
Northern Illinois University Northern Illinois University

Huskie Commons Huskie Commons

Graduate Research Theses & Dissertations Graduate Research & Artistry

2021

Goal Programming Approach For Bi-Objective Optimization For A Goal Programming Approach For Bi-Objective Optimization For A

Single Batch Processing Machine Single Batch Processing Machine

Dheeban Kumar Srinivasan Sampathi
dheebankumar141@gmail.com

Follow this and additional works at: https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

Recommended Citation Recommended Citation
Srinivasan Sampathi, Dheeban Kumar, "Goal Programming Approach For Bi-Objective Optimization For A
Single Batch Processing Machine" (2021). Graduate Research Theses & Dissertations. 7690.
https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations/7690

This Dissertation/Thesis is brought to you for free and open access by the Graduate Research & Artistry at Huskie
Commons. It has been accepted for inclusion in Graduate Research Theses & Dissertations by an authorized
administrator of Huskie Commons. For more information, please contact jschumacher@niu.edu.

https://huskiecommons.lib.niu.edu/
https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations
https://huskiecommons.lib.niu.edu/allgraduate
https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations?utm_source=huskiecommons.lib.niu.edu%2Fallgraduate-thesesdissertations%2F7690&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=huskiecommons.lib.niu.edu%2Fallgraduate-thesesdissertations%2F7690&utm_medium=PDF&utm_campaign=PDFCoverPages
https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations/7690?utm_source=huskiecommons.lib.niu.edu%2Fallgraduate-thesesdissertations%2F7690&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jschumacher@niu.edu

ABSTRACT

GOAL PROGRAMMING APPROACH FOR BI-OBJECTIVE OPTIMIZATION FOR A

SINGLE BATCH PROCESSING MACHINE

Dheeban Kumar Srinivasan Sampathi, MS

Department of Industrial and Systems Engineering

Northern Illinois University, 2021

Dr. Purushothaman Damodaran, Director

This research considers a real-time problem where jobs need to be batched and scheduled

to a single batch processing machine to minimize makespan and maximum tardiness. Jobs must

be placed in batches such that the machine capacity is not violated. The jobs considered have

unequal ready times, unequal processing times, and unequal sizes. This research aims to develop

an effective solution approach for the proposed problem. The problem under study can be

denoted as 1|p-batch, sj, rj| Cmax, Tmax.

The problem under study is NP-Hard. A new Mixed Integer Linear Programming (MILP)

formulation using Goal programming (MILP-G) and Column Generation (MILP-CG) are

proposed as enhancements of formulations proposed in the literature and solved using the

commercial solver. To avoid the symmetric solution in MILP two symmetry-breaking methods

are proposed using goal programming (MILP-G+ and MILP-GM+) for a multi-objective function.

An experimental study is conducted to evaluate the different goal programming formulation and

Column Generation in terms of solution quality and run time.

A set of 225 instances is generated by varying the values of job size, ready time,

processing time, and due date. All MILPs are solved using IBM ILOG CPLEX. This research

compares the results of the proposed methods with the results of the weighted residual method

(MILP-W) given by Ghrayeb (2020).

Based on the results, MILP-G+, and MILP-GM+ outperform MILP-W for 100 and 150

job instances. MILP-G performed better than MILP-W for 100 and 150 job instances but not

always. MILP-CG took a long time for higher job instances to solve the subproblem and relaxed

problem, so the solution quality was surprisingly low.

The findings of this research directly benefit schedulers who are faced with the ardent

task of scheduling hundreds of jobs each day on their batch processing machine. The MILPs

proposed in the research give alternative solution approaches for practitioners and academics to

explore further to solve the problem under study and extensions of it.

NORTHERN ILLINOIS UNIVERSITY

DEKALB, ILLINOIS

AUGUST 2021

GOAL PROGRAMMING APPROACH FOR BI-OBJECTIVE OPTIMIZATION

 FOR A SINGLE BATCH PROCESSING MACHINE

BY

DHEEBAN KUMAR SRINIVASAN SAMPATHI

©2020 Dheeban Kumar Srinivasan Sampathi

A THESIS SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE

MASTER OF SCIENCE

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING

Thesis Director:

Dr. Purushothaman Damodaran

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor, Dr. Purushothaman Damodaran, for his

guidance and mentorship throughout the course of my master’s degree. Without his continuous

guidance, support, and encouragement this thesis would not have been possible. I am forever grateful

and privileged for the expertise and knowledge that he has shared with me. I would also like to thank

Dr. Ziteng Wang and Dr. Christine Nguyen for their immense support and guidance. I would like to

extend my thanks to all faculty of the Department of Industrial and Systems Engineering for

providing me with a diverse set of skills that will be vital to me as an industrial engineer and

researcher. Finally, I would like to thank my parents and friends for their continued support and

encouragement.

DEDICATION

To my Parents, L. Srinivasan, and B. Thenmozhi, who taught me hard work never fails and to do

everything with at most perfection. May I always make you proud.

TABLE OF CONTENTS

Page

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

Chapter

CHAPTER 1. INTRODUCTION ... 1

1.1 Problem Description ... 2

1.2 Objectives and Scope ... 3

1.3 Research Benefits ... 4

CHAPTER 2. LITERATURE REVIEW .. 6

2.1 Heuristics and other scalarization techniques .. 11

2.2 Column generation ... 13

2.3 Goal Programming ... 14

2.4 Research Justification ... 15

CHAPTER 3. MATHEMATICAL FORMULATION ... 16

3.1 Weighted Residual Method (MILP-W).. 17

3.2 Goal Programming Formulation (MILP-G) ... 20

3.3 Goal Programming with Symmetry (MILP-G+) .. 21

3.4 Goal Programming with Symmetry Modified (MILP-GM+) 23

3.5 Column Generation Formulation (MILP-CG) ... 25

CHAPTER 4. EXPERIMENTATION ... 29

4.1 Data Generation.. 29

4.2 Experiments .. 30

CHAPTER 5. RESULTS .. 32

5.1 Percentage of a Better solution... 38

5.2 Percentage Improvement .. 39

5.3 Run time Comparison and Gap Percentage.. 41

5.4 Pareto Front Example ... 45

CHAPTER 6. CONCLUSIONS AND FUTURE WORK .. 49

6.1 Conclusions .. 49

6.2 Future Work ... 51

REFERENCES ... 52

 v
 Page

LIST OF TABLES

Table 1. Literature review table .. 7

Table 2. Sample problem .. 19

Table 3. Results of the weighted residual method .. 19

Table 4. Example Results – MILP-G .. 21

Table 5. Example 15 Job Instance – Increasing order of ready time. ... 23

Table 6. Example Results- MILP-G+ .. 23

Table 7: Example Result-MILP-GM+ ... 24

Table 8. Example result - MILP-CG... 28

Table 9. Comparison between different Methods ... 28

Table 10. Percentage Improvement .. 49

Table 11. Number of better or same solution ... 50

LIST OF FIGURES

Figure 1. Weighted vs Goal .. 32

Figure 2. MILP-W vs MILP-G (Different values of alpha).. 33

Figure 3. Weighted vs Goal Symmetric .. 34

Figure 4. MILP-W vs MILP-G+ (Different values of alpha) .. 35

Figure 5. Weighted vs Goal Symmetric Modified .. 35

Figure 6. MILP-W vs MILP-GM+ (Different values of alpha) .. 36

Figure 7. Weighted vs Goal CG .. 37

Figure 8. MILP-W vs MILP-CG (Different values of alpha) .. 37

Figure 9. Percentage of a better or same solution ... 38

Figure 10. Percent Improvement - Objective .. 39

Figure 11. Percent Improvement - Cmax .. 40

Figure 12. Percent Improvement - Tmax ... 40

Figure 13. Percent Improvement- MILP-CG Dominant Instances ... 41

Figure 14. Average run time (in seconds) ... 42

Figure 15. Average Gap vs Runtime-MILP-W ... 43

Figure 16. Average Gap vs Runtime - MILP-G ... 43

Figure 17.Average Gap vs Runtime - MILP - G+ ... 44

Figure 18. Average Gap vs Runtime - MILP-GM+ .. 44

Figure 19. Average Gap vs Runtime - MILP-CG ... 45

Figure 20. 15 Jobs- Example Pareto front .. 46

file:///C:/Users/dsampathi/Desktop/Thesis_Defence_Report_Dheeban_Final.docx%23_Toc75954808
file:///C:/Users/dsampathi/Desktop/Thesis_Defence_Report_Dheeban_Final.docx%23_Toc75954810
file:///C:/Users/dsampathi/Desktop/Thesis_Defence_Report_Dheeban_Final.docx%23_Toc75954812
file:///C:/Users/dsampathi/Desktop/Thesis_Defence_Report_Dheeban_Final.docx%23_Toc75954817
file:///C:/Users/dsampathi/Desktop/Thesis_Defence_Report_Dheeban_Final.docx%23_Toc75954818
file:///C:/Users/dsampathi/Desktop/Thesis_Defence_Report_Dheeban_Final.docx%23_Toc75954819
file:///C:/Users/dsampathi/Desktop/Thesis_Defence_Report_Dheeban_Final.docx%23_Toc75954821
file:///C:/Users/dsampathi/Desktop/Thesis_Defence_Report_Dheeban_Final.docx%23_Toc75954822
file:///C:/Users/dsampathi/Desktop/Thesis_Defence_Report_Dheeban_Final.docx%23_Toc75954823
file:///C:/Users/dsampathi/Desktop/Thesis_Defence_Report_Dheeban_Final.docx%23_Toc75954824
file:///C:/Users/dsampathi/Desktop/Thesis_Defence_Report_Dheeban_Final.docx%23_Toc75954825

Figure 21. 30 Jobs -Example Pareto front .. 46

Figure 22. 50 Jobs- Example Pareto front .. 47

Figure 23. 100 Jobs - Example Pareto front ... 48

Figure 24. 150 Jobs- Example Pareto front .. 48

Page

viii

CHAPTER 1. INTRODUCTION

Creating things has been an indispensable activity of human civilization. Manufacturing

is the conversion of materials into items of higher value using one or more processing and/or

assembly operations. The type of manufacturing done by a company depends on the kind of

product it produces (Groover, 2010, p. 5). Manufacturing systems can be characterized by

various factors: the number of machines, the level of automation, the type of material handling,

and so on. Depending on the number of machines, the models are classified as single machines,

parallel machines, and job shops. In a single machine, a job consists of one operation that

machines can do (Pinedo, 2009, p. 20). The manufacturing setup can be classified as job

production, batch production, and mass production based on the type of production (Singh, 2006,

p. 3). A single batch processing machine (BPM) can be explained as one machine that can

process multiple jobs at a time.

Batch production is similar to job production except in the quantity of product produced.

Rather than making one single product, a group of products is produced at one time. Identical

products or minor variations are produced in batches based on customer demand or expected

demand for products (Kiran, 2019, p. 185). In a batch process, the sequence of operations is

accomplished in a certain period. BPM can handle many jobs at the same time. The action on all

jobs start and finish simultaneously. In batch processing, the machinery is utilized effectively. It

is also cheaper to produce a whole batch than a single item at a time. By processing several jobs

at a time, the setup of jobs can also be minimized. Moreover, it reduces the initial setup cost

2

because a single production line can produce many products (Research and reviews, 2020).

Batch processing finds its application in stress testing of multiple printed circuit boards (PCBs)

simultaneously (Abedi et al., 2014).

Planning and scheduling are modes of decision-making that are used regularly in many

manufacturing and service industries. Scheduling processes play a crucial role in production

planning. Orders released in a manufacturing environment must be translated into jobs with set

deadlines associated with them. These jobs are often processed in a given sequence. In such an

environment, developing a detailed schedule of tasks to be performed helps maintain operational

efficiency (Pinedo, 2009). Scheduling of jobs has been the topic of improvement for decades for

industries. There are many rules for the scheduling of jobs. Scheduling has found application in

various fields such as healthcare, airline, manufacturing, etc.

It is crucial to schedule jobs on a batch processing system, as incorrect or unsuccessful

batching can lead to a significant bottleneck. Industries must, therefore, be well equipped to

quickly make decisions to ensure that jobs are completed on time. There is considerable research

on scheduling discrete processing machines, where the machines can process only one job at a

time. Seeing the advantages of BPM, the research in this field is increasing.

1.1 Problem Description

The problem discussed in this research is based on a real-life application where PCBs are

tested in the environmental stress screening (ESS) chamber. In ESS, the PCBs are subjected to

thermal stress for a specified period, which allows the detection of failures. This research intends

to improve the efficiency of this ESS chamber while maintaining the customers’ satisfaction. The

3

PCBs are considered as jobs, and ESS is considered as BPM. Given the list of jobs, the PCBs are

batched together, and the batches are scheduled for testing on the BPM.

Usually, a PCB differs in size based on its application. Furthermore, each PCB has a

specific testing time and ready time (i.e., available time for testing). The ESS chamber allows the

testing of multiple boards simultaneously, provided its capacity is not exceeded. The PCBs can

be tested longer than the specified time. Consequently, the batch processing time is equal to the

longest processing time of all the PCBs in a batch. Similarly, the ready time of the batch is equal

to the latest ready time of the PCBs in the batch. Pre-emption of PCBs is not allowed, which

means once a batch begins processing, it cannot be stopped to add or remove the PCBs.

The aim is to form batches of jobs and schedule those batches on a BPM to minimize the

machine’s makespan and minimize the job’s maximum tardiness. Minimizing makespan tends to

maximize machine utilization. Minimizing the job’s tardiness ensures the timely delivery of

products to the customer and ensures customer satisfaction. The problem under study can be

characterized as 1|p-batch, sj, rj| Cmax, Tmax using the three-field notation 𝛼|𝛽|𝛾 as proposed by

Graham et al. (1979). This problem is an NP-hard problem. According to Pinedo (2009), a

problem that does not have a polynomial-time algorithm is called NP-hard.

1.2 Objectives and Scope

This research aims to develop appropriate solution approaches to minimize the makespan

and minimize the maximum tardiness on a single batch processing machine. Ghrayeb (2020)

proposed a mixed-integer linear formulation to the problem under study and solved the

formulation using IBM ILOG CPLEX solver. The solver required prohibitively long run times to

4

solve problems as the number of jobs increased. Consequently, Ghrayeb (2020) developed a

simulated annealing approach and a greedy randomized adaptive search procedure. Through an

experimental study, it was shown that the heuristic approaches were efficient to find a good

solution when compared to the commercial solver – especially on larger problem instances.

While heuristics are quick to find a solution, they do not guarantee an optimal solution. This

research explores a goal programming formulation of the problem under study to improve

computational time and solution quality. An experimental study is conducted, using the same

data set as Ghrayeb (2020) did, to compare the different mathematical formulations for the

problem under study.

The project’s scope includes the batching and scheduling of jobs on the batch processing

machine but does not include the processing of the job before or after the batch processing

machine. The assumptions made in this research are listed below.

1. Each job has a deterministic processing time, ready time, due date, and size.

2. The capacity of the machine is known.

3. Machine breakdown is not considered.

4. Once the batches are formed, no jobs can be added or deleted.

1.3 Research Benefits

The benefits of this research are as follows:

1. The solution approaches will serve as a decision-making tool for schedulers.

2. The solution approaches will help improve machine utilization and customer satisfaction.

5

3. This research proposes new formulations that will contribute the body of knowledge on

1|p-batch, sj, rj| Cmax, Tmax problems.

CHAPTER 2. LITERATURE REVIEW

Scheduling of jobs has been the topic of interest since the 19th century. The research on

machine scheduling has outgrown various machine environments and research methodologies.

The problem of scheduling with the bi-objective function has been extensively studied.

Scheduling of jobs on discrete processing machines and batch processing machines has been

reviewed. Multi-objective optimization cannot guarantee an optimal solution, unlike single-

objective optimization. Therefore, the main aim is to find the best solution without degrading any

objective functions. Table 1 shows the list of literature reviewed for this research work.

A multi-objective optimization problem can be converted to a single objective

optimization problem by multiplying each objective with weight and summing them together.

Multi-Objective Mathematical Programming (MOMP) methods can be categorized as a-priori,

interactive, and posteriori (Mavrotas, 2009). In the a-priori method, the decision-maker expresses

their preferences before the solution process (e.g., setting goals or weights to the objective

functions). In the interactive methods, phases of dialogue with the decision-maker are

interchanged with phases of calculation, and the process usually converges, after a few iterations,

to the most preferred solution. The decision-maker progressively drives the search toward the

most preferred solution. In the posteriori method, the efficient solutions for the problem are

generated after which the decision-maker takes a decision based on the needs and requirements.

7

Table 1. Literature Review Table

L
it

er
at

u
re

 S
o
u
rc

e

D
is

cr
et

e
o
r

B
at

ch

p
ro

ce
ss

in
g

Machine Environment Objective function Constraints

Solution

method

S
in

g
le

 m
ac

h
in

e

P
ar

al
le

l

m
ac

h
in

e

F
lo

w
 s

h
o
p

Cmax Tmax ΣUj

ΣEj

and/

or

ΣTj

ΣCj rj sj dj pj S

Pm Qm

Akker et al. (2010) Discrete ✓ ✓ ✓ ✓ ✓
Column

generation

Bulbul et al. (2003) Discrete ✓ ✓ ✓ ✓ ✓
Column

generation

Lee and Jung

(1989)
Discrete ✓ ✓ ✓ ✓

Goal

programming

Pei et al. (2019) Discrete ✓ ✓ ✓
Column

generation

Sellen and Hott

(1986)
Discrete ✓ ✓ ✓

Goal

programming

Chen and Powell

(1998)
Discrete ✓ ✓ ✓ ✓

Column

generation

Moghaddam et al.

(2010)
Discrete ✓ ✓ ✓ ✓ ✓ ✓

Fuzzy goal

programming

Deliktas et al.

(2014)
Discrete ✓ ✓ ✓ ✓ ✓ ✓

Goal

programming

Woo et al. (2019) Discrete ✓ ✓ ✓
Column

generation

(Continued on following page)

8

Table 1 (Continued)

L
it

er
at

u
re

 S
o

u
rc

e

D
is

cr
et

e
o

r
B

at
ch

p
ro

ce
ss

in
g

Machine Environment Objective function Constraints

Solution

method

S
in

g
le

 m
ac

h
in

e

P
ar

al
le

l

m
ac

h
in

e

F
lo

w
 s

h
o

p

Cmax Tmax ΣUj

ΣEj

and/

or

ΣTj

ΣCj rj sj dj pj S

Pm Qm

Wiechman and

Damodaran (2015)
Batch ✓ ✓ ✓ ✓ ✓

Column

Generation

Li and Wang

(2018)
Batch ✓ ✓ ✓ ✓ ✓ MMAS

Kondakci and

Bekiroglu (1997)
Discrete ✓ ✓ ✓ ✓ ✓

Moore and

SPT

Ronconi and

Kawamura (2010)
Discrete ✓ ✓ ✓ ✓

Branch and

bound

Damodaran and

Gallego (2012)
Batch ✓ ✓ ✓ ✓ ✓ ✓

Simulated

annealing

(SA)

Belder and Costa

(2018)
Batch ✓ ✓ ✓ ✓ ✓ ✓

Tabu search

and PSO

Ghrayeb (2020) Batch ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
SA and

GRASP

Kashan et al.

(2010)
Batch ✓ ✓ ✓ ✓ ✓ ✓ ✓ MOGA

Rezaeian and

Zarook (2018)
Batch ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ BOGA

Sabouni and Jolai

(2010)
Batch ✓ ✓ ✓ ✓ ✓ ✓ ✓

BIOO

heuristics

(Continued on following page)

9

Table1 (Continued)

L
it

er
at

u
re

 S
o
u
rc

e

D
is

cr
et

e
o
r

B
at

ch

p
ro

ce
ss

in
g

Machine Environment Objective function Constraints

Solution

method

S
in

g
le

 m
ac

h
in

e

P
ar

al
le

l

m
ac

h
in

e

F
lo

w
 s

h
o
p

Cmax Tmax ΣUj

ΣEj

and/

or

ΣTj

ΣCj rj sj dj pj S

Pm Qm

Trindade et al.

(2018)
Batch ✓ ✓ ✓ ✓ ✓ ✓

Symmetric

Breaking

Srinivasan

Sampathi (2020)
Batch ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Goal

programming

and Column

generation

10

The widely used method is the weighted residual method. In this method, a multi-

objective problem is converted into a single objective by assigning a non-negative weight to each

objective function and minimizing their sum (Ghrayeb, 2020). Another common method is the ε-

constraint method, which minimizes one objective, and redefines the other objectives as

constraints less than or equal to some ε. The Pareto-optimal front can be approximated by

varying the level(s) of ε. Consider this example,

𝒎𝒊𝒏 𝑓1(𝑥), 𝑓2(𝑥), . . 𝑓𝑛(𝑥)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑥 ∈ 𝑆

In the 𝜀-constraint method, we optimize one of the objective functions using the other

objective functions as constraints, incorporating them in the constraint part of the model.

𝒎𝒊𝒏 𝑓1(𝑥)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑥 ∈ 𝑆

𝑓2(𝑥) ≤ 𝜀2

.

.

𝑓𝑛(𝑥) ≤ 𝜀𝑛

In the case of the maximization objective, the ≤ sign changes to ≥ sign. One issue with this

approach is that it is necessary to preselect which objective to minimize and setting 𝜀𝑗 values. This

is problematic because for many values of 𝜀𝑗 there will be no feasible solution (Mavrotas, 2009).

11

The third method is Goal programming. “Goal or target levels specify the values of the

criteria functions in an optimization model that decision-makers consider sufficient or satisfactory”

(Rardin, 2017). Goal or soft constraint uses deficiency variables to achieve the target. These

deficiency variables are non-negative. For example, the equal to format goal constraints are

modeled as (criterion function) – (over satisfaction deficiency variable) + (under satisfaction

deficiency variable) = target value.

The section below describes the different solution approaches for scheduling jobs on a

single machine with multiple objectives. The solution approach is divided into three categories:

the heuristics approach, column generation (CG), and goal programming (GP). Since this

research focuses on improving the Pareto front and reducing the computational time, CG and GP

are discussed in detail.

2.1 Heuristics and other scalarization techniques

Beldar and Costa (2018) considered the 1|rj, batch| ΣCj and proposed several

metaheuristics approach to solve the problem based on Tabu search and Particle Swarm

Optimization (PSO). Damodaran and Gallego (2012) studied Pm| rj, batch|Cmax, and developed a

Simulated Annealing (SA) algorithm. It was concluded that the SA solution approach

outperforms the Modified Delay (MD) heuristic and Greedy Randomized Adaptive Search

Procedure (GRASP). Li and Wang (2018) developed a Max-Min Ant System (MMAS)

algorithm to solve a single batch processing machine problem. A local search method, known as

the Multiple Jobs Exchange, is proposed to improve the algorithm’s performance by adjusting

12

jobs between batches. The performance of the MMAS algorithm is compared with CPLEX, as

well as several other algorithms. For large population sizes, MMAS outperformed other

algorithms.

Kashan et al. (2010) proposed a hybrid genetic algorithm for multi-objective single

machine scheduling that quickly converges to Pareto optimal solution. The results prove that this

hybrid genetic algorithm outperforms the genetic algorithm. Rezaeian and Zarook (2018)

proposed a bi-objective genetic algorithm (BOGA) for the NP-hard problem. They found that the

BOGA result was more efficient and faster than the ε-constraint method in generating the Pareto

front. Sabouni and Jolai (2010) used dynamic programming and proposed a Pareto approach.

This method gave the optimal solution in the case of irreconcilable job groups or boundless

batches. Ghrayeb (2020) proposed a methodology for solving the problem of scheduling jobs

with unequal ready times, unequal processing times, and unequal sizes on a single batch

processing machine, with the objectives of minimizing makespan and maximum tardiness using

SA and GRASP. A comparison between SA, GRASP, and CPLEX results were made and

concluded that SA seems to be the best approach for the proposed problem.

Kondakci and Bekiroglu (1997) addressed the scheduling problem on a single machine

considering total flow time and the number of tardy jobs measures simultaneously and developed

several precedence theorems that identify various efficient solution properties. Ronconi and

Kawamura (2010) used the branch and bound algorithm for solving the NP-hard problem. The

proposed method outperformed the CPLEX result for instances greater than 15 jobs. Pei et al.

(2019) studied FJ2| pre-emption | Cmax no-wait job shop scheduling problems and used column

generation to solve the problem.

13

2.2 Column generation

According to Rardin (2017), “Column generation approaches deals with complex

combinatorial problems by first enumerating a sequence of columns representing viable solutions

to parts of the problem, and then solving a set partitioning (or covering or packing) model to

select an optimal collection of these alternatives fulfilling all problem requirements.” According

to Akker et al. (2010), the CG technique works well to minimize total weighted tardiness in

identical parallel machines. They proposed a hybrid algorithm that solves all instances with 160

jobs and ten machines. Chen and Powell (1998) solved the single-machine scheduling problem

with a CG approach where each column represents a schedule on one machine. They also found

that the combination of the Dantzig- Wolfe decomposition method with the CG approach is

promising and capable of solving large problems. Pei et al. (2019) constructed an effective CG

method by combining tailored dynamic programming and a dedicated branch and bound method

and found that CG can solve large-scale instances in acceptable time while CPLEX can handle

relatively small cases. Woo et al. (2019) proposed a CG approach using Dantzig- Wolfe

decomposition and introduced three approaches for reducing CG computational time.

Bulbul et al. (2003) studied flow shops in settings with penalties for delay in delivering

customer orders and costs for holding both finished goods and work-in-process inventory and

developed heuristics. The results compared two different reformulations in which the CG scheme

is enhanced by the solution of an equivalent Lagrangian relaxation formulation and artificial

variables in the LP master problem. Wiechman and Damodaran (2015) used the CG approach for

scheduling a batch processing machine with minimization of makespan. The problem can be

14

represented as 1| sj, pj, batch|Cmax. They compared the standard CG method and CG with solution

pooling and concluded that CG with solution pooling consistently provides better solutions.

2.3 Goal Programming

Goal program modeling of a multi-objective optimization starts by demanding decision-

makers to specify new data: goal or target levels for each criterion used to evaluate solutions.

The GP model’s objective expresses the desire to satisfy all goals as nearly as possible by

minimizing a weighted sum of the deficiency variables (Rardin, 2017). Sellen and Hott (1986)

developed a GP model for the general flow-shop case that allows the scheduler to find a more

comprehensive optimal solution. According to Sellen and Hott (1986), incorporating both the

makespan and flow-time criteria allows the scheduler to consider the effects on machine and job

idle-time, as these are equivalent criteria under the standard flow-shop framework. Moghaddam

et al. (2010) developed a fuzzy GP model for solving a multi-objective single-machine

scheduling problem. The objective was to minimize the total weighted tardiness and completion

time. Lee and Jung (1989) studied the production planning of a flexible manufacturing

environment, and various superior aspects of the GP model have been discussed over the other

models when solving the production planning problems.

Lee and Jung (1989) showed how various objectives could be incorporated into the

model. Deliktas et al. (2014) proposed a three-stage solution methodology to solve the multi-

objective scheduling problem. A multistage GP is the third stage of the solution methodology to

construct a satisfactory schedule. Moghaddam et al. (2010) proposed a fuzzy multi-objective

linear programming model for single-machine scheduling problems. It was concluded that the

15

proposed method produced better results when compared to Wang and Liang’s approach for 6 to

7 job instances.

2.4 Research Justification

In MOMP, there is more than one objective function. In general, there is no single

solution that simultaneously optimizes all the objective functions. Batch processing machines are

standard in the industry, especially in electronics manufacturing. Solving the single-machine

problem is vital as solution approaches applied to single-machine problems can be adapted for

multiple machines. When considering constraints, the industry’s typical constraints are job size,

job release time, job processing time, and job due date, so including these in the proposed

problem is essential. Additionally, the proposed bi-objective is minimizing makespan and

maximum tardiness. These two objectives ensure that machines are not running longer than

necessary, and jobs are delivered on time to customers.

From the literature reviewed, it is evident that none of the journals covered solving the

proposed problem using column generation and goal programming. Ghrayeb (2020) considered

the constraints and objective function similar to the proposed problem, but SA and GRASP were

used to solve it. Past research mainly focused on the heuristics approach in solving multi-

objective single-machine scheduling problems. This, research aims in developing the goal

programming and column generation formulation for the single BPM to improve the solution

quality and computational time.

CHAPTER 3. MATHEMATICAL FORMULATION

The Mixed-Integer Linear Programming model (MILP) for the 1|p-batch, sj, rj| Cmax, Tmax

is discussed in this chapter. Below is a description of the notation used:

Sets

{𝑗 ∈ 𝐽} set of jobs

{𝑏 ∈ 𝐵} set of batches

Parameters

pj processing time of job j

sj size of job j

rj ready time of job j

dj due date of job j

S capacity of the machine

𝛼 weight for makespan objective

𝛽 weight for maximum tardiness objective (𝛽 = 1 − 𝛼)Decision Variables

Cmax makespan or completion time of the last job or batch

17

Tmax maximum tardiness

Cb completion time of batch b

Pb processing time of batch b

Rb ready time of batch b

Tb tardiness of batch b

Xjb a binary variable – 1, if job j is processed in batch b; 0, otherwise.

3.1 Weighted Residual Method (MILP-W)

The following is the mathematical formulation using the weighted residual method given

by Ghrayeb (2020).

Minimize 𝛼𝐶𝑚𝑎𝑥 + 𝛽𝑇𝑚𝑎𝑥 (1)

Subject to

 ∑ 𝑋𝑗𝑏

𝑏∈𝐵

= 1 ∀𝑗 ∈ 𝐽 (2)

 ∑ 𝑠𝑗

𝑗∈𝐽

𝑋𝑗𝑏 ≤ 𝑆 ∀𝑏 ∈ 𝐵 (3)

 𝑃𝑏 ≥ 𝑝𝑗𝑋𝑗𝑏 ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵 (4)

 𝑅𝑏 ≥ 𝑟𝑗𝑋𝑗𝑏 ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵 (5)

18

 𝐶1 = 𝑅1 + 𝑃1 (6)

 𝐶𝑏 ≥ 𝐶𝑏−1 + 𝑃𝑏 ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵/{1} (7)

 𝐶𝑏 ≥ 𝑅𝑏 + 𝑃𝑏 ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵 (8)

 𝑇𝑏 ≥ 𝐶𝑏 − 𝑑𝑗𝑋𝑗𝑏 − 𝑀(1 − 𝑋𝑗𝑏) ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵 (9)

 𝑋𝑗𝑏 ∈ {0,1} ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵 (10)

 𝐶𝑚𝑎𝑥 ≥ 𝐶𝑏 ∀𝑏 ∈ 𝐵 (11)

 𝑇𝑚𝑎𝑥 ≥ 𝑇𝑏 ∀𝑏 ∈ 𝐵 (12)

 𝐶𝑏 , 𝑃𝑏 , 𝑅𝑏 , 𝑇𝑏 ≥ 0 ∀𝑏 ∈ 𝐵 (13)

The objective function (1) is to minimize the weighted sum of makespan (the completion

time of the last batch) and maximum tardiness (the maximum tardiness of any job). α and β are

the weights given to each objective.

Constraint (2) ensures that each job is processed in only one batch. Constraint (3) ensures

that the total size of a batch (i.e., the sum of sizes of all jobs within that batch) does not violate

machine capacity. Constraint (4) defines that the processing time of a batch is at least equal to

the largest processing time of a job within that batch. Constraint (5) defines that the ready time of

a batch is at least equal to the largest ready time of a job within that batch. Constraint (6) defines

that the completion time of the first batch is simply the sum of the ready and processing times of

that batch. Constraint (7) applies if the ready time of the bth batch is less than the completion

time of the (b-1)st batch; thus, the completion time of the bth batch is the sum of the completion

19

time of the (b-1)st batch and the processing time of the bth batch. Constraint (8) defines that the

completion time of the bth batch is at least the sum of its ready and processing times. Constraint

(9) defines that the makespan is at least equal to the completion time of all batches. Constraint

(10) defines that the tardiness of a batch is at least equal to the difference between the

completion time of that batch and the due date of any job within that batch. Constraint (11)

defines that maximum tardiness is at least equal to the tardiness of all batches. Constraints (12)

and (13) define binary and non-negativity constraints on decision variables. This mixed-integer

linear program can be solved using a commercial solver such as IBM ILOG CPLEX.

Table 2 shows the data for a fifteen-job instance. For different values of α and β, the

example problem is solved using IBM ILOG CPLEX. The results of the weighted residual

method are shown in Table 3. Based on the weights, the decision-maker has a set of solutions to

choose from.

Table 2. Sample problem

𝒑𝒋 9 10 2 3 3 14 4 10 20 14 8 10 18 11 5

𝒓𝒋 8 3 2 6 3 0 5 3 5 3 2 6 6 2 0

𝒔𝒋 5 7 7 7 5 12 15 9 9 3 12 1 5 12 12

𝒅𝒋 23 16 15 19 21 9 13 24 29 20 23 19 22 20 11

Table 3. Results of the weighted residual method

Alpha Beta Objective Cmax Tmax

0 1 27 50 27

0.25 0.75 32.75 50 27

0.5 0.5 38.50 50 27

0.75 0.25 43.75 49 28

1 0 48 48 39

20

Ghrayeb (2020) showed that the above formulation is very computationally intensive, and

the commercial solver was not effective to solve larger problem instances. Consequently, a goal

programming formation is proposed below.

3.2 Goal Programming Formulation (MILP-G)

In the GP model, the under and over satisfaction variables are introduced. The objective

function is the minimization of the weighted sum of the deficiency variables. The new variable

introduced in the GP formulation is given below.

𝑇−, 𝑇+ 𝑖𝑠 𝑢𝑛𝑑𝑒𝑟 𝑎𝑛𝑑 𝑜𝑣𝑒𝑟 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑓𝑜𝑟 𝑇𝑚𝑎𝑥

𝐶−, 𝐶+ 𝑖𝑠 𝑢𝑛𝑑𝑒𝑟 𝑎𝑛𝑑 𝑜𝑣𝑒𝑟 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑓𝑜𝑟 𝐶𝑚𝑎𝑥

The GP formulation is given below.

Minimize 𝛼 𝐶
+

 + 𝛽 𝑇+

 (14)

Subject to

 (2)-(10)

 0 ≥ 𝐶𝑏 + 𝐶− − 𝐶+ ∀𝑏 ∈ 𝐵 (15)

 0 ≥ 𝑇𝑏 + 𝑇− − 𝑇+ ∀𝑏 ∈ 𝐵 (16)

 𝐶𝑏 , 𝑃𝑏 , 𝑅𝑏 , 𝑇𝑏 , 𝐶−, 𝐶+, 𝑇−, 𝑇+ ≥ 0 ∀𝑏 ∈ 𝐵 (17)

21

Except for constraints (15) and (16), all others are similar to the main formulation

(MILP-W) given by Ghrayeb (2020). In constraints (15) and (16) the completion time and

tardiness of the batch are made to zero with the help of under satisfaction and over-satisfaction

variables. The objective function (14) minimizes the over satisfaction variables, i.e., C + and T +.

The fifteen-job instance shown in Table 2 was solved using this goal programming formulation.

Table 4 shows the results. The closer a given algorithm’s Pareto front is to (0,0), the higher the

quality of its solutions (Ghrayeb,2020).

Table 4. Example Results – MILP-G

Alpha Beta Objective Cmax Tmax

0 1 27 50 27

0.25 0.75 43.75 50 27

0.5 0.5 38.50 50 27

0.75 0.25 43.75 49 28

1 0 48 48 39

3.3 Goal Programming with Symmetry (MILP-G+)

In any MILP, the generation of the symmetric solution is very common. Trindade et al.

(2018), considered two types of symmetries.

1. Two solutions are set to be symmetric if the construction of the batches is equal on both

solution and batches processed in the same order.

2. Two solutions are set to be symmetric if the construction of the batches is equal on both

solutions, but the batches are processed in a different order which does not modify the

makespan.

22

They proposed a symmetry-breaking constraint for four formulations including 1|sj, rj, p-batch|

Cmax. According to Trindade et al. (2018), the jobs are first ordered by non-decreasing release

times. In particular, we consider that the jobs are indexed satisfying:

 𝑟(1) ≤ 𝑟(2) ≤ ⋯ ≤ 𝑟(𝑛) (18)

In this research, the same concept is applied to MILP-G+ to mitigate the effects of symmetry in

MOMP. By eliminating symmetry, the number of constraints and variables can be reduced when

compared to the original formulation. The symmetry breaking constraints may alter the solution

space, but they help to solve the formulation in a shorter time and in some cases help to find a

better solution.

Minimize 𝛼 𝐶
+

 + 𝛽 𝑇+

Subject to

 ∑ 𝑋𝑗𝑏

𝑏∈𝐵:𝑏≥𝑗

= 1 ∀𝑗 ∈ 𝐽 (19)

 ∑ 𝑠𝑗

𝑗∈𝐽:𝑗≤𝑏

𝑋𝑗𝑏 ≤ 𝑆 𝑋𝑏𝑏 ∀𝑏 ∈ 𝐵 (20)

 𝑃𝑏 ≥ 𝑝𝑗𝑋𝑗𝑏 ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵 ∶ 𝑗 ≤ 𝑏 (21)

 𝑅𝑏 ≥ 𝑟𝑗𝑋𝑏𝑏 ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵 (22)

 𝑋𝑗𝑏 ≤ 𝑋𝑏𝑏 ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵 ∶ 𝑗 ≤ 𝑏 (23)

 (6)-(10)

 (15)-(17)

23

 Constraint (19) determines that each job j is assigned to a batch b, such that 𝑏 ≥ 𝑗. For

example, job 2 can be in batch 2 or any of the higher numbered batches. Constraint (20)

determines the batches do not exceed the machine capacity. They also ensure that each batch b is

used only if job b is assigned to it. Constraint (21) determines the processing time of the batch.

Constraint (22) determines the ready time of the batch. The remaining constraints are similar to

goal programming formulation. Any feasible solution for the MILP-G+ is also feasible for MILP-

G with the same objective function (Trindade et al., 2018). An example of fifteen job problem

instances arranged in increasing order of ready date is shown in Table 5. The results obtained by

solving the formulation for the example instance are summarized in Table 6.

Table 5. Example 15 Job Instance – Increasing order of ready time.

𝒑𝒋 14 5 2 8 11 10 3 10 14 4 20 3 10 18 9

𝒓𝒋 0 0 2 2 2 3 3 3 3 5 5 6 6 6 8

𝒔𝒋 12 12 7 12 12 7 5 9 3 15 9 7 1 5 5

𝒅𝒋 9 11 15 23 20 16 21 24 20 13 29 19 19 22 23

Table 6. Example Results- MILP-G+

Alpha Beta Objective Cmax Tmax

0 1 29.00 49 29

0.25 0.75 34.00 49 29

0.5 0.5 39.00 49 29

0.75 0.25 44.00 49 29

1 0 48.00 48 37

3.4 Goal Programming with Symmetry Modified (MILP-GM+)

Reducing the effect of symmetry in MILP is an intense area of research, where different

strategies are suggested to mitigate the effect of symmetry. In this research, a new symmetric

24

formulation with Goal programming is proposed. In this formulation, job j is placed in batch b

such that 𝑏 ≤ 𝑗. Similar to MILP-G+, jobs are first ordered by non-decreasing release times.

More specifically, we consider that the jobs are indexed satisfying equation (18). The solution

for example problem instance of Table 5 is shown in Table 7. In the modified symmetry

formulation, a job can be in any batch, which is numbered smaller than the job number. For

example, job 2 can be either in batch 1 or 2.

Minimize 𝛼 𝐶
+

 + 𝛽 𝑇+

Subject to

 ∑ 𝑋𝑗𝑏

𝑏∈𝐵,𝑏≤𝑗

= 1 ∀𝑗 ∈ 𝐽 (24)

 (3)-(10)

 (15)-(17)

Table 7: Example Result-MILP-GM+

Alpha Beta Objective Cmax Tmax

0 1 27 50 27

0.25 0.75 43.75 50 27

0.5 0.5 38.50 50 27

0.75 0.25 43.75 49 28

1 0 48 48 39

25

3.5 Column Generation Formulation (MILP-CG)

In the column generation approach, the original formulation is decomposed into a

restricted master problem and one or more subproblem(s). The restricted master problem is then

linear relaxed and iteratively solved to optimality by utilizing improving columns generated by

solving the subproblem. Finally, the restricted master problem is resolved as an integer program

to obtain a final feasible solution. This section provides the reformulation of the mathematical

model (MILP-G) through decomposition. Dantzig-Wolfe decomposition (Dantzig and Wolfe,

1960) is a method that transforms the original problem into a restricted master problem (RMP)

and one or more subproblems (SPs). Therefore, the linear solution can act as a lower bound on

the actual solution, or an upper bound for a maximization problem.

Constraints (2)-(5) of MILP-W display a block diagonal structure. Consequently, the

MILP-G formulation also displays the block diagonal structure and hence the formulation can be

decomposed into one restricted master problem and several subproblems. Solving the

subproblem gives a set of jobs that can be processed simultaneously in a batch without violating

the machine capacity constraint. Solving the subproblem thus yields the jobs in a batch, the batch

processing time, and the batch ready time.

Sets

{𝑡 ∈ 𝑇} set of Position

Parameters

ajt binary – 1, if job j is processed in position t; 0, otherwise.

26

Decision Variables

λ tb a binary variable – 1, if batch b is in position t is selected; 0, otherwise.

The restricted master problem is,

Minimize 𝛼 𝐶
+

 + 𝛽 𝑇+

Subject to

 ∑ 𝑎𝑗𝑡 λ𝑡𝑏 ≥ 1

𝑏∈𝐵,𝑡∈𝑇

 ∀ 𝑗 ∈ 𝐽 (25)

 𝐶𝑏 ≥ (𝐶𝑏−1 + 𝑃𝑏) λ𝑡𝑏 ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑏 ∈ 𝐵/{1} (26)

 𝐶𝑏 ≥ (𝑅𝑏 + 𝑃𝑏) λ𝑡𝑏 ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑏 ∈ 𝐵 (27)

 0 ≥ 𝐶𝑏 + 𝐶− − 𝐶+ ∀𝑏 ∈ 𝐵 (28)

 𝑇𝑏 ≥ (𝐶𝑏 − 𝑑𝑗𝑋𝑗𝑏 − 𝑀(1 − 𝑋𝑗𝑏)) λ𝑡𝑏 ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑏 ∈ 𝐵 (29)

 0 ≥ 𝑇𝑏 + 𝑇− − 𝑇+ ∀𝑏 ∈ 𝐵 (30)

 ∑ λ𝑡𝑏 ≤ 1

𝑏∈𝐵

 ∀ 𝑡 ∈ 𝑇 (31)

 ∑ λ𝑡𝑏 ≤ 1

𝑡∈𝑇

 ∀ 𝑏 ∈ 𝐵 (32)

 λ𝑡𝑏 ∈ {0,1} ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵 (33)

 𝐶𝑏 , 𝑃𝑏 , 𝑅𝑏 , 𝑇𝑏 , 𝐶−, 𝐶+, 𝑇−, 𝑇+ ≥ 0 ∀𝑏 ∈ 𝐵 (34)

Sub

Problem

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 − ∑ 𝜋𝑗

𝑗∈𝐽

 Y𝑗 (35)

27

 ∑ 𝑠𝑗

𝑗∈𝐽

𝑌𝑗 ≤ 𝑆 ∀𝑏 ∈ 𝐵 (36)

 𝑅 ≥ 𝑟𝑗𝑌𝑗
∀𝑗 ∈ 𝐽 (37)

 𝑃 ≥ 𝑝𝑗𝑌𝑗
∀𝑗 ∈ 𝐽 (38)

 𝑌𝑗 ∈ {0,1}
∀𝑗 ∈ 𝐽 (39)

 𝑃, 𝑅 ≥ 0
 (40)

Constraint (25) ensures that each job is present in at least one position. Constraint (26)

and (27) determines the completion time of the batch. Constraints (28) and (30) are the goal

programming constraint in which the completion time and tardiness are made to zero using the

under and over satisfaction variables. Constraint (29) determines the tardiness of the batch.

Constraints (31) and (32) ensure each position has at most one batch and one batch is present at

most in one position. The subproblem objective is the minimization of duals of constraint (25).

Each column generated from the subproblem represents a batch. The ready time, processing

time, and size capacity of the machine are ensured by the subproblem using constraints (36),

(37), and (38). Table 8 shows the result of MILP-CG for the example 15 job instance shown in

Table 2.

Column generation procedure is briefly described below.

1. Generate an initial basic feasible solution.

2. Solve the relaxed restricted master problem (RMP).

3. Obtain the dual values of the solved RMP.

4. Update the cost coefficients of the subproblem with the dual variable values.

5. Solve the subproblem.

28

6. Add columns to the set of columns in the RMP.

7. Repeat the steps 2-5, until it exceeds to subproblem limit.

8. Use the generated columns to solve the integer master problem.

Table 8. Example result - MILP-CG

Alpha Beta Objective Cmax Tmax

0 1 112 141 112

0.25 0.75 57 75 51

0.5 0.5 49.50 59 40

0.75 0.25 63 69 45

1 0 68 68 53

Table 9 shows the results of different methods for the sample instance shown in table 2.

The quality of the solution depends on the number of times the subproblem (Sub problem limit)

is solved. Since this is an NP-hard problem to limit the solving time, we set the subproblem limit

to 25 for 15, 30, and 50 job instances and 10 for 100 and 150 job instances. This is because for

each iteration the subproblem and the relaxed inter problem takes more time when the number of

jobs increases.

Table 9. Comparison between different Methods

Alpha Beta
MILP-W MILP-G MILP-G+ MILP-GM+ MILP-CG

Objective Cmax Tmax Objective Cmax Tmax Objective Cmax Tmax Objective Cmax Tmax Objective Cmax Tmax

0 1 27 50 27 27 50 27 29 49 29 32 49 32 112 141 112

0.25 0.75 32.75 50 27 32.75 50 27 34 49 29 37.25 53 32 57 75 51

0.5 0.5 38.50 50 27 38.50 50 27 39 49 29 42.50 53 32 49.50 59 40

0.75 0.25 43.75 49 28 43.75 49 28 44 49 29 47.25 52 33 63 69 45

1 0 48 48 39 48 48 39 48 48 37 52 52 39 68 68 53

From Table 9, MILP-CG has higher solution value when compared to other methods

irrespective of alpha. This is because we limit the number of times the sub problem is solved

which directly affects the solution quality.

CHAPTER 4. EXPERIMENTATION

To evaluate the performance of the MILP, a set of instances must be generated. Ghrayeb

(2020) generated a data set to experiment with their solution approaches. The same data set is

used in this study. The data generation is discussed in section 4.1. The MILP goal programming

formulation given in chapter 3 is solved with IBM ILOG CPLEX 12.10.0 software. As shown in

the MILP formulation, a weighted sum approach is used to evaluate the objective function. The

values of α are chosen from set [0, 0.25, 0.5, 0.75, 1] and β = 1- α. All experiments are conducted

on an Intel Core i7 processor with 1.8GHHz and 12 GB RAM.

4.1 Data Generation

The processing and ready times were sampled from discrete uniform (DU) variable such

that pj~DU [1, 20] and rj~DU[0, ρZ], where Z =Σ pj and ρ is a positive real number such that 0 ≤

ρ ≤1. Job sizes are split into three levels, where s1~DU [1, 15], s2~DU [15, 30], and s3~DU[1,

30]. Due dates are calculated as dj = rj + pj + DU [0, γZ], where γ is a positive real number such

that 0 ≤ γ ≤1.

Five sets of problem instances were generated by varying the number of jobs (i.e., n = 15,

30, 50, 100, and 150). Similarly, different values of ρ ∈ {5%,10%, 40%}, and γ ∈ {5%,10%,

40%} were considered while generating the data sets. For each combination of n, ρ, γ, and sj, five

30

instances are generated, resulting in a total of 675 instances. For experimentation, one-third of

the total set is randomly chosen, for a total of 45 instances per level of n (225 total). The machine

capacity S was assumed to be equal to 30.

4.2 Experiments

After the MILP for the different goal programming models is coded in IBM ILOG

CPLEX IDE, all instances are solved. Because the problem under study is NP-hard, a

commercial solver takes a prohibitively long time to converge to optimality, so the model is

allowed to run for 1800 seconds (30 minutes) or until an optimal solution is found, whichever

happens first. The solution found by CPLEX (Cmax, Tmax, Objective value), as well as the run

time and percentage gap, are recorded. The percentage gap is calculated using (41).

%𝐺𝑎𝑝 =
|𝐵𝑒𝑠𝑡 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝐵𝑒𝑠𝑡 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑜𝑏𝑙𝑒𝑚|

1 × 𝑒−10 + |𝐵𝑒𝑠𝑡 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛|
 × 100 (41)

One metric to evaluate the quality of the solution from MILP-G is the percent

improvement when compared to MILP-W, as shown in (42). The objective from MILP-W is

denoted as obj(MILP-W) in the equation. If the value of the percent improvement is positive,

then the GP formulation outperforms weighted; otherwise, weighted has found a better solution.

 % 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
[𝑂𝑏𝑗(𝑀𝐼𝐿𝑃 − 𝑊) − 𝑂𝑏𝑗(𝑀𝐼𝐿𝑃 − 𝐺)]

𝑂𝑏𝑗(𝑀𝐼𝐿𝑃 − 𝑊)
 (42)

31

However, as this is a multi-objective problem, other performance metrics must be

considered. In a bi-objective problem, there is no guarantee of a global minimum or maximum

concerning both objectives considered. There exists a set of solutions that are superior to the rest

of the solutions in the solution space when all objectives are considered, but these solutions may

be inferior to other solutions if only one objective is considered (Jolai, 2012).

CHAPTER 5. RESULTS

In any multi-objective problem, no single solution exists that simultaneously optimizes

each objective. All MILP formulations were solved using CPLEX for all 225 job instances. The

results of the weighted residual method were taken from Ghrayeb (2020). One way to assess the

quality of the proposed algorithm is to compare the objective of the different algorithms. Figures

1, 3, 5 and 7 summarizes the comparison of different formulations - Weighted vs Goal, Weighted

vs Goal Symmetry, Weighted vs Goal Symmetry modified, respectively. The blue portion of the

graph indicates the number of problem instances for which the weighted method had better

objective value. The orange part indicates the number of problem instances for which the goal

programming formulation had a better objective value and the grey portion indicate the number

of instances for which the two objective values are equal.

 2

58

123
83

32

87

56

45 141

193

136
111

57

1 0

0

50

100

150

200

250

15 30 50 100 150

N
u

m
b

er
 o

f
In

st
an

ce
s

Number of jobs

W E I G H T E D V S G O A L

Equal

MILP-G

MILP-W

Figure 1. Weighted vs Goal

33

Figure 1, it is evident that the values were equal, or MILP-G dominated for a 15-job

instance. For 30 and 50 job instances, the MILP-G were not dominating but, for higher job

instances (100 and 150) MILP-G has better results than MILP-W. Figure 2 shows the result for

different values of alpha. These trends hold good when broken down into different values of

alpha (Figure 2). For 15 job instance (alpha =0 and 1) majority of the values were equal.

Figure 2. MILP-W vs MILP-G (Different values of alpha)

34

Figure 3, MILP-G+ dominated when the job instances are higher (100 and 150). For 15

and 50 job instances, the MILP-W had better solutions than MILP-G+. In 30 jobs instance, it is

equally distributed between two methods. These trends hold good when broken down into

different values of alpha (Figure 4). Figure 4, the number of equal values is higher for (alpha =1)

for 30 jobs.

Figure 5, MILP-GM+ also dominates for 100 and 150 jobs. For 15, 30 and 50 Jobs MILP-

W has better solution in majority of instances than MILP-GM+. Figure 6 shows results of MILP-

W vs MILP-GM+ for different values of alpha.These trends holds good when broken down into

different values of alpha (Figure 6).

133

58

107

6 0

0

56

71

219 225

91
111

47

0 0

0

50

100

150

200

250

15 30 50 100 150

N
u

m
b

er
 o

f
In

st
an

ce
s

Number of Jobs

M I L P - W V S M I L P - G +

Equal

MILP-G+

MILP-W

Figure 3. Weighted vs Goal Symmetric

35

Figure 4. MILP-W vs MILP-G+ (Different values of alpha)

Figure 5. Weighted vs Goal Symmetric Modified

128
107 115

13 0

0
19

62

212 225

96 99

48

0 0

0

50

100

150

200

250

15 30 50 100 150

N
u

m
b

er
 o

f
In

st
an

ce
s

Number of Jobs

M I L P - W V S M I L P - G M +

Equal

MILP-GM+

MILP-W

36

Figure 6. MILP-W vs MILP-GM+ (Different values of alpha)

Figure 7, MILP-CG is completely dominated by MILP-W. The solution MILP-CG

depends on the number of sub problem solved. This could be the reason for poor solution of

MILP-CG. Figure 8 shows the breakdown of results for different values of alpha. These trends

hold good when broken down into different values of alpha (Figure 8).

37

Figure 7. Weighted vs Goal CG

Figure 8. MILP-W vs MILP-CG (Different values of alpha)

145 163
198 201 202

1

22

15 22 22
79

40
12 2 1

0

50

100

150

200

250

15 30 50 100 150

N
u

m
b

er
 o

f
In

st
an

ce
s

Number of Jobs

W E I G H T E D V S G O A L C G

Equal

MILP-CG

MILP-W

38

5.1 Percentage of a Better solution

Figure 9 shows the percentage of instances each algorithm finds better or the same

solution than MILP-W. In general, MILP-G+ and MILP-GM+ find the better or same solution for

almost all 100 and 150 job instances. For 15 job instances, MILP-G had a better or same solution

for almost all the instances. For 30 job instances, MILP-G and MILP-G+ had better or the same

results for almost 75% of the time. For 50 job instances, all three methods had better or the same

instances almost 50% of the time. Figure 9, MILP-CG has the lowest percentage of better or

same solution instance.

Figure 9. Percentage of a better or same solution

0%

20%

40%

60%

80%

100%

120%

15 30 50 100 150

% of Better or Same Instances

MILP-G MILP-G+ MILP-GM MILP-CG

39

5.2 Percentage Improvement

The percentage improvement is calculated using the equation (42). The comparison of the

different formulations using percentage improvement as a metric are summarized in Figures 10,

11, and 12. Figure 10 shows the percentage improvement for the objective function. Figure 6, the

% improvement was higher for higher job instances. MILP-G+ and MILP-GM+ showed higher

percentage improvement than MILP-G for 100 and 150 Jobs. For 15 and 50 jobs, the percentage

improvement was negative showing MILP-W had a better objective value. For 30 job instances,

the percentage improvement was very negligible. Figure 11 and 12 shows the percentage

improvement for Cmax and Tmax.

15 30 50 100 150

MILP-G 0% 0% -1% 1% 7%

MILP-G+ -3% 0% -1% 22% 30%

MILP-GM+ -3% -1% -1% 18% 24%

MILP-CG -53% -60% -106% -82% -103%

-53%
-60%

-106%

-82%

-103%

-130%

-110%

-90%

-70%

-50%

-30%

-10%

10%

30%

% I M P R O V E M E N T O B J E C T I V E

Figure 10. Percent Improvement - Objective

40

From Figure 11, the percentage improvement is higher for 100 and 150 jobs. For lower

job instances, the MILP-W had a better Cmax value because the value is negative. From Figure

12, percentage improvement holds good for 100 and 150 jobs. Similarly, the percentage

improvement is negative for lower job instances (15,30, and 50). In general, MILP-W had better

Cmax and Tmax for lower job instances.

15 30 50 100 150

MILP-G 0% 1% -1% 3% 7%

MILP-G+ 0% 0% 0% 14% 21%

MILP-GM+ -2% 0% -1% 9% 15%

MILP-CG -21% -32% -42% -46% -94%

-21%
-32%

-42% -46%

-94%
-119%

-99%

-79%

-59%

-39%

-19%

1%

21%

% I M P R O V E M E N T C M A X

15 30 50 100 150

MILP-G 0% 0% -4% -1% 7%

MILP-G+ -8% 0% 0% 33% 39%

MILP-GM+ -5% -2% 0% 28% 32%

MILP-CG -53% -99% -187% -88% -111%

-53%

-99%

-187%

-88%
-111%

-211%

-161%

-111%

-61%

-11%

39%

% I M P R O V E M E N T T M A X

Figure 11. Percent Improvement - Cmax

Figure 12. Percent Improvement - Tmax

41

MILP-CG has high negative percentage improvement but still has few instances

dominating MILP-W. So we plot percentage improvement for the instances where MILP-CG had

better solution. Figure 13 shows the percent improvement for the instances were MILP-CG had

better solution than MILP-W.

Figure 13. Percent Improvement- MILP-CG Dominant Instances

Figure 13, there is significant improvement interms if Cmax, Tmax and objective. So, further

research on decomposition of the model will help to improve the solution quality.

5.3 Run time Comparison and Gap Percentage

An important factor to consider is the run time required by CPLEX to solve the different

formulations. The average computation times for weighted and goal methods are shown in Figure

14. There is not much of a difference in runtime between MILP-W and MILP-G. The average

31%

2% 1%
3%

7%

34%

8%
4%

7% 6%

34%

8%

3%
6% 6%

0%

5%

10%

15%

20%

25%

30%

35%

40%

15 30 50 100 150

P
e

rc
e

n
ta

ge
 Im

p
ro

ve
m

e
n

t

Number of Jobs

P E R C E N A T G E I M P R O V E M E N T - M I L P - C G D O M I N A N T
I N S T A N C E S

Cmax Tmax Objective

42

runtime of MILP-G+ is less for 50, 30, and 100 job instances. MILP-GM+ had less time compared to

MILP-W and MILP-G. in 15, 30, and 50 job instances. Consequently, it can be concluded that the

new formulations not only report good solutions compared to MILP-W, but they also require less

computational time. In addition to comparing the formulations with the solution, a comparison

between different MILP methods is made using a gap percentage. The gap percentage is calculated

using the formula (41). Gap percentage is defined as the percentage difference between the best

integer objective and best linear objective, Gap is an indication of how close CPLEX is to find an

optimal solution. The smaller the gap, the closer CPLEX is to the optimal value. The more difficult

an instance is to solve, the larger the gap value. Figures 15 to 19 shows the average gap vs runtime

of different formulations discussed.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

15 30 50 100 150

R
u

n
 t

im
e

(S
ec

o
n

d
s)

Number of Jobs

Average runtime

Weighted Goal Goal Symmetry Goal Symmetry Modified Goal -CG

Figure 14. Average run time (in seconds)

43

0%

20%

40%

60%

80%

100%

120%

0

200

400

600

800

1000

1200

1400

1600

1800

2000

15 30 50 100 150

G
ap

%

R
u

n
 t

im
e

(S
ec

o
n

d
s)

Number of Jobs

Average Gap and Runtime - MILP-W

Weighted Gap

Figure 15. Average Gap vs Runtime-MILP-W

0%

20%

40%

60%

80%

100%

120%

0

500

1000

1500

2000

15 30 50 100 150

G
ap

%

R
u

n
 T

im
e

(S
ec

o
n

d
s)

Number of Jobs

Average Gap and Runtime - MILP-G

Goal Average Gap

Figure 16. Average Gap vs Runtime - MILP-G

44

 There is not much of a difference between MILP-W, MILP-G, and MILP-GM+ in terms

of Average runtime vs Gap. The Gap and runtime are comparatively less for MILP-G+. As the

number of jobs increases, the gap also increases. In Figure 15, 100 and 150 job instances have

average gap values 100%, meaning MILP-W is not able to converge to an optimal solution.

Figure 17.Average Gap vs Runtime - MILP - G+

0%

10%

20%

30%

40%

50%

60%

70%

80%

0

200

400

600

800

1000

1200

1400

1600

1800

2000

15 30 50 100 150

G
ap

%

R
u

n
 T

im
e

(S
ec

o
n

d
s)

Number of Jobs

Average Gap and Run time - MILP-G+

Goal Symmetry Average Gap

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0

500

1000

1500

2000

15 30 50 100 150

G
ap

%

R
u

n
 T

im
e

(S
ec

o
n

d
s)

Number of Jobs

Average Gap and Run time - MILP-GM+

Goal Symmetry Modified Average Gap

Figure 18. Average Gap vs Runtime - MILP-GM+

45

Figure 19. Average Gap vs Runtime - MILP-CG

From figure 19, MILP-CG had the average runtime of 1800 seconds and gap of 100% for

jobs 30 to 100. Overall, MILP-G+ has comparatively less gap and runtime.

5.4 Pareto Front Example

The Pareto frontier for each MILP can be constructed by graphing the points included in

the Pareto set. The x-axis is defined using Cmax, and the y-axis is defined using Tmax. The closer

the given algorithm’s Pareto front is to (0,0), the higher the quality of its solution (Ghrayeb,

2020). An example Pareto front is shown for all jobs instances from figure 20 to figure 24. From

figure 20, The Pareto front of MILP-CG is far away from (0,0) when compared to other methods

proving that the solution quality of CG depends on the subproblem limit. In figure 20, MILP-G

and MILP-W overlap each other because the values are equal. In figure 21 and figure 22, MILP-

G, MILP-G+, MILP-W and MILP-GM+ concentrated in a single region showing not much of a

0%

20%

40%

60%

80%

100%

120%

1600

1650

1700

1750

1800

1850

15 30 50 100 150

G
ap

%

R
u

n
 T

im
e

(S
ec

o
n

d
s)

Number of Jobs

Average Gap and Runtime - MILP-CG

Goal-CG Average Gap

46

difference in solution value. In figure 21-24, the Pareto front of MILP-CG is far away from (0,0)

showing the solution quality of column generation is bad.

Figure 20. 15 Jobs- Example Pareto front

Figure 21. 30 Jobs -Example Pareto front

20

25

30

35

40

45

45 50 55 60 65

Tm
ax

Cmax

15 Jobs- Example Pareto front

MILP-W

MILP-G

MILP-G+

MILP-GM+

MILP-CG

0

20

40

60

80

100

120

140

90 100 110 120 130 140 150

Tm
ax

Cmax

30 Jobs -Example Pareto front

MILP-W MILP-G MILP-G+ MILP-GM+ MILP-CG

47

Figure 22. 50 Jobs- Example Pareto front

From Figures 23 and 24, the Pareto front of MILP-G+ and MILP-GM+ is close to (0,0)

providing evidence that it has a better solution than any other method. MILP-W is away from

(0,0) shows it finds it difficult to solve the problem to optimality for higher job instances. Overall

MILP-G+ produces better solution quality than all other methods.

100

120

140

160

180

200

220

240

260

140 160 180 200 220 240 260

Tm
ax

Cmax

50 Jobs- Example Pareto front

MILP-W MILP-G MILP-G+ MILP-GM+ MILP-CG

48

Figure 23. 100 Jobs - Example Pareto front

Figure 24. 150 Jobs- Example Pareto front

190

240

290

340

390

440

490

540

590

640

220 320 420 520 620 720 820

Tm
ax

Cmax

100 Jobs - Example Pareto front

MILP-W MILP-G MILP-G+ MILP-GM+ MILP-CG

400

600

800

1000

1200

1400

1600

1800

500 700 900 1100 1300 1500

Tm
ax

Cmax

150 Jobs- Example Pareto front

MILP-W MILP-G MILP-G+ MILP-GM+ MILP-CG

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

The problem under study can be denoted as 1|p-batch, sj, rj| Cmax, Tmax. The main objective

is to minimize the makespan and maximum tardiness such that it does not exceed the size

capacity of the machine. MILP-G, MILP-G+, MILP-GM+ was developed and solved using

CPLEX. One way to evaluate the proposed formulations is to compare their solution quality with

the solution from MILP-W (Ghrayeb, 2020). The different formulations are compared based on

their objective values, % gap, run time, and % improvement. The following sections summarize

the main findings of this research as well as potential future work.

6.1 Conclusions

MILP-G, MILP-G+, MILP-GM+ was used to solve the generated two hundred and

twenty-five problem instance. Based on the comparison with MILP-W, both MILP-G+ and

MILP-GM+ dominated on larger problem instances for all values of alpha. The percentage

improvement in objective value for MILP-G+ is 30% and 22% for 150 and 100 job instances,

respectively. For MILP-GM+ the percentage improvement is 24% and 18% for 150 and 100 job

instances, respectively. The results of percentage improvement are summarized in Table 10.

Table 10. Percentage Improvement

% Improvement-Objective Value
Number of Jobs

100 150

Goal 1% 7%

Goal Symmetry 22% 30%

Goal Symmetry Modified 18% 24%

Column Generation -82% -101%

50

From Table 10, it is evident that MILP-G+ and MILP-GM+ had the better improvement in

terms of objective value. MILP-CG had the negative percentage improvement meaning MILP-W

had better solution value. Table 11 shows the percentage of times the new formulations found

better or the same solution as MILP-W. MILP-G+, MILP-GM+ finds better or the same solution

as MILP-W for 100% of the 150-job instances. For 100 job instances the value is 97% and 94%

for MILP-G+ and MILP-GM+. On average MILP-G provides better or same solution as MILP-W

on 74% of the instances. Looking at the runtime MILP-G+, MILP-GM+ do not have significant

differences in runtime between them. The average run time MILP-G+ is less for higher job

instances when compared with MILP-W.

Table 11. Number of better or same solution

Number of Better or same

solution

Number of Jobs

15 30 50 100 150

Goal 99% 74% 45% 63% 86%

Goal Symmetry 40% 74% 52% 97% 100%

Goal Symmetry Modified 52% 52% 49% 94% 100%

Goal -Column Generation 42% 28% 12% 11% 10%

Based on all results, MILP-G+, MILP-GM+ seems to be the best approach for larger job

instances (100 and 150). For smaller job instances (15, 30, 50) MILP-W had a better solution

than the proposed methods. Depending on the size of the problem at hand, MILP-G+ and MILP-

GM+ may be chosen over MILP-W for their high-quality solutions and shorter computational

time.

51

6.2 Future Work

In this research, the weights were provided between two objective functions to solve the

proposed problem. Five levels were considered for α and β, from 0 – 1 at intervals of 0.25, so it

could be interesting to test smaller intervals of values to see if the Pareto-optimal front changes.

Additionally, as discussed in Chapter 2, different solution approaches exist for solving multi-

objective formulations. It would be worthwhile to explore methods like the ε – constraint method

to see if different, higher quality Pareto-optimal fronts are obtained. Moreover, the Symmetric

breaking method can also be tried with MILP-W to compare the runtime and the solutions

obtained.

Fuzzy goal programming is an extension of traditional goal programming to solve multi-

objective problems with notably defined model parameters in a decision-making environment.

The original MOLP is converted into a Fuzzy Multi-Objective Linear Programming (FMOLP)

using the piece-wise linear function (Moghaddam et al., 2010).

Although a column generation approach was developed the experimental study did not

show no evidence of its superiority over other formulations. A further study on the

decomposition approach would be beneficial.

Overall, the new formulations proposed and evaluated show their useful to solve larger

problem instances efficiently. This research would benefit schedulers who have the daunting task

of scheduling batch processing machines with the constraints discussed in this research.

REFERENCES

Abedi, M., Seidgar, H., Fazlollahtabar, H., & Bijani, R. (2014). Bi-objective optimization for

scheduling the identical parallel batch-processing machines with arbitary job size,

unequal job release times and capacity limits. International Journal of Production

Research, 53(6), 1680-1711. doi:10.1080/00207543.2014.952795

Akker, V., Hoogeveen J.A., & Kempem , V. (2010). Using column generation to solve parallel

machine scheduling problems with minmax objective functions. Journal of Scheduling,

15(6), 801-810. doi:10.1007/s10951-010-0191-z

Beldar, P., & Costa, A. (2018). Single machine batch processing problem with release dates to

minimize total completion time. International Journal of Industrial Engineering

Computations, 331-348. doi:10.5267/j.ijiec.2017.8.003

Bulbul, K., Kaminsky, P., & Yono, C. (2004). Flow shop scheduling with earliness, tardiness,

and intermediate inventory holding cost. Naval Research Logistics, 51(3), 407-445.

doi:10.1002/nav.20000

Chen, Z.-L., & Powell, W. (1999). Solving parallel machine scheduling problems by column

generation. INFORMS Journal on Computing, 11(1), 78-94. doi:10.1287/ijoc.11.1.78

Damodaran, P., & Velez-Gallego, M. C. (2012). A simulates annealing algorithm to minimize

makespan of parallel batch processing machines with unequal job ready times. Expert

Systems with Application, 39(1), 1451-1458. doi:10.1016/j.eswa.2011.08.029

Deliktas, D., Torkul, O., Ustun, O., & Kiris, S. (2014). Single machine scheduling with

sequence-dependent setup times by using AHP and multi-choice goal programming.

International Symposium of the Analytic Hierarchy Process 2014. Washington D.C.

doi:10.13033/isahp.y2014.153

Ghrayeb, L. (2020). Bi-objective optimization for single batch processing machine. DeKalb:

Northern Illinois University; ProQuest Dissertations & Theses Global. Retrieved from

https://www.proquest.com/dissertations-theses/bi-objective-optimization-single-batch-

processing/docview/2452101430/se-2?accountid=12846.

53

Graham, R. L.; Lawler, E. L.; Lenstra, J.K.; Rinnooy Kan, A.H.G. (1979). "Optimization and

Approximation in Deterministic Sequencing and Scheduling: a Survey". Proceedings of

the Advanced Research Institute on Discrete Optimization and Systems Applications of

the Systems Science Panel of NATO and of the Discrete Optimization Symposium.

Elsevier. 5, 287–326.

Groover, M. (2010). Fundamentals of modern manufacturing (4 ed.). John Wiley & Sons.

Jin, M., Liu, X., & Luo, W. (2020). Single-machine parallel-batch scheduling with nonidentical

job sizes and rejection. Mathematics, 8(2), 258-265. doi:10.3390/math8020258

Kashan, A. H., Karimi, B., & Jolai, F. (2010). An effective hybrid multi-objective genetic

algorithm for bi-criteria scheduling on single batch processing machine with non-

identical job sizes. pplications of Artifician Intelligence, 23(6), 911-922.

doi:10.1016/j.engappai.2010.01.031

Kiran, D. (2019). Production planning and control. Elsevier.

Kondakci, S. K., & Bekiroglu, T. (1997). Scheduling with bicriteria: total floetime and number

of tardy jobs. International Journal of Production Economics, 53(1), 91-99.

doi:10.1016/S0925-5273(97)00099-6

Lee, S. M., & Jung, H.-J. (1989). A multi-objective production planning model in a flexible

manufacturing environment. International Journal of Production Research, 27(11),

1981-1992. doi:10.1080/00207548908942668

Li, X., & Wang, L. (2018). Scheduling batch proccessing machine using max-min ant sysytem

algorithm improved by loacal search method. Mathematical Problems in Engineering, 1-

10. doi:10.1155/2018/3124182

Mavrotas, G. (2009). Effective implementation of the e-constraint method in Multi-Objective.

Applied Mathematics and Computation, 455-465. doi:10.1016/j.amc.2009.03.037

Melouk, S., Damodaran, P., & Chang, P.-Y. (2004). Minimizing makespan for single machine

batch processig with non-identical job sizes using simulated annealing. International

Journal of Production Economics, 87(2), 141-147. doi:10.1016/S0925-5273(03)00092-6

Moghaddam, R. T., Javadi, B., Jolai, F., & Ghodrarnama, A. (2010). The use of fuzzy multi-

objective linear programming for solving a multi-objective single machine scheduling

problem. Applied Soft Computing, 10(3), 919-925. doi:10.1016/j.asoc.2009.10.010

54

Pei, Z., Zhang, X., Zheng, L., & Wan, M. (2019). A column generation-based approch for

prportionate flexible two stage no-wait job shop scheduling. International Journal of

Production Research, 1-23. doi:10.1080/00207543.2019.1597291

Pinedo, M. (2009). Planning and scheduling in manifacuring and services (2 ed.). Springer-

Verlag New York. doi:10.1007/978-1-4419-0910-7

Rardin, R. l. (2017). Optimization in Operations Research. Hoboken: Pearson Higher Education.

Research and reviews. (2020). Batch productions. Retrieved October 05, 2020, from Research

and reviews: https://www.rroij.com/scholarly/batch-productions-journals-articles-ppts-

list.php#:~:text=There%20are%20several%20advantages%20of,common%20process%2

0in%20pharmaceutical%20industry.

Rezaeian, J., & Zarook, Y. (2018). An efficient bi-objective genetic algorithm for single batch

processing machine scheduling problem with sequence dependent family setup time and

non-idnetical job size. Journal of Optimization in Industrial Engineering, 11(2), 65-78.

doi:10.22094/joie.2018.792.1505

Ronconi, D. P., & Kawamura, M. S. (2010). The single machine earliness and tardiness

scheduling problem: lower bounds and a branch and bound algorithm. Computational

and Applied Mathematics, 29, 107-124.

Sabouni, Y. M., & Jolia, F. (2010). Optimal methods for batch processing problem with

makespan and maximum lateness objectives. Applied Mathematical Modelling, 34(2),

314-324. doi:10.1016/j.apm.2009.04.007

Selen, W. J., & Hott, D. D. (1986). A mixed-integer goal programming formulation of standard

flow-shop scheduling problem. The Journal of the Operational Research Society, 37(12),

1121-1128. doi:10.2307/2582302

Singh, R. (2006). Introduction to basic manufacturing and workshop technology. New Delhi:

New age international limited.

Trindade, R., Bassi de Araújo, O., Costa Fampa, M., & Müller , F. (2018, Jan). Modelling and

symmetry breaking in scheduling problems on batch processing machines. International

Journal of Production Research, 7031-7048. doi:10.1080/00207543.2018.1424371

Wiechman, N., & Damodaran, P. (2015). A column generation approach for scheduling a batch

processing machine with makespan objective. Int. J. Industrial and Systems Engineering,

21(3), 334-355.

55

Woo, Y.-B., Kim, B. S., & Moon, I. (2019). Column generation algorithms for a single machine

problem with deteriorating jobs and deteroration maintenance activities. Procedia

Manufacturing, 39, 1119-1128. doi:10.1016/j.promfg.2020.01.358

	Goal Programming Approach For Bi-Objective Optimization For A Single Batch Processing Machine
	Recommended Citation

	tmp.1698420604.pdf.QcYs3

