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ABSTRACT 

GOAL PROGRAMMING APPROACH FOR BI-OBJECTIVE OPTIMIZATION FOR A 

SINGLE BATCH PROCESSING MACHINE 

Dheeban Kumar Srinivasan Sampathi, MS 

Department of Industrial and Systems Engineering 

Northern Illinois University, 2021 

Dr. Purushothaman Damodaran, Director 

This research considers a real-time problem where jobs need to be batched and scheduled 

to a single batch processing machine to minimize makespan and maximum tardiness. Jobs must 

be placed in batches such that the machine capacity is not violated. The jobs considered have 

unequal ready times, unequal processing times, and unequal sizes. This research aims to develop 

an effective solution approach for the proposed problem. The problem under study can be 

denoted as 1|p-batch, sj, rj| Cmax, Tmax. 

The problem under study is NP-Hard. A new Mixed Integer Linear Programming (MILP) 

formulation using Goal programming (MILP-G) and Column Generation (MILP-CG) are 

proposed as enhancements of formulations proposed in the literature and solved using the 

commercial solver. To avoid the symmetric solution in MILP two symmetry-breaking methods 

are proposed using goal programming (MILP-G+ and MILP-GM+) for a multi-objective function. 

An experimental study is conducted to evaluate the different goal programming formulation and 

Column Generation in terms of solution quality and run time.  

A set of 225 instances is generated by varying the values of job size, ready time, 

processing time, and due date. All MILPs are solved using IBM ILOG CPLEX. This research



 

 

compares the results of the proposed methods with the results of the weighted residual method 

(MILP-W) given by Ghrayeb (2020).  

Based on the results, MILP-G+, and MILP-GM+ outperform MILP-W for 100 and 150 

job instances. MILP-G performed better than MILP-W for 100 and 150 job instances but not 

always. MILP-CG took a long time for higher job instances to solve the subproblem and relaxed 

problem, so the solution quality was surprisingly low.  

The findings of this research directly benefit schedulers who are faced with the ardent 

task of scheduling hundreds of jobs each day on their batch processing machine. The MILPs 

proposed in the research give alternative solution approaches for practitioners and academics to 

explore further to solve the problem under study and extensions of it.   
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CHAPTER 1. INTRODUCTION 

Creating things has been an indispensable activity of human civilization. Manufacturing 

is the conversion of materials into items of higher value using one or more processing and/or 

assembly operations. The type of manufacturing done by a company depends on the kind of 

product it produces (Groover, 2010, p. 5). Manufacturing systems can be characterized by 

various factors: the number of machines, the level of automation, the type of material handling, 

and so on. Depending on the number of machines, the models are classified as single machines, 

parallel machines, and job shops. In a single machine, a job consists of one operation that 

machines can do (Pinedo, 2009, p. 20). The manufacturing setup can be classified as job 

production, batch production, and mass production based on the type of production (Singh, 2006, 

p. 3). A single batch processing machine (BPM) can be explained as one machine that can 

process multiple jobs at a time. 

Batch production is similar to job production except in the quantity of product produced. 

Rather than making one single product, a group of products is produced at one time. Identical 

products or minor variations are produced in batches based on customer demand or expected 

demand for products (Kiran, 2019, p. 185). In a batch process, the sequence of operations is 

accomplished in a certain period. BPM can handle many jobs at the same time. The action on all

jobs start and finish simultaneously. In batch processing, the machinery is utilized effectively. It 

is also cheaper to produce a whole batch than a single item at a time. By processing several jobs 

at a time, the setup of jobs can also be minimized. Moreover, it reduces the initial setup cost 
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because a single production line can produce many products (Research and reviews, 2020). 

Batch processing finds its application in stress testing of multiple printed circuit boards (PCBs) 

simultaneously (Abedi et al., 2014).  

Planning and scheduling are modes of decision-making that are used regularly in many 

manufacturing and service industries. Scheduling processes play a crucial role in production 

planning. Orders released in a manufacturing environment must be translated into jobs with set 

deadlines associated with them. These jobs are often processed in a given sequence. In such an 

environment, developing a detailed schedule of tasks to be performed helps maintain operational 

efficiency (Pinedo, 2009). Scheduling of jobs has been the topic of improvement for decades for 

industries. There are many rules for the scheduling of jobs. Scheduling has found application in 

various fields such as healthcare, airline, manufacturing, etc.  

It is crucial to schedule jobs on a batch processing system, as incorrect or unsuccessful 

batching can lead to a significant bottleneck. Industries must, therefore, be well equipped to 

quickly make decisions to ensure that jobs are completed on time. There is considerable research 

on scheduling discrete processing machines, where the machines can process only one job at a 

time. Seeing the advantages of BPM, the research in this field is increasing. 

 

1.1 Problem Description 

The problem discussed in this research is based on a real-life application where PCBs are 

tested in the environmental stress screening (ESS) chamber. In ESS, the PCBs are subjected to 

thermal stress for a specified period, which allows the detection of failures. This research intends 

to improve the efficiency of this ESS chamber while maintaining the customers’ satisfaction. The 
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PCBs are considered as jobs, and ESS is considered as BPM. Given the list of jobs, the PCBs are 

batched together, and the batches are scheduled for testing on the BPM. 

Usually, a PCB differs in size based on its application. Furthermore, each PCB has a 

specific testing time and ready time (i.e., available time for testing). The ESS chamber allows the 

testing of multiple boards simultaneously, provided its capacity is not exceeded. The PCBs can 

be tested longer than the specified time. Consequently, the batch processing time is equal to the 

longest processing time of all the PCBs in a batch. Similarly, the ready time of the batch is equal 

to the latest ready time of the PCBs in the batch. Pre-emption of PCBs is not allowed, which 

means once a batch begins processing, it cannot be stopped to add or remove the PCBs. 

The aim is to form batches of jobs and schedule those batches on a BPM to minimize the 

machine’s makespan and minimize the job’s maximum tardiness. Minimizing makespan tends to 

maximize machine utilization. Minimizing the job’s tardiness ensures the timely delivery of 

products to the customer and ensures customer satisfaction. The problem under study can be 

characterized as 1|p-batch, sj, rj| Cmax, Tmax using the three-field notation 𝛼|𝛽|𝛾 as proposed by 

Graham et al. (1979). This problem is an NP-hard problem. According to Pinedo (2009), a 

problem that does not have a polynomial-time algorithm is called NP-hard.  

 

1.2 Objectives and Scope 

This research aims to develop appropriate solution approaches to minimize the makespan 

and minimize the maximum tardiness on a single batch processing machine. Ghrayeb (2020) 

proposed a mixed-integer linear formulation to the problem under study and solved the 

formulation using IBM ILOG CPLEX solver. The solver required prohibitively long run times to 
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solve problems as the number of jobs increased. Consequently, Ghrayeb (2020) developed a 

simulated annealing approach and a greedy randomized adaptive search procedure. Through an 

experimental study, it was shown that the heuristic approaches were efficient to find a good 

solution when compared to the commercial solver – especially on larger problem instances. 

While heuristics are quick to find a solution, they do not guarantee an optimal solution. This 

research explores a goal programming formulation of the problem under study to improve 

computational time and solution quality. An experimental study is conducted, using the same 

data set as Ghrayeb (2020) did, to compare the different mathematical formulations for the 

problem under study. 

The project’s scope includes the batching and scheduling of jobs on the batch processing 

machine but does not include the processing of the job before or after the batch processing 

machine. The assumptions made in this research are listed below. 

 

1. Each job has a deterministic processing time, ready time, due date, and size. 

2. The capacity of the machine is known. 

3. Machine breakdown is not considered. 

4. Once the batches are formed, no jobs can be added or deleted.   

1.3 Research Benefits 

The benefits of this research are as follows:  

1. The solution approaches will serve as a decision-making tool for schedulers.  

2. The solution approaches will help improve machine utilization and customer satisfaction. 
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3. This research proposes new formulations that will contribute the body of knowledge on 

1|p-batch, sj, rj| Cmax, Tmax problems. 

 



 

 

 

 

CHAPTER 2. LITERATURE REVIEW 

Scheduling of jobs has been the topic of interest since the 19th century. The research on 

machine scheduling has outgrown various machine environments and research methodologies. 

The problem of scheduling with the bi-objective function has been extensively studied. 

Scheduling of jobs on discrete processing machines and batch processing machines has been 

reviewed.  Multi-objective optimization cannot guarantee an optimal solution, unlike single-

objective optimization. Therefore, the main aim is to find the best solution without degrading any 

objective functions. Table 1 shows the list of literature reviewed for this research work.  

A multi-objective optimization problem can be converted to a single objective 

optimization problem by multiplying each objective with weight and summing them together.  

Multi-Objective Mathematical Programming (MOMP) methods can be categorized as a-priori, 

interactive, and posteriori (Mavrotas, 2009). In the a-priori method, the decision-maker expresses 

their preferences before the solution process (e.g., setting goals or weights to the objective 

functions). In the interactive methods, phases of dialogue with the decision-maker are 

interchanged with phases of calculation, and the process usually converges, after a few iterations, 

to the most preferred solution. The decision-maker progressively drives the search toward the 

most preferred solution. In the posteriori method, the efficient solutions for the problem are 

generated after which the decision-maker takes a decision based on the needs and requirements. 
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Cmax Tmax ΣUj 

ΣEj 

and/ 

or 

ΣTj 

ΣCj rj sj dj pj S 

Pm Qm 

Akker et al. (2010) Discrete ✓ ✓ ✓ ✓ ✓
Column 

generation 

Bulbul et al. (2003) Discrete ✓ ✓ ✓ ✓ ✓
Column 

generation 

Lee and Jung 

(1989) 
Discrete ✓ ✓ ✓ ✓

Goal 

programming 

Pei et al. (2019) Discrete ✓ ✓ ✓
Column 

generation 

Sellen and Hott 

(1986) 
Discrete ✓ ✓ ✓

Goal 

programming 

Chen and Powell 

(1998) 
Discrete ✓ ✓ ✓ ✓

Column 

generation 

Moghaddam et al. 

(2010) 
Discrete ✓ ✓ ✓ ✓ ✓ ✓

Fuzzy goal 

programming 

Deliktas et al. 

(2014) 
Discrete ✓ ✓ ✓ ✓ ✓ ✓

Goal 

programming 

Woo et al. (2019) Discrete ✓ ✓ ✓
Column 

generation 

(Continued on following page) 
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Cmax Tmax ΣUj 

ΣEj 

and/ 

or 

ΣTj 

ΣCj rj sj dj pj S 

Pm Qm 

Wiechman and 

Damodaran (2015) 
Batch ✓ ✓ ✓ ✓ ✓

Column 

Generation 

Li and Wang 

(2018) 
Batch ✓ ✓ ✓ ✓ ✓ MMAS 

Kondakci and 

Bekiroglu (1997) 
Discrete ✓ ✓ ✓ ✓ ✓

Moore and 

SPT 

Ronconi and 

Kawamura (2010) 
Discrete ✓ ✓ ✓ ✓

Branch and 

bound 

Damodaran and 

Gallego (2012) 
Batch ✓ ✓ ✓ ✓ ✓ ✓

Simulated 

annealing 

(SA) 

Belder and Costa 

(2018) 
Batch ✓ ✓ ✓ ✓ ✓ ✓

Tabu search 

and PSO 

Ghrayeb (2020) Batch ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
SA and 

GRASP 

Kashan et al. 

(2010) 
Batch ✓ ✓ ✓ ✓ ✓ ✓ ✓ MOGA 

Rezaeian and 

Zarook (2018) 
Batch ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ BOGA 

Sabouni and Jolai 

(2010) 
Batch ✓ ✓ ✓ ✓ ✓ ✓ ✓

BIOO 

heuristics 

(Continued on following page) 
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Cmax Tmax ΣUj 

ΣEj 

and/ 

or 

ΣTj 

ΣCj rj sj dj pj S 

Pm Qm 

Trindade et al. 

(2018) 
Batch ✓ ✓ ✓ ✓ ✓ ✓

Symmetric 

Breaking 

Srinivasan 

Sampathi (2020) 
Batch ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Goal 

programming 

and Column 

generation 
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The widely used method is the weighted residual method. In this method, a multi-

objective problem is converted into a single objective by assigning a non-negative weight to each 

objective function and minimizing their sum (Ghrayeb, 2020). Another common method is the ε-

constraint method, which minimizes one objective, and redefines the other objectives as 

constraints less than or equal to some ε. The Pareto-optimal front can be approximated by 

varying the level(s) of ε. Consider this example, 

𝒎𝒊𝒏 𝑓1(𝑥), 𝑓2(𝑥), . . 𝑓𝑛(𝑥)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

𝑥 ∈ 𝑆 

In the 𝜀-constraint method, we optimize one of the objective functions using the other 

objective functions as constraints, incorporating them in the constraint part of the model. 

𝒎𝒊𝒏 𝑓1(𝑥)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑥 ∈ 𝑆 

𝑓2(𝑥)  ≤ 𝜀2

. 

. 

𝑓𝑛(𝑥)  ≤ 𝜀𝑛

In the case of the maximization objective, the ≤ sign changes to ≥ sign. One issue with this 

approach is that it is necessary to preselect which objective to minimize and setting 𝜀𝑗 values. This 

is problematic because for many values of 𝜀𝑗 there will be no feasible solution (Mavrotas, 2009). 
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The third method is Goal programming. “Goal or target levels specify the values of the 

criteria functions in an optimization model that decision-makers consider sufficient or satisfactory” 

(Rardin, 2017). Goal or soft constraint uses deficiency variables to achieve the target. These 

deficiency variables are non-negative. For example, the equal to format goal constraints are 

modeled as (criterion function) – (over satisfaction deficiency variable) + (under satisfaction 

deficiency variable) = target value.  

The section below describes the different solution approaches for scheduling jobs on a 

single machine with multiple objectives. The solution approach is divided into three categories: 

the heuristics approach, column generation (CG), and goal programming (GP). Since this 

research focuses on improving the Pareto front and reducing the computational time, CG and GP 

are discussed in detail. 

2.1 Heuristics and other scalarization techniques 

Beldar and Costa (2018) considered the 1|rj, batch| ΣCj and proposed several 

metaheuristics approach to solve the problem based on Tabu search and Particle Swarm 

Optimization (PSO). Damodaran and Gallego (2012) studied Pm| rj, batch|Cmax, and developed a 

Simulated Annealing (SA) algorithm. It was concluded that the SA solution approach 

outperforms the Modified Delay (MD)  heuristic and Greedy Randomized Adaptive Search 

Procedure (GRASP). Li and Wang (2018) developed a Max-Min Ant System (MMAS) 

algorithm to solve a single batch processing machine problem. A local search method, known as 

the Multiple Jobs Exchange, is proposed to improve the algorithm’s performance by adjusting 
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jobs between batches. The performance of the MMAS algorithm is compared with CPLEX, as 

well as several other algorithms. For large population sizes, MMAS outperformed other 

algorithms.  

Kashan et al. (2010) proposed a hybrid genetic algorithm for multi-objective single 

machine scheduling that quickly converges to Pareto optimal solution. The results prove that this 

hybrid genetic algorithm outperforms the genetic algorithm. Rezaeian and Zarook (2018) 

proposed a bi-objective genetic algorithm (BOGA) for the NP-hard problem. They found that the 

BOGA result was more efficient and faster than the ε-constraint method in generating the Pareto 

front. Sabouni and Jolai (2010) used dynamic programming and proposed a Pareto approach. 

This method gave the optimal solution in the case of irreconcilable job groups or boundless 

batches. Ghrayeb (2020) proposed a methodology for solving the problem of scheduling jobs 

with unequal ready times, unequal processing times, and unequal sizes on a single batch 

processing machine, with the objectives of minimizing makespan and maximum tardiness using 

SA and GRASP. A comparison between SA, GRASP, and CPLEX results were made and 

concluded that SA seems to be the best approach for the proposed problem. 

Kondakci and Bekiroglu (1997) addressed the scheduling problem on a single machine 

considering total flow time and the number of tardy jobs measures simultaneously and developed 

several precedence theorems that identify various efficient solution properties. Ronconi and 

Kawamura (2010) used the branch and bound algorithm for solving the NP-hard problem. The 

proposed method outperformed the CPLEX result for instances greater than 15 jobs. Pei et al. 

(2019) studied FJ2| pre-emption | Cmax no-wait job shop scheduling problems and used column 

generation to solve the problem.  
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2.2 Column generation 

According to Rardin (2017), “Column generation approaches deals with complex 

combinatorial problems by first enumerating a sequence of columns representing viable solutions 

to parts of the problem, and then solving a set partitioning (or covering or packing) model to 

select an optimal collection of these alternatives fulfilling all problem requirements.” According 

to Akker et al. (2010), the CG technique works well to minimize total weighted tardiness in 

identical parallel machines. They proposed a hybrid algorithm that solves all instances with 160 

jobs and ten machines. Chen and Powell (1998) solved the single-machine scheduling problem 

with a CG approach where each column represents a schedule on one machine. They also found 

that the combination of the Dantzig- Wolfe decomposition method with the CG approach is 

promising and capable of solving large problems. Pei et al. (2019) constructed an effective CG 

method by combining tailored dynamic programming and a dedicated branch and bound method 

and found that CG can solve large-scale instances in acceptable time while CPLEX can handle 

relatively small cases. Woo et al. (2019) proposed a CG approach using Dantzig- Wolfe 

decomposition and introduced three approaches for reducing CG computational time.  

Bulbul et al. (2003) studied flow shops in settings with penalties for delay in delivering 

customer orders and costs for holding both finished goods and work-in-process inventory and 

developed heuristics. The results compared two different reformulations in which the CG scheme 

is enhanced by the solution of an equivalent Lagrangian relaxation formulation and artificial 

variables in the LP master problem. Wiechman and Damodaran (2015) used the CG approach for 

scheduling a batch processing machine with minimization of makespan. The problem can be 
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represented as 1| sj, pj, batch|Cmax. They compared the standard CG method and CG with solution 

pooling and concluded that CG with solution pooling consistently provides better solutions.  

 

2.3 Goal Programming 

Goal program modeling of a multi-objective optimization starts by demanding decision-

makers to specify new data: goal or target levels for each criterion used to evaluate solutions. 

The GP model’s objective expresses the desire to satisfy all goals as nearly as possible by 

minimizing a weighted sum of the deficiency variables (Rardin, 2017). Sellen and Hott (1986) 

developed a GP model for the general flow-shop case that allows the scheduler to find a more 

comprehensive optimal solution. According to Sellen and Hott (1986), incorporating both the 

makespan and flow-time criteria allows the scheduler to consider the effects on machine and job 

idle-time, as these are equivalent criteria under the standard flow-shop framework. Moghaddam 

et al. (2010) developed a fuzzy GP model for solving a multi-objective single-machine 

scheduling problem. The objective was to minimize the total weighted tardiness and completion 

time. Lee and Jung (1989) studied the production planning of a flexible manufacturing 

environment, and various superior aspects of the GP model have been discussed over the other 

models when solving the production planning problems.  

Lee and Jung (1989) showed how various objectives could be incorporated into the 

model. Deliktas et al. (2014) proposed a three-stage solution methodology to solve the multi-

objective scheduling problem. A multistage GP is the third stage of the solution methodology to 

construct a satisfactory schedule. Moghaddam et al. (2010) proposed a fuzzy multi-objective 

linear programming model for single-machine scheduling problems. It was concluded that the 
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proposed method produced better results when compared to Wang and Liang’s approach for 6 to 

7 job instances.  

 

2.4 Research Justification 

In MOMP, there is more than one objective function. In general, there is no single 

solution that simultaneously optimizes all the objective functions. Batch processing machines are 

standard in the industry, especially in electronics manufacturing. Solving the single-machine 

problem is vital as solution approaches applied to single-machine problems can be adapted for 

multiple machines. When considering constraints, the industry’s typical constraints are job size, 

job release time, job processing time, and job due date, so including these in the proposed 

problem is essential. Additionally, the proposed bi-objective is minimizing makespan and 

maximum tardiness. These two objectives ensure that machines are not running longer than 

necessary, and jobs are delivered on time to customers.  

From the literature reviewed, it is evident that none of the journals covered solving the 

proposed problem using column generation and goal programming.  Ghrayeb (2020) considered 

the constraints and objective function similar to the proposed problem, but SA and GRASP were 

used to solve it. Past research mainly focused on the heuristics approach in solving multi-

objective single-machine scheduling problems. This, research aims in developing the goal 

programming and column generation formulation for the single BPM to improve the solution 

quality and computational time.  

 



 

 

CHAPTER 3. MATHEMATICAL FORMULATION 

The Mixed-Integer Linear Programming model (MILP) for the 1|p-batch, sj, rj| Cmax, Tmax 

is discussed in this chapter. Below is a description of the notation used:  

Sets 

{𝑗 ∈ 𝐽}  set of jobs 

{𝑏 ∈ 𝐵} set of batches 

Parameters 

pj  processing time of job j 

sj  size of job j 

rj  ready time of job j 

dj  due date of job j 

S  capacity of the machine  

𝛼    weight for makespan objective  

𝛽   weight for maximum tardiness objective (𝛽 = 1 − 𝛼)Decision Variables 

Cmax  makespan or completion time of the last job or batch 
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Tmax  maximum tardiness  

Cb  completion time of batch b 

Pb  processing time of batch b 

Rb  ready time of batch b 

Tb  tardiness of batch b 

Xjb  a binary variable – 1, if job j is processed in batch b; 0, otherwise. 

 

3.1 Weighted Residual Method (MILP-W)           

The following is the mathematical formulation using the weighted residual method given 

by Ghrayeb (2020). 

Minimize 𝛼𝐶𝑚𝑎𝑥 + 𝛽𝑇𝑚𝑎𝑥   (1) 

Subject to     

 ∑ 𝑋𝑗𝑏

𝑏∈𝐵

= 1 ∀𝑗 ∈ 𝐽 (2) 

 ∑ 𝑠𝑗

𝑗∈𝐽

𝑋𝑗𝑏 ≤ 𝑆 ∀𝑏 ∈ 𝐵 (3) 

 𝑃𝑏 ≥ 𝑝𝑗𝑋𝑗𝑏 ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵 (4) 

 𝑅𝑏 ≥ 𝑟𝑗𝑋𝑗𝑏 ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵 (5) 
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 𝐶1 = 𝑅1 + 𝑃1  (6) 

 𝐶𝑏 ≥ 𝐶𝑏−1 + 𝑃𝑏 ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵/{1} (7) 

 𝐶𝑏 ≥ 𝑅𝑏 + 𝑃𝑏 ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵 (8) 

 𝑇𝑏 ≥ 𝐶𝑏 − 𝑑𝑗𝑋𝑗𝑏 − 𝑀(1 −  𝑋𝑗𝑏) ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵 (9) 

 𝑋𝑗𝑏 ∈ {0,1} ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵 (10) 

 𝐶𝑚𝑎𝑥 ≥ 𝐶𝑏 ∀𝑏 ∈ 𝐵 (11) 

 𝑇𝑚𝑎𝑥 ≥ 𝑇𝑏 ∀𝑏 ∈ 𝐵 (12) 

 𝐶𝑏 , 𝑃𝑏 , 𝑅𝑏 , 𝑇𝑏 ≥ 0 ∀𝑏 ∈ 𝐵 (13) 

 

The objective function (1) is to minimize the weighted sum of makespan (the completion 

time of the last batch) and maximum tardiness (the maximum tardiness of any job). α and β are 

the weights given to each objective. 

Constraint (2) ensures that each job is processed in only one batch. Constraint (3) ensures 

that the total size of a batch (i.e., the sum of sizes of all jobs within that batch) does not violate 

machine capacity. Constraint (4) defines that the processing time of a batch is at least equal to 

the largest processing time of a job within that batch. Constraint (5) defines that the ready time of 

a batch is at least equal to the largest ready time of a job within that batch. Constraint (6) defines 

that the completion time of the first batch is simply the sum of the ready and processing times of 

that batch. Constraint (7) applies if the ready time of the bth batch is less than the completion 

time of the (b-1)st batch; thus, the completion time of the bth batch is the sum of the completion 
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time of the (b-1)st batch and the processing time of the bth batch. Constraint (8) defines that the 

completion time of the bth batch is at least the sum of its ready and processing times. Constraint 

(9) defines that the makespan is at least equal to the completion time of all batches. Constraint 

(10) defines that the tardiness of a batch is at least equal to the difference between the 

completion time of that batch and the due date of any job within that batch. Constraint (11) 

defines that maximum tardiness is at least equal to the tardiness of all batches. Constraints (12) 

and (13) define binary and non-negativity constraints on decision variables. This mixed-integer 

linear program can be solved using a commercial solver such as IBM ILOG CPLEX.  

Table 2 shows the data for a fifteen-job instance. For different values of α and β, the 

example problem is solved using IBM ILOG CPLEX. The results of the weighted residual 

method are shown in Table 3. Based on the weights, the decision-maker has a set of solutions to 

choose from. 

Table 2. Sample problem 

𝒑𝒋 9 10 2 3 3 14 4 10 20 14 8 10 18 11 5 

𝒓𝒋 8 3 2 6 3 0 5 3 5 3 2 6 6 2 0 

𝒔𝒋 5 7 7 7 5 12 15 9 9 3 12 1 5 12 12 

𝒅𝒋 23 16 15 19 21 9 13 24 29 20 23 19 22 20 11 

 

Table 3. Results of the weighted residual method 

Alpha Beta Objective  Cmax Tmax 

0 1 27 50 27 

0.25 0.75 32.75 50 27 

0.5 0.5 38.50 50 27 

0.75 0.25 43.75 49 28 

1 0 48 48 39 
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Ghrayeb (2020) showed that the above formulation is very computationally intensive, and 

the commercial solver was not effective to solve larger problem instances. Consequently, a goal 

programming formation is proposed below.  

 

3.2 Goal Programming Formulation (MILP-G)           

In the GP model, the under and over satisfaction variables are introduced. The objective 

function is the minimization of the weighted sum of the deficiency variables. The new variable 

introduced in the GP formulation is given below. 

𝑇−, 𝑇+ 𝑖𝑠 𝑢𝑛𝑑𝑒𝑟 𝑎𝑛𝑑 𝑜𝑣𝑒𝑟 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑓𝑜𝑟 𝑇𝑚𝑎𝑥  

𝐶−, 𝐶+ 𝑖𝑠 𝑢𝑛𝑑𝑒𝑟 𝑎𝑛𝑑 𝑜𝑣𝑒𝑟 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑓𝑜𝑟 𝐶𝑚𝑎𝑥   

The GP formulation is given below. 

Minimize 𝛼 𝐶 
+

 
 + 𝛽 𝑇+

  (14) 

Subject to     

 (2)-(10)   

 0 ≥ 𝐶𝑏 + 𝐶− − 𝐶+ ∀𝑏 ∈ 𝐵 (15) 

 0 ≥ 𝑇𝑏 + 𝑇− − 𝑇+ ∀𝑏 ∈ 𝐵 (16) 

 𝐶𝑏 , 𝑃𝑏 , 𝑅𝑏 , 𝑇𝑏 , 𝐶−, 𝐶+, 𝑇−, 𝑇+ ≥ 0 ∀𝑏 ∈ 𝐵 (17) 

 



21 

 

 

 

Except for constraints (15) and (16), all others are similar to the main formulation 

(MILP-W) given by Ghrayeb (2020). In constraints (15) and (16) the completion time and 

tardiness of the batch are made to zero with the help of under satisfaction and over-satisfaction 

variables. The objective function (14) minimizes the over satisfaction variables, i.e., C + and T +. 

The fifteen-job instance shown in Table 2 was solved using this goal programming formulation. 

Table 4 shows the results. The closer a given algorithm’s Pareto front is to (0,0), the higher the 

quality of its solutions (Ghrayeb,2020). 

Table 4. Example Results – MILP-G 

Alpha Beta Objective  Cmax Tmax 

0 1 27 50 27 

0.25 0.75 43.75 50 27 

0.5 0.5 38.50 50 27 

0.75 0.25 43.75 49 28 

1 0 48 48 39 

 

3.3 Goal Programming with Symmetry (MILP-G+) 

In any MILP, the generation of the symmetric solution is very common. Trindade et al. 

(2018), considered two types of symmetries.  

1. Two solutions are set to be symmetric if the construction of the batches is equal on both 

solution and batches processed in the same order.  

2. Two solutions are set to be symmetric if the construction of the batches is equal on both 

solutions, but the batches are processed in a different order which does not modify the 

makespan.  
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They proposed a symmetry-breaking constraint for four formulations including  1|sj, rj, p-batch| 

Cmax. According to Trindade et al. (2018), the jobs are first ordered by non-decreasing release 

times. In particular, we consider that the jobs are indexed satisfying: 

 𝑟(1) ≤ 𝑟(2) ≤ ⋯ ≤  𝑟(𝑛) (18) 

In this research, the same concept is applied to MILP-G+ to mitigate the effects of symmetry in 

MOMP. By eliminating symmetry, the number of constraints and variables can be reduced when 

compared to the original formulation. The symmetry breaking constraints may alter the solution 

space, but they help to solve the formulation in a shorter time and in some cases help to find a 

better solution. 

Minimize 𝛼 𝐶 
+

 
 + 𝛽 𝑇+

   

Subject to     

 ∑ 𝑋𝑗𝑏

𝑏∈𝐵:𝑏≥𝑗

= 1 ∀𝑗 ∈ 𝐽 (19) 

 ∑ 𝑠𝑗

𝑗∈𝐽:𝑗≤𝑏

𝑋𝑗𝑏 ≤ 𝑆 𝑋𝑏𝑏 ∀𝑏 ∈ 𝐵 (20) 

 𝑃𝑏 ≥ 𝑝𝑗𝑋𝑗𝑏 ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵 ∶ 𝑗 ≤ 𝑏 (21) 

 𝑅𝑏 ≥ 𝑟𝑗𝑋𝑏𝑏 ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵 (22) 

 𝑋𝑗𝑏 ≤ 𝑋𝑏𝑏 ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵 ∶ 𝑗 ≤ 𝑏 (23) 

 (6)-(10)   

 (15)-(17)   



23 

 

 

 

 Constraint (19) determines that each job j is assigned to a batch b, such that 𝑏 ≥ 𝑗. For 

example, job 2 can be in batch 2 or any of the higher numbered batches. Constraint (20) 

determines the batches do not exceed the machine capacity. They also ensure that each batch b is 

used only if job b is assigned to it. Constraint (21) determines the processing time of the batch. 

Constraint (22) determines the ready time of the batch. The remaining constraints are similar to 

goal programming formulation. Any feasible solution for the MILP-G+ is also feasible for MILP-

G with the same objective function (Trindade et al., 2018). An example of fifteen job problem 

instances arranged in increasing order of ready date is shown in Table 5. The results obtained by 

solving the formulation for the example instance are summarized in Table 6. 

Table 5. Example 15 Job Instance – Increasing order of ready time. 

𝒑𝒋 14 5 2 8 11 10 3 10 14 4 20 3 10 18 9 

𝒓𝒋 0 0 2 2 2 3 3 3 3 5 5 6 6 6 8 

𝒔𝒋 12 12 7 12 12 7 5 9 3 15 9 7 1 5 5 

𝒅𝒋 9 11 15 23 20 16 21 24 20 13 29 19 19 22 23 

 

Table 6. Example Results- MILP-G+ 

Alpha Beta Objective  Cmax Tmax 

0 1 29.00 49 29 

0.25 0.75 34.00 49 29 

0.5 0.5 39.00 49 29 

0.75 0.25 44.00 49 29 

1 0 48.00 48 37 

 

3.4 Goal Programming with Symmetry Modified (MILP-GM+) 

Reducing the effect of symmetry in MILP is an intense area of research, where different 

strategies are suggested to mitigate the effect of symmetry. In this research, a new symmetric 
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formulation with Goal programming is proposed. In this formulation, job j is placed in batch b 

such that 𝑏 ≤ 𝑗. Similar to MILP-G+, jobs are first ordered by non-decreasing release times. 

More specifically, we consider that the jobs are indexed satisfying equation (18). The solution 

for example problem instance of Table 5 is shown in Table 7. In the modified symmetry 

formulation, a job can be in any batch, which is numbered smaller than the job number. For 

example, job 2 can be either in batch 1 or 2. 

 

Minimize 𝛼 𝐶 
+

 
 + 𝛽 𝑇+   

Subject to     

 ∑ 𝑋𝑗𝑏

𝑏∈𝐵,𝑏≤𝑗

= 1 ∀𝑗 ∈ 𝐽 (24) 

 (3)-(10)   

 (15)-(17)   

Table 7: Example Result-MILP-GM+ 

Alpha Beta Objective  Cmax Tmax 

0 1 27 50 27 

0.25 0.75 43.75 50 27 

0.5 0.5 38.50 50 27 

0.75 0.25 43.75 49 28 

1 0 48 48 39 
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3.5 Column Generation Formulation (MILP-CG) 

In the column generation approach, the original formulation is decomposed into a 

restricted master problem and one or more  subproblem(s). The restricted master problem is then 

linear relaxed and iteratively solved to optimality by utilizing improving columns generated by 

solving the subproblem. Finally, the restricted master problem is resolved as an integer program 

to obtain a final feasible solution. This section provides the reformulation of the mathematical 

model (MILP-G) through decomposition. Dantzig-Wolfe decomposition (Dantzig and Wolfe, 

1960) is a method that transforms the original problem into a restricted master problem (RMP) 

and one or more subproblems (SPs). Therefore, the linear solution can act as a lower bound on 

the actual solution, or an upper bound for a maximization problem. 

Constraints (2)-(5) of MILP-W display a block diagonal structure. Consequently, the 

MILP-G formulation also displays the block diagonal structure and hence the formulation can be 

decomposed into one restricted master problem and several subproblems. Solving the 

subproblem gives a set of jobs that can be processed simultaneously in a batch without violating 

the machine capacity constraint. Solving the subproblem thus yields the jobs in a batch, the batch 

processing time, and the batch ready time. 

Sets 

{𝑡 ∈ 𝑇}  set of Position 

Parameters 

ajt binary – 1, if job j is processed in position t; 0, otherwise. 



26 

 

 

 

Decision Variables 

λ tb a binary variable – 1, if batch b is in position t is selected; 0, otherwise.  

The restricted master problem is, 

Minimize 𝛼 𝐶 
+

 
 + 𝛽 𝑇+   

Subject to    

 ∑ 𝑎𝑗𝑡 λ𝑡𝑏 ≥ 1

𝑏∈𝐵,𝑡∈𝑇

 ∀ 𝑗 ∈ 𝐽 (25) 

 𝐶𝑏 ≥ (𝐶𝑏−1 + 𝑃𝑏) λ𝑡𝑏 ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑏 ∈ 𝐵/{1} (26) 

 𝐶𝑏 ≥ (𝑅𝑏 + 𝑃𝑏) λ𝑡𝑏 ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑏 ∈ 𝐵 (27) 

 0 ≥ 𝐶𝑏 + 𝐶− − 𝐶+ ∀𝑏 ∈ 𝐵 (28) 

 𝑇𝑏 ≥ (𝐶𝑏 − 𝑑𝑗𝑋𝑗𝑏 − 𝑀(1 −  𝑋𝑗𝑏)) λ𝑡𝑏 ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑏 ∈ 𝐵 (29) 

 0 ≥ 𝑇𝑏 + 𝑇− − 𝑇+ ∀𝑏 ∈ 𝐵 (30) 

 ∑  λ𝑡𝑏 ≤ 1

𝑏∈𝐵

 ∀ 𝑡 ∈ 𝑇 (31) 

 ∑  λ𝑡𝑏 ≤ 1

𝑡∈𝑇

 ∀ 𝑏 ∈ 𝐵 (32) 

 λ𝑡𝑏 ∈ {0,1} ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵 (33) 

 𝐶𝑏 , 𝑃𝑏 , 𝑅𝑏 , 𝑇𝑏 , 𝐶−, 𝐶+, 𝑇−, 𝑇+ ≥ 0 ∀𝑏 ∈ 𝐵 (34) 

Sub 

Problem 

 

   

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 −  ∑ 𝜋𝑗

𝑗∈𝐽

 Y𝑗  (35) 
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 ∑ 𝑠𝑗

𝑗∈𝐽

𝑌𝑗 ≤ 𝑆 ∀𝑏 ∈ 𝐵 (36) 

 𝑅 ≥ 𝑟𝑗𝑌𝑗 
∀𝑗 ∈ 𝐽 (37) 

 𝑃 ≥ 𝑝𝑗𝑌𝑗  
∀𝑗 ∈ 𝐽 (38) 

 𝑌𝑗 ∈ {0,1} 
∀𝑗 ∈ 𝐽 (39) 

 𝑃, 𝑅 ≥ 0 
 (40) 

Constraint (25) ensures that each job is present in at least one position. Constraint (26) 

and (27) determines the completion time of the batch. Constraints (28) and (30) are the goal 

programming constraint in which the completion time and tardiness are made to zero using the 

under and over satisfaction variables. Constraint (29) determines the tardiness of the batch. 

Constraints (31) and (32) ensure each position has at most one batch and one batch is present at 

most in one position. The subproblem objective is the minimization of duals of constraint (25). 

Each column generated from the subproblem represents a batch. The ready time, processing 

time, and size capacity of the machine are ensured by the subproblem using constraints (36), 

(37), and (38). Table 8 shows the result of MILP-CG for the example 15 job instance shown in 

Table 2.  

Column generation procedure is briefly described below. 

1. Generate an initial basic feasible solution. 

2. Solve the relaxed restricted master problem (RMP). 

3. Obtain the dual values of the solved RMP. 

4. Update the cost coefficients of the subproblem with the dual variable values. 

5. Solve the subproblem. 
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6. Add columns to the set of columns in the RMP. 

7. Repeat the steps 2-5, until it exceeds to subproblem limit. 

8. Use the generated columns to solve the integer master problem. 

Table 8. Example result - MILP-CG 

Alpha Beta Objective  Cmax Tmax 

0 1 112 141 112 

0.25 0.75 57 75 51 

0.5 0.5 49.50 59 40 

0.75 0.25 63 69 45 

1 0 68 68 53 

Table 9 shows the results of different methods for the sample instance shown in table 2. 

The quality of the solution depends on the number of times the subproblem (Sub problem limit) 

is solved. Since this is an NP-hard problem to limit the solving time, we set the subproblem limit 

to 25 for 15, 30, and 50 job instances and 10 for 100 and 150 job instances. This is because for 

each iteration the subproblem and the relaxed inter problem takes more time when the number of 

jobs increases.  

Table 9. Comparison between different Methods 

Alpha Beta 
MILP-W MILP-G MILP-G+ MILP-GM+ MILP-CG 

Objective Cmax Tmax Objective Cmax Tmax Objective Cmax Tmax Objective Cmax Tmax Objective Cmax Tmax 

0 1 27 50 27 27 50 27 29 49 29 32 49 32 112 141 112 

0.25 0.75 32.75 50 27 32.75 50 27 34 49 29 37.25 53 32 57 75 51 

0.5 0.5 38.50 50 27 38.50 50 27 39 49 29 42.50 53 32 49.50 59 40 

0.75 0.25 43.75 49 28 43.75 49 28 44 49 29 47.25 52 33 63 69 45 

1 0 48 48 39 48 48 39 48 48 37 52 52 39 68 68 53 

From Table 9, MILP-CG has higher solution value when compared to other methods 

irrespective of alpha. This is because we limit the number of times the sub problem is solved 

which directly affects the solution quality.  



 

 

CHAPTER 4. EXPERIMENTATION 

To evaluate the performance of the MILP, a set of instances must be generated. Ghrayeb 

(2020) generated a data set to experiment with their solution approaches. The same data set is 

used in this study. The data generation is discussed in section 4.1. The MILP goal programming 

formulation given in chapter 3 is solved with IBM ILOG CPLEX 12.10.0 software. As shown in 

the MILP formulation, a weighted sum approach is used to evaluate the objective function. The 

values of α are chosen from set [0, 0.25, 0.5, 0.75, 1] and β = 1- α. All experiments are conducted 

on an Intel Core i7 processor with 1.8GHHz and 12 GB RAM.  

 

4.1 Data Generation 

The processing and ready times were sampled from discrete uniform (DU) variable such 

that pj~DU [1, 20] and rj~DU[0, ρZ], where Z =Σ pj and ρ is a positive real number such that 0 ≤ 

ρ ≤1. Job sizes are split into three levels, where s1~DU [1, 15], s2~DU [15, 30], and s3~DU[1, 

30]. Due dates are calculated as dj = rj + pj + DU [0, γZ], where γ is a positive real number such 

that 0 ≤ γ ≤1.  

Five sets of problem instances were generated by varying the number of jobs (i.e., n = 15, 

30, 50, 100, and 150). Similarly, different values of ρ ∈ {5%,10%, 40%}, and γ ∈ {5%,10%, 

40%} were considered while generating the data sets. For each combination of n, ρ, γ, and sj, five 
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instances are generated, resulting in a total of 675 instances. For experimentation, one-third of 

the total set is randomly chosen, for a total of 45 instances per level of n (225 total). The machine 

capacity S was assumed to be equal to 30. 

 

4.2 Experiments 

After the MILP for the different goal programming models is coded in IBM ILOG 

CPLEX IDE, all instances are solved. Because the problem under study is NP-hard, a 

commercial solver takes a prohibitively long time to converge to optimality, so the model is 

allowed to run for 1800 seconds (30 minutes) or until an optimal solution is found, whichever 

happens first. The solution found by CPLEX (Cmax, Tmax, Objective value), as well as the run 

time and percentage gap, are recorded. The percentage gap is calculated using (41). 

%𝐺𝑎𝑝 =  
|𝐵𝑒𝑠𝑡 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝐵𝑒𝑠𝑡 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑜𝑏𝑙𝑒𝑚|

1 × 𝑒−10 + |𝐵𝑒𝑠𝑡 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛|
 × 100 (41) 

One metric to evaluate the quality of the solution from MILP-G  is the percent 

improvement when compared to MILP-W, as shown in (42). The objective from MILP-W is 

denoted as obj(MILP-W) in the equation. If the value of the percent improvement is positive, 

then the GP formulation outperforms weighted; otherwise, weighted has found a better solution. 

 % 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
[𝑂𝑏𝑗(𝑀𝐼𝐿𝑃 − 𝑊) − 𝑂𝑏𝑗(𝑀𝐼𝐿𝑃 − 𝐺)]

𝑂𝑏𝑗(𝑀𝐼𝐿𝑃 − 𝑊)
  (42) 
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However, as this is a multi-objective problem, other performance metrics must be 

considered. In a bi-objective problem, there is no guarantee of a global minimum or maximum 

concerning both objectives considered. There exists a set of solutions that are superior to the rest 

of the solutions in the solution space when all objectives are considered, but these solutions may 

be inferior to other solutions if only one objective is considered (Jolai, 2012). 

 

  



 

 

CHAPTER 5. RESULTS 

In any multi-objective problem, no single solution exists that simultaneously optimizes 

each objective. All MILP formulations were solved using CPLEX for all 225 job instances. The 

results of the weighted residual method were taken from Ghrayeb (2020). One way to assess the 

quality of the proposed algorithm is to compare the objective of the different algorithms. Figures 

1, 3, 5 and 7 summarizes the comparison of different formulations - Weighted vs Goal, Weighted 

vs Goal Symmetry, Weighted vs Goal Symmetry modified, respectively. The blue portion of the 

graph indicates the number of problem instances for which the weighted method had better 

objective value. The orange part indicates the number of problem instances for which the goal 

programming formulation had a better objective value and the grey portion indicate the number 

of instances for which the two objective values are equal. 
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Figure 1, it is evident that the values were equal, or MILP-G dominated for a 15-job 

instance. For 30 and 50 job instances, the MILP-G were not dominating but, for higher job 

instances (100 and 150) MILP-G has better results than MILP-W. Figure 2 shows the result for 

different values of alpha. These trends hold good when broken down into different values of 

alpha (Figure 2).  For 15 job instance (alpha =0 and 1) majority of the values were equal. 

 

Figure 2. MILP-W vs MILP-G (Different values of alpha) 
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Figure 3, MILP-G+ dominated when the job instances are higher (100 and 150). For 15 

and 50 job instances, the MILP-W had better solutions than MILP-G+. In 30 jobs instance, it is 

equally distributed between two methods. These trends hold good when broken down into 

different values of alpha (Figure 4). Figure 4, the number of equal values is higher for (alpha =1) 

for 30 jobs. 

 

Figure 5, MILP-GM+ also dominates for 100 and 150 jobs. For 15, 30 and 50 Jobs MILP-

W has better solution in majority of instances than MILP-GM+. Figure 6 shows results of MILP-

W vs MILP-GM+ for different values of alpha.These trends holds good when broken down into 

different values of alpha (Figure 6). 
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Figure 4. MILP-W vs MILP-G+ (Different values of alpha) 

 

 

 

Figure 5. Weighted vs Goal Symmetric Modified 
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Figure 6. MILP-W vs MILP-GM+ (Different values of alpha) 

 

Figure 7, MILP-CG is completely dominated by MILP-W. The solution MILP-CG 

depends on the number of sub problem solved. This could be the reason for poor solution of 

MILP-CG. Figure 8 shows the breakdown of results for different values of alpha. These trends 

hold good when broken down into different values of alpha (Figure 8). 
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Figure 7. Weighted vs Goal CG 

 

Figure 8. MILP-W vs MILP-CG  (Different values of alpha)
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5.1 Percentage of a Better solution 

Figure 9 shows the percentage of instances each algorithm finds better or the same 

solution than MILP-W. In general, MILP-G+ and MILP-GM+ find the better or same solution for 

almost all 100 and 150 job instances. For 15 job instances, MILP-G had a better or same solution 

for almost all the instances. For 30 job instances, MILP-G and MILP-G+ had better or the same 

results for almost 75% of the time. For 50 job instances, all three methods had better or the same 

instances almost 50% of the time. Figure 9, MILP-CG has the lowest percentage of better or 

same solution instance.  

 

Figure 9. Percentage of a better or same solution 
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5.2 Percentage Improvement 

The percentage improvement is calculated using the equation (42). The comparison of the 

different formulations using percentage improvement as a metric are summarized in Figures 10, 

11, and 12. Figure 10 shows the percentage improvement for the objective function. Figure 6, the 

% improvement was higher for higher job instances. MILP-G+ and MILP-GM+ showed higher 

percentage improvement than MILP-G for 100 and 150 Jobs. For 15 and 50 jobs, the percentage 

improvement was negative showing MILP-W had a better objective value. For 30 job instances, 

the percentage improvement was very negligible. Figure 11 and 12 shows the percentage 

improvement for Cmax and Tmax. 

 

15 30 50 100 150

MILP-G 0% 0% -1% 1% 7%

MILP-G+ -3% 0% -1% 22% 30%

MILP-GM+ -3% -1% -1% 18% 24%

MILP-CG -53% -60% -106% -82% -103%

-53%
-60%

-106%

-82%

-103%

-130%

-110%

-90%

-70%

-50%

-30%

-10%

10%

30%

%  I M P R O V E M E N T  O B J E C T I V E

Figure 10. Percent Improvement - Objective 
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From Figure 11, the percentage improvement is higher for 100 and 150 jobs. For lower 

job instances, the MILP-W had a better Cmax value because the value is negative. From Figure 

12, percentage improvement holds good for 100 and 150 jobs. Similarly, the percentage 

improvement is negative for lower job instances (15,30, and 50). In general, MILP-W had better 

Cmax and Tmax for lower job instances.  

 

 

15 30 50 100 150

MILP-G 0% 1% -1% 3% 7%

MILP-G+ 0% 0% 0% 14% 21%

MILP-GM+ -2% 0% -1% 9% 15%

MILP-CG -21% -32% -42% -46% -94%

-21%
-32%

-42% -46%

-94%
-119%

-99%

-79%

-59%

-39%

-19%

1%

21%

%  I M P R O V E M E N T  C M A X

15 30 50 100 150

MILP-G 0% 0% -4% -1% 7%

MILP-G+ -8% 0% 0% 33% 39%

MILP-GM+ -5% -2% 0% 28% 32%

MILP-CG -53% -99% -187% -88% -111%

-53%

-99%

-187%

-88%
-111%

-211%

-161%

-111%

-61%

-11%

39%

%  I M P R O V E M E N T  T M A X

Figure 11. Percent Improvement - Cmax 

Figure 12. Percent Improvement - Tmax 
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MILP-CG has high negative percentage improvement but still has few instances 

dominating MILP-W. So we plot percentage improvement for the instances where MILP-CG had 

better solution. Figure 13 shows the percent improvement for the instances were MILP-CG had 

better solution than MILP-W. 

 

Figure 13. Percent Improvement- MILP-CG Dominant Instances 

 

Figure 13, there is significant improvement interms if Cmax, Tmax and objective. So, further 

research on decomposition of the model will help to improve the solution quality. 

 

5.3 Run time Comparison and Gap Percentage  

An important factor to consider is the run time required by CPLEX to solve the different 

formulations. The average computation times for weighted and goal methods are shown in Figure 
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runtime of MILP-G+ is less for 50, 30, and 100 job instances. MILP-GM+ had less time compared to 

MILP-W and MILP-G. in 15, 30, and 50 job instances. Consequently, it can be concluded that the 

new formulations not only report good solutions compared to MILP-W, but they also require less 

computational time. In addition to comparing the formulations with the solution, a comparison 

between different MILP methods is made using a gap percentage. The gap percentage is calculated 

using the formula (41). Gap percentage is defined as the percentage difference between the best 

integer objective and best linear objective, Gap is an indication of how close CPLEX is to find an 

optimal solution. The smaller the gap, the closer CPLEX is to the optimal value. The more difficult 

an instance is to solve, the larger the gap value. Figures 15 to 19 shows the average gap vs runtime 

of different formulations discussed.  
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 There is not much of a difference between MILP-W, MILP-G, and MILP-GM+ in terms 

of Average runtime vs Gap. The Gap and runtime are comparatively less for MILP-G+. As the 

number of jobs increases, the gap also increases. In Figure 15, 100 and 150 job instances have 

average gap values 100%, meaning MILP-W is not able to converge to an optimal solution.  

 

 

 

 

 

 

 

Figure 17.Average Gap vs Runtime - MILP - G+ 

0%

10%

20%

30%

40%

50%

60%

70%

80%

0

200

400

600

800

1000

1200

1400

1600

1800

2000

15 30 50 100 150

G
ap

%

R
u

n
 T

im
e 

(S
ec

o
n

d
s)

Number of Jobs

Average Gap and Run time - MILP-G+

Goal Symmetry Average Gap

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0

500

1000

1500

2000

15 30 50 100 150

G
ap

%

R
u

n
 T

im
e 

(S
ec

o
n

d
s)

Number of Jobs

Average Gap and Run time - MILP-GM+

Goal Symmetry Modified Average Gap

Figure 18. Average Gap vs Runtime - MILP-GM+ 



45 

 

 

 

 

Figure 19. Average Gap vs Runtime - MILP-CG 

 

From figure 19, MILP-CG had the average runtime of 1800 seconds and gap of 100% for 

jobs 30 to 100. Overall, MILP-G+ has comparatively less gap and runtime.  

5.4 Pareto Front Example 

The Pareto frontier for each MILP can be constructed by graphing the points included in 

the Pareto set. The x-axis is defined using Cmax, and the y-axis is defined using Tmax. The closer 

the given algorithm’s Pareto front is to (0,0), the higher the quality of its solution (Ghrayeb, 

2020). An example Pareto front is shown for all jobs instances from figure 20 to figure 24. From 

figure 20, The Pareto front of MILP-CG is far away from (0,0) when compared to other methods 

proving that the solution quality of CG depends on the subproblem limit. In figure 20, MILP-G 

and MILP-W overlap each other because the values are equal. In figure 21 and figure 22, MILP-
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difference in solution value. In figure 21-24, the Pareto front of MILP-CG is far away from (0,0) 

showing the solution quality of column generation is bad.  

 

Figure 20. 15 Jobs- Example Pareto front 

 

Figure 21. 30 Jobs -Example Pareto front 

20

25

30

35

40

45

45 50 55 60 65

Tm
ax

Cmax

15 Jobs- Example Pareto front

MILP-W

MILP-G

MILP-G+

MILP-GM+

MILP-CG

0

20

40

60

80

100

120

140

90 100 110 120 130 140 150

Tm
ax

Cmax

30 Jobs -Example Pareto front

MILP-W MILP-G MILP-G+ MILP-GM+ MILP-CG



47 

 

 

 

 

 

Figure 22. 50 Jobs- Example Pareto front 

 

From Figures 23 and 24, the Pareto front of MILP-G+ and MILP-GM+ is close to (0,0) 

providing evidence that it has a better solution than any other method. MILP-W is away from 

(0,0) shows it finds it difficult to solve the problem to optimality for higher job instances. Overall 

MILP-G+ produces better solution quality than all other methods. 
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Figure 23. 100 Jobs - Example Pareto front 

 

Figure 24. 150 Jobs- Example Pareto front
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

The problem under study can be denoted as 1|p-batch, sj, rj| Cmax, Tmax. The main objective 

is to minimize the makespan and maximum tardiness such that it does not exceed the size 

capacity of the machine. MILP-G, MILP-G+, MILP-GM+ was developed and solved using 

CPLEX. One way to evaluate the proposed formulations is to compare their solution quality with 

the solution from MILP-W (Ghrayeb, 2020). The different formulations are compared based on 

their objective values, % gap, run time, and % improvement. The following sections summarize 

the main findings of this research as well as potential future work. 

6.1 Conclusions 

MILP-G, MILP-G+, MILP-GM+ was used to solve the generated two hundred and 

twenty-five problem instance. Based on the comparison with MILP-W, both MILP-G+ and 

MILP-GM+ dominated on larger problem instances for all values of alpha. The percentage 

improvement in objective value for MILP-G+ is 30% and 22% for 150 and 100 job instances, 

respectively. For MILP-GM+ the percentage improvement is 24% and 18% for 150 and 100 job 

instances, respectively. The results of percentage improvement are summarized in Table 10.  

Table 10. Percentage Improvement 

% Improvement-Objective Value 
Number of Jobs 

100 150 

Goal 1% 7% 

Goal Symmetry 22% 30% 

Goal Symmetry Modified 18% 24% 

Column Generation -82% -101% 
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From Table 10, it is evident that MILP-G+ and MILP-GM+ had the better improvement in 

terms of objective value. MILP-CG had the negative percentage improvement meaning MILP-W 

had better solution value. Table 11 shows the percentage of times the new formulations found 

better or the same solution as MILP-W. MILP-G+, MILP-GM+ finds better or the same solution 

as MILP-W for 100% of the 150-job instances. For 100 job instances the value is 97% and 94% 

for MILP-G+ and MILP-GM+. On average MILP-G provides better or same solution as MILP-W 

on 74% of the instances. Looking at the runtime MILP-G+, MILP-GM+ do not have significant 

differences in runtime between them. The average run time MILP-G+ is less for higher job 

instances when compared with MILP-W.  

Table 11. Number of better or same solution 

Number of Better or same 

solution 

Number of Jobs 

15 30 50 100 150 

Goal 99% 74% 45% 63% 86% 

Goal Symmetry 40% 74% 52% 97% 100% 

Goal Symmetry Modified 52% 52% 49% 94% 100% 

Goal -Column Generation 42% 28% 12% 11% 10% 

 

Based on all results, MILP-G+, MILP-GM+ seems to be the best approach for larger job 

instances (100 and 150). For smaller job instances (15, 30, 50) MILP-W had a better solution 

than the proposed methods. Depending on the size of the problem at hand, MILP-G+ and MILP-

GM+ may be chosen over MILP-W for their high-quality solutions and shorter computational 

time. 
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6.2 Future Work 

In this research, the weights were provided between two objective functions to solve the 

proposed problem. Five levels were considered for α and β, from 0 – 1 at intervals of 0.25, so it 

could be interesting to test smaller intervals of values to see if the Pareto-optimal front changes. 

Additionally, as discussed in Chapter 2, different solution approaches exist for solving multi-

objective formulations. It would be worthwhile to explore methods like the ε – constraint method 

to see if different, higher quality Pareto-optimal fronts are obtained. Moreover, the Symmetric 

breaking method can also be tried with MILP-W to compare the runtime and the solutions 

obtained.  

Fuzzy goal programming is an extension of traditional goal programming to solve multi-

objective problems with notably defined model parameters in a decision-making environment. 

The original MOLP is converted into a Fuzzy Multi-Objective Linear Programming (FMOLP) 

using the piece-wise linear function (Moghaddam et al., 2010).  

Although a column generation approach was developed the experimental study did not 

show no evidence of its superiority over other formulations. A further study on the 

decomposition approach would be beneficial. 

Overall, the new formulations proposed and evaluated show their useful to solve larger 

problem instances efficiently. This research would benefit schedulers who have the daunting task 

of scheduling batch processing machines with the constraints discussed in this research. 
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