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ABSTRACT 

 

 

OPTIMIZING CLUSTER SETS FOR THE SCAN STATISTIC USING LOCAL SEARCH 

  

 

James Shulgan, MS 

Department of Electrical Engineering 

Northern Illinois University, 2020 

Dr. Benedito Fonseca, Director  

 

 

In recent years, scattering sensors to produce wireless sensor networks (WSN) has been 

proposed for detecting localized events in large areas. Because sensor measurements are noisy, 

the WSN needs to use statistical methods such as the scan statistic. The scan statistic groups 

measurements into various clusters, computes a cluster statistic for each cluster, and decides that 

an event has happened if any of the statistics exceeds a threshold. Previous researchers have 

investigated the performance of the scan statistic to detect events; however, little attention was 

given to the optimization of which clusters the scan statistic should use. Using the scan statistic 

and a Gaussian sensor model, we present a local search approach for solving this optimization 

problem. Starting from multiple initial random cluster sets, our modified Gradient Ascent Search 

produces a cluster set that improves the worst-case detection performance of both grid and 

random sensor networks. By adding the best clusters to the worst emitter positions and removing 

the least valuable clusters, our search algorithm successfully produces a list of cluster sets that 

increase the minimum detection performance and outperforms baseline cluster sets by multiple 

standard deviations.  
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CHAPTER 1 

INTRODUCTION AND SUMMARY OF CONTRIBUTION 

Section 1.0 – Introduction 

A recurring objective in many engineering systems is to measure properties of an 

environment and react to them [1,2,3]. When detecting localized events occurring in a spacious 

region of interest (ROI), a fundamental approach consists of scattering wireless sensor nodes 

throughout the area and using their periodic measurements to detect the presence of an event 

[3,4,5,6]. Such wireless sensor networks (WSN) have become more practical with the 

development of smaller and cheaper microcontrollers and transceivers [1]. The compact and 

disposable nature of the sensor nodes makes them very suitable for inaccessible, hostile, or vast 

environments [7]. Wireless sensor networks have already been proposed for applications 

including intrusion detection, machinery fault detection [1,8], detection of chemical gases on a 

battlefield [7,9], unauthorized release of point radiation sources [10], or other threats [6]. 

Section 1.1 – Problem Statement and Objective 

To reduce the effects of noise in WSNs, it is common to combine or fuse sensor 

measurements [2,3]. Once the sensors take their measurements, the data is transmitted to a fusion 

center where a fusion rule decides if an event is present, as illustrated in Figure 1. Here we will 

assume all sensors are found within a square region of interest indicated by a blue dotted line in 
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the figures. We use a powerful fusion rule known as the scan statistic [11,12] to fuse sensor 

measurements and decide between two hypotheses. Choosing hypothesis 𝐻0 indicates that no 

event is present in the ROI while selecting hypothesis 𝐻1 claims an event has been detected 

somewhere in the ROI. The scan statistic groups measurements from nearby sensors into 

clusters, computes a cluster statistic for each cluster, and decides that an event has happened if 

any of the statistics exceeds a threshold. The scan statistic has had significant success in 

detecting disease outbreaks [12], and many have proposed its use in WSN to detect point events 

[13-20]. However, limited research has been conducted to determine which clusters should be 

used by the scan statistic in the WSN. Because the set of clusters directly effects the sensor 

network’s overall detection performance, our research goal is to optimize the cluster set of the 

scan statistic in order to maximizes its minimum detection performance. 

Figure 1. Measurements from sensors (blue dots) are sent to a fusion center so it can decide if the 

emitter (red triangle) is present in the region of interest (Hypothesis 𝐻1) or not present in the region 

of interest (Hypothesis 𝐻0). 
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Section 1.2 – Summary of Contribution and Results 

Because the optimization of clusters in the scan statistic is a non-convex optimization 

problem, we propose a local search algorithm for choosing the scan statistic’s cluster set. Using 

our modified Gradient Ascent Search, we start from an initial cluster set and add and remove 

specific clusters to successfully optimize cluster sets in networks were sensors are distributed in 

both a grid and random fashion. As part of our results, described in Chapter 6, we compare our 

final cluster set against other baseline cluster sets in various network sizes. We compare cluster 

sets using estimates for the Area Under the Receiver Operating Curve (AUC) when the emitter is 

at the worst location for each cluster set. In the scenario considered, we find that our proposed 

local search improves the estimated worst-case AUC from 0.781 ± 0.001 when using the best 

baseline cluster set to 0.811 ± 0.001 in the 5-by-5 grid network. To better appreciate the effect 

of this improvement, [13] has reported that improving the AUC by just 0.01 corresponded to 

improving the probability of detection from 23% to 26% (considering the same 5% probability of 

false alarm). In the scenario with 25 sensors randomly deployed, our proposed local search 

improves the worst-case AUC from 0.722 ± 0.001 to 0.814 ± 0.001. 



CHAPTER 2 

LITERATURE REVIEW 

Designing clusters for WSNs has been proposed before [7,8,21-31]; however, the focus 

was not on developing which cluster should be in the cluster set for increased detection 

performance of the scan statistic. Instead, the focus was on connectivity; i.e., because the sensor 

nodes typically operate on limited battery power, papers like [7,8, 21-31] explore the 

communication, scalability, and energy conservation aspects of WSN. Clustering sensors is 

practical for the network’s communication framework since, as discussed in [8], it is used to 

associate nearby clusters with a cluster head node. The cluster head is a special node that 

aggregates data from sensors within its cluster and routes the information throughout the network 

to the fusion center. Sending data to the closest cluster head and using only the cluster head to 

transmit over larger distances plays a key role in saving precious sensor battery life. For this 

reason, clustering algorithms proposed before focus on ensuring that each sensor is able to 

connect to a single cluster head. As illustrated by [13], if the clusters formed by such clustering 

algorithms are used in the scan statistic, the resulting detection performance is worse than the 

performance of many baseline cluster sets.  

Other authors that do address detection in the network look at how to combine the sensor 

measurements with fusion rules different from the scan statistic [4,5,6,15,31,32]. If the individual 

sensor probability of detection 𝑃𝐷 and probability of false alarm 𝑃𝐹𝐴 are known, Chair and 

Varshney have already developed the optimum fusion rule [2,15,32]. However, the emitter in 
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sensor network applications may be mobile and thus the 𝑃𝐷 and 𝑃𝐹𝐴 of each sensor will vary

depending upon the position of the emitter in the ROI at any given time [4]. A simple fusion rule 

presented by Niu and Varshney in [5] does not need the detection probabilities of each sensor, 

but rather just counts how many sensors indicate a detection. This counting rule was further 

developed in [4] to account for an unknown number of total effective sensors. Nevertheless, by 

just using the number of sensor detections, the WSN’s 𝑃𝐷 is harmed. As mentioned in [13], 

combining sensor measurements that are near and far from a given emitter will mix different 

signal strengths. The signal is typically weaker at sensor that are farther away, so measurements 

from these sensors will be more effected by noise. Likewise, the authors in [15], point out that 

the counting rule comes with spurious detection performance. This is unsurprising, since 

combining noisy sensor measurements with good sensor measurements will consequently 

degrade the network’s 𝑃𝐷 and 𝑃𝐹𝐴. 

The scan statistic, discussed in more detail in Chapter 3, was originally developed by 

statisticians focused on detecting anomalies in georeferenced data [11,12,33]. It has had 

significant success in detecting disease outbreaks and is currently used by CDC [33].  

Since an emitter causes changes in the measurements of nearby sensors, it can be 

considered an anomaly, and Guerriero, Willett, and Glaz have proposed the use of the scan 

statistic in WSN [14]. In [14], the authors created clusters by moving a window across the ROI 

and formed clusters by grouping the sensors in the window. The authors then showed that an 

optimal window sizes exists when using a single sized window and also referred to creating 

cluster sets by scanning multiple window sizes over the ROI. Nevertheless, the authors in [14] 

were more focused on the application of the scan statistic to WSN’s and did not consider whether 
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all the clusters found from the moving window are beneficial for the network’s detection 

performance. 

The optimization of which clusters should be present in a cluster set when using the scan 

statistic to improve the network 𝑃𝐷 has been studied by Fonseca in [13]. The focus here was not 

on how to search for the best clusters but rather on highlighting the opportunity of designing 

cluster sets from a given set of all possible clusters for the network. Fonseca illustrated the 

benefit of designing cluster sets by showing that simply choosing the best cluster for all the worst 

emitter positions can improve the detection performance. 



CHAPTER 3 

MODEL DESCRIPTION AND BACKGROUND 

Section 3.0 – Model Focus 

As mentioned previously, many existing papers focus on the connectivity and networking 

aspects of wireless sensor networks; however, we will focus on the detection performance. 

Namely, we focus on a network’s probabilities of detection (PD) and false alarm (PFA) through its 

Receiver Operating Curve (ROC) [34]. The core problem in sensor networks arises whenever a 

sensor takes a reading. Sensor measurements will always be corrupted by some noise which will 

cause the overall detection performance of the network to deteriorate. Noisy measurements 

increase the network’s 𝑃𝐹𝐴 and thereby cause it to detect an emitter when no emitter is present. 

To mitigate the effects of noise, sensor measurements can be combined in clusters and/or a 

Fusion Center. This ultimately helps reduces the sensor noise through averaging. Because we 

will be focusing on the detection aspect of clustered sensors, we assume the connectivity of the 

network is not an issue and consider that all sensors are capable of transmitting their 

measurements to a Fusion Center. 

Section 3.1 – Measurement Model 

In our research, we will focus on sensor measurements with a Gaussian distribution: 

𝑁(𝜇, 𝜎2). Considering a WSN with 𝐾 sensors, let 𝑍𝑘 be the measurement reported by the sensor
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with an index of 𝑘. We assume 𝑍𝑘~𝑁(0,1) under 𝐻0 (no emitter present). Furthermore, we will

be assuming an emitter with a signal that decays with the square of the distance between the 

sensor and the emitter. Let the emitter be located at 𝐿𝑒, have a signal amplitude of 𝐴 and a signal 

decay rate of 𝛾 = 2. The presence of the emitter will shift the sensor measurement mean. If the 

sensor is separated by a distance of 𝑑 from the emitter at 𝐿𝑒, then, under 𝐻1, the sensor’s 

measurement distribution will be: 𝑍𝑘~𝑁(
𝐴

𝑑𝛾 
, 1), where we assume that an emitter cannot be 

placed at the same location as a sensor. A similar model was adopted in [13,16]. 

Section 3.2 – Fusion Rule 

When all the sensor measurements have been transmitted to the Fusion Center, a fusion 

rule is needed to process the sensor readings and make the final network detection decision. 

Namely, the fusion rule must decide if the emitter is present in the ROI (hypothesis 𝐻1) or if the 

emitter is not in the ROI (hypothesis 𝐻0). Fusion rules may come to a decision by looking at all 

the sensor individually (as in [4,5,32]) or at sensor groups i.e. clusters (as in [13,16-20]). In our 

research, the fusion rule we will be using is the scan statistic which has also been applied in 

epidemiological studies [11,12]. Thanks to developments in recent years, the combination of 

WSN’s with this statistical tool has led to the valuable scan statistic fusion rule. 

Section 3.3 – The Scan Statistic Fusion Rule 

The scan statistic operates on a set of clusters in the ROI. Let 𝐶 be the individual clusters 

in the WSN which make up the networks’ cluster set 𝑪. In its original conception, the cluster set 

𝑪 was created using a scanning process where a window is scanned over the region of interest. 
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Sensors found within the scanning window at any point in time are grouped into a cluster, and a 

cluster statistic is computed for that cluster using its contained sensor measurements. Here, our 

goal is to tailor the scan statistic’s cluster set 𝑪 to improve the WSN detection performance. 

More formally, given sensor measurements {𝑍𝑘}𝑘=1
𝐾  from 𝐾 sensors, the sensor measurements in

a cluster 𝐶 will be represented by 𝒁𝐶 ≔ {𝑍𝑘 ∶ 𝑘 belongs to 𝐶},  and are used to calculate a cluster 

statistic. In here, we consider the following cluster statistic: 

𝑇(𝒁𝐶) ≔
1

√|𝐶|
∑𝑍𝑘
𝑘∈𝐶

 (1) 

(where |𝐶| is the number of sensors grouped in 𝐶 and is included to normalize the cluster 

statistic). If the scanning window is used to create 𝑪, the window would continue to move across 

the region of interest until it has covered the whole area. 

For each cluster in 𝑪, the cluster statistic is computed and aggregated into the scan 

statistic, which is the maximum among all cluster statistics. In other words, the scan statistic 𝑆𝑪 

is taken as the maximum of all cluster statistics for the given cluster set 𝑪: 

𝑆𝑪 ≔ max
𝐶∈𝑪

𝑇(𝒁𝐶) (2) 

The WSN then decides if an emitter is present by comparing the scan statistic against a threshold 

"𝑡" using the following fusion rule: 
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𝜙(𝑆𝑪) ≔ {
𝐻1, if 𝑆𝑪 > 𝑡 (event present)       

𝐻0, if 𝑆𝑪 ≤ 𝑡 (event not present)
(3) 

where the threshold "𝑡" is chosen to keep the 𝑃𝐹𝐴 below a maximum 𝑃𝐹𝐴 requirement. Note that 

both the scan statistic and fusion rule explicitly depend on the set of clusters 𝑪 that the WSN is 

using. 



CHAPTER 4 

RESEARCH GOAL AND MOTIVATION 

Section 4.0 – Motivating Question 

The design of the scan statistic’s cluster set 𝑪 to maximize the system’s probability of 

detection is one aspect that has received little attention [13]. Essentially, the problem is: which 

clusters should be kept or removed from the cluster set 𝑪 to improve the overall 𝑃𝐷 while still 

keeping the 𝑃𝐹𝐴 below a maximum value when using the scan statistic?  

Section 4.1 – The Multiple Hypothesis Testing Problem 

One of the motivating issues for tuning the cluster set is the multiple hypothesis testing 

problem (MHTP). This problem occurs with the scan statistic because the scan statistic is 

equivalent to performing multiple individual hypothesis tests, once for each cluster [13]. In more 

details, as more clusters are formed in the network, the chance of having a false alarm in any of 

the clusters increases; and, to keep the 𝑃𝐹𝐴 low, one needs to increase the detection threshold t, 

which in turn causes the global 𝑃𝐷 of the system to be reduced. At the same time, the network 

still needs to form enough clusters to adequately cover the region of interest and achieve the 

desired level of detection. A balance is thus needed to not have too many or too few clusters in 

𝑪. Furthermore, given the various possible cluster sets in a specific area, some clusters are better 

at detecting an event at a certain point in space than other clusters. Consider if an event occurs at 
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the center of a region, a cluster set with clusters at the center of the ROI will detect that event 

better than a cluster set with clusters positioned at the edges of the area. Ultimately, as illustrated 

by Fonseca in [13], the specific set of clusters used by the network will directly affect the WSN 

detection performance. 

Section 4.2 – Worst Case Detection Performance 

Typically, the WSN does not know where the emitter will be in the region of interest. This 

unknown factor brings further difficulty to designing the cluster set 𝑪 since grouping sensors 

around an emitter is a key aspect in increasing the network’s 𝑃𝐷. There are infinitely many 

possible positions for an emitter in a ROI; however, given a set of known sensor positions, it is 

reasonable to focus on the points that are farther away from the sensor positions since these 

points should reduce the detection performance in the neighborhoods of the various sensors. 

Following [13], we use the term “points of interest” (POIs) to refer to these locations. These 

points of interest can be found by generating a Voronoi diagram from the sensor positions, 

Figure 2. The vertices of all the Voronoi polygons (the pink diamonds in Figure 2) are the points 

that are farthest away from all their surrounding sensors. Given an emitter signal that decays with 

distance, it is thus expected that the worst-case emitter position will be found at a Voronoi 

vertex. We define the set 𝑷𝑶𝑰 ≔ {𝑝𝑜𝑖𝑣: 𝑣 ∈ Voronoi vertices} to be the set of all individual 

Voronoi vertices in the region of interest, and |𝑷𝑶𝑰| to be the total number of individual 𝑝𝑜𝑖𝑣 in 

that region. For a cluster set 𝑪, let its probability of detection with an emitter at a point of interest 

be 𝑃𝐷(𝑪, 𝑝𝑜𝑖𝑣). Fonseca has shown that optimizing the cluster set for the worst-case emitter 

positions will improve the worst-case cluster set 𝑃𝐷(𝑪, 𝑝𝑜𝑖𝑣) [13]. Note that while a cluster set 

should be optimized for all 𝑝𝑜𝑖𝑣 ∈ 𝑷𝑶𝑰 to ensure it covers all the points of interest in WSN, 
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there will be at least one 𝑝𝑜𝑖𝑣 that is worse than all other 𝑝𝑜𝑖𝑣. Let 𝑝𝑜𝑖− be the 𝑝𝑜𝑖𝑣 at which the

𝑃𝐷 of cluster set 𝑪 is lowest: 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−). Thus, a cluster set can be optimized for detection by

maximizing its 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−), while keeping its 𝑃𝐹𝐴(𝑪) below a maximum 𝑃𝐹𝐴 requirement.

Figure 2. Voronoi polygons generated from sensor positions (blue dots) will have vertices (pink 

diamonds) at the worst possible emitter positions. We also call these vertex locations points of 

interest or POI. 

Section 4.3 – Research Objective 

The focus of our research is on optimizing the cluster set 𝑪 to maximize its worst-case 

probability of detection 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−) for 𝑃𝐹𝐴(𝑪) ≤ 5%. As pointed out in [13], this is a non-

convex problem. A further difficulty is that there are no closed form solutions for the worst-case 

probability of detection nor for the 𝑃𝐹𝐴 of the scan statistic. Furthermore, when optimizing the 

cluster set 𝑪, the gradient of the worst-case probability of detection is not available since 

𝑃𝐷(𝑪, 𝑝𝑜𝑖
−) is not differentiable with respect to 𝑪. Therefore, our goal is to build a locally

optimal cluster set by using an iterative local search approach [35].   
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The general procedure of local search to maximize a performance function without 

computing gradients is shown in Figure 3 [35]. In here, we use a one-dimensional problem to 

illustrate the search procedure. First, a random initial point in the search space is selected (point 

“A”) and the value of the performance function is computed at that point. The function is then 

evaluated at the neighbors of the starting point (points “D” and “B”). The neighbor with the 

highest function value is selected as the new starting point for the next iteration (point “B” 

becomes the new highest point). The process repeats until a local optimum is found where the 

cost function does not increase for any neighbor (point “C”). 

Figure 3. General local search procedure for maximizing a function without computing gradients. 

In our case, we are trying to maximize the detection performance of the WSN at its worst 

𝑝𝑜𝑖𝑣, so our cost function is 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−), and our search space consists of the different cluster

sets that can be used in the WSN. Given a set of all possible clusters for our WSN: 𝑪𝑎𝑙𝑙, any 

subset of 𝑪𝑎𝑙𝑙 is a possible cluster set for the WSN. Note, in our implementation, we build 𝑪𝑎𝑙𝑙 

by scanning multiple windows of different sizes over the WSN and adding each window 
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grouping of sensor as a cluster in 𝑪𝑎𝑙𝑙. Let |𝑪𝑎𝑙𝑙| be the total number of clusters in 𝑪𝑎𝑙𝑙, and let

𝑪𝑖 be a cluster set that is a subset of 𝑪𝑎𝑙𝑙. More formally: 𝑪𝑖 ⊂ 𝑪𝑎𝑙𝑙 for 𝑖 = 1 𝑡𝑜 |𝑪𝑎𝑙𝑙|. The local 

search must thus search in the space of subsets of 𝑪𝑎𝑙𝑙 to find the cluster set 𝑪𝑖 with the highest 

𝑃𝐷(𝑪𝑖, 𝑝𝑜𝑖
−) for the given 𝑃𝐹𝐴(𝑪𝑖). Let 𝑪𝑐 be the current cluster set the local search is trying to

improve, and let 𝑪𝑓 be the final local optimum cluster set the search finds with the highest 

𝑃𝐷(𝑪𝑓 , 𝑝𝑜𝑖
−).

Section 4.4 – Problem Complexity 

To illustrate the complexity of the optimization problem, note that there are two 

fundamental steps that must be performed during a local search: the first step is finding neighbor 

points around the current search point and the second step is evaluating the performance function 

at any given point. When applied to our cluster set search problem, both steps add their own 

complexity.  

First, recall that we are optimizing the cost function at the worst 𝑝𝑜𝑖𝑣. However, we don’t 

know which 𝑝𝑜𝑖𝑣 is the worst for a given cluster set 𝑪𝑖. The simplest way to find 𝑝𝑜𝑖− is to

evaluate 𝑃𝐷(𝑪𝑖, 𝑝𝑜𝑖𝑣) at each 𝑝𝑜𝑖𝑣 in the WSN and set 𝑝𝑜𝑖− to be the 𝑝𝑜𝑖𝑣 with the lowest

𝑃𝐷(𝑪𝑖, 𝑝𝑜𝑖𝑣). This extra searching adds computation time to the overall algorithm search time.  

Secondly, the cluster set search space grows very quickly with the size of |𝑪𝑎𝑙𝑙|. The 

more possible clusters a WSN can have, the more possible cluster sets are added to the search 

space. For example, if a WSN consisted of a simple 3x3 grid of sensors and only 25 possible 

clusters were created, the total number of unique cluster sets would be: 225 = 33,554,432. As

the WSN grows and more clusters are added to 𝑪𝑎𝑙𝑙, the number of possible cluster sets in the 

search space becomes enormous.  
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Thirdly, because cluster sets can have intersecting clusters (sensors may be shared by 

multiple clusters), the scan statistics 𝑇(𝒁𝐶) are statistically dependent on each other. Due to this 

dependent nature of intersecting clusters, we don’t have exact expressions for the 𝑃𝐷(𝑪, 𝑝𝑜𝑖𝑣) or 

𝑃𝐹𝐴(𝑪) of such cluster sets. This means that performance evaluations have to be estimated 

through Monte Carlo simulations.  

Finally, determining the neighboring cluster set for a given 𝑪𝑖 is not straightforward and 

serves to add further complexity to the local search. 

The difficulty of evaluating the detection performance of 𝑪𝑖 combined with the extensive 

cluster set search space also indicates why an exhaustive search for this problem is infeasible.  

Section 4.5 – Evaluating Cluster Set Performance 

As mentioned above, we don’t have an expression for our local search performance 

function 𝑃𝐷(𝑪𝑖, 𝑝𝑜𝑖
−) because 𝑪𝑖 can have intersecting clusters with dependent cluster statistics.

At the same time, estimating 𝑃𝐷(𝑪𝑖, 𝑝𝑜𝑖
−) using Monte Carlo simulation is impractical due to

the extra computation required and the difficulty surrounding the threshold 𝑡 needed to keep 

𝑃𝐹𝐴(𝑪𝑖) = 0.05. Therefore, we will not be using 𝑃𝐷(𝑪𝑖, 𝑝𝑜𝑖
−) as the cost function directly to

compare neighbor clusters when performing a local search. Instead, we consider two alternative 

metrics for a cluster set’s detection performance, namely the clusters set’s lower bound for the 

worst case probability of detection (𝑃𝐷𝐿𝐵(𝑪𝑖
𝑜, 𝑝𝑜𝑖−)) and the estimate for the worst-case Area

Under the Receiver Operating Curve (𝐴𝑈𝐶(𝑪𝑖, 𝑝𝑜𝑖
−)).
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Section 4.5.0 – The Lower Bound for 𝑃𝐷 Metric

While we don’t have an expression for a cluster set’s 𝑃𝐷(𝑪𝑖, 𝑝𝑜𝑖
−), Fonseca in [16]

presented a lower bound for 𝑃𝐷(𝑪𝑖, 𝑝𝑜𝑖
−) that can be computed analytically. Let 𝑪𝑜 be a cluster

set with strictly non-intersecting clusters. As shown in [16], given the threshold 𝑡 and the cluster 

set 𝑪𝑜, the probability of detection of 𝑪𝑜 can be computed as:

𝑃𝐷𝐿𝐵(𝑪
𝑜, 𝑝𝑜𝑖−) = 1 − ∏ 𝑃𝐻1[𝑇(𝒁𝐶) ≤ 𝑡|𝐿𝑒 = 𝑝𝑜𝑖−]

𝐶∈𝑪𝑜
(4) 

where 𝑃𝐻1 refers to the probability under 𝐻1. Because we don’t have an exact expression for

𝑃𝐹𝐴(𝑪), we can’t compute the threshold 𝑡. However, Fonseca in [16] also provides the following 

upper bound for 𝑃𝐹𝐴(𝑪): 

𝑃𝐹𝐴𝑈𝐵(𝑪) ≔ 1 −∏𝑃𝐻0[𝑇(𝒁𝐶) ≤ 𝑡]

𝐶∈𝑪

(5) 

where PH0 refers to the probability under H0. Rearranging the 𝑃𝐹𝐴𝑈𝐵(𝑪) equation does provide a

threshold formula, but the threshold depends on the total number of clusters in the cluster set 𝑪. 

So, if two cluster sets have a different number of total clusters, they will require different 

thresholds to achieve 𝑃𝐹𝐴(𝑪) = 0.05. Thus, equation 5 can be used to obtain a threshold for

equation 4. If 𝑪𝑜 is a subset of 𝑪𝑖 with only non-intersecting clusters, then the lower bound

computed for 𝑪𝑜 will also be a lower bound for 𝑪𝑖. Let 𝑪𝑖
𝑜 be a subset of 𝑪𝑖 containing only non-
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intersecting clusters. Thus for 𝑪𝑖
𝑜 ⊂ 𝑪𝑖, the lower bound for 𝑃𝐷(𝑪𝑖, 𝑝𝑜𝑖

−) is given by

𝑃𝐷𝐿𝐵(𝑪𝑖
𝑜, 𝑝𝑜𝑖−).

When starting this research, we initially explored the use of the 𝑃𝐷𝐿𝐵(𝑪𝑖
𝑜 , 𝑝𝑜𝑖−) metric to

compare cluster set detection performance. However, we found that the lower bound approach 

did not produce a tight enough bound to distinguish between two cluster sets well. Furthermore, 

the computation of the 𝑃𝐷𝐿𝐵(𝑪𝑖
𝑜 , 𝑝𝑜𝑖−) metric required that the cluster set 𝑪𝑖 be simplified to a

cluster set 𝑪𝑖
𝑜 that includes only non-intersecting clusters. This made it harder to compare very

similar cluster sets since they could both be simplified to the same 𝑪𝑖
𝑜.

Thus, because of the difficulties in using the 𝑃𝐷𝐿𝐵(𝑪𝑖
𝑜 , 𝑝𝑜𝑖−) metric to compare cluster set

detection performance, we used the Area Under the Receiver Operating Curve (AUC). 

Section 4.5.1 – The Worst-Case Area Under the Curve (AUC) Metric 

Another metric for evaluating the detection performance of a cluster set is the area under 

the receiver operating characteristic curve. When the 𝑃𝐷 and 𝑃𝐹𝐴 for a cluster set 𝑪 are computed 

for multiple thresholds 𝑡, the 𝑃𝐷 can be plotted against 𝑃𝐹𝐴 for each threshold to obtain a receiver 

operating characteristic (ROC) curve. Thus, for a given desired 𝑃𝐹𝐴, the ROC curve can be 

referenced to determine what is the corresponding 𝑃𝐷. The area under the ROC curve (AUC) 

indicates how good the overall detection performance of the cluster set is as a whole and a higher 

AUC generally indicates a higher 𝑃𝐷for a given 𝑃𝐹𝐴 constraint. 

We can conveniently estimate the AUC of a cluster set using a Monte Carlo approach. If 

𝑀 samples of the scan statistic 𝑆𝑪 are obtained for the cluster set 𝑪 under both 𝐻0 and 𝐻1, the 

Wilcoxon-Mann-Whitney statistic can use these samples to generate an estimate for the AUC 
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[36]. While this estimate does take more computational time, it is simple to compute since it only 

requires samples of 𝑆𝑪, does not require a threshold 𝑡, and can estimate the AUC of cluster sets 

with intersecting clusters. As mentioned in [13,36], given a cluster set 𝑪 and 𝑀 samples of 

𝑆𝑪|𝐻0and 𝑆𝑪|𝐻1, its estimated area under the ROC curve 𝐴𝑈𝐶′(𝑪) can be computed as follows:

𝐴𝑈𝐶′(𝑪) =
∑ ∑ 1{𝑆𝑪|𝐻1,𝑖 > 𝑆𝑪|𝐻0,𝑗}

𝑀
𝑗=1

𝑀
𝑖=1

𝑀2
(6) 

where 1{𝑆𝑪|𝐻1,𝑖 > 𝑆𝑪|𝐻0,𝑗} = 1 if {𝑆𝑪|𝐻1,𝑖 > 𝑆𝑪|𝐻0,𝑗} is true and it equals 0 if the condition is false.

A simple upper bound for the AUC standard deviation 𝜎𝐴𝑈𝐶,𝑈𝐵 is also provided in [36] and is 

given as: 

𝜎𝐴𝑈𝐶,𝑈𝐵 =
1

2√𝑀
(7) 

However, when comparing cluster sets, it is not enough to check if one cluster set has a 

higher AUC than another cluster set. Since the estimate of a cluster set’s AUC is a random 

variable, we need to consider possible random variations when comparing the AUC estimates of 

the current cluster set and the neighbor cluster set. Following the approach suggested in [37], two 

cluster set AUCs can be compared by computing the z-score of their difference. After 

simplifying the z-score equation from [37], the following z-score formula is obtained for 

comparing two AUC values: 
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𝑧 = √2𝑀(𝐴𝑈𝐶𝑛 − 𝐴𝑈𝐶𝑐) (8) 

where 𝐴𝑈𝐶′𝑛 and 𝐴𝑈𝐶′𝑐 are the estimated AUC values of the neighbor and current cluster sets 

respectively. The above equation (8) was achieved by reducing the formula presented in [37] in 

two ways. First, the samples used for the AUC estimation are uncorrelated, so the correlation 

coefficient in [37] reduces to zero. Second, to take a conservative approach the upper bound for 

the estimated AUC standard deviation: 
1

2√𝑀
, is used for the standard error. When the z-score is 

greater than a critical value of 1.96, we can claim with a confidence level of 95% that the 

neighbor cluster set estimated AUC is better than the current cluster set estimated AUC. On the 

contrary, a z-score less than −1.96 indicates that the current solution cluster set remains better 

than the neighbor cluster set. However, if |z| < 1.96, then we cannot claim that either cluster set is 

better than the other; i.e., a cluster set 𝑪1 having an AUC estimate better than the AUC of 

another cluster set 𝑪2 could have happened because of random variations in the Monte Carlo 

simulations. In this case, we say that the two cluster sets are “indistinguishable”.  

Because of the possible random variations in the estimate for the AUC of the cluster sets 

under analysis, our procedure will report not only the best cluster set found, but will also report 

all cluster sets that were investigated and were indistinguishable from the best cluster set found.  

Section 4.6 – Local Search Success Evaluation 

Regardless of the chosen metric for comparing cluster sets, this same metric will also be 

used to judge the overall performance of the local search. Once a locally optimum solution is 

obtained, its detection performance will be compared against several baseline cluster sets 

presented in Section 6.0. The performance of the baselines will be used to judge whether the 
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local search solution was able to significantly optimize the cluster set 𝑪 to maximize 

𝑃𝐷(𝑪, 𝑝𝑜𝑖
−) as determined by the chosen metric.

Section 4.7 – Searching Neighborhoods 

Finally, before introducing our proposed local search in Chapter 5, note that an algorithm 

will have two primary approaches when deciding how the neighborhood cluster sets will be 

searched. In general, the algorithm could either evaluate all the neighbor cluster sets and move to 

the most improving cluster set, or it could evaluate the neighbor clusters sets sequentially and 

move to the first improving cluster set it encounters. While the most improving approach is 

desirable, since it makes the biggest improvement jumps, it is also computationally expensive 

because it must evaluate the entire neighborhood before it tries to make a single improvement. 

On the other hand, the first improvement method can make faster decisions at the cost of 

possibly using smaller improvement steps. The smaller search steps may also extend the total 

search run time if the local search requires too many steps to reach a significant improvement.  

Nevertheless, in Chapter 5, we essentially merged the most improving and first 

improving approaches. We try to use the large improvement step of the first method while 

sequentially stepping through neighbor cluster sets as in the second method. Furthermore, while 

most of the search is performed by considering only one neighbor at a time, the algorithms goal 

is to try to end only if its final cluster set is the best in its entire neighborhood. This is mentioned 

as an advantage of the first improving approach in [35]. 



CHAPTER 5 

THE PROPOSED LOCAL SEARCH 

Section 5.0 – Gradient Improvement 

Given the issues and motivation discussed in Chapter 4, we present an approach that 

resembles a Gradient Ascent Search. The approach described here is not exactly a Gradient 

Ascent search because the optimization function is not differentiable. In more details, recall that 

the goal is to optimize the worst case detection performance of a sensor network with respect to 

its cluster set: maximize 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−), where we recall that 𝑝𝑜𝑖− indicates the worst point of

interest, as described in Section 4.2. Since the function 𝑃𝐷(𝑪, 𝑝𝑜𝑖𝑣) is not continuous as a

function of the cluster set, the objective function is non-differentiable. Thus, the gradient search 

presented here is not a true gradient search, but it follows a similar philosophy.  

In our approach, we search along the direction of greatest improvement of 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−);

i.e., our search tries the cluster set changes that should provide the highest increase in the worst

𝑝𝑜𝑖𝑣 performance. Before presenting our proposed local search approach, it is first critical to 

understand how our gradient neighbor cluster sets are created and compared. 

Section 5.1 – Neighbor Cluster Sets 

The two most fundamental ways to build gradient neighbor cluster sets are to either add 

clusters or remove clusters from the current solution cluster set. Both ways of changing the 
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cluster set must be implemented in the search algorithm to allow dense and sparse initial cluster 

sets the opportunity to converge to a similar cluster set.  

Furthermore, since the goal of adding or removing clusters is to improve the performance 

of the current cluster set at its worst point of interest (𝑝𝑜𝑖−), it should be noted that both

improvement methods may affect multiple point of interests (POI) at the same time. Adding or 

removing clusters to improve the performance at one 𝑝𝑜𝑖𝑣 could worsen the performance at 

another 𝑝𝑜𝑖𝑣. So, gradient improvement approaches must take all the network POI into account

when creating neighbor cluster sets. 

In the next two subsections, we describe the basic principle behind adding and removing 

clusters that our algorithm uses.  

Section 5.1.0 – Adding Clusters 

When trying to improve the current cluster set by adding clusters to it, the new clusters 

should be added near the 𝑝𝑜𝑖𝑣 where the current cluster set has the lowest detection performance, 

i.e. near 𝑝𝑜𝑖−. Clusters containing sensors close to 𝑝𝑜𝑖− will have the highest probability of

detecting an event at that POI. 

To choose which cluster to add to a given 𝑝𝑜𝑖𝑣, we create a ranked cluster list for each 

𝑝𝑜𝑖𝑣. If each cluster in 𝑪𝑎𝑙𝑙 is considered individually, and assuming the Gaussian model 

discussed in Section 3.1, the probability of detection of a single cluster 𝑃𝐷,𝑙𝑜𝑐𝑎𝑙(𝐶, 𝑝𝑜𝑖𝑣) can be 

computed exactly for any given 𝑝𝑜𝑖𝑣 and a given threshold 𝑡′. For sensor measurements with a 

Gaussian distribution, the cluster static 𝑇(𝒁𝐶) will also be a Gaussian random variable, so a 

single cluster’s 𝑃𝐷,𝑙𝑜𝑐𝑎𝑙(𝐶, 𝑝𝑜𝑖𝑣) can be computed using the Q-function: 
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𝑃𝐷,𝑙𝑜𝑐𝑎𝑙(𝐶, 𝑝𝑜𝑖𝑣) = 𝑃𝐻1[𝑇(𝒁𝐶) > 𝑡′ | 𝐿𝐸 = 𝑝𝑜𝑖𝑣] = 𝑄 (
𝑡′ − 𝜇𝐶
𝜎𝐶

) (9) 

𝑃𝐹𝐴,𝑙𝑜𝑐𝑎𝑙 = 𝑃𝐻0[𝑇(𝒁𝐶) > 𝑡′] = 𝑄 (
𝑡′ − 𝜇𝐶
𝜎𝐶

) (10) 

The threshold 𝑡′ used to compute the cluster’s 𝑃𝐷,𝑙𝑜𝑐𝑎𝑙(𝐶, 𝑝𝑜𝑖𝑣) is found by rearranging the 

𝑃𝐹𝐴,𝑙𝑜𝑐𝑎𝑙 equation: 𝑡′ = 𝜇𝐶 + 𝜎𝐶𝑄
−1(𝑃𝐹𝐴,𝑙𝑜𝑐𝑎𝑙). Note that this 𝑡′ is a threshold used solely to rank

the clusters. This is NOT the threshold 𝑡 the final system would use since that threshold must 

account for the Multiple Hypotheses Testing problem. In our analysis, if we recall our model 

from Chapter 3, when no emitter is present we have 𝜇𝐶 = 0 and 𝜎𝐶 = 1, so the threshold used to 

rank clusters is 𝑡′ = 𝑄−1(0.05). Once the 𝑃𝐷,𝑙𝑜𝑐𝑎𝑙(𝐶, 𝑝𝑜𝑖𝑣) is computed for each cluster at the

given 𝑝𝑜𝑖𝑣, the clusters are ranked from highest to lowest by their 𝑃𝐷,𝑙𝑜𝑐𝑎𝑙 (see Appendix B, 

Table 1). 

After the list is built for each 𝑝𝑜𝑖𝑣, the cluster with the highest 𝑃𝐷,𝑙𝑜𝑐𝑎𝑙 at 𝑝𝑜𝑖− (and not

yet in the cluster set) is added to the cluster set. Since the addition of such a cluster will provide 

the highest cluster set 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−) improvement, it can be considered the change of highest

gradient improvement for the current cluster set. 

However, it is possible that the addition of just one cluster will not improve the cluster 

set’s 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−), since the new cluster could make another 𝑝𝑜𝑖𝑣 worse than the current 𝑝𝑜𝑖−, or

there could have been multiple 𝑝𝑜𝑖−. To see this, consider a 3x3 grid of sensors and the cluster

set shown in Figure 4. This cluster set has four equal worst 𝑝𝑜𝑖− since its 𝑃𝐷(𝑪, 𝑝𝑜𝑖𝑣) will be

lowest when the emitter is placed at any of the corner 𝑝𝑜𝑖𝑣 located at: (-0.5, -0.5), (-0.5, 2.5), 

(2.5, -0.5), and (2.5, 2.5). 
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Figure 4. Cluster set with four equally worst points of interest (pink diamonds) located in the 

corners of the region of interest. 

If just cluster {8} is added near the 𝑝𝑜𝑖𝑣 at (2.5, 2.5), the cluster set’s 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−) at the (2.5,

2.5) 𝑝𝑜𝑖𝑣 will improve, but the 𝑃𝐷(𝑪, 𝑝𝑜𝑖𝑣) at the other three corner 𝑝𝑜𝑖𝑣 will get worse. The 

reason the new cluster reduces the performance at the other three 𝑝𝑜𝑖𝑣 is because the extra 

cluster increases the cluster set’s 𝑃𝐹𝐴(𝑪) (due to MHTP). To maintain the desired 𝑃𝐹𝐴(𝑪) a 

higher threshold 𝑡 is required. However, the higher threshold reduces the 𝑃𝐷(𝑪, 𝑝𝑜𝑖𝑣) of the

cluster set at the other three 𝑝𝑜𝑖𝑣, and thus the 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−) of the cluster set gets worse.

Additionally, because there are multiple worst 𝑝𝑜𝑖−, they would all have to improve at the same

time for the cluster set’s 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−) to increase. Overall, as shown in this example, the addition

of just one cluster to the worst 𝑝𝑜𝑖𝑣 may not improve the 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−) of the cluster set.

Nevertheless, even if the threshold is increased to maintain the desired cluster set 𝑃𝐹𝐴(𝑪) and 

multiple worst 𝑝𝑜𝑖𝑣 existed, the addition of proper clusters can still improve the 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−). A

cluster set may be improved if we try adding multiple good clusters simultaneously. Adding the 

corresponding highest 𝑃𝐷,𝑙𝑜𝑐𝑎𝑙 clusters to all the N worst 𝑝𝑜𝑖− allows each of these 𝑝𝑜𝑖− to
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improve enough such that the 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−) increases despite the higher threshold. In the above

example, the best clusters for each of the four worst 𝑝𝑜𝑖𝑣 should be added simultaneously to 

improve the cluster set’s 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−). When this is done, the new 𝑃𝐷(𝑪, 𝑝𝑜𝑖

−) is still at the four

corner 𝑝𝑜𝑖𝑣, but it is higher than the original 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−).

Section 5.1.1 – Removing Clusters 

As explained above, a cluster set with many clusters will need a high cluster set threshold 

to keep a low 𝑃𝐹𝐴(𝑪). Since the high threshold also reduces the cluster set’s 𝑃𝐷(𝑪, 𝑝𝑜𝑖𝑣), a good 

cluster set must try to have as few clusters as possible to reduce the cluster set 𝑃𝐹𝐴(𝑪), and thus 

increase its 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−). However, we don’t know if a given cluster set has too many clusters, so

naturally our local search must try removing clusters as another possible cluster set improvement 

approach. 

When removing clusters to improve the 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−) of a cluster set, a different cluster

ranking approach must be used. A gradient-like improvement by removal is achieved when 

removing the clusters that are worst for all POI, not worst for just a single 𝑝𝑜𝑖𝑣. To see this, 

consider the simple cluster set show below for a 3x3 sensor grid (Figure 5). 
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Figure 5. Cluster set where a single sensor corner cluster is best for only one POI and bad for most 

other POI (pink diamonds). Removing a cluster that is best for only one POI will hurt that POI, so 

the best cluster to remove in this cluster set is cluster {4}. 

Assume we ranked all the clusters by the cluster’s 𝑃𝐷,𝑙𝑜𝑐𝑎𝑙 at each 𝑝𝑜𝑖𝑣, and thus 16 ranked 

cluster lists were created (see Appendix B, Table 1). We then compute the cluster set’s 

𝑃𝐷(𝑪, 𝑝𝑜𝑖𝑣) at each 𝑝𝑜𝑖𝑣 and find that the 𝑝𝑜𝑖𝑣 at (-0.5, 2.5) is one of the worst 𝑝𝑜𝑖− since the

cluster set has the lowest 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−) when the emitter is at that 𝑝𝑜𝑖−. The ranked cluster list for

this worst 𝑝𝑜𝑖− (see row 4 in Appendix B, Table 1) indicates that when an emitter is placed at

this 𝑝𝑜𝑖−, cluster {2} has the highest 𝑃𝐷,𝑙𝑜𝑐𝑎𝑙 and cluster {6} has the lowest 𝑃𝐷,𝑙𝑜𝑐𝑎𝑙. Cluster {6}

is the worst cluster for this 𝑝𝑜𝑖− because its sensors are furthest from this top left corner point of

interest. However, if cluster {6} is removed, the cluster set’s 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−) would worsen because

although cluster {6} is the worst cluster for the 𝑝𝑜𝑖− at (-0.5, 2.5) it is also the best cluster for

the 𝑝𝑜𝑖− at (2.5, -0.5). Therefore, when deciding which cluster to remove, the cluster’s

𝑃𝐷,𝑙𝑜𝑐𝑎𝑙 rank at all POI must be considered. 
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To account for all the POI, we use a penalty function to indicate which clusters should be 

removed first. Clusters that have a low 𝑃𝐷,𝑙𝑜𝑐𝑎𝑙 at most 𝑝𝑜𝑖𝑣 should have a small removal 

penalty, while cluster with a very high 𝑃𝐷,𝑙𝑜𝑐𝑎𝑙 at any 𝑝𝑜𝑖𝑣 should carry a large removal penalty. 

The cluster with the smallest penalty is removed to create a gradient improvement neighbor 

cluster set.  

Each cluster’s penalty value is computed as a function of that cluster’s 𝑃𝐷,𝑙𝑜𝑐𝑎𝑙 ranks at 

all POI. To illustrate this, consider the cluster set shown in Figure 5. After ranking all the clusters 

by their 𝑃𝐷,𝑙𝑜𝑐𝑎𝑙 at each 𝑝𝑜𝑖𝑣, cluster {0} has a rank 𝑟 = 0 for the 𝑝𝑜𝑖𝑣 at (-0.5, -0.5), 𝑟 = 1 for 

the 𝑝𝑜𝑖𝑣 at (-0.5, 0.5), 𝑟 = 6 for the 𝑝𝑜𝑖𝑣 at (-0.5, 1.5), and so on (see Table 1 in Appendix B for 

all cluster rankings). A list is then created for each cluster 𝐶 containing that cluster’s ranks from 

all POI (see Appendix B, Table 2). Given cluster 𝐶, let 𝑹𝐶 be the list containing the cluster’s 

𝑃𝐷,𝑙𝑜𝑐𝑎𝑙 rank at each 𝑝𝑜𝑖𝑣: 𝑹𝐶 = [𝑟𝑝𝑜𝑖1 , 𝑟𝑝𝑜𝑖2 , 𝑟𝑝𝑜𝑖3 , … ]. In our example, cluster 𝐶 = {0} would

have the ranks list: 𝑹{0} = [0(−0.5,−0.5), 1(−0.5,0.5), 6(−0.5,1.5), … ] or more simply 𝑅{0} =

[0,1,6, … ]. A rank of 0 indicates that a cluster is the best cluster for a 𝑝𝑜𝑖𝑣, and the largest rank 

value indicates the worst cluster for a 𝑝𝑜𝑖𝑣. So, if a cluster has an 𝑹𝐶 with many small rank 

values, then that cluster is very beneficial for the cluster set since it has high 𝑃𝐷,𝑙𝑜𝑐𝑎𝑙 at many 

𝑝𝑜𝑖𝑣. If two clusters have the same 𝑃𝐷,𝑙𝑜𝑐𝑎𝑙 for a 𝑝𝑜𝑖𝑣 (for example clusters {0} and {8} for the 

𝑝𝑜𝑖𝑣 at (2.5, -0.5) in Figure 5), those clusters should have the same rank.  

Before assigning a penalty value to each cluster, we partition the clusters into “primary” 

and “secondary” cluster groups. The primary clusters are those that have the highest 𝑃𝐷,𝑙𝑜𝑐𝑎𝑙 

(rank = 0) at any 𝑝𝑜𝑖𝑣, and secondary clusters are all other clusters. This separation is done to 

ensure that the best cluster for a 𝑝𝑜𝑖𝑣 is removed last and to allow for slightly different penalty 

functions for the two cluster groups. Recall, we want to rank clusters by their removal penalty 
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and remove the clusters with the smallest penalty. When assigning a removal penalty to a 

secondary cluster, the cluster should have a higher removal penalty if it usually has high 𝑃𝐷,𝑙𝑜𝑐𝑎𝑙 

values at most 𝑝𝑜𝑖𝑣 when compared to other secondary clusters. However, primary clusters 

should have high removal penalties when their 𝑹𝐶 ranks are seldomly better relative to other 

primary clusters. Primary clusters that are good at only a few 𝑝𝑜𝑖𝑣 are still very important to 

those 𝑝𝑜𝑖𝑣, while clusters that are good at many 𝑝𝑜𝑖𝑣 are not as essential since other cluster may 

already be covering the same 𝑝𝑜𝑖𝑣. An example of a primary cluster that has a high 𝑃𝐷,𝑙𝑜𝑐𝑎𝑙 at 

only a few 𝑝𝑜𝑖𝑣 is cluster {8} in Figure 5. This cluster is the best for the corner 𝑝𝑜𝑖𝑣 at (2.5, 2.5) 

but is outperformed by most other clusters at the remaining 𝑝𝑜𝑖𝑣. So, primary clusters that have 

fewer ranks close to 0 must have a higher removal penalty. 

Despite the “primary” and “secondary” clusters needing to be penalized differently, both 

of their penalty functions assign a penalty to each cluster based upon the ranks that cluster has at 

all POI, i.e. based upon 𝑹𝐶. We used the following penalty function in equation 11 to assign a 

penalty score to clusters in the “primary” and “secondary” cluster groups. 

𝐺(𝐶) =

{

∑ 𝑟 if 𝐶 ∈ 𝐶𝑆𝑝𝑟𝑖𝑚𝑎𝑟𝑦
𝑟∈𝑹𝐶

∑
1

𝑟
𝑟∈𝑹𝐶

 if 𝐶 ∉ 𝐶𝑆𝑝𝑟𝑖𝑚𝑎𝑟𝑦

(11) 

where 𝐶𝑆𝑝𝑟𝑖𝑚𝑎𝑟𝑦 indicates the group of primary clusters at this step. 

Having given each cluster in both cluster groups a penalty score, clusters with the 

smallest removal penalty in the secondary group are removed first, followed by clusters with the 

smallest penalty in the “primary” group. Removing clusters in this order will create what we 
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consider gradient improvement neighbor cluster sets. Furthermore, just like in the adding clusters 

approach, it may be necessary to remove multiple clusters simultaneously to improve the cluster 

sets 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−).

Section 5.2 – Finding Multiple Cluster Sets Solutions 

Recall that we are trying to optimize cluster sets with intersecting clusters and exact 

formulas for the 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−) or 𝑃𝐹𝐴(𝑪) of a cluster set don’t exist. Nevertheless, we can still

estimate the detection performance of these cluster sets by using Monte Carlo simulations. We 

chose to use the AUC of a cluster set as our metric, since it does not require us to provide a 

threshold for detection and can handle intersecting clusters. As mentioned in Section 4.5.1, the 

AUC can be readily estimated with the Wilcoxon-Mann-Whitney statistic, so our gradient search 

will optimize 𝐴𝑈𝐶(𝑪, 𝑝𝑜𝑖−) instead of 𝑃𝐷(𝑪, 𝑝𝑜𝑖
−). Furthermore, because our gradient search

approach does not search the entire neighborhood of a cluster set, but rather only compares the 

current cluster set’s performance against the most improving neighbor clusters set, the 

computation time when using the AUC becomes more manageable. 

As explained in Section 4.5.1, because cluster sets are evaluated based on AUC 

estimates, some cluster sets can’t be distinguished by their AUC detection performance. For a z-

score confidence level of 95%, two cluster sets are indistinguishable if their z-score value falls 

between ±1.96. Thus, when a search algorithm finds two indistinguishable cluster sets, it can’t 

claim that one is better than another and should report both cluster sets as possible solution 

cluster sets. Consider for example the symmetric cluster sets in Figure 6. Even though the two 

cluster sets are unique, they still have the exact same worst-case AUC. Likewise, if two large 

cluster sets are exactly the same but differ in only one cluster, then their worst-case AUC will 
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most likely be indistinguishable as well. Given the various possible combinations of cluster 

shapes and sizes in 𝑪𝑎𝑙𝑙, it is unsurprising that diverse cluster sets may still yield similar worst-

case AUC estimates. 

Figure 6. Two cluster sets that are unique but will still have the exact same worst-case detection 

performance at the POI (pink diamonds). 

When a search algorithm finds at least two indistinguishable cluster sets, we say that the 

search has found an “AUC plateau” in the cluster set search space. The plateau of 

indistinguishable cluster sets may be more than two cluster sets long, and the WSN designer 

would benefit from examining the different resulting cluster sets. Thus, a search should continue 

looking at other neighbor cluster sets to determine if there are more cluster sets indistinguishable 

from the cluster set with the highest AUC. A local search algorithm that compares cluster sets 

based on Monte Carlo simulations should therefore return not only the final (locally optimum) 

cluster set found, but also a list of all cluster sets that are indistinguishable from the final cluster 

set.  
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While looking for more neighbors that are indistinguishable from the current solution 

cluster set, a gradient search can have three possible outcomes. First, if the new neighbor cluster 

set has an AUC that is much worse than the plateau AUC (𝑧 < −1.96), the search ends since the 

AUC is no longer improving in the direction of most improvement. In this case, all cluster sets in 

the plateau are part of a local AUC maximum. Secondly, if the new neighbor cluster set is much 

better than the current highest AUC (𝑧 > 1.96), the search must reset the list of plateau cluster 

sets and restart the search from its newly found solution cluster set. Finally, if the new neighbor 

cluster set AUC is indistinguishable from the plateau AUC, the neighbor set should be appended 

to the plateau list. However, even if the neighbor AUC is indistinguishable from the current 

highest plateau AUC, the neighbor AUC may still be higher than some of the current plateau 

cluster sets. For example, consider Figure 7 which shows cluster sets being compared and where 

the circles represent the cluster set AUC and the vertical lines passing through the circles 

represent the respective AUC variance. In figure 7, when the AUC of cluster set (CS) 1 is 

compared to CS 2, the AUC of CS 2 is clearly higher, so cluster set 2 becomes the current 

solution cluster set. When CS 2 is compared to CS 3, both cluster sets are indistinguishable due 

to AUC estimation randomness, so both are added to the plateau list. However, when CS 4 and 

CS 5 are compared to CS 3, they are found to be indistinguishable from CS 3 but clearly better 

than CS 2, and cause CS 2 to be removed from the list. Therefore, when indistinguishable 

clusters sets are being added to the list of solution cluster sets, the list must be refined with the 

addition of each new highest AUC cluster set. The final list of solution cluster sets must contain 

only the cluster sets that are indistinguishable from the final highest AUC cluster set. 



33 

Figure 7. As cluster sets are search, some will be indistinguishable from each other due to 

estimation variance. However, as the search progresses, a new cluster set could be 

indistinguishable from the highest AUC cluster sets but distinguishable from the lowest AUC 

cluster set. 

Once the gradient search finishes and returns its list of solution cluster sets, the WSN 

designer may choose to end the analysis or refine it further. If the AUC of the best cluster set in 

the final cluster set list is satisfactory, it can be selected as cluster set to use in the scan statistic. 

On the other hand, if additional analysis is desired, the best cluster set in the final cluster set list 

can also be used as a starting point for another gradient search using a higher number 𝑀 of 

Monte Carlo drops, which reduces the AUC standard deviation and allows for better cluster set 

comparison. 
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Section 5.3 – Proposed Algorithm 

In this section, we implement the gradient search principles presented above and describe 

our proposed gradient search algorithm in detail. 

The core idea is to add and remove clusters to the highest AUC cluster set following the 

principles described in Sections 5.1.0 and 5.1.1 until the AUC stops improving. In general, the 

algorithm sequentially tries adding a group of 1, 2, 3, …, N clusters to the current solution 

cluster set until the AUC doesn’t improve from adding any group of clusters. Once adding N 

clusters fails, the search tries removing a group of 1, 2 ,3, …, N clusters from the solution cluster 

set. After both improvement approaches stop increasing the AUC, the local search reports the 

cluster set with the highest AUC as well as all found cluster sets that are indistinguishable from 

the highest AUC. Whenever a better cluster set is found during the search procedure, the 

algorithm restarts the search from the new solution cluster set by adding and removing groups of 

1 to N clusters from the new starting point. Finally, to give the local search more chances at 

finding the local maximum, the search is repeated multiple times with random initial cluster sets. 

The final lists from all the searches can then be filtered to obtain their highest AUC cluster set as 

well as all cluster sets indistinguishable from the highest AUC cluster set. The step by step 

search procedure is described below. 

Algorithm Terms: 

• Let SCS = Solution Cluster Set, the cluster set with the highest AUC so far

• Let NCS = Neighbor Cluster Set.

• Let N = the number of clusters to “add to” or “remove from” the SCS to create the NCS.

• Let ITT = “Improvements To Try”, a list keeping track of which improvement

approaches (such as adding clusters or removing clusters) have not been used to create a

NCS.

• Let FL = “Final List”, the list containing the highest AUC cluster set and all cluster sets

indistinguishable from it.
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Search Algorithm: 

      Initialize 

1. Set initial cluster set as SCS.

2. Add SCS to FL.

3. Set 𝑁 = 1.

4. Set 𝑁𝑚𝑎𝑥 and 𝐹𝐿𝑚𝑎𝑥.

5. Set ITT to all improvement approaches to try.

      Search 

6. Use first ITT entry to add/remove N clusters to SCS to create NCS.

7. Compute detection performance improvement metric.

8. Check for improvement.

a. If NCS is better than or indistinguishable from SCS.

i. Set 𝑁 = 1 if NCS is better than SCS else set 𝑁 = 𝑁 + 1.

ii. Reset ITT if NCS is better than SCS.

iii. Update FL and SCS.

iv. Return to step 6.

b. If NCS is worse than SCS.

i. Set 𝑁 = 𝑁 + 1.

ii. Return to step 6.

9. If 𝑁 = 𝑁𝑚𝑎𝑥 and 𝑙𝑒𝑛(𝐼𝑇𝑇) > 1.

a. Remove first ITT entry.

b. Set 𝑁 = 1.

c. Return to step 6.

10. If 𝑁 = 𝑁𝑚𝑎𝑥 and 𝑙𝑒𝑛(𝐼𝑇𝑇) = 1.

a. End search.

11. If 𝑙𝑒𝑛(𝐹𝐿) = 𝐹𝐿𝑚𝑎𝑥.

a. End search.

Recall that the search algorithm is repeated using multiple random initial cluster sets. 

After the search has been run with the desired number of random starts, the final cluster set lists 

from all the runs are combined and filtered to reveal the overall highest AUC cluster set as well 

as all cluster sets indistinguishable from it. 
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Section 5.4 – Notable Algorithm Details 

The following are noteworthy details of the algorithm: 

• Note that an ITT list is used to keep track of all the possible improvement approaches the

algorithm should try when it builds a most improving neighbor cluster set. For example,

the ITT list could be: 𝐼𝑇𝑇 = ["add_clusters", "remove_clusters"]. At any point in the

search, the first element in the ITT list is the approach the algorithm uses to build the

neighbor cluster set. Once the approach of adding N clusters doesn’t improve the AUC,

the first element in the ITT list is removed and the second element (“remove_clusters”)

becomes the current improvement approach. However, whenever a better cluster set is

found, the ITT list should be reset, so that when returning to step 6 the search starts from

the new solution cluster set. When resetting the ITT list, any tried improvement

approaches should be appended to the end of the ITT list. This is to allow the search to

finish searching along the current improvement approach before trying the other

approach again. To illustrate this, assume the ITT list was initially: 𝐼𝑇𝑇 =

["add_clusters", "remove_clusters"]. After the algorithm finishes the “add_clusters”

approach, the ITT list would become: 𝐼𝑇𝑇 = ["remove_clusters"]. If an improvement is

found during the “remove_clusters” approach, the ITT list would be reset to: 𝐼𝑇𝑇 =

["remove_clusters", "add_clusters"] and if an improvement is found during the

“add_clusters” approach, the list would be reset to: 𝐼𝑇𝑇 =

["add_clusters", "remove_clusters"]. Once all ITT approaches don’t improve the current

solution cluster set, the search ends.

• Another important aspect of the algorithm is when it decides to increment N. Recall that

N is the number of clusters being added or removed to create the neighbor cluster set
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(NCS). If the algorithm builds the NCS by adding or removing N clusters and the NCS is 

worse than the current solution cluster set (SCS), then N should be increased to try the 

next gradient improvement cluster set. However, if the NCS built by adding or removing 

N clusters is better than the SCS, the NCS become the SCS and N should be reset to 1 so 

that the search can restart at step 6 using the new SCS. A special case occurs when NCS 

is indistinguishable from SCS. Because we don’t know if NCS is better or worse than 

SCS, we don’t know if N should be increased or reset to 1. So, in the case of 

indistinguishable cluster sets both are added to the final list, but we consider the raw 

AUC (ignoring AUC standard deviation) of the cluster sets in order to decide which 

cluster set is better and whether N should be incremented. If the raw AUC of NCS is 

greater than the raw AUC of SCS, then the neighbor cluster set becomes the current 

solution cluster set, N is reset to 1, and the ITT list is reset. Otherwise, if the raw AUC of 

SCS is greater than that of the NCS, the SCS is not changed and N is incremented. 

• Another detail worth mentioning is regarding how the final list (FL) is updated. During

the search, the final list stores the cluster set with the highest AUC and all the cluster sets

that are indistinguishable from it. As discussed in section 5.2, if a new cluster set is added

to the final list, it should be indistinguishable from the highest AUC cluster set. However,

if the new cluster set AUC is higher than the list’s highest AUC and indistinguishable

from it, the new cluster set AUC may be conclusively better than some of the other

cluster sets in the list. So, whenever the final list is updated with a new highest AUC

cluster set, every cluster set already in the list should be re-checked to ensure they are

indistinguishable from the cluster set with highest AUC in the list. Recall that two cluster

sets are indistinguishable if the z-score of the difference of their AUCs meets the
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condition: |𝑧| < 1.96. Thus, when a list is re-checked each of its cluster set AUCs must 

be compared against the highest AUC cluster set to ensure it still satisfies this condition. 

Section 5.5 – Algorithm Optimizations 

One of the most pressing issues when performing a local search over a non-convex space 

is ensuring the search can be completed in a reasonable amount of time. Thus, to expedite our 

local search, we recommend the following optimizations to improve the computation time and 

search performance of the core algorithm. 

First, the most basic optimization is to save all clusters sets that are created along with 

their respective AUC in a look up table. When building neighbor cluster sets by adding and 

removing groups of clusters, the same neighbor cluster set might be created twice. So, to keep 

the algorithm from recomputing the AUC metric for the same neighbor cluster set multiple 

times, a look up table can be used to reduce the total computation time. 

On another note, recall that neighbor cluster sets are built by adding or removing 1 to 

𝑁𝑚𝑎𝑥 clusters from the current solution cluster set. The 𝑁𝑚𝑎𝑥 upper limit for the number clusters 

to add and for the number of clusters to remove should be set to different values. Because the 

neighbor cluster sets built by adding clusters are created by adding N clusters to the N worst 

𝑝𝑜𝑖𝑣, the max number of clusters that can be added is equivalent to the total number of POI in 

the WSN: 𝑁𝑚𝑎𝑥,𝑎𝑑𝑑𝑖𝑛𝑔 = |𝑃𝑂𝐼|. On the other hand, when building neighbor cluster sets by 

removing clusters, the limit on the number of clusters that can be removed depends on the total 

number of clusters in the current solution cluster set. Since it is unreasonable to create an empty 

cluster set, the total number of clusters that can be removed should be the number of clusters in 

the current SCS less one: 𝑁max,removing = len(SCS) − 1.
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Similarly, when adding indistinguishable cluster sets to the final list (FL), an upper limit 

is needed for the final list size, 𝐹𝐿𝑚𝑎𝑥. If a certain SCS has many neighbor cluster sets with very 

close AUC values, the final list may continue to grow and extend the search time. So, to help 

limit the algorithm’s execution time, the search is terminated if the final list reaches its maximum 

size (see step 11 in the algorithm description). Given the total number of 𝑝𝑜𝑖𝑣 and the size of the 

initial cluster set, we recommend setting 𝐹𝐿𝑚𝑎𝑥 to the larger of the two: 𝐹𝐿𝑚𝑎𝑥 =

max (|𝑃𝑂𝐼|, 𝑙𝑒𝑛(𝑪𝑖𝑛𝑖𝑡𝑖𝑎𝑙)). By setting 𝐹𝐿𝑚𝑎𝑥 = |𝑃𝑂𝐼|, the algorithm is guaranteed to try

creating all neighbor cluster sets by adding clusters. Likewise, if 𝐹𝐿𝑚𝑎𝑥 = 𝑙𝑒𝑛(𝑪𝑖𝑛𝑖𝑡𝑖𝑎𝑙), the 

algorithm is guaranteed to try building all neighbor cluster sets by removing clusters. Thus, 

setting 𝐹𝐿𝑚𝑎𝑥 to the larger of the two options ensures that both improvement approaches are 

fully explored. 

Another recommended optimization is randomizing the elements in the ITT list.  Because 

the main objective of the algorithm is to perform a local search, random initial clusters sets are 

used to set the start search point in the non-convex search space. To add additional randomness 

to the search, the improvement approaches in the ITT list can be randomized to vary the initial 

improvement direction the algorithm follows. 

Finally, if the search ends due to its final list reaching maximum size, an important 

optimization would be to guarantee that the algorithm always tries both optimization approaches. 

Step 11 in the algorithm description conditions the search to stop once the final list size equals 

𝐹𝐿𝑚𝑎𝑥. However, if maximum FL size is reached while having tried only one improvement 

approach, the second approach is not given the chance to improve the SCS. Thus, as a final 

optimization, we recommend that if the final list reaches its maximum size and the ITT list 

contains more than one improvement approach, the 𝐹𝐿𝑚𝑎𝑥 limit should be doubled and the first 
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element in the ITT list should be removed. This allows the search to explore the second 

improvement approach and makes room in the final list for more indistinguishable cluster sets 

found using the second approach. 

Section 5.6 – Understanding the Algorithm Output 

Upon completing the local search, the presented algorithm returns the final list containing 

the highest AUC cluster set as well as all cluster sets it encountered that were indistinguishable 

from the highest AUC. For further analysis of the final list, the user should pay attention to a few 

key output variables to guide their decisions. 

When the algorithm terminates due to the final list reaching it maximum size, the number 

of improvements that occurred during the search should be examined. An improvement takes 

place whenever a new cluster set is added to the final list and the list size either shrinks or is 

reset. Such a list change indicates that a new cluster set was better than the current solution 

cluster set or better than some of the other cluster sets already in the final list. So, if the search 

ends with a full final list, the number of improvements should be considered to see how much 

searching the algorithm actually did. If the final list is full and few improvements were made 

during the search, it indicates the algorithm found an area in the search space with many similar 

local AUC maxima. On the other hand, if the final list is full and many improvements occurred, 

it shows that the algorithm actively explored the search space to find the current highest AUC 

cluster set. 

As mentioned previously, after analyzing the final cluster sets list, the user may simply 

choose to use the highest AUC cluster set as the final solution cluster set. However, if a more 

refined final list is desired, a higher number of Monte Carlo drops to estimate the AUC may be 
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selected, and the user can recompute the performance of all the cluster sets in the final list. 

Likewise, the user could also rerun the entire local search using the highest AUC cluster set as a 

new starting point with a higher number of Monte Carlo drops for better cluster set 

discrimination.  



CHAPTER 6 

ANALYZING ALGORITHM PERFORMANCE 

Section 6.0 – Verifying the Results 

To verify the performance of the proposed algorithm, the algorithm was implemented and 

used to optimize the scan statistic in sensor networks of different sizes with both grid and 

random sensor position distributions. The success in increasing the minimum detection 

performance was determined by comparing our proposed algorithm’s final highest AUC cluster 

set against four baseline cluster sets. The four baselines are described below and illustrated in 

Figure 8 for the 3x3 sensor grid scenario. 

• Baseline #0: The most fundamental cluster set a WSN can have is formed by simply

making each sensor into an individual cluster. The baseline #0 thus consists of all single

sensor clusters.

• Baseline #1: Adopted from a key paper by Guerriero [14] on the scan statistic, this

cluster set is created by scanning a window across the sensors and forming a cluster from

all the sensor encompassed by the window. The window’s size is fixed, and it is confined

to scanning within the WSN area of interest. In the implementation, a reasonable

scanning window size was chosen such that the clusters created were two clusters wide

and two clusters high. When the sensors are distributed randomly, only the clusters with

exactly four sensors were used to keep the same general approach as in the grid case.
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• Baseline #2: For the sensor grid case, the cluster set is created by selecting all the single

sensor clusters in the corners of the sensor distribution, all the two sensor clusters along

the edge of the sensor distribution, and all the clusters in the center of the sensor

distribution that are two sensor wide and two sensor high. This cluster set can be formed

by scanning a fixed size window across the network and allowing the window to start and

end outside the WSN boundaries [13]. However, due to the difficulty in creating a

reasonable cluster set for the random sensor distribution, all the clusters formed by the

scanning window are used in the random scenario.

• Baseline #3: This baseline cluster set is formed by combining all clusters from 𝑪𝑎𝑙𝑙 into

one cluster set. Recall that 𝑪𝑎𝑙𝑙 is formed by scanning multiple windows of different sizes

across the WSN.

 Section 6.1 – Simulation Setup 

  In the following analysis, all sensor placed in a grid were separated by consecutive 

integer spacing. Recall that when an emitter is present, a sensor’s measurement depends on 

the sensor’s distance to the emitter and on the emitter’s amplitude and decay rate, i.e. 

𝑍𝑘~𝑁(
𝐴
𝛾𝑑  
, 1). The emitter in all scenarios was given a decay of 𝛾 = 2, and its amplitude 𝐴 was 

adjusted to achieve an AUC between 0.70 and 0.75 in the Baseline #2 cluster set. Once fixed, 

this amplitude level was used in all AUC computations and comparisons. All AUC estimates 

were computed using 𝑀 = 100,000 Monte Carlo drops to achieve an AUC standard deviation 

around 0.001 as given by the standard deviation upper bound 𝜎𝐴𝑈𝐶,𝑈𝐵 =
1

2√𝑀
 in [36]. 
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Figure 8. The four Baseline cluster sets used to evaluate the performance of the final local search 

cluster set. Baseline #0 is all single sensor clusters. Baseline #1 is all clusters of a fixed size. 

Baseline #2 is a scanning window cluster set. Baseline #3 is all clusters created using different 

sized scanning windows. 
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When finding the solution set of our proposed local search algorithm, the search was run 

multiple times and the highest local optimum was chosen. More specifically, our algorithm was 

repeated 12 times with 12 different initial cluster sets. The first search started from an empty 

cluster set and the second started from the Baseline #2 cluster set. The remaining 10 runs used 

random initial cluster sets. These random sets were built by starting with an empty set and 

sequentially adding a new cluster to a sensor not covered by the set until all sensors were 

included in the cluster set. The final lists from the 12 searches were then combined and the AUC 

difference z-score was used to compare all these cluster sets against their overall highest AUC 

cluster set. Once the final list is processed using the z-score, the list should contain only the 

overall highest AUC cluster set and all cluster sets indistinguishable from it. By running the local 

search multiple times, it was given more chances to find a better local optimum. Note that our 

local search implementation used all the optimizations described in section 5.5 and also used a 

critical z-score value of 1.96 to obtain a 95% confidence level. 

Section 6.2 – The Grid Network Case 

The local search approach was first tested with sensors placed in grids of varying sizes. 

For sensor network sizes ranging from 3x3 grids to 10x10 grids, the worst-case AUC estimate for 

the four baseline cluster sets and the cluster set produced by our local search algorithm were 
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computed. As mentioned previously, the local search was run 12 times for each grid size before 

choosing the highest local optimum. Comparing the relative worst-case AUC estimates of the 

four baselines with the local search cluster sets for each grid size in Figure 9, it is possible to 

observe that our local search outperforms all the baseline cluster sets.  

Figure 9. Comparison of detection performance of local search cluster sets against all Baseline 

cluster sets. 

         More precisely, in the 10x10 grid case, our proposed algorithm had an estimated AUC of 

0.750 ± 0.001 while the best baseline (Baseline #2) had an estimated AUC of 0.690 ± 0.001 

(see Figure 10 for a comparison of the ROC curves). This improvement in detection performance 

is also observed at all relevant emitter amplitudes (see Appendix C). 
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Figure 10. Comparison of ROC curves for 10x10 grid of sensors. Local search AUC is clearly 

shown to improve over the best baseline cluster set AUC at the worst POI. 

      For all grid sizes, Baseline #2 is the second best cluster set because it builds its cluster set by 

adding very reasonable clusters to account for all the grid 𝑝𝑜𝑖𝑣. However, despite the reasonable 

clusters in Baseline #2, the local search cluster sets improved the minimum worst case AUC 

estimates for all grid sizes. Aside from the 3x3 grid, our local search approach exceeded the 

worst-case AUC estimate of Baseline #2 by at least 9 standard deviations, suggesting that the 

actual worst-case AUC is indeed better than the actual worst-case AUC of Baseline #2 and all 

other baselines. Furthermore, as shown in Figure 11, as the network grid size increases, the 

improvement of the local search cluster set over the Baseline #2 cluster set also increases. This is 

a promising trend which suggests the local search cluster set may offer even more improvement 

for larger grid sensor networks. 
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Figure 11. Local search cluster set detection performance improves over the Baseline #2 cluster 

set as the sensor network size increases. 

To give a better insight on why the cluster set produced by our local search method is 

better than the baseline clusters sets, Figure 12 compares the Baseline #2 cluster set for a 7x7 

sensor grid against the corresponding highest worst-case AUC cluster set found after 12 local 

searches. One of the most noticeable differences is that the local optimum cluster set has 30 

clusters while Baseline #2 has 64 clusters. Using fewer clusters helped the local search increase 

its worst AUC from 0.804 ± 0.001 of the Baseline #2 cluster set to 0.848 ± 0.001 of the cluster 

set found by our local search because reducing the number of clusters served to reduce the 

effects of the Multiple Hypothesis Testing Problem (MHTP). Recall, the MHTP causes the 𝑃𝐷 of 

a cluster set to suffer since using more clusters raises the scan statistic threshold and making it 

harder to detect the presence of the emitter [13]. Furthermore, notice that the local search cluster 

set prioritized using smaller clusters at the corners and edges of the region of interest while using 

larger clusters to cover the sensors at the center. Placing smaller clusters at the corners and edges 
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allows the cluster set to better detect an emitter placed at the most distant 𝑝𝑜𝑖𝑣 since the smaller

and local clusters are the most relevant to the distant 𝑝𝑜𝑖𝑣. Meanwhile, the 𝑝𝑜𝑖𝑣 in the center of 

the grid are surrounded by sensors and are more readily detected by practically any nearby 

clusters. In general, our proposed local search algorithm reduces the number of clusters near the 

center of the ROI and adds better clusters to the edges where the detection performance is worse. 

Essentially, the local search optimizes the cluster set by reducing the detection performance at 

the center of the WSN to improve the minimum detection performance at edge 𝑝𝑜𝑖𝑣.

Figure 12. Local search cluster set (left) achieves a higher detection performance over the Baseline 

#2 cluster set (right) by reducing the total number of clusters which reduces the Multiple 

Hypothesis Testing Problem. The worst case emitter position is also shown by the red triangle. 

Section 6.3 – The Random Network Case 

While the grid scenario is easier to analyze, it may be harder to implement in the field. 

So, the local search algorithm was applied to a WSN with randomly scattered sensors. To 

evaluate the random case, ten different random sensor networks with 25 randomly located 
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sensors each were created. For each of the ten networks, the AUC of the four Baselines and the 

AUC of the local search cluster sets were computed. Once again, the highest AUC cluster set 

from 12 searches was used as the final local search cluster set. Figure 13 compares the AUCs of 

the Baselines and local search cluster sets from all ten random sensor networks. 

Figure 13. Comparison of local search cluster set against Baseline cluster sets when using 

different random sensor networks.
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Just as in the grid scenario, the local search cluster set demonstrated definitive 

improvement over all baseline cluster sets. As shown by the histograms in Figure 13, the local 

search AUC mean is well above the mean of every baseline AUC. Likewise, the AUC 

improvement for a single random WSN can be observed by considering the ROC curve (Figure 

14) for the local search cluster set and best baseline cluster set (Baseline #3). Just like in the grid

scenario, the AUC improvement seen in a single random sensor network is also observed at all 

relevant emitter amplitudes (see Appendix C). 

  Due to the random placement of sensors, a WSN with 25 randomly placed sensors 

will have more than a WSN composed of a grid of 25 sensors (see Figure 15). Moreover, the 

in a random WSN also have a more complex spatial distribution. The added and 

unpredictable complexity of the sensor and locations makes it much harder to create 

reasonable cluster sets. Nevertheless, the focus of the local search to improve the minimum 

detection performance takes this complexity into account and drives its solution cluster set 

above the baselines. 
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Figure 14. Comparison of ROC curves for a random 25 sensor network. The local search cluster 

set demonstrates once again its improvement over the best baseline cluster set. 
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Figure 15. Random sensor (blue dot) placement leads to extra POI (pink diamonds) that are also 

positioned in random locations. The irregularity makes it harder for a human to create a reasonable 

cluster set by observation but is addressed by the local search algorithm. 



CHAPTER 7 

CONCLUSION 

Section 7.0 – Final Remarks 

In summary, while the detection performance of a wireless sensor network was known to 

be improved by using the scan statistic, there has been limited development to determine which 

clusters should be used by the scan statistic. We have presented a local search method that 

successfully optimizes the cluster set for the scan statistic in both grid and random sensor 

networks and thereby increases its worst-case detection performance. By sequentially adding 

clusters to the worst possible emitter positions as well as removing the least valuable clusters, 

our modified Gradient Ascent Search generated a list of optimized cluster sets that improved the 

scan statistic’s worst-case detection performance over baseline cluster sets. 

Section 7.1 – Future Work 

Like any other local search, our local search algorithm naturally requires extensive 

computation time. Further research is needed to explore additional ways to improve the overall 

search time and performance. Possible areas for future work include: 

• Implementing a swap improvement approach in order to build new neighbor cluster sets

by removing and adding clusters simultaneously. This is another approach to try in
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addition to the only adding clusters and only removing clusters approaches when building 

neighbor cluster sets.  

• Exploring possible characteristics of unfavorable search paths to reveal early stop

indicators to help the search change improvement directions sooner. For example, when

removing clusters, there comes a point when the loss of N or more clusters will always

make a worse cluster set.

• Improving the overall scalability of the algorithm. A local search can take a significant

amount of time to find a local optimum, so it is crucial to ensure that efficient

computation techniques are used. Two key areas worth exploring further are how to find

the worst 𝑝𝑜𝑖𝑣 and how to compute the detection performance of a cluster set.

• Searching the first neighborhood completely before starting the first improvement

approach. At the cost of extra initial computation time, the local search could be

guaranteed to start its search in the direction of most improvement.

Finally, it should be especially noted that, while we used the cluster set’s worst-case AUC 

estimate as our improvement metric, any cluster set detection metric could be applied to our local 

search. If a faster and more discriminating metric is found, it could further reduce the search time 

and lead to better optimized cluster sets. Nevertheless, as demonstrated above, our proposed 

local search has addressed the optimization of cluster sets and proved its ability to increase the 

sensor network’s detection performance. 
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Representing Clusters as a Binary Strings 

The way the cluster sets are represented is a key factor to determining what the neighbor 

clusters sets 𝑪𝑛 of the current cluster set 𝑪𝑐 will be. As an initial approach, we represented all 

cluster sets 𝑪𝑖 with a binary string, as suggested in [13]. Assume a binary string with |𝑪𝑎𝑙𝑙| digits 

so that each cluster in 𝑪𝑎𝑙𝑙 corresponds to a digit in the binary string. For example, if 𝑪𝑎𝑙𝑙 =

{𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5} then a cluster set can be represented as a 5 digit binary number. Each binary 

digit would be 1 if the cluster 𝐶𝑥 is present in the cluster set, or 0 if the cluster is not in the 

cluster set. So, a cluster set with clusters 𝐶1, 𝐶3, and 𝐶4 would be written as: 𝑪134 = 10110. 

Using this notation, neighbor cluster sets 𝑪𝑛 could be created by taking all cluster sets that differ 

from 𝑪𝑐 by 𝑑 digits, i.e. have a Hamming distance of 𝑑 from 𝑪𝑐. If 𝑑 = 1, the neighbors of 𝑪134 

would be:  

𝑪34 = 00110 

𝑪1234 = 11110 

𝑪14 = 10010 

𝑪13 = 10100 

𝑪1345 = 10111 

Additional Hamming distance neighborhoods could also be created by varying 𝑑. 

This cluster set and neighborhood representation proved to be impractical. By using a 

Hamming distance neighborhood with 𝑑 = 1, each cluster set 𝑪𝑐 would have |𝐶𝑎𝑙𝑙| neighbors. In 

our implementation, a 3x3 grid of sensors would have |𝐶𝑎𝑙𝑙| = 41 neighbors while a 10x10 grid

of sensors would have |𝐶𝑎𝑙𝑙| = 2,166 neighbor cluster sets. These large neighborhoods did not

restrict the search space enough and thus gave the current cluster set too many possible 

improvement directions. In chapter 5, we represent a cluster set simply as a collection of clusters 

and build neighbors by adding/removing specific clusters
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Table 1. Ranking clusters by their 𝑃𝐷 at POI

#0 Best      Cluster Rank   →   #8 Worst 

POI Position 0 1 2 3 4 5 6 7 8 

(-0.5, -0.5) {0} {0, 1, 3, 4} {3, 4, 6, 7} {1, 2, 4, 5} {8, 4, 5, 7} {4} {6} {2} {8} 

(-0.5, 0.5) {0, 1, 3, 4} {0} {1, 2, 4, 5} {3, 4, 6, 7} {8, 4, 5, 7} {4} {2} {6} {8} 

(-0.5, 1.5) {1, 2, 4, 5} {2} {0, 1, 3, 4} {8, 4, 5, 7} {3, 4, 6, 7} {4} {0} {8} {6} 

(-0.5, 2.5) {2} {1, 2, 4, 5} {8, 4, 5, 7} {0, 1, 3, 4} {3, 4, 6, 7} {4} {8} {0} {6} 

(0.5, -0.5) {0, 1, 3, 4} {0} {3, 4, 6, 7} {1, 2, 4, 5} {8, 4, 5, 7} {4} {6} {2} {8} 

(0.5, 0.5) {0, 1, 3, 4} {3, 4, 6, 7} {1, 2, 4, 5} {4} {0} {8, 4, 5, 7} {6} {2} {8} 

(0.5, 1.5) {1, 2, 4, 5} {8, 4, 5, 7} {0, 1, 3, 4} {4} {2} {3, 4, 6, 7} {8} {0} {6} 

(0.5, 2.5) {1, 2, 4, 5} {2} {8, 4, 5, 7} {0, 1, 3, 4} {3, 4, 6, 7} {4} {8} {0} {6} 

(1.5, -0.5) {3, 4, 6, 7} {6} {0, 1, 3, 4} {8, 4, 5, 7} {1, 2, 4, 5} {4} {0} {8} {2} 

(1.5, 0.5) {3, 4, 6, 7} {8, 4, 5, 7} {0, 1, 3, 4} {4} {6} {1, 2, 4, 5} {8} {0} {2} 

(1.5, 1.5) {8, 4, 5, 7} {3, 4, 6, 7} {1, 2, 4, 5} {4} {8} {0, 1, 3, 4} {6} {2} {0} 

(1.5, 2.5) {8, 4, 5, 7} {8} {1, 2, 4, 5} {3, 4, 6, 7} {0, 1, 3, 4} {4} {2} {6} {0} 

(2.5, -0.5) {6} {3, 4, 6, 7} {8, 4, 5, 7} {0, 1, 3, 4} {1, 2, 4, 5} {4} {8} {0} {2} 

(2.5, 0.5) {3, 4, 6, 7} {6} {8, 4, 5, 7} {0, 1, 3, 4} {1, 2, 4, 5} {4} {8} {0} {2} 

(2.5, 1.5) {8, 4, 5, 7} {8} {3, 4, 6, 7} {1, 2, 4, 5} {0, 1, 3, 4} {4} {6} {2} {0} 

(2.5, 2.5) {8} {8, 4, 5, 7} {3, 4, 6, 7} {1, 2, 4, 5} {0, 1, 3, 4} {4} {6} {2} {0} 

Table 2. Cluster ranks at all POI 

Cluster Cluster’s Rank at each POI 

{0}  0, 1, 5, 5, 1, 2, 4, 6, 5, 4, 5, 7, 5, 6, 7, 6 

{2}  5, 5, 1, 0, 6, 4, 2, 1, 7, 5, 4, 5, 6, 7, 6, 5 

{6}  5, 6, 7, 6, 5, 4, 5, 7, 1, 2, 4, 6, 0, 1, 5, 5 

{8}  6, 7, 6, 5, 7, 5, 4, 5, 6, 4, 2, 1, 5, 5, 1, 0 

{4}  4, 5, 5, 4, 5, 2, 2, 5, 5, 2, 2, 5, 4, 5, 5, 4 

{0,1,3,4}  1, 0, 2, 2, 0, 0, 1, 3, 2, 1, 3, 4, 2, 3, 4, 3 

{1,2,4,5}  2, 2, 0, 1, 3, 1, 0, 0, 4, 3, 1, 2, 3, 4, 3, 2 

{3,4,6,7}  2, 3, 4, 3, 2, 1, 3, 4, 0, 0, 1, 3, 1, 0, 2, 2 

{4,5,7,8}  3, 4, 3, 2, 4, 3, 1, 2, 3, 1, 0, 0, 2, 2, 0, 1 
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Improved Detection Performance for Varying Emitter Amplitudes and Network 𝑃𝐹𝐴

The results shown in Chapter 6 demonstrated the improved detection performance of the 

local search cluster set over the best baseline cluster set. However, because the final probability 

of detection of the cluster set will also depend on the emitter signal amplitude, the network 

designer must analyze the final selected cluster set at multiple emitter amplitudes to establish a 

minimum amplitude for acceptable detection performance. The final 𝑃𝐷 of the cluster set will 

also depend on the desired maximum scan statistic 𝑃𝐹𝐴. Nevertheless, the local search algorithm 

presented is robust regarding the emitter amplitude and desired scan statistic 𝑃𝐹𝐴. As shown in 

Figure 16, the highest AUC cluster set found using the local search approach will outperform the 

best baseline cluster set AUC.  
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Figure 16. Comparison of the local search cluster set and the corresponding best baseline cluster 

set in a 10x10 grid and 25 sensor WSN. For various emitter amplitudes and desired maximum 

network 𝑃𝐹𝐴, the local search 𝑃𝐷 still shows improvement over the best baseline 𝑃𝐷. 
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