
Northern Illinois University Northern Illinois University

Huskie Commons Huskie Commons

Graduate Research Theses & Dissertations Graduate Research & Artistry

2020

Adaptive Object Detection for Autonomous Vehicles Adaptive Object Detection for Autonomous Vehicles

Christopher Wolfe
zb191511@gmail.com

Follow this and additional works at: https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations

 Part of the Electrical and Computer Engineering Commons, and the Robotics Commons

Recommended Citation Recommended Citation
Wolfe, Christopher, "Adaptive Object Detection for Autonomous Vehicles" (2020). Graduate Research
Theses & Dissertations. 7787.
https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations/7787

This Dissertation/Thesis is brought to you for free and open access by the Graduate Research & Artistry at Huskie
Commons. It has been accepted for inclusion in Graduate Research Theses & Dissertations by an authorized
administrator of Huskie Commons. For more information, please contact jschumacher@niu.edu.

https://huskiecommons.lib.niu.edu/
https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations
https://huskiecommons.lib.niu.edu/allgraduate
https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations?utm_source=huskiecommons.lib.niu.edu%2Fallgraduate-thesesdissertations%2F7787&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=huskiecommons.lib.niu.edu%2Fallgraduate-thesesdissertations%2F7787&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/264?utm_source=huskiecommons.lib.niu.edu%2Fallgraduate-thesesdissertations%2F7787&utm_medium=PDF&utm_campaign=PDFCoverPages
https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations/7787?utm_source=huskiecommons.lib.niu.edu%2Fallgraduate-thesesdissertations%2F7787&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jschumacher@niu.edu

ABSTRACT

ADAPTIVE OBJECT DETECTION FOR AUTONOMOUS VEHICLES

Christopher Wolfe, MS

Department of Electrical Engineering

Northern Illinois University, 2020

Hasan Ferdowsi, Director

Autonomous vehicles are gradually entering our daily lives. The goal of fully autonomous

commercially available vehicles is becoming closer to reality each day as the contributions from

researchers and various institutions are being added to the overall body of knowledge. Object

detection is a critical component of an autonomous or semi-autonomous vehicle and draws

extensively on results from many fields such as image processing and statistics. In this thesis, we

consider ideas from the study of real-time computing and control systems to present a novel

method of real-time adaptive object detection. We present a conceptual framework of the method

as it applies to an automated vehicle control system. The application controls an object recognition

detection sequence through using the aggregate channel features (ACF) detection algorithm. Our

proposed method incorporates awareness of computational resources and feedback from the

vehicle motion planner as inputs to the perception algorithm. We provide a complete model for

analysis and simulation in MATLAB and Simulink environment. Experimental results are

provided across a set of parameters, showing results consistent with the expectations in the

proposed framework. The results show promising performance in the simulated scenario of

highway driving on a straight road. Several possibilities for extension of the model are possible.

NORTHERN ILLINOIS UNIVERSITY

DE KALB, ILLINOIS

DECEMBER 2020

ADAPTIVE OBJECT DETECTION FOR AUTONOMOUS VEHICLES

BY

CHRISTOPHER WOLFE

©2020 Christopher Wolfe

A THESIS SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE

MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL ENGINEERING

Thesis Director:

Hasan Ferdowsi

ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor, Prof. Hasan Ferdowsi, for his guidance and

patience as I learn to conduct research. I would also like to thank Prof. Mansour Tahernezhadi

for his continued support and guidance throughout my academic journey. His emphasis on

scientific participation and problem solving through reasoning is truly inspiring.

Additionally, I would like to thank my fellow graduate students in the Department of

Electrical Engineering for their encouragement, and always bringing new ideas and inspirations

to our research community.

TABLE OF CONTENTS

Page

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

Chapter

1. BACKGROUND ... 1

Autonomous Vehicle Technology ..1

Perception and Object Detection .. 2

Multi-Sensor Data Fusion ... 3

Vehicle Reaction Time ... 4

Visual Object Detection ..6

Vehicle Controller Performance ... 7

Related Work .. 8

Reflection of Literature ...10

Problem Statement and Objectives ... 11

2. CONCEPTUAL FRAMEWORK .. 13

Controller Model ...13

Adaptive Techniques ..14

Anytime Algorithms ... 14

 Chapter Page

Resource-Bounded Algorithms ... 14

Evaluation of Algorithm Processing Time ... 15

Imaging Sequence Manipulation .. 15

Vision Detection Sequence ...18

Automated Sequence Generation .. 21

Distribution of Secondary Detections ... 22

3. MODEL CONSTRUCTION ... 25

MATLAB and Simulink ... 25

Visual Object Detector ..27

Object Tracking .. 29

Radar Simulation .. 30

Motion Planning ... 30

Low level Control ... 34

Vehicle Dynamics Modeling .. 35

Model Summary and Contributions .. 37

4. EXPERIMENT RESULTS AND REFLECTION .. 39

iv

 Chapter Page

Straight Road Scenario ... 39

Experiments I – III .. 40

Experiments IV – VI ...44

Discussion ... 48

Future Work .. 50

Summary ... 51

REFERENCES .. 52

APPENDIX – MATLAB CODE ... 56

 v

LIST OF TABLES

Page

Table 1: Table of Significant Works Related to Adaptive Object Detection 9

Table 2: Motion Planner State Logic Table .. 32

Table 3: Summary of Simulink Model Components .. 38

Table 4: Summary of Results .. 48

LIST OF FIGURES

Page

Figure 1: Elements of an autonomous vehicle control system ... 2

Figure 2: Sensor data fusion example ... 4

Figure 3: Vehicle controller conceptual model ... 13

Figure 4: Sequence of primary processes ... 16

Figure 5: Sequence of primary processes with secondary process ... 17

Figure 6: Vehicle with multiple sensors ... 18

Figure 7: Primary and secondary detection regions .. 19

Figure 8: Simulink model for simulation of autonomous vehicle control 26

Figure 9: Example of camera image with bounding box, as result of ACF object detector 28

Figure 10: Simulink model of vehicle perception ... 28

Figure 11: Simulink model for motion planning .. 33

Figure 12: Simulink model of low-level control ... 35

Figure 13: Simulink model for vehicle dynamics ... 37

Figure 14: Straight road highway driving scenario ... 39

Figure 15: Experiment I, II, and III sensor layout .. 40

Figure 16: Experiment I (β = 0, vision only) .. 41

Figure 17: Experiment II (β = 0.2, vision only) .. 42

Figure 18: Experiment III (β = 0.3, vision only) .. 43

Figure 19: Experiment IV, V, and VI sensor layout .. 44

Page

Figure 20: Experiment IV (β = 0.0, vision and radar) 45

Figure 21: Experiment V (β = 0.2, vision and radar) 46

Figure 22: Experiment VI (β = 0.3, vision and radar) 47

 viii

1. BACKGROUND

Autonomous Vehicle Technology

Modern automobiles are becoming increasingly automated. The U.S. Department of

Transportation (DOT) has recently issued several publications addressing the growing need for

research in Automated Driving Systems (ADS) [1][2]. These publications provide guidance for

industry and nonprofit institutions in realizing the future of transportation. The agency

recognizes that this technological progression can only be safely achieved through extensive

research and validation of the proposed technologies. Development in ADS is expected to bring

benefits to the public including reduction of traffic accidents, improved mobility for persons with

disabilities, and increased economic output. At present, there are no ADS-dedicated (fully

autonomous) commercial vehicles available. However, many existing vehicles already include

semi-autonomous elements to improve vehicle safety [3].

Research institutions and many large technology companies worldwide are now

participating in the study of autonomous vehicles [4], [5]. Vehicle autonomy overlaps

significantly with the general study of mobile robotics; this in turn borrowing results from

dynamic control, computer vision, artificial intelligence, and optimization, among others. Many

research objectives can be carried out in laboratory environments and on test tracks using scaled

representations of traffic environments. Accurate simulations also are increasingly valuable in

the development of autonomous vehicles.

2

It should be noted that creating autonomous vehicles is a non-trivial task, even in a

laboratory environment. Several hardware and software systems must operate concurrently and

in real-time. Figure 1 illustrates the flow of information through the components of a typical

autonomous vehicle control system:

Figure 1: Elements of an autonomous vehicle control system

Perception and Object Detection

This research explores object detection, which is part of a vehicle’s perception system.

Object detection includes design and construction of an adequate sensor network, integration into

the vehicle’s real-time perception system, and appropriate handling of all data generated.

Object detection is critical in automated driving. The perceived environment must be a

suitable representation of the physical environment, including the hazards and unknowns

encountered by human drivers. The required system must be capable of measuring relative

Information can also be shared and combined

with other automated vehicles through

vehicle-to-vehicle (V2V) communication.

Each vehicle must be equipped with hardware and software

to operate independently, quickly, and safely:

Moving vehicle

Distance: 2 meters

3

distance, position, and size of objects, as well as heading and predicted position in the case of

moving objects.

Many different types of sensors are useful in object detection. Examples are visual

imaging (camera), laser range-finders (LiDAR), infrared imaging, ultrasonic, and radar [6]. Each

of these rely on different measurement media that may perform better or worse depending on the

vehicle’s environment, especially considering various weather conditions.

Multi-Sensor Data Fusion

Research in object detection focuses on the use of multiple sensors (Figure 2). Practical

sensors have limitations on useful range and coverage area. Because of this, multiple sensors are

necessary to achieve adequate coverage under all foreseeable conditions, so consideration must

be given to the sensor network design [7].

The presence of multiple sensors gives rise to another non-trivial problem: handling

overlaps in sensor coverage. In this competitive configuration, the agreement or disagreement of

two different sensors can be used to create a measure of confidence among individual

measurements [8].

The preceding concepts all fall under the study of multi-sensor data fusion. There is no

single unifying set of rules on how to handle the combination of sensor data. Instead, automated

vehicle engineers must carefully justify the data-joining process through appropriate reasoning

and supporting logic, hence the need for continued research.

4

Figure 2: Sensor data fusion example

Vehicle Reaction Time

A 2019 study estimates human driver reaction time between 0.22 and 0.44 seconds to

identify a road hazard, with roughly 0.2 additional seconds needed to decide how to respond [9].

This is analogous to autonomous vehicles – faster perception algorithms result in lower overall

vehicle reaction time.

To illustrate, one can consider a basic kinematics problem. Suppose two physically

identical vehicles are travelling side-by-side along a straight highway at a constant speed of 70

mph (31.29 m/s), and both drivers start to notice a road hazard at the same time. Let vehicle A

5

have reaction time 0.5 s and let vehicle B have reaction time 0.2 s. After their respective reaction

times have passed, the vehicles brake with maximum deceleration such that the tires do not slip.

Let us compare the stopping distance of the two vehicles. To determine the total stopping

distance for each vehicle, we need to model this scenario and solve an initial value problem

(IVP) with one or more kinematic equations of rigid body motion which could reasonably

depend on the following parameters:

• mu – coefficient of static friction between road and tire

• Cd – longitudinal air drag coefficient of the vehicles

• m – mass of vehicle as a single rigid body

Certainly, each of these parameters receives considerable attention in the mechanical design of

the vehicles. However, it is easy to see that the IVP has the same solution for both vehicles if

defined to begin at moment the physical braking mechanism begins. Before braking, the physical

parameters are irrelevant since the velocity is constant. Thus, if we only wish to compare the

stopping distance between these two vehicles, we do not need to solve the IVP, and the relative

stopping distance is independent of the vehicle physics. In the scenario considered, we can

simply multiply each vehicle’s velocity and reaction time:

For vehicle A, we have 31.3 m/s * 0.5 s ≈ 15.6 m.

For vehicle B, we have 31.3 m/s * 0.3 s ≈ 9.4 m.

Subtracting the two quantities, we see the difference in stopping distance strictly due to reaction

time is six meters – roughly the length of a full-size truck. The conclusion here from this simple

problem is that there is no substitute for good vehicle reaction time – any seemingly small

6

improvements in reaction time can directly improve stopping distance regardless of the vehicle’s

mechanical properties.

Visual Object Detection

Researchers in object detection classify objects based on the methods used to successfully

identify them, as object detectors may be well suited only for certain types of objects. Many early

attempts at visual object recognition were motivated by the difficult problems of facial recognition

and terrain identification. While many facets of image processing have advanced significantly in

recent decades, this initial research has seeded the methods that we use today in autonomous

systems.

In 1973, Fischler and Elschager proposed an image-matching algorithm that detects objects

based on the success or value of expected feature detection in the presence of noise using learned

data [10]. Despite initially being used in facial recognition, this is one of the earliest examples of

an algorithm that has the basic structure of modern object detection methods useful in the context

of autonomous vehicles: statistical image processing based on feature finding with a trained

reference data set.

Object detection, like all other digital processing, had made the most significant

advancements through computational power and storage of the past few decades. However, the

key improvements are based in machine learning methods, such as convolutional neural networks

(CNN). In 1995, LeCun and Bengio apply CNN to image processing in the well-known article in

[11]. Recently, region-based convolutional neural networks (R-CNN) have become an

increasingly popular method for machine learning in object detection as used in the widely-known

Fast-R-CNN and Faster-R-CNN [12] detectors. The popular YOLO object detector was designed

7

for real-time detection performance and uses a simpler network compared to R-CNN [13].

Despite these advancements, it is still widely accepted that occluded objects remain a difficult

problem in object detection. In 2017, Wang et al provide an adversarial alternative to R-CNN

that is much better suited for occluded objects [14]. Also, in 2017, Dollar et. al introduce the

method of fast feature pyramids with the aggregate channel features (ACF) object detector [15].

Vehicle Controller Performance

Modern vehicles depend on robust hardware and software called real-time systems where

the controlling processor must be capable of performing time-critical tasks. This type of system

is already a requirement for non-autonomous vehicles, and is also found in avionics and

industrial control [16], [17].

A familiar example of this type of system is anti-lock brakes (ABS). Several sensors

monitor the vehicle’s motion and the speed of the driving wheels. The electrical control unit

(ECU) collects data and based on a programmed control law drives a valve and pump to limit the

braking torque delivered to the wheels. To achieve a safe and reliable response, this entire

process must be completed in a few milliseconds, repeatedly and without interruption [18].

In autonomous vehicles, the required hardware and software demands are far greater,

especially considering the complexity of visual object detection. However, we can combine some

results from related areas. We next look at some existing work that has results useful to

investigating the computational aspects of object detection.

8

Related Work

Here we consider a selection of published work involving the general study of visual

object detection, and robot/vehicle localization. In particular, the papers chosen here demonstrate

an adaptive component based on feedback of a computation time.

In 1994, Kelly [19] describes an approach to vehicle perception described as a throughput

problem, considering the tradeoffs between the perception algorithm complexity and safe vehicle

speed as a resulting increase or decrease in processing time, measured in flops. In 2003, Kwok,

et al. present a localization algorithm that reduces the number of used samples in real-time based

on computational load [20]. In this case, the computational load is measured as a percent total

available, and performance of several load capacities are given. In 2013, Kim et al. provide a

framework for vehicle system management focusing mainly on graceful degradation.

Additionally, the framework proposes automatic selection of sensors based on the situation. In

2016, Lu et al. propose an adaptive object method not specific to autonomous driving, but clearly

useful for real-time visual object detection in autonomous vehicles. The method extends on the

region-based proposals such as those of the popular Fast R-CNN, by training a network to

consider specific areas for zoom and nearby regions of existing objects in forming proposal

regions.

In Table 1, some of the developments and challenges are identified. We find that several

key ideas developed in these methods can be applied to adaptive object detection for autonomous

vehicles.

9

Table 1: Table of Significant Works Related to Adaptive Object Detection

Article Original

Application

Major

Developments

Challenges and

possible extension

Key Adaptive

Elements

Kelly, 1994

“Adaptive perception

for autonomous

vehicles” [19]

Environment

mapping for

mobile robots

with laser

rangefinder

Discussion of

general throughput

problem (tradeoffs).

Determines

maximum safe

vehicle speed as a

function of

resources

Limited

computational

power available in

1994.

Application limited

to simple mobile

robot.

Algorithm tracks

its own cycle

time and adjusts

complexity

accordingly

Kwok et. al, 2003

“Adaptive real-time

particle filters for

robot localization”

[20]

Robot

localization

with laser

rangefinder

Complete statistical

model provided.

Identifies optimum

computational

power for least

localization error

Mixes sample sets

due to time-

varying

environment

characteristics.

Sample size

adjusted in real-

time to optimize

computational

efficiency

Kim et al., 2013

“Towards

Dependable

Autonomous Driving

Vehicles:

A System-Level

Approach”[21]

Fault

recovery and

sensor

management

for automated

driving

Complete

framework for

adaptive graceful

degradation.

Software library for

process scheduling

timing feedback.

Complete selection

scheme for sensor

modalities needs

development.

Feedback from

recent task cycle

time leading to

appropriate

vehicle action

Lu et al., 2016

“Adaptive Object

Detection Using

Adjacency and Zoom

Prediction”[22]

General

object

detection

Model is trained and

adapted to identify

important regions of

interest.

Region proposals

based only on prior

image data.

Can be expanded

to additional prior

knowledge.

Computational

resources

focused on

image area of

interest

10

In addition to the key works above, there are continual developments both inside and

outside the realm of autonomous driving. More recently, a 2017 patent describes an adaptive

object detection system intended for detecting and tracking faces with mobile devices in real-

time [23]. The system manages computational resources by selecting images from a queue which

will undergo the computationally expensive detection algorithm. Although this is not intended

for use in automated vehicles, it illustrates a need for management of computational resources in

the general problem of object detection and tracking. In a 2018 dissertation, Merfels describes a

localization system that maintains a constant computational time for the algorithm, by adjusting

the number of hidden nodes in a probabilistic graph [24]. This is done to prevent situations

where the algorithm cannot keep up with the incoming sensor data as other algorithms are

sharing the same processor. In this case, a PID controller is used to regulate deviations in

computation time by adjusting algorithm complexity.

Reflection of Literature

While there are many sources in literature for embedded systems with an awareness of

available computational resources, the availability of complete frameworks unifying adaptive

object detection in the context of autonomous vehicles is lacking. Thus, there are opportunities

for further research in the framework surrounding these systems. Based on the challenges and

key ideas from Table 1, we arrive at the following questions:

1. Can a general framework be developed for adaptive object detection considering

computational resources and sensor selection?

2. Can the method be applied to an existing object recognition algorithm without

modification?

11

3. How can the method incorporate feedback from the rest of the vehicle control system?

Each of these questions can be their own topic of study. However, with the growing

complexity of autonomous vehicles and the increased interest and participation of researchers,

we can see the significance of a framework unifying the adaptive techniques with the vehicle

control system model that is applicable to a modern autonomous vehicle. Our work here focuses

on this need.

Problem Statement and Objectives

We consider the ideas present in the previous related literature, and the general concepts

mentioned in the introduction to formulate a complete model to represent a modern automated

driving system. In this thesis, we seek the following objectives:

1. Design a framework to optimize a real-time perception system, by managing algorithm

execution and sensor selection, determining system parameters, and observing

computational time.

2. Focus on a practical, real-time implementation in a simulated environment.

3. Determine the resulting performance and tradeoffs given the above variations.

For the first objective, we focus our attention to the concepts described in the study of

and control systems and real-time embedded systems. Chapter 2 is dedicated to the construction

of this framework. Here we discuss a detailed vehicle controller model space and a temporal

model of the vehicle algorithm processing and task scheduling. We present an algorithm for

automated detection sequence generation based on a priori knowledge of the object recognition

processing time.

12

Regarding the second objective, we present a complete vehicle and environment model in

Chapter 3 built in the MATLAB® and Simulink® software environment. Where necessary, we

describe the background and mathematical framework for each component of the model.

Finally, for the third objective, we assess the feasibility of the presented framework by

introducing performance metrics for the detection algorithm and run multiple simulations in the

Simulink model. In Chapter 4, we see the numerical results and comparison for the simulations.

2. CONCEPTUAL FRAMEWORK

Controller Model

Controls engineers often think of systems in terms of a controller model where inputs and

outputs are physical devices. Figure 3 shows an autonomous vehicle system described with such

a model.

Figure 3: Vehicle controller conceptual model

Inputs to the control system of an autonomous vehicle are commonly visible light

imaging (camera), laser imaging (LIDAR), radar, or acoustic (sonar) form the inputs to an

autonomous vehicle. The handling of sensor input data is called perception, which includes all

image processing elements. The next stage, motion planning, consists of localization, motion

behavior, and environment mapping. The general vehicle trajectory is supplied by the motion

planner to the low-level control system, consisting of lateral and longitudinal control. Outputs to

the system are steering, throttle, and brake.

As most of the vehicle control system is implemented in dedicated devices, we next turn

our attention to the effects of realizing vehicle control in hardware and software.

14

Adaptive Techniques

The discussion so far shows that individual perception component processing time is

additive and not constant. Algorithms have long been proposed to have different behavior or

results depending on the actual elapsed algorithm running time. We consider some classes of

these algorithms in the following sections.

Anytime Algorithms

There are several ways to incorporate algorithm processing time in the design of real-

time systems. One subclass of resource-aware algorithm is called anytime algorithms. In

Anytime algorithms, the quality of results generally improves as a function of computation time

[25].

In the context of autonomous vehicles, Anytime algorithms have been successfully

developed for tree-search motion planning algorithms such as D* and RRT* [26]. In the case of

Anytime motion planning, it is easy to imagine why Anytime algorithms are useful: there may be

many feasible solutions to reach the desired target, but finding the optimal solution is not as

critical as finding a feasible solution quickly.

Resource-Bounded Algorithms

Extending this idea to a feedback control system, algorithm parameters can be adjusted in

real-time such that computational load is maintained to some level. In 2005, Thrun, et al. present

such algorithms as resource-adaptive in the context of robot localization. [27]

In other parts of the vehicle control system, there may be no output available until the

algorithm is completely finished processing. In this case, an Anytime algorithm is not useful.

However, we can instead consider a collection of processes and examine their contributions to

15

the system both in process results and process time. An abstract treatment of resource-bounded

algorithms is presented in [28].

Evaluation of Algorithm Processing Time

Algorithm performance and efficiency has historically been considered in the computed

number of floating-point operations per second (FLOPS). However, complicated processes such

as those used in computer vision or autonomous vehicles may be difficult or impossible to

measure due to the large number of system states available. Additionally, system resources may

not be completely dedicated to the task under consideration, and the computation time could

further vary depending on other system task requirements.

Instead, we can estimate process time by recording the system clock value before the

process (𝜏𝑠𝑡𝑎𝑟𝑡) and after the process (𝜏𝑒𝑛𝑑), and subtracting the difference:

𝜏 = 𝜏𝑒𝑛𝑑 − 𝜏𝑠𝑡𝑎𝑟𝑡.

Further, we can record a finite quantity of the computed values 𝜏 to a list in memory. Taking the

mean of several recent process times can be used as a predictor for future values.

Imaging Sequence Manipulation

Suppose a priori knowledge of image processing time is available for four different

inputs, A, B,C, and D, such that each are predicted to finish in 25 ms. Then, assuming each

sensor is processed sequentially, we have the following sequence, with total processing time of

100 ms as illustrated in Figure 4.

16

Figure 4: Sequence of primary processes

At this point, the system integrator must assess the predicted figures with regards to the

overall system design. The 100 ms value implies that each sensor will be processed periodically

every 100 ms. If this period is too high, the designer must find a way to free up resources

elsewhere or revise the image processing algorithm. If the value is acceptable, then there may be

a small excess time available. We seek to make use of these small time segments.

Suppose for example, that 125 ms is acceptable for the full processing sequence. Then we

may choose how to allocate an additional 25 ms. This is illustrated in Figure 5.

17

Figure 5: Sequence of primary processes with secondary process

The questions the system designer may ask at this point are:

1. What is the best use of free processing time in different machine states?

2. What is an acceptable upper bound for the processing sequence?

In the context of autonomous vehicles, both of these questions may not have an obvious

answer as they are two variables in already complicated system. However, in the following

section, we formulate an algorithm to determine the time allocation automatically, and we

experimentally see results different values of upper bounds in Chapter 4. Ultimately, the system

designer must accept a lower detection frequency of certain sensors while others are raised.

18

Vision Detection Sequence

Consider a vehicle equipped with multiple imaging sensors and denote each with a letter,

as shown in the example in Figure 6.

Figure 6: Vehicle with multiple sensors

Now consider a detection coming from one of the sensors. Define the complete detected

image as the primary detection and define a subset of the image the secondary detection. Denote

the primary detection by an uppercase letter, and the secondary detection by a lowercase letter.

19

Figure 7 shows an example of a forward-facing sensor image with primary and secondary

regions.

Figure 7: Primary and secondary detection regions

We can then define a sequence of 𝑛 primary detections as entries from the set of primary

or secondary detections, where the sequence proceeds from left to right. For example, the

sequences 𝑠1 = {𝐴, 𝐵, 𝐶, 𝐷} or 𝑠2 = {𝑎, 𝑏, 𝑐, 𝑑} visit each of the four sensors listed in Figure 6.

We can also combine primary detections such as in the sequence 𝑠3 = {𝐴, 𝑎, 𝐵, 𝑏} .

Ideally, the detections should be fast (multiple times per second). Because of this, we

may look at the infinite sequence consisting of combined frames, or elementary sequences. For

example, the infinite sequence

𝑠4 = {𝐴, 𝑎, 𝐵, 𝑏⏞
𝑓𝑟𝑎𝑚𝑒 0

, 𝐴, 𝑎, 𝐵, 𝑏⏞
𝑓𝑟𝑎𝑚𝑒 1

, ⋯ }

can be thought of as successive frames of 𝑠3.

20

Additionally, the detections from each sensor should occur at regular intervals, meaning

variance among the time between detections should be minimized.

Define the detection period 𝑡𝑖 of sensor 𝑖 as the difference between the two consecutive

detections (primary or secondary) originating from the same sensor.

Further define the average detection period 𝑡𝑖 for sensor 𝑖 as

𝑡𝑖 =
1

𝑛
∑ 𝑡𝑖𝑘

𝑛

𝑘=1

and the detection time variance 𝜎𝑖
2 as

𝜎𝑖
2 =

1

𝑛 − 1
∑(𝑡𝑖𝑘 − 𝑡𝑖)

2
𝑛

𝑘=1

where 𝑛 samples are taken over many frames. We can extend these definitions to infinite

sequences by taking the limit as 𝑛 approaches infinity.

For example, if the time between each element of the sequence in 𝑠4 is τ, then for sensor

A, we have a detection period 1τ within each frame (from 𝐴 to 𝑎), and a detection period 3τ of

between frames (from 𝑎 to 𝐴 in the next frame). This yields the sequence of time intervals

{1τ, 3τ, 1τ, 3τ,⋯ } and the average detection period is

𝑡𝑖 = lim
𝑛→∞

(
1

𝑛
∑𝑡𝑖𝑘

𝑛

𝑘=1

)

= lim
𝑛→∞

1

𝑛
(1τ + 3τ + 1τ + 3τ +⋯)

= lim
𝑛→∞

2𝑛τ

𝑛

= 2τ .

21

The detection time variance is

𝜎𝑖
2 = lim

𝑛→∞

1

𝑛 − 1
∑(𝑡𝑖𝑘 − 𝑡𝑖)

2
𝑛

𝑘=1

= lim
𝑛→∞

1

𝑛 − 1
∑(𝑡𝑖𝑘 − 2τ)

2
𝑛

𝑘=1

= lim
𝑛→∞

1

𝑛 − 1
𝑛τ2

= τ2.

We can reduce the variance by rearranging the sequence. If we instead use sequence {𝐴, 𝐵, 𝑎, 𝑏}

for each frame, we have the infinite sequence {𝐴, 𝐵, 𝑎, 𝑏, 𝐴, 𝐵, 𝑎, 𝑏,⋯ } and sensor A (and also B)

has detection intervals {2τ, 2τ, 2τ, 2τ,⋯ }. In this arrangement, we still have detection period 𝑡𝑖 =

2τ, but the variance 𝜎𝑖
2 has been reduced to zero. In practice, there will be small variations in the

sensor acquisition and system processing time regardless of whatever sequence we use, so 𝜎𝑖
2 can

never be completely reduced.

Automated Sequence Generation

We can automate the sequence creation process given an arbitrary number of sensors and

secondary detections. Assume that each sensor must include its primary detection once in each

frame. Then let 𝑚𝑝 = quantity of primary detections per frame = quantity of sensors and let 𝑚𝑠 be

the number of secondary detections per frame. Let β be the desired upper bound for frame

processing time. We use the word “desired” here as the resulting processing time may not exactly

match the calculated time when the sequence is executed. We can estimate the time needed for

running the primary or secondary detections by looking at prior data as described in

previous sections. Assume for now that these estimated values are available as inputs to the

system.

Let 𝑡1 represent the estimated time for a primary detection and 𝑡2 represent the estimated

time for a secondary detection. From this, we can determine the amount of available time, 𝑡𝑓𝑟𝑒𝑒,

by

 𝑡𝑓𝑟𝑒𝑒 = 𝑚𝑎𝑥(𝛽 − 𝑚𝑝𝑡1, 0)

And the number of available partitions or “slots” 𝑚𝑓𝑟𝑒𝑒 by:

𝑚𝑓𝑟𝑒𝑒 = 𝑓𝑙𝑜𝑜𝑟 (
𝑡𝑓𝑟𝑒𝑒

𝑡2
) + 1

Note the 𝑚𝑎𝑥 function in the definition of 𝑡𝑓𝑟𝑒𝑒 is to handle the possibility of no available time.

In this case we cannot run any secondary detections and must force the system to run a sequence

consisting of only primary sensor process.

Distribution of Secondary Detections

Now we must handle the distribution of secondary sequences. Recall in the earlier example,

{𝐴, 𝐵, 𝑎, 𝑏} outperformed {𝐴, 𝑎, 𝐵, 𝑏} in terms of detection time variance as the measurements were

more evenly distributed. We can extend this idea to arbitrary numbers of sensors by defining a

permutation (or arrangement of values) from 1 to n such that the numbers are visited non-

sequentially. By letting 𝑛 = 𝑚𝑝 we can create a permutation to distribute secondary detections in

between primary detections with lowered detection time variance. Let 𝑠𝑝 = {1, 2,⋯ ,𝑚𝑝} . Then

define a permutation 𝑤𝑝 as

𝑤𝑝 = {𝑥𝑖|𝑥𝑖 = {
𝑠𝑖 𝑖 𝑒𝑣𝑒𝑛

𝑠𝑖 + 𝑐 𝑖 𝑜𝑑𝑑
 , 𝑐 = 𝑐𝑒𝑖𝑙(𝑚𝑝/2) , 𝑖 ∈ 𝑠𝑝}.

22

23

This is just one scheme for permutation, but others are possible, such as no permutation, or simply

reversing the entries. To illustrate the effect of 𝑤𝑝, the sequence {1, 2, 3, 4, 5, 6} can be permuted

by 𝑤𝑝 = {1, 4, 2, 5, 3, 6}.

Now define the origin sequence 𝑠0 by:

𝑠0 = {𝑥𝑖|𝑥𝑖 = 𝑐𝑒𝑖𝑙 (
𝑖 𝑚𝑠

𝑚𝑓𝑟𝑒𝑒
) + 1, 𝑖 ∈ {1, 2,⋯ ,𝑚𝑓𝑟𝑒𝑒}}.

and define permuted sequence 𝑠𝑤 by

𝑠𝑤 = {𝑥𝑖|𝑥𝑖 = 𝑠0𝑗 , 𝑗 = 𝑚𝑜𝑑 (𝑤𝑝𝑖,𝑚𝑝) , 𝑖 ∈ {1, ,⋯ ,𝑚𝑓𝑟𝑒𝑒} }.

The origin sequence is necessary for when the number of free slots exceeds the number of

secondary detections. For example, suppose for sensors A through E we have 𝑚𝑓𝑟𝑒𝑒 = 10, 𝑚𝑝 =

5, and 𝑚𝑠 = 3. This results in the origin sequence

𝑠0 = {1 ,1 ,1 ,2, 2, 2, 3, 3, 3, 3}

and the permutation 𝑤𝑝 = {1, 4, 2, 5, 3}, we assign them to the sensors according to sensor

number in order given by 𝑤𝑝. This can be represented by the augmented matrix with

[

1
2
3
4
5

|
|

1 2
2 3
1 3
2 3
1 3]

.

Replacing the numerical values with the alphabetic sensor designations, we have:

24

[

𝐴
𝐵
𝐶
𝐷
𝐸

|
|

𝑎 𝑏
𝑎 𝑐
𝑏 𝑐
𝑎 𝑏
𝑎 𝑐]

.

Reshaping this matrix into a row vector of size 𝑚𝑝 + 𝑚𝑓𝑟𝑒𝑒, we have:

[𝐴 𝑎 𝑏 𝐵 𝑎 𝑐 𝐶 𝑏 𝑐 𝐷 𝑎 𝑏 𝐸 𝑎 𝑐].

We have reached a solution for the detection distribution where the primary detections are evenly

distributed, and the secondary detections are distributed throughout the primary distributions. Note

it is not always possible to perfectly distribute all detections, and even under an ideal distribution

may not exactly follow the expected frame execution times. Additionally, this method does not

necessarily provide an optimal distribution for sequences. However, it is easy to see that by

rearranging the sequence, there will be reduction in mean detection time and detection time

variance for a given sensor (for example ‘A’ and ‘a’ being of the same sensor).

3. MODEL CONSTRUCTION

MATLAB and Simulink

MATLAB (MathWorks, Natick, MA) is a software package for numerical calculation

[29]. Widely used in education and research, the software has many built in functions for use in

statistics, automatic control, and image processing, making it an attractive choice for

autonomous systems. Recently, MATLAB has introduced the Automated Driving Toolbox

specifically for the study of autonomous and semi-autonomous vehicles [30].

Simulink is a component of MATLAB designed for modeling and control of dynamical systems

[31]. Simulink projects are created in the form of “models”, which are edited using a very

convenient graphical user interface similar to control flow diagrams.

According to the conceptual model discussed in Chapter 2, we now introduce the

Simulink model shown in Figure 8. In the model, we represent each major component of the

vehicle control system with a Simulink subsystem. The plant to be manipulated (vehicle state) is

considered in the vehicle dynamics modelling. The vehicle interacts in the simulated

environment and is updated in the next simulation cycle. The simulated environment is merely a

visual rendering using the Unreal Engine for purposes of visual object detection, which includes

the road, ground, sky, and other vehicles. Each sensor input sensor is implemented with an

individual block that generates sensor data based on the defined properties such as sensor type,

orientation, and update frequency.

26

Figure 8: Simulink model for simulation of autonomous vehicle control

27

Note that the interconnections shown in Figure 8 are not exhaustive. In particular, vehicle

localization and odometry are assumed available at all times. In an actual vehicle, localization

and odometry are estimates of the true values using dedicated sensors. In our model, localization

and odometry are available by the position and velocity components of the bus signal BusEgoPos

providing values that are always accurate to the simulation.

Additionally, special attention is given to the feedback loop between the motion planning

and perception subsections. A novelty of this model is the introduction of direct feedback from

the motion planner module so as to provide the regions of interest for the adaptive detection

module with resource awareness. We now present a detailed discussion of each subsystem.

Visual Object Detector

Vehicle detection from RGB camera images can be achieved according to the methods

described in [32] and [15]. For a given image, several image channels are computed based on

histograms of oriented gradients. Feature pyramids are constructed based on the channel

information, allowing the algorithm to detect multiple scales without rescaling the original

image. The detector compares the aggregated channel features (ACF) from the image to that of a

known (training) dataset.

The MATLAB Computer Vision Toolbox includes an implementation of the ACF object

detector instantiated by function vehicleDetectorACF(). The detector is pre-trained with images

of actual vehicles to detect vehicle features. After instantiation, the detector is called with

detect() function and returns a list of bounding box coordinates and confidence levels. An

example image with bounding box is shown in Figure 9.

28

Figure 9: Example of camera image with bounding box, as result of ACF object detector

Using the bounding box information, we can estimate vehicle position by using our

knowledge the camera orientation, width, and focal length. The MATLAB function,

imageToVehicle() can be used to convert the bounding box edges to vehicle coordinates [33].

The Simulink model for the perception module is shown in Figure 10.

Figure 10: Simulink model of vehicle perception

29

Object Tracking

In our model, we are initially considering only other vehicles detected with vision

sensors, which means we can strictly use visual bounding boxes as input data to the next stage in

the vehicle perception. The bounding boxes are expected to have considerable variation,

occasional missing measurements, and double measurements (multiple bounding boxes for a

single object). Thus, we need an object tracking module to assess the state of the environment by

keeping track of candidate and confirmed detected objects. The Global Nearest Neighbor (GNN)

object detection method is based on the Munkres assignment problem described in [34]. The

GNN method is shown to be superior in correctly tracking multiple overlapping targets [35].

The MATLAB Automated Driving Toolbox includes an implementation of GNN

tracking that includes object state estimation with Kalman Filtering [36]. The function

multiObjectTracker() allows for a state estimation function handle. Here we use the extended

Kalman filter for its feasibilities in nonlinear state space models described by [37]:

�⃑�𝑘+1 = 𝑓(𝑘, 𝑥𝑘) + �⃑⃑⃑�𝑘 (state transition function)

�⃑�𝑘+1 = ℎ(𝑘, 𝑥𝑘) + �⃑�𝑘 (measurement function)

 where 𝑓, 𝑔 are nonlinear functions of the current state 𝑥𝑘, and 𝑤𝑘 and 𝑣𝑘 are white Guassian

noise describing the measurement and state transition process noise, respectively. In this case,

the state vectors have four elements [𝑥, �̇� , 𝑦, �̇�] which will be the resulting form of our tracker

output.

In our model, the object tracking function is encapsulated as a MATLAB System block

we call motekf for “multi object tracker with extended Kalman filter”. This block simplifies the

30

object tracker results into a five column matrix, the first column being the confirmed track ID,

and the four remaining columns as the elements of the vector [𝑥, �̇� , 𝑦, �̇�] describing the tracked

object state.

Radar Simulation

We include an optional radar simulation. Radar detections are generated with the

Simulink block Radar Detection Generator [38]. This block models radar detections with

simulated noise, false positives, specific locations of vehicle edges, and sensor properties. The

detection frequency can also be adjusted. We fuse the vision and radar data using a custom

MATLAB function called combine, which considers measurements from the bus output of the

radar detection generator, and from the matrix output of the adaptive vision detector. The two

trigger sources are also combined, updating the object tracker when either type of detection is

ready.

Motion Planning

The vehicle motion planner is responsible for assessing the operating state of the vehicle

and determining the necessary actions. The motion planner curve layer generates trajectories

based on the vehicle’s knowledge of the roadway geometry and the behavioral layer calculates

the appropriate reference (setpoint) values to send to the motion planner. To make these

assessments, the motion planner must relate objects detected in the ego vehicle’s frame of

reference 𝐹𝐸 to the world frame of reference 𝐹𝑂. Let 𝑅 be the rotation matrix defined by

𝑹 = [
sin (𝜓) 𝑐𝑜𝑠(𝜓)

𝑐𝑜𝑠(𝜓) −sin (𝜓)
]

Where 𝜓 is the angle of the vehicle with respect to the x-axis.

31

Now let 𝑑𝑝 = [𝑥, 𝑦]
𝑇 and 𝑑𝑣 = [�̇�, �̇�]

𝑇 be the ego vehicle position and velocity in world

coordinates. Further, let 𝑇𝑝 be the position transformation matrix and 𝑇𝑣 as the velocity

transformation matrix, defined as:

𝑻𝑝 = [
𝑅 𝑑𝑝
02×1 1

] and

 𝑻𝑣 = [
𝑅 𝑑𝑣
02×1 1

].

Then, a point 𝑠𝐸 = [𝑠𝑥, 𝑠𝑦 , 1]
𝑇
in the ego frame 𝐹𝑂 is transformed to a point 𝑠𝑂 in the world frame

by

𝑠𝑂 = 𝑻𝑝 𝑠
𝐸.

Similarly, a velocity 𝑣𝐸 = [𝑣𝑥, 𝑣𝑦, 1]
𝑇
in the ego frame 𝐹𝐸 is transformed to velocity 𝑣𝑂 in the

world frame by

𝑣𝑂 = 𝑻𝑝 𝑣
𝐸.

Applying these transformations to the incoming tracked objects presents their complete state in

world coordinates. These transformations are implemented in the model as a MATLAB Function

block tracks_to_world.

In the curve layer, the motion planner generates a trajectory curve based on the current

state of the vehicle (localization), desired pose of the vehicle (destination), and curvature of the

road in world coordinates. For a straight road, this is simply a line positioned in between the lane

nines.

The behavioral layer contains the vehicle decision-making process. In our model, the ego

vehicle must respond to objects observed to be in its path. In the case of multiple objects detected

32

in lane, the behavioral layer determines which is the most important object (MIO), defined as the

object closest to the ego vehicle. For our model, the behavioral layer functions similarly to

Adaptive Cruise Control (ACC) found on modern autonomous and many commercial semi-

autonomous vehicles [39]. In the implementation in [40], the module depends on velocity control

and obeys a set of fuzzy membership rules for the position control. In our model, we use a

simplified implementation with state transition logic, as shown in Table 2.

Table 2: Motion Planner State Logic Table

Present State Transition Logic Next State

-1 (Decelerate) Maximum distance reached 0

0 (Hold) Min or max. distance reached -1 or 1

1 (Accelerate) Minimum distance reached 0

2 (Full Stop) None 2

Any Followed vehicle velocity drops

below threshold

2

Additionally, the motion planner includes a trajectory output for direct connection to the

perception module. In the case of a straight road scenario it is represented by a matrix of

constants defining a straight-ahead reduced detection window in the object recognition system.

Our Simulink model for motion planning is shown in Figure 11.

33

Figure 11: Simulink model for motion planning

34

Low level Control

Low level lateral control is accomplished with the Stanley method as described by

Hoffman et al. in [41]. The method was named after the Stanford Racing Team’s “Stanley”

vehicle used by in the DARPA Grand Challenge 2005. In this method, the steering control law

for the wheel angle 𝛿(𝑡) is given by

𝛿(𝑡) = (𝜓(𝑡) − 𝜓𝑠𝑠(𝑡)) + tan
−1

𝑘𝑒(𝑡)

𝑘𝑠𝑜𝑓𝑡 + 𝑣(𝑡)

+ 𝑘𝑑,𝑦𝑎𝑤(𝑟𝑚𝑒𝑎𝑠 − 𝑟𝑡𝑟𝑎𝑗) + 𝑘𝑑,𝑠𝑡𝑒𝑒𝑟(𝛿𝑚𝑒𝑎𝑠(𝑖) − 𝛿𝑚𝑒𝑎𝑠(𝑖 + 1)).

where 𝜓(𝑡) is yaw angle 𝜓𝑠𝑠(𝑡) is steady state yaw angle (which depends on vehicle mass 𝑚 and

tire stiffness 𝐶𝑦). The constant 𝑘 is determined experimentally, 𝑘𝑠𝑜𝑓𝑡 tuned to low speed

performance, and gains 𝑘𝑑,𝑦𝑎𝑤, 𝑘𝑑,𝑠𝑡𝑒𝑒𝑟 are yaw rate feedback gain, and steering angle feedback

gain. Included in MATLAB is an implementation of the Stanley lateral control. The MATLAB

default values of 𝑘𝑑,𝑦𝑎𝑤 = 𝑘𝑑,𝑠𝑡𝑒𝑒𝑟 = 0.1 are used, with 𝑚 and 𝐶𝑦 matched to the kinematic

model properties (discussed in the next section).

For longitudinal control, the Stanley method is a PI controller with integrated anti-

windup on the integral term. Included in MATLAB is an implementation of the Stanley

longitudinal control. The MATLAB default values of 𝑘𝑝 = 2.5, and 𝑘𝑖 = 1 are used. This

implementation also limits the acceleration and deceleration to adjustable maximum values. The

default values of 3 𝑚/𝑠2 and 6 𝑚/𝑠2 are chosen, respectively.

The Simulink model for low level control is shown in Figure 12.

35

Figure 12: Simulink model of low-level control

Vehicle Dynamics Modeling

In our simulation, the vehicle physics model should accurately represent real-world

vehicle dynamics. As is commonly used in the study of automated driving, we use the bicycle

model [42] which relates the vehicle x-axis state in world coordinates, �̇�(𝑡), y-axis state in world

coordinates �̇�(𝑡), vehicle heading angle 𝜓(𝑡), side-slip angle 𝛽, and velocity 𝑣 in the body frame

of reference, with respect to the vehicle center of gravity.

There are two well-known implementations of bicycle model – kinematic and dynamic.

The kinematic bicycle model assumes the vehicle direction of motion is along the same axis as

the front wheels, which is suitable for low-speed driving. The dynamic bicycle model operates

36

without this assumption, instead accounting for inertial dynamics. This is important at highway

speeds as the angle assumption can no longer be made[43].

The dynamic bicycle model is described by the following system of differential equations [44]:

{

�̇� = �̇��̇� + 𝑎𝑥

𝑦 = − �̇��̇� = 𝜓�̇� +
2

𝑚
(𝐹𝑐,𝑓 cos 𝛿𝑓 + 𝐹𝑐,𝑟)

�̈� =
2

𝐼𝑧
(𝑙𝑓𝐹𝑐,𝑓 − 𝑙𝑟𝐹𝑐,𝑟)

�̇� = �̇� cos𝜓 − �̇� cos𝜓

�̇� = �̇� sin𝜓 − �̇� cos𝜓

Where 𝑚 is the vehicle mass, 𝐼𝑧 is yaw inertia. 𝐹𝑐,𝑓 and 𝐹𝑐,𝑟 are the lateral tire forces at

the front and rear wheels, respectively.

The MATLAB Autonomous Driving Toolbox includes an implementation of the dynamic

bicycle model. We use default values for the block parameters, described by [45].

In the simulated model, we use the “Vehicle Body 3DOF” block with force calculated by

the product of vehicle mass and acceleration (Newton’s second law). To avoid discontinuities

caused by abrupt changes in input, the incoming acceleration signal is dampened slightly by a

filter with transfer function:

𝐻(𝑠) =
0.5

0.5𝑠+1
.

The Simulink model for vehicle dynamics is shown in Figure 13.

37

Figure 13: Simulink model for vehicle dynamics

We choose the Simulink environment sampled at a fixed period of 𝑇𝑠 = 10 𝑚𝑠. The

sampling rate for all Simulink blocks is also set to 𝑇𝑠. The simulation ends after 20 s. Automatic

solver selection is used for numerical solutions of differential equations as described in the

preceding sections.

Model Summary and Contributions

The completed model uses a combination of premade components and original

components with the goal of being simple yet flexible enough to be extended to several

scenarios. Table 3 summarizes the main components of each subsystem and lists our original

contributions to the model to distinguish the blocks and functions provided with MATLAB. For

our developed components, complete MATLAB code for each component is provided in the

appendix.

38

Table 3: Summary of Simulink Model Components

Subsystem MATLAB Provided

Components

Developed Components

Perception Functions used in

Detector_multi_adaptive:

vehicleDetectorACF(),

imageToVehicle()

Functions used in motekf

block: multiObjectTracker()

Detector_multi_adaptive

block (sequence generation

algorithm, image preparation,

process time evaluation)

combine function

Motekf block: (encapsulation

only)

Motion Planning None tracks_to_world block

(coordinate transformations)

motion_decision block

(behavioral layer and velocity

output)

Low-Level Control Stanley lateral and

longitudinal control blocks

None

Actuators/Dynamics Bicycle model block None

4. EXPERIMENT RESULTS AND REFLECTION

Straight Road Scenario

In this scenario, we consider an automated vehicle following another vehicle as in Figure

14. Images from the cameras are used to detect and track other vehicles. The relative position

and velocities of the tracked objects are estimated. Using this estimated information, we can

control the ego vehicle motion based on the observed environment. All simulations are

performed on an Intel i7-8650U processor with 16GB RAM and nVIDIA GeForce GTX 1060

graphics. The GPU is only used for the scenario rendering. It is not used in the detection

algorithm. Measured detection times are scaled (multiplied) by a factor of 0.2 to closer represent

an on-board vision processing system.

Figure 14: Straight road highway driving scenario

The scenario starts with both vehicles cruising at 29 m/s (65 mph). The autonomous

vehicle is using adaptive cruise control (ACC). After some time has passed, the followed vehicle

rapidly decelerates and comes to a complete stop. The automated vehicle must respond to the

slowdown and decelerate to avoid a crash. We define the reaction time in all experiments as the

time it takes between the moment where the followed vehicle reaches 27 m/s, and the ego

vehicle estimating the velocity at 27 m/s (and therefore responding).

40

Experiments I – III

The automated vehicle is equipped with three front facing sensors at angles of -30, 0 and

+30 degrees with respect to the vehicle’s longitudinal axis as illustrated in Figure 15. We assess

the performance of the adaptive perception system by comparing the vehicle response under

different configurations of sequence generation. First, for experiment I, we let 𝛽 = 0, which is

more accurate to say we wish 𝛽 minimized. In this case, the sequence is not adaptive. We simply

process the frames in order of sensor designation: A-B-C. We then increase 𝛽 to 0.2 and 0.3 in

Experiments II and III, respectively. There are only vision detections considered in experiments I

through III. Figure 16, Figure 17, and Figure 18 show the results of experiments I, II, and III,

respectively. The top plot compares the estimated and true positions of the vehicles. The middle

plot compares the estimated and true positions of the vehicles. The bottom plot shows the

measured sequence length vs. the desired sequence length.

Figure 15: Experiment I, II, and III sensor layout

41

Figure 16: Experiment I (β = 0, vision only)

42

Figure 17: Experiment II (β = 0.2, vision only)

43

Figure 18: Experiment III (β = 0.3, vision only)

44

Experiments IV – VI

We repeat the previous three experiments with the three vision sensors, but this time we

add a simulated radar sensor to the front of the vehicle (Figure 19). The radar sensor operates at

10 Hz and has a 20 degree detection angle. Again we start with 𝛽=0, and increase 𝛽 to 0.2 and

0.3. Figure 20, Figure 21, and Figure 22 show the results of experiments IV, V, and VI,

respectively. The top plot compares the estimated and true positions of the vehicles. The middle

plot compares the estimated and true positions of the vehicles. The bottom plot shows the

measured sequence length vs. the desired sequence length.

Figure 19: Experiment IV, V, and VI sensor layout

45

Figure 20: Experiment IV (β = 0.0, vision and radar)

46

Figure 21: Experiment V (β = 0.2, vision and radar)

47

Figure 22: Experiment VI (β = 0.3, vision and radar)

48

The results of the six experiments are collected in Table 4.

Table 4: Summary of Results

Visual

Detections

Desired

frame time

𝛽

Actual

 frame time

(mean, s)

Generated

Sequence

(typical)

Mean

Detection

Interval

sensor A

(s)

Detection

Interval

Std. Dev.

sensor A

(s)

Reaction

Time (s)

(vision)

Reaction

Time (s)

(vision +

radar)

Primary

Only

0

(minimized)

0.139 ABC 0.154 0.026 1.51 1.27

Primary +

Secondary

0.2 0.195 AaBaCa 0.061 0.026 1.01 1.37

Primary +

Secondary

0.3 0.305 AaaBaaCaa 0.042 0.024 0.88 0.96

Discussion

The first point of discussion is the generated sequence. As expected, we see the generated

sequence length grows with increasing frame bound 𝛽. Additionally, resulting frame time value

0.195 when 𝛽 = 0.2 and 0.305 when 𝛽 = 0.3 very closely match the desired frame time. Further,

the mean detection interval decreases as expected. This shows reasonable performance in

prediction of frame processing time with the available hardware configuration. The deviation in

detection intervals appears close in all three configurations, indicating there will be variance no

matter what, and it is generally unaffected by the change in sequence. However, it is likely that

more complicated sequences will have greater detection variance for a particular sensor.

Our next topic of discussion is the vehicle reaction time. With vision only, we see an

inverse relationship between mean detection interval and reaction time. Qualitatively, we see the

least artifacts (large sections of noise) in the velocity plots when 𝛽 = 0.3 increases. This is an

49

expected result. However, the presence of such artifacts shows a revised metric for vehicle

reaction time may be necessary. When radar is added, the reaction time is reduced even without

the adaptive algorithm applied. This is to be expected, as modern vehicles use radar for distance

estimation for this reason – increased sensing reliability. However, the presence of these

additional measurements is not without a cost. There tends to be more artifacts in the velocity

plots for experiments IV through VI. Further, the reaction time actually increased when 𝛽

increased from 0 to 0.2. This is likely because of the high error in the vision measurements

competing with the more regular radar measurements resulting in an overall increase in object

tracker state covariance. Therefore, the noise characteristics and measurement frequency of the

radar and vision detection algorithm must be considered. Under different conditions, such as low

light, there may be even further discrepancy, however, the radar will continue to function even if

the vision sensor cannot. We conclude with the following:

1. Vision-based position and velocity estimates can be improved by the adaptive

technique and/or radar measurements.

2. The characteristics of the different types of sensor object tracker play a significant

role in the estimate, which may help or hinder the result.

3. The best choice for overall reliability is to combine the vision and radar with the

adaptive algorithm, and, if permissible, a large value for 𝛽.

Finally, we relate this work back to the objectives listed in Chapter 1. We have provided

a method of object detection that exhibits adaptive qualities in terms of the perceived

environment and available computational resources. The method is shown to be effective using

an existing visual object recognition algorithm. The Simulink model, although simplified

50

compared to an actual automated driving system, demonstrates a complete feedback network

including all major subsystems of the vehicle controller conceptual model. We see that by

increasing the upper bound for frame processing time 𝛽, we find the tradeoff between decreased

primary image detection frequency and increased secondary image detection frequency can be

valuable to the vehicle reaction time.

Certainly, this particular set of experiments is considered under specific conditions, but

the concept can easily be extended. Especially in research environments, the availability of

complete reference models is invaluable, and our proposed model provides students and

researchers interested in autonomous vehicles with a platform to evaluate adaptive perception,

while easily being adapted and extended to different tasks. We consider some extensions in the

next section.

Future Work

In this model, we only considered a straight road model with an ego vehicle and one

other vehicle. The most obvious extension to this work is additional scenarios. We can also

investigate a generalization of the adaptive techniques described here and generalize it to other

types of sensors and different models of subsequent control components in the vehicle.

For the straight road, additional vehicles can be added to test the system performance

with multiple objects. We can also vary the speed of the vehicles and assess the system

performance against stationary and moving objects. We may also consider a curved road. Given

the adaptive nature of the proposed system and feedback from motion planner, as well as the

multiple sensor capability, this is a natural extension of the work presented here.

51

A physical implementation with laboratory vehicle is also important for verifying the

results in a practical setting. A physical environment provides the optimal challenge for the

proposed algorithm, as many artifacts must be considered that are not easily simulated: such as

weather, varying lighting condition, and sensor noise.

Summary

In this research, we have explored the feasibility of a situationally aware object detection

method for use in autonomous vehicle control. We introduced a general framework for process

feedback and resource allocation in real-time, with an application to visual object detection. A

complete simulation model was presented containing several detailed elements of an autonomous

vehicle control system. We performed experiments showing feasibility among a range of

parameters.

This work illustrates the growing complexity of modern control and automation

applications, and the ever-important need to stay current on the latest techniques in related areas

such as image processing, feedback control, real-time embedded systems, artificial intelligence,

and optimization. The study of autonomous vehicles is not limited to these areas.

Intelligent systems are increasingly becoming integral to everyday life. It is a very

exciting opportunity to participate in the study and development of autonomous driving

technology. In our work, we illustrated how the additions of seemingly tiny increments of

information to autonomous vehicle are what allows it to grow in performance. In the same way,

the combined contributions of universities and institutions across the world are what will realize

the intelligent and automated world of the future.

REFERENCES

[1] “Automated Driving Systems: A Vision for Safety.” https://www.transportation.gov/av/3

(accessed Oct. 09, 2019).

[2] U. S. DOT, “Automated Vehicles 3.0 Preparing for the Future of Transportation.”

https://www.transportation.gov/av/3 (accessed Oct. 09, 2019).

[3] NHTSA, “Automated Vehicles for Safety.” https://www.nhtsa.gov/technology-

innovation/automated-vehicles-safety (accessed Oct. 09, 2019).

[4] C. Urmson et al., “Autonomous driving in traffic: Boss and the urban challenge,” AI Mag.,

vol. 30, no. 2, pp. 17–17, 2009.

[5] SAE International, SAE International, Ford, General Motors, and Toyota form Automated

Vehicle Safety Consortium, Apr. 04, 2019.

[6] S. Liu, L. Li, J. Tang, S. Wu, and J.-L. Gaudiot, “Creating autonomous vehicle systems,”

Synth. Lect. Comput. Sci., vol. 6, no. 1, pp. i–186, 2017.

[7] A. Appriou, Uncertainty theories and multisensor data fusion. ISTE : Wiley, 2014.

[8] W. Elmenreich, “Sensor fusion in time-triggered systems,” 2002.

http://www.academia.edu/download/3575988/10.1.1.69.9299.pdf (accessed Sep. 04, 2018).

[9] MIT News Office, “Study measures how fast humans react to road hazards,” MIT News,

Aug. 07, 2019.

[10] M. A. Fischler and R. A. Elschlager, “The representation and matching of pictorial

structures,” IEEE Trans. Comput., vol. 100, no. 1, pp. 67–92, 1973.

[11] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time series,”

Handb. Brain Theory Neural Netw., vol. 3361, no. 10, p. 1995, 1995.

[12] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection

with region proposal networks,” 2015, pp. 91–99.

[13] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-

time object detection,” 2016, pp. 779–788.

[14] X. Wang, A. Shrivastava, and A. Gupta, “A-fast-rcnn: Hard positive generation via

adversary for object detection,” 2017, pp. 2606–2615.

[15] P. Dollár, R. Appel, S. Belongie, and P. Perona, “Fast feature pyramids for object

detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 8, pp. 1532–1545, 2014.

53

[16] M. Chetto, Real-time systems scheduling: fundamentals. John Wiley & Sons, 2014.

[17] A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and A. Sangiovanni-Vincentelli,

“Period optimization for hard real-time distributed automotive systems,” 2007, pp. 278–

283.

[18] J. Wang, Real-time embedded systems. John Wiley & Sons, 2017.

[19] A. Kelly, “Adaptive perception for autonomous vehicles,” CARNEGIE-MELLON UNIV

PITTSBURGH PA ROBOTICS INST, 1994.

[20] C. Kwok, D. Fox, and M. Meila, “Adaptive real-time particle filters for robot localization,”

2003, vol. 2, pp. 2836–2841.

[21] J. Kim, R. Rajkumar, and M. Jochim, “Towards dependable autonomous driving vehicles: a

system-level approach,” ACM SIGBED Rev., vol. 10, no. 1, pp. 29–32, 2013.

[22] Y. Lu, T. Javidi, and S. Lazebnik, “Adaptive object detection using adjacency and zoom

prediction,” 2016, pp. 2351–2359.

[23] T. Ruf, A. Ernst, J. Garbas, and A. Papst, “Apparatus and method for resource-adaptive

object detection and tracking,” Oct. 2017.

[24] C. Merfels, “Sensor fusion for localization of automated vehicles.” https://d-

nb.info/1173898506/34 (accessed Apr. 04, 2019).

[25] S. J. Russell and S. Zilberstein, “Composing Real-Time Systems.,” 1991, vol. 91, pp. 212–

217.

[26] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of motion planning

techniques for automated vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 4, pp.

1135–1145, 2015.

[27] Sebastian Thrun; Wolfram Burgard; Dieter Fox, Probabilistic Robotics. Cambridge,

Massachusetts: MIT Press, 2005.

[28] Y. Moses, “Resource-bounded knowledge,” 1988, pp. 261–275.

[29] “MATLAB - MathWorks.” https://www.mathworks.com/products/matlab.html (accessed

Dec. 13, 2018).

[30] “Automated Driving Toolbox Documentation.”

https://www.mathworks.com/help/driving/index.html?s_tid=srchtitle (accessed Oct. 21,

2020).

54

[31] “Simulink - Simulation and Model-Based Design - MATLAB & Simulink.”

https://www.mathworks.com/products/simulink.html (accessed Oct. 21, 2020).

[32] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: A benchmark,” 2009,

pp. 304–311.

[33] “Convert bird’s-eye-view image coordinates to vehicle coordinates - MATLAB

imageToVehicle.”

https://www.mathworks.com/help/driving/ref/birdseyeview.imagetovehicle.html?s_tid=srch

title (accessed Oct. 28, 2020).

[34] J. Munkres, “Algorithms for the assignment and transportation problems,” J. Soc. Ind. Appl.

Math., vol. 5, no. 1, pp. 32–38, 1957.

[35] P. Konstantinova, A. Udvarev, and T. Semerdjiev, “A study of a target tracking algorithm

using global nearest neighbor approach,” 2003, pp. 290–295.

[36] “Track objects using GNN assignment - MATLAB.”

https://www.mathworks.com/help/driving/ref/multiobjecttracker-system-

object.html?s_tid=srchtitle#mw_a97ab2f0-7332-474f-b54c-ba98d8ac4559 (accessed Oct.

20, 2020).

[37] S. Haykin, Kalman filtering and neural networks, vol. 47. John Wiley & Sons, 2004.

[38] “Create detection objects from radar measurements - Simulink.”

https://www.mathworks.com/help/driving/ref/radardetectiongenerator.html (accessed Sep.

30, 2020).

[39] A. Vahidi and A. Eskandarian, “Research advances in intelligent collision avoidance and

adaptive cruise control,” IEEE Trans. Intell. Transp. Syst., vol. 4, no. 3, pp. 143–153, 2003.

[40] W. Pananurak, S. Thanok, and M. Parnichkun, “Adaptive cruise control for an intelligent

vehicle,” 2009, pp. 1794–1799.

[41] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun, “Autonomous automobile

trajectory tracking for off-road driving: Controller design, experimental validation and

racing,” 2007, pp. 2296–2301.

[42] D. Wang and F. Qi, “Trajectory planning for a four-wheel-steering vehicle,” 2001, vol. 4,

pp. 3320–3325.

[43] R. Rajamani, Vehicle dynamics and control. Springer Science & Business Media, 2011.

[44] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and dynamic vehicle

models for autonomous driving control design,” 2015, pp. 1094–1099.

55

[45] “Implement a single track 3DOF rigid vehicle body to calculate longitudinal, lateral, and

yaw motion - Simulink.”

https://www.mathworks.com/help/driving/ref/bicyclemodel.html?s_tid=srchtitle (accessed

Oct. 20, 2020).

APPENDIX – MATLAB CODE

57

classdef motion_decision < matlab.System

% Block Memory

properties (GetAccess='private', SetAccess='private', Hidden)

MIOvel;

MIOvel_last;

mode;

MIOstate;

MIOvalid_last;

MIOvalid; %Same as isLaneClear

vel;

accum;

end

% Block settings

properties

cruisevel = 30;

mindist = 37;

maxdist = 43;

Ts = 0.01; %sample time

cutoff_vel = 28; % E-stop condition

v0 = 30; % Initial ego velocity

tstartup = 2.5; % Time to reach steady state condition

end

methods (Access = protected)

% Setup

function setupImpl(obj)

obj.mode = 0;

obj.MIOvel = 0;

obj.MIOvel_last = 0;

obj.MIOstate = [0 0 0 0]; %[x xdot y xdot xdotdot 0]

obj.MIOvalid = false;

obj.MIOvalid_last = false;

obj.vel = obj.v0;

end

% Step

function [vel,miostate,mode] = stepImpl(obj, trigger, tracks, pos_ego, clock)

if trigger

obj.MIOvel_last = obj.MIOvel;

obj.MIOvalid_last = obj.MIOvalid;

numtracks = 0;

isLaneClear = true;

% Count valid tracks

laneboundaries = [-1 -5];

veh_width = 1.8;

for i = 1:(size(tracks,1))

if tracks(i,1)>0

numtracks = numtracks + 1;

58

% Check if each track is in our lane

tracky = tracks(i,4);

if tracky <= laneboundaries(1) + veh_width / 2 ...

& tracky >= laneboundaries(2) - veh_width / 2

% MIO exists

isLaneClear = false;

obj.MIOvalid = true;

end

end

end

obj.MIOvel = -1;

if ~isLaneClear

% Find index of MIO

[MIOnearest, MIOindex] = min(tracks(1:numtracks,2));

reldist = pos_ego(1) - tracks(MIOindex,1);

% Find x velocity of MIO

obj.MIOvel = tracks(MIOindex,3);

obj.MIOstate(1:4) = tracks(MIOindex,2:5);

else

obj.vel = obj.cruisevel;

end

reldist = 0;

% Settling timer

if clock >= obj.tstartup

steadystate = true;

else

steadystate = false;

end

% Estimate MIO acceleration

if obj.MIOvalid_last & obj.MIOvalid

disp('MIOvel')

disp(obj.MIOvel)

disp('MIOvel_last')

disp(obj.MIOvel_last)

if obj.MIOvel_last > obj.cutoff_vel...

& obj.MIOvel < obj.cutoff_vel &...

steadystate

obj.mode = 2;

end

end

% If steady state reached, allow mode transitions

if steadystate

% Mode transitions

switch obj.mode

59

% State -1

case -1

if reldist < obj.maxdist | isLaneClear

obj.mode = 0;

end

% State 0

case 0

if ~isLaneClear & reldist < obj.mindist

obj.mode = -1;

elseif ~isLaneClear & reldist > obj.maxdist

obj.mode = 1;

end

% State 1

case 1

if reldist > obj.mindist | isLaneClear

obj.mode = 0;

end

% State 2

case 2

;

end

obj.vel = 0;

% Decide velocity

switch obj.mode

% Decelerate

case -1

obj.vel = obj.MIOvel - 0.5;

% Hold speed

case 0

if isLaneClear | steadystate

obj.vel = obj.cruisevel;

else

obj.vel = obj.MIOvel;

end

% Accelerate

case 1

obj.vel = obj.MIOvel + 0.5;

% Emergency Braking

case 2

obj.vel = 0;

end

end

end

vel = obj.vel;

mode = obj.mode;

miostate = obj.MIOstate;

end

function [vel,miostate,mode] = getOutputSizeImpl(obj)

% Return size for each output port

%y = [10 2];

vel = [1 1];

miostate = [1 4];

mode = [1 1];

60

end

function [vel,miostate,mode] = getOutputDataTypeImpl(obj)

% Return data type for each output port

%y = 'string';

vel = 'double';

miostate = 'double';

mode = 'double';

end

function [vel,miostate,mode] = isOutputComplexImpl(obj)

% Return true for each output port with complex data

%y = false;

vel = false;

miostate = false;

mode = false;

end

function [vel,miostate,mode] = isOutputFixedSizeImpl(obj)

% Return true for each output port with fixed size

%y = true;

vel = true;

miostate = true;

mode = true;

end

end

end

61

function seq =

create_vision_sequence(classes,classes_which_priority,t1sum,t2ave,max_frame_time)

classeslower = lower(classes);

mp = size(classes,2);

ms = 0;

for i=1:mp

if classes_which_priority(i)

ms = ms + 1;

classes_priority(i) = lower(classes(i));

else

classes_priority(i) = ' ';

end

end

% Determine available time to stay within bound

free_space = max(max_frame_time - t1sum,0);

% Find number of available slots

if ms >0

mfree = floor(free_space/t2ave);

else

mfree = 0;

end

% Find next lowest number of free spots, as a

% multiple of mp and

mfree_sup = ceil(mfree/mp)*mp;

% Distribute secondary detections appropriately

origin_sequence = [ceil([1:mfree]*ms/mfree) zeros(1, mfree_sup-mfree)];

% Walk through the classes 1 through n in a staggered order

class_nums = 1:ceil(mp/2)*2;

walk_order = zeros(1,mp);

w1 = class_nums(1:ceil(mp/2));

w2 = [class_nums(ceil(mp/2)+1:end) 0];

for i=1:mp

is_even = mod(i-1,2);

walk_order(mp-i+1) =

class_nums((~is_even)*w1(ceil(i/2))+is_even*w2(ceil(i/2)));

end

% Create a new sequence

num_new_bins_per_primary = ceil(mfree/mp);

total_new = mp + num_new_bins_per_primary*mp;

detection_sequence_new = strings([1,total_new]);

% Distribute primary

for i = 1:mp

detection_sequence_new((i-1)*num_new_bins_per_primary+1)=classes(i);

for k=1:num_new_bins_per_primary;

end

end

62

% Distribute Secondary

for i = 1:mp

detection_sequence_new((i-1)*num_new_bins_per_primary+1)=classes(i);

end

walk_order = mp:-1:1;

sw = zeros(1,mfree_sup);

i = 1:mfree_sup;

k = mod(i-1, mp)+1 ;

j = walk_order(k) + floor((i-1)./mp)*mp;

sw(i) = origin_sequence(j);

aug = [[1:mp]' , reshape(sw,[mp,ceil(mfree_sup/mp)])];

augstr = strings(size(aug));

for i = 1:mp

for j = 1:ceil(mfree_sup/mp)+1

if j==1

augstr(i,j) = classes(aug(i,j));

else

if aug(i,j) > 0

augstr(i,j) = classeslower(aug(i,j));

else

augstr(i,j) = ' ';

end

end

end

end

swstr = reshape(augstr',[1 mp + mfree_sup]);

% Matlab converts single entry string arrays to just a string

% Workaround

if size(swstr,2)>1

swstr2 = convertStringsToChars(swstr);

swstr3 = [swstr2{:}];

else

swstr3 = swstr;

end

%Purge blank slots

whereis_blank = strfind(lower(swstr3)," ");

for i = flip(whereis_blank)

swstr3(i)=[];

end

%swstrtotal = swstrtotal + "_" + swstr3;

seq=swstr3;

end

63

classdef detector_multi_adaptive < matlab.System

% Adaptive Multi-Sensor Visual Object Detector

% Block Memory

properties (GetAccess='private', SetAccess='private', Hidden)

detector;

storage;

ylast;

Tpd;

Tp;

ready;

process_acc;

request_sequence;

sequence;

sequence_length;

sequence_step;

t1ave;

t2ave;

sequence_accum_time;

sequence_complete_time;

primary_times_hist;

secondary_times_hist;

detections;

num_detections;

sensor;

image_result;

bInit;

current_sensor;

meas_interest_mean; % Sensor interval mean

meas_interest_stdev; % Sensor interval stdev

meas_interest_last; % Storage for mean sensor metric measurement

meas_interest_hist;

frame_time_mean; % Average Frame time

frame_time_last; % Storage forAverage Frame time measurement

frame_time_hist;

end

% Block settings

properties

Ts = 0.01; % Sample time

singlegrid = 0; % For legacy plot output

display = 0; % For legacy plot output

num_sensors = 1; %Number of sensors

max_frame_time = 0.5; %Upper bound for sequence time

Tp0 = 0.25; %Initial detection time (scaled)

tscale = 1; %Hardware time scaling factor

camera_resolution = [720 720];

sensor_of_interest; % Sensor selection for mean sensor metric

end

methods (Access = protected)

64

% Setup

function setupImpl(obj)

obj.bInit = 0;

obj.ready = 1;

obj.request_sequence = 1;

obj.detector = vehicleDetectorACF();

obj.primary_times_hist = zeros(10,5);

obj.primary_times_hist(:,1:obj.num_sensors)=obj.Tp0;

obj.secondary_times_hist = zeros(10,5);

obj.t1ave=0;

obj.sequence_accum_time=0;

obj.sequence_complete_time=0;

obj.image_result = uint8(zeros(720,720,3));

reltranslation = [1, 0, 1.4];

focalLength = [1109, 1109];

opticalCenter = [360, 360];

imageSize = [720, 720];

intrinsics = cameraIntrinsics(focalLength,opticalCenter,imageSize);

obj.sensor = monoCamera(intrinsics,reltranslation(3));

obj.current_sensor = uint8('A');

obj.meas_interest_mean=0; % Sensor interval mean

obj.meas_interest_stdev=0; % Sensor interval stdev

obj.meas_interest_hist=zeros(20,1); % Storage for mean sensor metric

measurement

obj.meas_interest_last=0; % Storage for mean sensor metric measurement

obj.frame_time_mean=0; % Average Frame time

obj.frame_time_hist=zeros(20,1); % Storage for Average Frame time

measurement

end

% Step

function [status] = stepImpl(obj, inA, inB, inC, inD, inE, sub_rects, clock)

% Assume we are not sending any new detections, until

% a detection process finishes

sendDetections = false;

% Assume no detections until we find some

num_valid_detections = 0;

if obj.request_sequence

% Generate new sequence

classes = convertCharsToStrings({'A' 'B' 'C' 'D' 'E'});

classes = classes(1:obj.num_sensors);

classes_which_priority = (sum(sub_rects,1)~=0)';

num_sec = sum(classes_which_priority)

t1sum = sum(mean(obj.primary_times_hist))

area_pri = obj.camera_resolution(1)*obj.camera_resolution(2)

ave_area_sec = sum(sub_rects(3,:).*sub_rects(4,:))/num_sec

% Estimate t2 time by ratio of pixels covered

 if num_sec > 0

t2est = t1sum * (ave_area_sec/area_pri)/obj.num_sensors

else

t2est = 0;

end

65

% Call sequence generator

obj.sequence =

create_vision_sequence(classes,classes_which_priority,t1sum,t2est,obj.max_frame_time);

disp("Sequence " + obj.sequence);

obj.sequence_length = strlength(obj.sequence);

obj.sequence_step = 1;

obj.request_sequence = 0;

end

% If we are ready, continue a sequence

if obj.ready | ~obj.bInit

obj.bInit = true;

% Send to status

% Decide which sensor to capture from

ch = char(obj.sequence);

out.current_sensor = ch(obj.sequence_step);

% Record time

before = cputime;

isPrimary = false;

% Set up detection based on current sequence position

switch(out.current_sensor)

case 'A'

imageIn = inA; sensor_index = 1; isPrimary = true;

case 'B'

imageIn = inB; sensor_index = 2; isPrimary = true;

case 'C'

imageIn = inC; sensor_index = 3; isPrimary = true;

case 'D'

imageIn = inD; sensor_index = 4; isPrimary = true;

case 'E'

imageIn = inE; sensor_index = 5; isPrimary = true;

case 'a'

imageIn = imcrop(inA,sub_rects(:,1)); sensor_index = 1;

case 'b'

imageIn = imcrop(inB,sub_rects(:,2)); sensor_index = 2;

case 'c'

imageIn = imcrop(inC,sub_rects(:,3)); sensor_index = 3;

case 'd'

imageIn = imcrop(inD,sub_rects(:,4)); sensor_index = 4;

case 'e'

imageIn = imcrop(inE,sub_rects(:,5)); sensor_index = 5;

otherwise

disp('error')

end

% Get sensing interval metric

if obj.sensor_of_interest == sensor_index

meas_diff = clock - obj.meas_interest_last;

obj.meas_interest_last = clock;

obj.meas_interest_hist = ...

circshift(obj.meas_interest_hist,1,1);

obj.meas_interest_hist(1) = meas_diff;

66

disp(obj.meas_interest_hist)

obj.meas_interest_mean = mean(obj.meas_interest_hist);

obj.meas_interest_stdev = std(obj.meas_interest_hist);

end

[bboxes,scores] = detect(obj.detector,imageIn);

now = cputime;

obj.Tp=(now-before)*obj.tscale;

%Tp = toc(before);

 obj.Tpd=uint16(ceil(obj.Tp/obj.Ts));

% Compute object locations

bboxes2=[];

which = find(scores>20);

y = zeros(10,2);

num_valid_detections = size(which,1);

% Gather significant detections and draw bounding boxes if

if num_valid_detections > 0

bboxes2 = bboxes(which,:);

scores2 = scores(which,:);

% Draw bounding boxes

image_result =

insertObjectAnnotation(imageIn,'rectangle',bboxes2,scores2);

else

image_result = imageIn;

end

r =sub_rects(:,sensor_index);

if isPrimary

% If primary, just copy the annoted image

obj.image_result = image_result;

else

% if secondary, paste input image into black image

obj.image_result = zeros(obj.camera_resolution(1), ...

obj.camera_resolution(2), 3);

obj.image_result(r(2):r(2)+r(4),r(1):r(1)+r(3),:) = image_result;

end

% Image offset from reduced detection

offset = [0 0];

if ~isPrimary

offset = [r(1) r(2)];

end

obj.detections = zeros(10,2);

% Compute Object Locations

67

for i = 1:(min(num_valid_detections,10))

ctr = bboxes2(i,1)+bboxes2(i,3)/2;

hgt = bboxes2(i,2)+bboxes2(i,4);

loc = imageToVehicle(obj.sensor,[ctr,hgt]+offset);

obj.detections(i,:) = loc;

 end

obj.num_detections = num_valid_detections;

%disp(obj.detections);

% Add to total sequence time counter

obj.sequence_accum_time = obj.sequence_accum_time + obj.Tp;

% Store process time in appropriate matrix

disp('Detected in ' + string(obj.Tp) + ' sec('+ string(obj.Tpd) + '

cycles)');

if isPrimary

% Roll matrix column by 1

obj.primary_times_hist(:,sensor_index) = ...

circshift(obj.primary_times_hist(:,sensor_index), 1, 1);

% Store value

obj.primary_times_hist(1,sensor_index) = obj.Tp;

else

% Roll matrix column by 1

obj.secondary_times_hist(:,sensor_index) = ...

circshift(obj.secondary_times_hist(:,sensor_index), 1, 1);

% Store value

obj.secondary_times_hist(1,sensor_index) = obj.Tp;

end

% Update summaries

obj.t1ave = mean(obj.primary_times_hist);

obj.t2ave = mean(obj.secondary_times_hist);

% Update status

obj.ready = 0;

obj.process_acc = 1;

else

% Increment time step

obj.process_acc = obj.process_acc + 1;

 % Check if detection is complete

if obj.process_acc >= obj.Tpd;

%disp('Detect complete');

obj.ready = 1;

obj.process_acc = 0;

sendDetections = true;

% Increment sequence step

obj.sequence_step = obj.sequence_step + 1;

% Check if sequence is complete

if obj.sequence_step > obj.sequence_length

obj.sequence_step = 1;

obj.request_sequence = 1;

obj.sequence_complete_time = obj.sequence_accum_time;

obj.sequence_accum_time = 0;

68

% Update frame time history matrix

obj.frame_time_hist = ...

circshift(obj.frame_time_hist,1,1);

obj.frame_time_hist(1) = obj.sequence_complete_time;

% Compute mean

obj.frame_time_mean = mean(obj.frame_time_hist)

end

end

end

% Send status to bus

status.ready = uint8(obj.ready);

status.current_sensor = obj.current_sensor;

status.primary_times_hist = obj.primary_times_hist;

status.secondary_times_hist = obj.secondary_times_hist;

status.sequence_complete_time = obj.sequence_complete_time;

status.t1ave = obj.t1ave;

status.t2ave = obj.t2ave;

status.max_frame_time = obj.max_frame_time;

% Send the results from previously completed detection

status.detections = obj.detections * sendDetections;

status.detections_preview = obj.detections;

status.detection_complete = logical(obj.ready);

status.numdetections = obj.num_detections * sendDetections;

status.image_result = uint8(obj.image_result);

status.meas_interest_mean = obj.meas_interest_mean;

status.meas_interest_stdev = obj.meas_interest_stdev;

status.frame_time_mean = obj.frame_time_mean;

end

function [status] = getOutputSizeImpl(obj)

% Output port size

status = 1;

end

function [status] = getOutputDataTypeImpl(obj)

% Output data type

status = 'Bus: BusDetectorStatus2';

end

function [status] = isOutputComplexImpl(obj)

% Output complexity

status = false;

end

function [status] = isOutputFixedSizeImpl(obj)

% Output fixed/variable

status = true;

end

end

end

69

classdef motekf < matlab.System

% Encapsulates the multi-object tracker function

% With simplified output

% Block Memory

properties (GetAccess='private', SetAccess='private', Hidden)

tracker;

tracks_last;

end

% Block settings

properties(Nontunable)

FilterInitializationFcn = 'initcvkf';

ConfirmationThreshold = [2 3];

DeletionThreshold = [5 5];

end

methods (Access = protected)

% Block Setup

function setupImpl(obj)

obj.tracker = multiObjectTracker('FilterInitializationFcn', ...

obj. FilterInitializationFcn, ...

'ConfirmationThreshold', ...

obj.ConfirmationThreshold, ...

'DeletionThreshold', ...

obj.DeletionThreshold);

obj.tracks_last = zeros(10,5);

end

% Step

function [trigout, tracks] = stepImpl(obj, trigger, numdetections, detections,

clock)

if trigger

% Assume no confirmed tracks until we determine some

confirmedtracks = {};

if numdetections>0

dets = {};

for i = 1:numdetections

loc = [detections(i,1),detections(i,2),0];

dets(i) = { ...

objectDetection(clock,loc, ...

'SensorIndex',1) ...

};

end

% Send detections to tracker

[confirmedtracks,tentativetracks] = obj.tracker(dets, clock);

else

if obj.tracker.NumTracks > 0

[confirmedtracks,tentativetracks] = obj.tracker({}, clock);

end

end

70

% Get Tracks

tracks = zeros(10,5);

numconf = size(confirmedtracks,1);

if numconf>0

for i = 1:size(confirmedtracks)

tracks(i,1) = double(confirmedtracks(i).TrackID);

tracks(i,2:5) = confirmedtracks(i).State(1:4);

end

end

obj.tracks_last = tracks;

else

tracks = obj.tracks_last;

end

trigout = trigger;

end

function [trigout, tracks] = getOutputSizeImpl(obj)

% Return size for each output port

%y = [10 2];

tracks = [10 5];

trigout = [1 1];

end

function [trigout, tracks] = getOutputDataTypeImpl(obj)

% Return data type for each output port

%y = 'string';

tracks = 'double';

trigout = 'boolean';

end

function [trigout, tracks] = isOutputComplexImpl(obj)

% Return true for each output port with complex data

%y = false;

tracks = false;

trigout = false;

end

function [trigout, tracks] = isOutputFixedSizeImpl(obj)

% Return true for each output port with fixed size

%y = true;

tracks = true;

trigout = true;

end

end

end

function [trig_out,numdet_out,det_out] =

combine(vis_trig,vis_numdet,vis_det,radar_det,radar_trig)

%Combine radar and vision measurements

det_buffer = zeros(10,2);

radar_numdet=0;

vision_numdet=0;

%Radar bias offset value

radar_offset=[1 0];

71

% Combine vision measurements when triggered

if(vis_trig)

vision_numdet = vis_numdet;

det_buffer(1:vision_numdet,:) = vis_det(1:vision_numdet,:);

end

% Combine radar measurements when triggered

if(radar_trig)

radar_numdet = radar_det.NumDetections;

for i = 1:radar_numdet;

variance = 0.2;

radar_noise = sqrt(variance)*randn(1,2);

det_buffer(vision_numdet+i,:) = ...

radar_det.Detections(i).Measurement(1:2)' + ...

radar_offset + radar_noise;

end

end

% Send output

trig_out = vis_trig | radar_trig;

numdet_out = vision_numdet + radar_numdet;

det_out = det_buffer;

	Adaptive Object Detection for Autonomous Vehicles
	Recommended Citation

	tmp.1698420604.pdf.GMQgI

