; 

end 

end 

% Send output 

trig_out = vis_trig | radar_trig; 

numdet_out = vision_numdet + radar_numdet; 

det_out = det_buffer; 
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