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ABSTRACT

INTEGRATING EXPERIMENTAL PARAMETER SPACE FOR 
GRANULAR FLOW WITHIN POLYGON TUMBLERS

Michaela McMahon, MS
Department of Mechanical Engineering

Northern Illinois University, 2022
Dr. Nicholas Pohlman, Director

Granular flows a re c omplex p henomena b ridging b oth fl uid an d so lid me chanics and 

observed frequently in the natural world. The transitional dynamics of acceleration from 

solid body motion to rapid flow c an a ffect many as pects in cluding vo lume flow rat es and 

mixing behaviors. In order to study the combination of both variables together within 

polygon-shaped tumblers, control systems are necessary with a corresponding user interface. 

This thesis reports an interface for changing variable inputs to the system. Predictions 

of rotation rates with corresponding interfaces with hardware connections are described. 

Results of image analysis verify output performance that incorporates the following variable 

changes: 1. Number of sides of the polygon, 2. Number of oscillations between vertices, 

3. Phase of acceleration or deceleration at start, 4. Long-time performance in time-based

digital data acquisition controls. The mechanisms for operation offer suggestions on the next 

improvements and preparing the software and hardware for future experiments in granular

segregation and velocity measurements.
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CHAPTER 1

INTRODUCTION

Fluid flow is an important field of study. Liquids and gasses are present in every day life

from human blood flow to a boiling kettle. Fluid flow has been long studied and contains

many sub fields. One such sub-field is called granular flow. Granular flow is flow in which

discrete particles move relative to one another with fluid-like motions. Granular flows are

ubiquitous and exist in both the natural and industrial worlds [3]. In nature they are seen

in things like moving sand, avalanches and deposition of soil [2]. Some industrial examples

include corn or grain silos, transportation of coal dust, and mixing [4].

System repeatability is necessary when studying granular flow in tilted chutes, exit area of

silos, or rotating tumblers [5]. Rotating tumblers, drums with axial rotation, are of particular

interest. A benefit of rotating tumblers is their capacity for continuous operation without

the need to replenish granular source. Additionally they are predictable and repeatable

systems making them ideal for study. Rotating tumblers have many industrial applications

such as mixing, polishing and refining [3] [4]. There has been considerable study of the flow

patterns found in rotating tumblers as a result of accumulated segregation of small and large

particles. Within tumblers different flow regimes exist. There are four general kinds of flow:

avalanching, continuous, cataracting, and centrifuging [6].

The four kinds of flow occur at different rotation rates. At low rotation rates particles

build up along one edge of the tumbler and then cascade down suddenly. This is avalanching

flow. As rotation rate is increased, the time between cascades decreases until the flow

eventually becomes continuous. During continuous flow the free surface length and angle

of repose of flowing layer are relatively constant. If the rotation rate is increased further,
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the free surface becomes S-shaped and cataracting flow is present due to material launching

from the higher rotation rate. At high enough rotation rates, the particles in the tumbler

will centrifuge and are expelled to the sides of the drum where they experience solid body

rotation. [6]

A challenge of granular materials is their opaque appearance. It is impossible to view

internal dynamics without high power 3D imaging equipment [7]. 3D tumblers have been

studied using magnetic resonance imaging (MRI); however, due to high equipment cost

simplifications are often made [8] [3]. To simplify 3D tumblers and eliminate the need for

MRI imaging, quasi-2D tumblers are used. A quasi-2D tumbler has a depth which is small

relative to the tumbler diameter. Quasi-2D tumblers can be used to study the end effects

of 3D tumblers as well [3]. In this study, the experimental set up was designed for quasi-2D

tumblers.

Segregation is an important characteristic in granular flow. It can occur when there

are particles of different shape, size, or density. Segregation works against mixing which

is why it is important and highly studied [2]. It is desirable to understand the granular

flow dynamics of segregation. There are two main approaches which have been taken when

studying segregation in quasi-2D tumblers.

The first was to study systems with constant free surface length and periodically varying

rotation rates. Radial segregation with lobe formation was seen. The number of lobes

corresponded to the acceleration cycles per revolution. In figure 1.1 a result is shown for a

half filled tumbler and eight acceleration cycles per revolution. Four lobes formed in the half

filled circular tumbler corresponding to the eight acceleration cycles per revolution [1].
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Figure 1.1: Segregation of particles in half filled circular tumbler with eight acceleration
cycles per revolution [1]

The second explored a changing free surface length, L, via polygon tumblers. As a

polygon tumbler rotates at a constant speed the free surface changes as a function of tumbler

orientation. Stable and time independent segregation patterns were observed. Prediction of

segregation patters was possible with simple models of linear velocity profiles [9] and observed

patterns were dependent on fill level and tumbler shape which directly affect the repeatability

frequency of the flowing layer [2]. Figure 1.2 shows the development of segregation lobes

formed in two different shaped tumblers.

Figure 1.2: Experiments (left image) of segregation of small black particles compared to
simulations (right images) of repeated Poincare sections of the simple velocity profile [2]

All of the prior research in granular tumblers relied on steady-state operations or varia-

tions of one of the driving factors of free surface flow: length dimension and rotation rate.
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The repetition of either one of those variables induced the lobed segregation that makes

granular flows unique. The goal of this research is to build an experimental foundation on

which will begin exploration of the combined effects of both changing shape and varying

rotation rate within granular flow. The goal is to create a repeatable system for flow ob-

servation under a combination of factors. Described in this thesis will be configurable for

varying polygon shapes and rotation rates as a function of all input parameters of a gen-

eralized periodic function. The system will have a user interface which will allow for the

set-up of user desired specifications making an easier transition for undergraduate students.

The interface will be combined with a signal controller which will vary the rotation rate as

a function of orientation.

Chapter 2 describes the mathematical functions of the periodic system as related to

tumbler shape. Chapter 3 then explores hardware and signal controller set up. Chapter

4 goes on to describe the verification process. Results comparing the input performance

to a example shape are reported in Chapter 5. The opportunities for future directions is

suggested in the conclusions of Chapter 6.



CHAPTER 2

THEORY

2.1 Angular Velocity as a Function of Edge Features

Rotation rate or angular velocity, ω, is specified by the user as a function of orientation

of the tumbler, θ. Angular velocity takes the following form:

ω(θ) = ωss +
ωmax + ωmin

2
sin(fθ − ϕ) (2.1)

ωss is the average angular velocity which will be experienced by the tumbler. The maximum

and minimum values for angular velocity are determined by the amplitude of the function.

Amplitude is user specified value and will determine the extrema for the configuration. The

frequency, f , and phase shift, ϕ, of the sine function are determined by a combination of

user inputs including the number of polygon sides, N , number of cycles per side length, F ,

and cycle offset, P , that is specified as a percent of the period of the wave form. Frequency

is calculated by equation 2.2.

f = 2π
F

L
(2.2)

Here side length, L, was calculated as a function of vertex locations and was dependent on

N . The actual dimension of L was not important, rather the degrees of rotation per side

that was key. The first vertex for any N -sided polygon was placed at the point (1, 0). The

subsequent vertices were also at a radial length of 1, but rotated the number of degrees per

N side.
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Phase shift is calculated by equation 2.3.

ϕ = 2π
P

F
(2.3)

While phase of argument in equation 2.1 is in radians, there is an intuitive nature of P given

in equation 2.3. When P is zero, there is no offset meaning the rotation rate, as the initial

vertex passes through the point (1, 0), will be ωss. When P is 0.25, angular velocity will

start at its maximum rotation rate (at the peak of the sine curve) and experience negative

acceleration. In the case that P is 0.75, the system begins at its minimum rotation rate and

accelerates out of the gate. Selecting any P value can determine whether the flowing layer

dimension would be affected by acceleration or deceleration of ω when at longest lengths of

the free surface.

Combining equations 2.1, 2.2, and 2.3 into one, the following equation culminates.

ω(θ) = ωss + A sin

(
2πF (θ − LP

F
)

L

)
(2.4)

where all the coefficients beside θ serve as user inputs. It is used as a basis for visualization

graphing within the GUI, figure 2.1, as well as the driving signal control function.

2.2 Angular Velocity as Function of Time

The system developed was a feed-forward system which is controlled based on timers

available in the computing and digital data acquisition hardware. While it is desirable to

be able to run tests and think about angular velocity as a function of orientation and edge

features, controlling the system by θ would require integration of a rotary encoder, which
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was beyond the purpose of the present research. Because the system is controlled based on

time, equation 2.4 needed to be converted to an equation dependent on time.

Equation 2.5 shows the time dependent form of ω.

ω(t) = ωss + A sin(2π(ftimet− P )) (2.5)

In equation 2.5 ωss, A and P are direct user inputs. F , specified by the user in cycles per

side, needed to be converted to units of Hz. Frequency in Hz is described in equation 2.6.

ftime =

(
F cycles

side

)(
N sides

rev

)(
ωss rev

min

)(
1min

60s

)
(2.6)

Equation 2.6 was formulated by unit analysis. The time it takes for rotate through one side

of any give polygon at an average rotation rate of ωss was calculated in seconds and then

multiplied by F which is in units of cycles
side

yielding equation 2.6.

Equation 2.5 describes ω as a function of time and was a driving equation within the

signal controller. It allowed for tests to be run for a certain specified runtime, trun.

2.3 GUI Operation and Formulation

The complexities of angular velocity control need to be encapsulated into a clean and

simple package for future researchers, especially undergraduate students. A graphical user

interface was developed to take user the specified values which make up equation 2.4 and drive

a rotating motor based on the specified configuration. The GUI provides visualization for the

driven signal, which will allow future researchers easy access understating the experimental

domain.
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2.3.1 Operation

The user interface was developed using MATLAB’s uifigure functions. The uifigure is

a dynamic environment which updates according to user inputs. It can be seen in figure 2.1.

The GUI contains six user edit fields and four push buttons. It takes inputs for ωss, N , F ,

P , A, and trun.

Figure 2.1: Graphical User Interface after initialization in MATLAB, blue lines show the
shape of N-sided polygon, orange sinasoidal wave represents ω as a particular point passes
through a reference

The axis area shows a visualization of the specified set up. The user enters values by

typing the desired number and then either pressing enter or clicking out of the edit field.

Once values are entered, the graph updates to reflect changes. Inputs for N , F , P , and A

affect the graph. It is of note that, although the starting vertex always remains at graph
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location (1,0), the user may chose to start the physical tumbler at any starting orientation.

The rest of the visualization is displayed based on the fixed vertex. Inputs for ωss and trun

do not change the graph but they are specified like the others, by typing the desired value

and pressing enter or clicking away from the edit field. Values for A and ωss are specified in

RPM and values for trun are specified in seconds.

The four push buttons were located on the GUI. The INITIALIZE LJ button finds

and sets up the LabJack signal generator (described in greater detail in Chapter 3). The

user must initialize the LabJack before running any control function. The AVG ω button

sends a signal which turns the tumbler at the specified average value. The signal continues

until it is manually stopped via the STOP AND SHUTDOWN button. The STOP AND

SHUTDOWN button will shut off the signal and disable DAQ hardware. The RUN button

runs the user specified varying velocity configuration for the duration of the user specified

runtime. It is important to note that the RUN setting runs until the runtime is reached

and will not be stopped by the STOP AND SHUTDOWN. In the event of emergency, the

system can be shutdown via the power strip source.

2.3.2 Code Formulation

The GUI pop up was created in MATLAB as a dynamic uifigure. Upon initial launch,

initial values for all inputs are set and an initial graph is populated. The process flow diagram

is as shown in figure 2.2.
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Figure 2.2: Process Flow of Developed GUI code in MATLAB

2.3.2.1 The Graphing Function

A dominating feature of the GUI is the graph which provides a visualization of any given

set up. First the polygon needed to be created for any given N value. Coordinates for vertex

locations were determined by fixing the first point at (0, 1) then rotating around, placing

a new point every 360/N degrees at a unit length 1. Since orientation does not scale with

tumbler dimension, this unit value is sufficient. The vertices were then plotted to create the

polygons. Side length, L, of any given polygon was calculated based on the distance formula

between a pair of vertex coordinates.
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The orange sinusoidal wave plotted across the edge of was formulated as the visualization

of angular velocity as a function of tumbler orientation (e.g. which portion of the polygon is

passing through the horizontal x-axis). First equation 2.7 was created based on user inputs.

It was then rotated to be graphed along the length of a polygon side.

ω = −A sin

(
2πF (θ − PL

F
)

L

)
(2.7)

The rotated equation for ω was plotted starting at the fixed vertex and was plotted back

across the side length. It starts at the vertex and then changes along the side length as if

the polygon were rotating through the angle θ.

2.3.2.2 Edit Field Callback Functions

Each user input edit field is accompanied with a corresponding callback function within

the MATLAB code. When a value is changed and entered, the callback rewrites the value

for that particular quantity. The callback functions for number of sides, cycles per side,

phase, and amplitude also call the draw function after the value is reset. Recalling the draw

function updates the graph.

Callback functions for amplitude and average angular velocity have an additional process.

Negative ω values are not allowed in the system meaning the tumbler must always be rotating

in the clockwise direction. Because of this condition, the average angular velocity must

always be larger than the amplitude. When the amplitude is reset, the callback checks to see

if the value is greater or smaller than the current value for average angular velocity. If the

value for amplitude is smaller the average angular velocity is updated to a value of A+ 0.3.

Similarly, when average angular velocity is resent, its callback checks to see if it is smaller or
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larger than the current amplitude value. If the value for average angular velocity is smaller,

the callback rewrites it to a value of A+ 0.3.

2.3.2.3 Push-button Action Functions

The INITLIZE LJ must be the first button action function run. The INITIALIZE LJ

function serves to find and configure the LabJack signal controller within the MATLAB

script. The LabJack .NET is made visible in MATLAB and then necessary constants are

set for MATLAB–LabJack communication.

After the LabJack is initilized, the AVG ω function can be run. The AVG ω function

sends a signal with drives the system at the user specified value, ωss. The STOP AND SHUT

DOWN button runs a shutdown sequence which first turns off the micro-stepper and then

shuts off the signal from the LabJack.

The RUN button pushes the varying angular velocity configuration specified by the user.

It does so by converting angular velocity from a function of θ to a function of time as

previously described in equation 2.5. Figure 2.3 shows an overview of the function process

flow.

MATLAB outputs the varying square wave signal at discrete time steps which are some

δt apart. The value of δt was set to a value of 0.1s. In order to track time, MATLAB’s tic

toc functions were used. Two timers were established within the code. One timer was used

to measure the global time and keep track of runtime. The other timer was used as a local

lap timer to keep track of δt. MATLAB continues to loop, outputting a new ω value every

0.1s, until the runtime is reached. Once the runtime is reached, the loop is exited. The micro

stepper is disabled and the LabJack signal is shut off.
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Figure 2.3: Process flow for RUN function

2.4 Summary of Described Theory

The calculations necessary for adjusting variables have been described. Future users will

have a multidimensional combination of variables that would apply to any set of polygon-

shaped quasi-2D tumblers. With the math and software configured, the information must

interface with the experimental hardware which is described in the next chapter.



CHAPTER 3

HARDWARE

The physical set up for the lab can be seen in figure 3.1. Indicated are the LabJack,

micro-stepper, motor, and driven shaft. Figure 3.2 depicts how the physical devices are

connected in series with the developed GUI.

Figure 3.1: Lab Set-Up, from left to right showing LabJack, Micro-stepper, Motor and
Driven Shaft

Figure 3.2: Schematic depicting the attachment flow of hardware
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3.1 Tumbler

A typical tumbler is constructed of three panels, the middle panel having a cavity which

can be filled with particles. The cavities form the shape of the granular flow tumbler envi-

ronment. In evaluating the performance of the developed system a triangle attachment was

mounted on the end of the drive shaft in place of a tumbler. The triangle is chosen over a

single pointer because it best emulates the lowest N polygon shape.

The triangle attachment was made from black acrylic material. The front face was cut

to be an equilateral triangle. Drawing of triangle front face is shown in figure 3.3.

Figure 3.3: Front Face CAD Drawing
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A small hole was placed in the center of the triangle so the back mount could be aligned

during attachment. The center hole also served as a visual marker with which the center of

the triangle was located within frame during the system verification process (described in

full detail in Chapter 4).

A back mount was cut also from acrylic material to allow for attachment into the keyed

motor shaft in the lab set-up. The back mount was glued to the triangular front face.

Drawings for back mount is shown in figure 3.4.

Figure 3.4: Back Mount CAD Drawing

The face of the acrylic triangle was coated with several layers of matt finish paint to

mitigate light reflection on the surface.
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3.2 Motor Set up

The tumbler panels are driven by a high torque Danaher K42HRLG-LNK-NS-00 stepper

motor and a Danaher P70360-SDN motor controller. The motor has a keyed axial drive shaft

which tumblers are attached to. The shaft is driven by a chain and sprocket configuration

containing two gears. The gear ratio is shown in equation 3.1

GR =
11 driving teeth

48 driven teeth
= 0.229 (3.1)

The micro-stepper ensures smooth driving of the motor even when the tumbler is rotating

a low rotation rates. It was set to 18,000 steps. During prior experiments at steady-state

rotation, a square wave generator was used to input a stepping frequency to the micro

controller. For the work conducted as part of this thesis, it takes in the square wave signal

from the LabJack. Micro-stepper pins 5 and 6 are used to enable or disable the micro-

stepper. If pin 5 is set to 0V and pin 6 is set to 5V, the stepper is enabled. If pin 5 is set to

5V and pin 6 is set to 0V, the stepper is disabled. In the disabled state the micro-stepper

the motor is not driven even if the LabJack is still sending a signal. The micro-stepper will

remain in the disabled state until it is enabled again.

Completely disabling the micro-stepper adds a layer of safety. If any undesired signal is

run by the user, the motor will remain still until the micro-stepper is enabled.

3.3 Signal Controller: LabJack U3-LV

A vital component of the assembly is the signal controller which was available as part

of a timer signal integrated within the LabJack U3 LV digital data acquisition hardware.
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MATLAB directly communicates with the LabJack to send desired signals to motor set-up.

The LabJack U3-LV has multiple modes and can accommodate inputs and outputs for many

functions.

One mode is the Frequency Output Mode, which outputs a square wave signal with any

specified frequency value. In equation 3.2, fsquare wave is what drives the value of ω but it

must be fed to the LabJack as an integer value which ranges from 0 to 255. The LabJack

has two onboard clock options, a 1MHz clock and at 48MHz clock. The two clocks give two

ranges for frequency values. The 1MHz clock was selected. The output square wave signal

is defined by several quantities which can be set based on application needs. Equation 3.2

describes the relationship frequency of the square wave, fsquare wave, and LabJack values.

fsquare wave =
base

2 ∗ value ∗ divisor
(3.2)

where base is the clock selected to it takes a value of 1MHz. The divisor divides the clock

base to narrow frequency range for better application. The divisor was set to a value of 2.

In order to determine what value to feed to the LabJack, the conversion between user

input rotation rate, in units of RPM, and square wave frequency must first be performed.

Equation 3.3 shows the conversion between rotation rate and square wave frequency.

fsquare wave = ωRPM

(
18, 000 steps

revolution

GR

)(
1 minute

60 seconds

)
(3.3)

Once the angular velocity value is converted into a square wave frequency, equation 3.2 is

rearranged and a value can be found for any desired ωRPM . Because the LabJack must

receive an integer for value, the MATLAB round function is used to value to an integer. The

timer value is sent to the LabJack using LabJack integrated MATLAB function.
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For the signal output the LabJack is connected to the micro-stepper at FIO4 and ground

pins. DAC0 and DAC1 are connected to micro-stepper pins 5 and 6 respectively to execute

the enable and disable operations.

3.4 Summary of Hardware Set-Up

A triangle attachment was built to know orientation of the drive shaft. Mechanical

connections made to convert rotation rates from signal-motor-shaft. Signal is produced and

output to generate steady-state and periodic rotation rates. With all systems operational,

the performance of the set-up needs to be evaluated.

fsquare wave = ωRPM

(
18, 000

steps

revolution

)(
11 driving teeth

48 driven teeth

)(
1 minute

60 seconds

)
(3.4)



CHAPTER 4

VERIFICATION PROCESS

After the system was developed verification needed to be performed to test the accuracy

of the control system. Verification was performed by taking videos of eight different testing

configurations. The videos were processed as a sequence of images. Observed motion was

analyzed and compared to expected behavior.

There are two major components to the verification process: the physical set-up and the

digital set-up.

4.1 Physical Set-Up

The testing set up can be seen in figure 4.1.

A triangle attachment was fabricated to fit the motor shaft in the same way the tumbler

attachments fit. The reason for creating the attachment was to provide a rotating object

which will have high contrast in video data. The triangle attachment was made from black

acrylic. The acrylic face was coated in a matt finish to decrease glare for the lighting. To

create clean edged contrast with the triangle attachment, a white backdrop was placed just

behind the triangle.

During the collection of video data, the triangle was illuminated by a singular 150 Watt

halogen work light. The single light allowed for uniform lighting and created minimal shad-

ows around the edge of the rotating triangle. Video was taken using a camera operating at

30fps.
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Figure 4.1: Lab Set Up for Testing, from left to right, Triangle Attachment, Halogen Light
and Camera

Several different rotation rate configurations were tested with varying N , F , P , and trun

See figure 4.1 below for testing combinations.

For all tests, ωss was set to 4 RPM and amplitude was set to 2 RPM. Average angular

velocity of 4 RPM meant that the triangle should rotate on full revolution in 15 seconds.

Selecting 2 RPM fpr the amplitude meant that the system ω extrema were half and twice

ωss. Runtime was set to 30 s for the test 1 through test 7. In 30 s it was expected that the

triangle would make two full revolutions if the system remained in phase. Additionally, 30 s

yielded 900 frames for tests 1 through 7. Since there no feedback loop, test 8 was performed

to observe how long the system would remain in phase. Test 8 was performed with a trun

on 180 s to test system after 12 revolutions to observe lag over time. Test 8 yielded 5400

frames.
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Table 4.1: Testing Configurations Each Taken as Video Data

4.2 Digital Set-Up

In order to process the test video, a verification code was developed. Videos were exported

into individual frames using IrfanView graphic viewer and loaded in developed MATLAB

code as a series of frames. The code tracked vertex location across the frames. Vertex data

was processed to yield orientation of the triangle in each frame as well as ω across the videos.

The verification process is show in figure 4.2.

Figure 4.2: Verification Digital Process Flow

While simple in terms of process and information flow, detailed features are necessary to

have reliable performance evaluation.
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4.2.1 Main Script

Before running the verification script, two quantities were observed from the first frame

of each test video. Figure 4.3 shows an example. Size dimension and center location were

specified as global pixel locations. Note that in images, the coordinate system is flipped in

the y-direction meaning the y pixel location value increases down the image. The location of

Figure 4.3: Frame loaded for visual inspection of size dimension and center location in pixels,
center location is marked by red x

the center of the triangle in pixels were observed and the distance from the center point to the

vertex was calculated. Both center location and size were entered into the verification script.

The measurements needed to be close to actual values but some error was acceptable. The
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main script passed each frame along with the size and center location data to a developed

function which outputs the location of a single triangle vertex within the frame. The vertex

location was stored in a matrix. As the script looped over each frame, the vertex matrix was

filled with the vertex locations across all frames in the test video.

4.2.2 Vertex Calculator

The vertex calculator is at the heart of the digital verification processes. Figure 4.4 shows

the process flow of the function.

Figure 4.4: Vertex Calculator Digital Process Flow

The vertex calculator function took in a single frame along with the location of the center

of the triangle in the frame and the distance in pixels from the center to a vertex. The first

step was to clean up the image. Canny edge detection was performed on the frame [10].

Next, the sides of the triangle needed to be located in the frame for the equations of each

side to be calculated. Figure 4.5 shows the internal process of the vertex calculator.
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Figure 4.5: Plot showing internal process of vertex calculation script, (a) Frame as it is loaded
to function, (b) Frame after edge detection is performed, (c) Reference triangle vertices are
shown, (d) Highlighted sections show bounded regions of each side, (e) Polyfit lines plotted,
(f) Calculated vertices plotted

To uniquely isolate each side of the triangle, a method was developed which used the

overlapping regions of three strategically placed circles to bound portions of triangle sides.

To begin, a digital reference triangle was created with the same size and center location as

the actual triangle in the frame. Around each of the three reference vertices, a digital circle

was created with a radius equal to the size of the triangle. Figure 4.6 gives a depiction of the

reference triangle and three circles. The overlapping regions of the three circles, highlighted

in figure 4.6 as the blue, green, and pink regions, uniquely bounded a portion of each of the

three sides of the triangle.

Using the reference triangle and circle formation shown in figure 4.6 was effective in

bounding regions of the triangle sides for almost all triangle orientations. In the case where

the triangle in the frame was 180° rotated compared to the reference triangle, the overlapping
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Figure 4.6: Reference triangle with Three Circle Bounding Region Diagram

sections would be empty. Thus no sides would be located. To accommodate all triangle

orientations, a condition was set so if any of the three overlaps were found to be empty a

secondary reference triangle would be created. The secondary reference triangle was simply

a horizontal reflection of the primary reference triangle. Three new circles were then created

based on the secondary reference triangle and the new overlaps successfully bounded sets for

each side of the triangle in frame. Figure 4.7 gives an example frame which required used

the secondary reference triangle to locate the sides and vertices.

The edge pixels, which fall into each overlap region, were each fit with a first order

polynomial. The MATLAB function polyfit was used to find the polynomial fits. The poly-

fit function does not work for the case of a vertical line because it uses the least-squares

method [11]. Issues arise when the slope of the line nears infinity. A condition was imple-

mented into the code which checked the slope generated by the polyfit function. If the slope

became too large, indicating the presence of a vertical or nearly vertical line, the polynomial

generated by polyfit was replaced with a horizontal line. The value for the horizontal line
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was taken to be the x value of the first pixel in the bounded set for that particular side.

The range for large slopes was set to 90◦ ± 0.2◦. Figure 4.8 gives an example frame which

required the alternative equation formulation and vertex calculation for vertical sides.

Figure 4.7: Used 2nd reference triangle Figure 4.8: Frame which has a vertical side

The intercepts of side-describing polynomials occurred at the vertex locations. Once the

equations for each side were found, their intercepts were calculated. Only one vertex location

was returned as an output of the function. Because the triangle was an equilateral triangle,

the full motion of the triangle is known based on the motion of one vertex and simply

repeats periodically every 120°. The vertex which was reported was chosen to avoid error

due to consistent shadowing in the frames. A slight shadow occurred under the bottom right

edge of the triangle in the frame. The shadow caused some inconsistency in the polynomial

edge fits. The vertex which was unaffected by the inconsistency was the vertex between the

pink and green bounded regions, (see figure 4.5).

4.3 Summary of Described Verification Process

Video data was collected for eight different test combinations. Each video was exported

into frames and analyzed as a series of frames. Developed MATLAB code looped across
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each frame and calculated vertex locations as pixel positions. A function was developed to

identify all three sides of the triangle in each frame, calculate equations for the sides, and

solve the side equations for the vertex locations. Vertex location was stored across the series

of frames. Figure 4.9 shows an example of the tracked vertex locations. Shown is the vertex

data for Test 6.

Figure 4.9: Vertex location plot for Test 6

With vertex locations stored, quantities for orientation and angular velocity needed be

calculated and analyzed to assess the system performance.



CHAPTER 5

RESULTS

5.1 The Raw Theta Information

From the vertex location data output by the verification script, theθ values needed to be

calculated. An inverse tangent function was used to convert for vertex position in x and y

pixels to angles in degrees. When the inverse tangent function was directly applied to the

vertex location data, the θ values produced were not smooth. Figure 5.1 shows the raw θ

data after applying the inverse tangent.

Figure 5.1: Test 1 theta values before unwrapping
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Two layers of unwrapping were required to produce smooth angle data. First, the MAT-

LAB unwrap function was used to eliminate the jumps from 180° to -180°. The next layer of

unwrapping addressed the 120° jumps present because of the periodic vertex tracking. After

both unwraps were performed, smooth theta graphs were produced. Figure 5.2 shows the

orientation plots for Test 1 after the unwrapping process.

Figure 5.2: Test 1 theta values after unwrapping

The overall slope of the θ graph should have a value which corresponded to ωss specified

for the system. 4 RPM was converted to 24◦/s. The solid black line has a slope of −24◦/s.

The deviation of the θ trend and average ω line indicates some discrepancies in the system.
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5.2 Omega Information and Calculation

Angular velocities were calculated by numerical differentiation, ∆θ
∆t
. The diff function in

MATLAB was used to calculate ∆θ across the series of frames. Change in time was known

between frames to be 1/30 s due to the frame rate. ω data was noisy due to the numerical

derivative. The noise was also related to the sensitivity of vertex tracking.

One main issue of sensitivity in the vertex tracking transpired when the left side of

the triangle was at or near vertical position. The vertex calculator should switch to the

alternative equation side formulation. To decrease the hick-up frequency, the range of lines

considered vertical could be fine-tuned. Figure 5.3 shows the vertex tracking plot with the

triangle orientation corresponding to the hick-up area.

Figure 5.3: Test 6 vertex tracking plot and triangle at issue orientation
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Angular velocities were calculated for all trials and comparative trails are discussed in

the following sections. For additional comparison, expected average velocity was shown on

all ω plots at a value of −24◦/s. Over all the observed average angular velocity was faster

than the expected ωss. While the system ran faster than expected overall, it was noted that

the range of ω was similar to what was expected. With an amplitude it of ±2 RPM it was

expected that ω would have a range of ±12◦/s. ω ranges were observed to be close to the

expected range value, indicating that the system was able to convert discrete RPM values

to signal frequency properly.

5.2.1 Test 1 and Test 2: Changing F

Figure 5.4 shows the angular velocity plots for test 1 and test 2.

Figure 5.4: Angular Velocity for Test 1 vs Test 2
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Between test 1 and test 2, the value of F changes from 1 cycles
side

to 1.5 cycles
side

. Increasing

F should increase the number of peaks seen in the velocity plot. In the test 1 plot there

are 4 fully developed peaks. In the test 2 plot there are 6 peaks. The observed increase is

consistent with the expected effect of increasing F .

5.2.2 Test 2 and Test 3: Changing N

Test 2 and test 3 velocity plots are shown in figure 5.5. Test 2 had an N value of 3, while

test 3 had an N value of 4. All other inputs were held constant. It was expected that test

3 would have three more velocity peaks compared to test 2. Test 3 has two additional side

lengths it should be passing through. With 1.5 cycles
side

and two additional sides, an increase

of 3 peaks was anticipated.

Figure 5.5: Angular Velocity for Test 2 vs Test 3
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The number of full peaks in test 2 was 7 and the number of peaks in test 3 was just

over 9. While the number of peaks did increase, the increase was less than expected. The

discrepancy between the expected increase and the observed increase shows that the time

controller was not fully accurate.

5.2.3 Test 4, Test 5, Test 6 and Test 7: Changing N , F , and P

Figure 5.6 shows velocity plots for test 4 through test 7.

Figure 5.6: Plots of Angular Velocity for Tests 4 through 7

The first column of plots, test 4 and test 5, had the same number of sides, 4, and the

same number of cycles per side, 1.5. Plots in the second column had an N value of 5 and

an F value of 1. The first column was expected to have more velocity peaks because the
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number of sides times the number of cycles per side was greater for the first column. More

velocity peaks were seen in test 4 and test 5 when compared to test 6 and test 7.

The top row of plots, test 4 and test 6 had a phase offset of 0.25 while the second plots

had a P value of 0.75. Due to the change in P it was expected that the ω plots of test 5 and

test 7 should be horizontal reflections ω plots shown for test 4 and test 6. That expectation

was confirmed in figure 5.6. This indicates that phase offset was accurately controlled.

5.3 Omega as Calculated in Equation 2.5

While anticipated trends for increasing or decreasing number of peaks were seen, the

actual number of peaks were lower that what should have been present. This result indicates

that there is an issue with how ω(t) was formulated in equation 2.5. In particular, ftime was

formulated in equation 2.6 based on the average angular velocity when in reality it should

have been based on instantaneous angular velocity. ω is changing with orientation of the

triangle and assuming it to be constant caused error in the conversion from ω(θ) to ω(t).

The error was seen in the high average angular velocities observed and it was highly present

in the results from the long runtime test. θ values for test 8 are shown in figure 5.7.

An ωss line was plotted for comparison. It was seen that over time the error in the

system becomes increasingly large. In order for the system to be able to update the control

equation, equation 2.5, during runtime a feedback system is needed. Chapter 6 further

discusses possibilities for future work and incorporation of an encoder.
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Figure 5.7: Test 8 theta plot and expected average angular velocity



CHAPTER 6

CONCLUSION AND FUTURE WORK

A simple user interface with visualization tool was successfully developed in MATLAB.

The GUI can take inputs, update visualization, and send varying signal to the LabJack.

Conversion from ω values specified in RPM to frequency output form the LabJack was

successful. The system was able to change the driven ω as a function of time based on user

inputs. Video data was successfully analyzed via the developed verification processes.

While the system was driven in time and the trend of changes was as anticipated, it was

seen that the time based control was not fully accurate. The system can not be controlled

by time alone. Overall, the system moved more quickly than anticipated and the correct

number of velocity peak were not perfectly produced. To improve control in the future, an

encoder can be used to create a feedback loop by providing the instantaneous orientation

data needed to accurately update ω as a function of time. Incorporating a feedback loop

could also help with lag and help prevent the system getting out of phase over time. Visual

feedback could also be incorporated. The same camera used to observe segregation and

granular flow properties could be used to observe live rotation rate and adjust speeds.

Other future steps include improving the lighting set-up during testing for better analy-

sis conditions and attaching actual tumblers to observe segregation patterns under various

changing flow effects.
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USER INTERFACE CONTROL CODE
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A.1 simple gui.m

1 f unc t i on s imp l e gu i

2 c l o s e a l l f o r c e ;

3 % SIMPLE GUI2 S e l e c t a data s e t from the pop−up menu , then

4 % c l i c k one o f the plot−type push buttons . C l i ck ing the button

5 % p lo t s the s e l e c t e d data in the axes .

6

7 %crea t e and then hide the UI as i t i s be ing cons turc ted

8 f = u i f i g u r e ( ’ V i s i b l e ’ , ’ o f f ’ , ’ Po s i t i on ’ , [ 360 350 1000 650 ] ) ;

9 %f i g u r e p r op e r t i e s

10 f .MenuBar = ’ none ’ ; %h ides the f i g u r e menu bar

11 f .Name = ’ Simple GUI ’ ; %names f i g u r e t i t l e

12 f . NumberTitle = ’ o f f ’ ; %turns o f f the f i g u r e number d i sp l ay

13 % f . Res i ze = ’ o f f ’ ; %makes i t so you can ’ t r e s i z e the f i g u r e

14 movegui ( f , ’ c en t e r ’ ) %br ing s f i g u r e to cent e r o f s c r e en

15

16

17 % I n i t i a l i z e Var i ab l e s :

18 % A i s the amplitude ,

19 % F i s the f requency ;

20 % P i s the phase s h i f t ;

21 % N i s the numer o f s i d e s f o r the polygon

22 g l oba l A F P N L avg runtime . . .
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23 l j h and l e l judObj t imerClockDiv i so r aEnableTimers

aEnableCounters t cP inOf f s e t . . .

24 aTimerModes aTimerValues t imerClockBaseIndex ;

25 A = 1 ; F = 1 ; P = 0 ; N = 3 ; avg = 4 ; runtime = 15 ;

26

27 %Construct the components

28 %cr ea t i n g NumericEditFie lds

29 nLabel = u i l a b e l ( f ) ;

30 nLabel . Text = ’N S ides : ’ ;

31 nLabel . Po s i t i on = [ 770 , 3 7 0 , 7 0 , 2 5 ] ;

32 nSides = u i e d i t f i e l d ( f , ’ numeric ’ , . . .

33 ’ Po s i t i on ’ , [ 8 5 5 , 3 7 0 , 7 0 , 2 5 ] , . . .

34 ’ ValueChangedFcn ’ , @( nSides , event ) nChanged ( nSides

) ) ;

35 nSides . Value = N;

36

37 ampLabel = u i l a b e l ( f ) ;

38 ampLabel . Text = ’ Amplitude : ’ ;

39 ampLabel . Po s i t i on = [ 770 , 2 8 0 , 7 0 , 2 5 ] ;

40 amplitude = u i e d i t f i e l d ( f , ’ numeric ’ , . . .

41 ’ Po s i t i on ’ , [ 8 5 5 , 2 8 0 , 7 0 , 2 5 ] , . . .

42 ’ ValueChangedFcn ’ , @( amplitude , event ) vChanged (

amplitude ) ) ;

43 amplitude . Value = A;

44
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45 f r eqLabe l = u i l a b e l ( f ) ;

46 f r eqLabe l . Text = ’ Cycles per N: ’ ;

47 f r eqLabe l . Po s i t i on = [ 770 , 3 4 0 , 7 5 , 2 5 ] ;

48 f r equency = u i e d i t f i e l d ( f , ’ numeric ’ , . . .

49 ’ Po s i t i on ’ , [ 8 5 5 , 3 4 0 , 7 0 , 2 5 ] , . . .

50 ’ ValueChangedFcn ’ , @( frequency , event ) aChanged (

f requency ) ) ;

51 f r equency . Value = F;

52

53 phaseLabel = u i l a b e l ( f ) ;

54 phaseLabel . Text = ’ Phase : ’ ;

55 phaseLabel . Po s i t i on = [ 7 70 , 3 1 0 , 7 0 , 2 5 ] ;

56 phase = u i e d i t f i e l d ( f , ’ numeric ’ , . . .

57 ’ Po s i t i on ’ , [ 8 5 5 , 3 1 0 , 7 0 , 2 5 ] , . . .

58 ’ ValueChangedFcn ’ , @( phase , event ) fChanged ( phase ) )

;

59 phase . Value = P;

60

61 avgLabel = u i l a b e l ( f ) ;

62 avgLabel . Text = ’Avg w (RPM) : ’ ;

63 avgLabel . Po s i t i on = [ 7 70 , 4 0 5 , 7 0 , 2 5 ] ;

64 average = u i e d i t f i e l d ( f , ’ numeric ’ , . . .

65 ’ Po s i t i on ’ , [ 8 5 5 , 4 0 5 , 7 0 , 2 5 ] , . . .

66 ’ ValueChangedFcn ’ , @( average , event ) avgChanged (

average ) ) ;
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67 average . Value = avg ;

68

69 runtimeLabel = u i l a b e l ( f ) ;

70 runtimeLabel . Text = ’Runtime ( s ) : ’ ;

71 runtimeLabel . Po s i t i on = [ 770 , 2 5 0 , 7 0 , 2 5 ] ;

72 time = u i e d i t f i e l d ( f , ’ numeric ’ , . . .

73 ’ Po s i t i on ’ , [ 8 5 5 , 2 5 0 , 7 0 , 2 5 ] , . . .

74 ’ ValueChangedFcn ’ , @( time , event ) timeChanged ( time )

) ;

75 time . Value = runtime ;

76

77 % Create buttons

78 i n i t i a l i z e = uibutton ( f , ’ push ’ , . . .

79 ’ Text ’ , ’ INITIALIZE LJ ’ , . . .

80 ’ Po s i t i on ’ , [ 8 25 , 470 , 100 , 2 5 ] , . . .

81 ’ ButtonPushedFcn ’ , @( i n i t i a l i z e , event ) f indLJ (

i n i t i a l i z e ) ) ;

82

83 avgW = uibutton ( f , ’ push ’ , . . .

84 ’ Text ’ , ’AVG W’ , . . .

85 ’ Po s i t i on ’ , [ 8 25 , 440 , 100 , 2 5 ] , . . .

86 ’ ButtonPushedFcn ’ , @(avgW, event ) avgOmega(avgW) ) ;

87

88 f e ed = uibutton ( f , ’ push ’ , . . .

89 ’ Text ’ , ’RUN’ , . . .
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90 ’ Po s i t i on ’ , [ 8 25 , 210 , 100 , 2 5 ] , . . .

91 ’ ButtonPushedFcn ’ , @( feed , event ) f eedConf ig ( f e ed ) ) ;

92

93 stop = uibutton ( f , ’ push ’ , . . .

94 ’ Text ’ , ’STOP & SHUT DOWN’ , . . .

95 ’ Po s i t i on ’ , [ 7 75 , 100 , 150 , 4 0 ] , . . .

96 ’ ButtonPushedFcn ’ , @( stop , event ) shutdownLJ ( stop ) ) ;

97 s e t ( stop , ’ Backgroundcolor ’ , ’ r ’ )

98

99 %crea t e axes

100 axes1 = uiaxes ( f , ’ Units ’ , ’ p i x e l s ’ , ’ Po s i t i on ’ , [ 5 0 , 7 0 , 7 00 , 5 00 ] ) ;

101 %plo t i ng on the axes and sp e c f i n g graph p r op e r t i e s

102

103

104 draw ( axes1 ) ;

105

106 % Draw Graph

107 f unc t i on draw ( axes1 ) %This func t i on c r e a t s the axes with in the UI

108 c l a ( axes1 , ’ r e s e t ’ )

109 %Plot ing Polygon

110 %ca l c u a l t i n g v e r t i c e s

111 x = ze ro s (N, 1 ) ; %i n i t i a l i z i n g ve c t o r s to hold ve r t

coo rd ina t e s

112 y = ze ro s (N, 1 ) ;
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113 i = 1 ; %c a l c u l a t i n g x and y f o r each ver tex based

on num of s i d e s N

114 f o r i = 0 : 1 :N

115 x ( i +1) = cosd (360∗ i /N) ;

116 y ( i +1) = s ind (360∗ i /N) ;

117 end

118

119 hold ( axes1 , ’ on ’ ) ;

120 p lo t ( axes1 , x , y , ’ ko ’ ) %p l o t t i n g v e r t i c e s

121 p lo t ( axes1 , x , y , ’b ’ ) %p l o t t i n g s i d e s o f polygon

122 g r id ( axes1 , ’ on ’ )

123 ax i s ( axes1 , ’ equal ’ )

124 t i t l e ( axes1 , ’ Tumbler Conf igurat ion with S igna l Plot ’ )

125 t i t l e ( axes1 , ’ Tumbler Control ’ )

126 %L = (2 +2∗cosd (360/N) ) ; %length o f s i d e based on N

127 L = norm ( [ x (2 ) − x (1 ) , y (2 ) − y (1 ) ] ) ;

128 phi = − 90∗(N − 2) /N; %angle between x and x ’ ( s i d e o f

polygon )

129 theta = l i n s p a c e (0 , −L , 250) ; %theta vec to r evenly spaced

from −L/2 to L/2 with 250 po in t s

130 %Omega which i s p l o t t ed over one s i d e o f the polygon

131 omega = −A∗ s i n (2∗ pi ∗F∗( theta− L∗(P) /F) /L ) ;

132

133 %p l o t t i n g the r o t a t i on
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134 R = [ cosd ( phi ) , −s ind ( phi ) ; s ind ( phi ) , cosd ( phi ) ] ; %ro t a t i on

mtx

135 rotCos = R∗ [ theta ; omega ] + [ ( x ( end ) + x (1) ) / 2 ; ( y ( end ) + y (1)

) / 2 ] ; %rotated x and ys

136 p lo t ( axes1 , rotCos ( 1 , : ) , rotCos ( 2 , : ) ) ; %p l o t t i n g the

ro ta ted coo rd ina t e s

137 hold ( axes1 , ’ o f f ’ ) ;

138 end

139

140 % Cal lbacks

141 f unc t i on nChanged ( u i e d i t f i e l d )

142 N = u i e d i t f i e l d . Value ;

143 draw ( axes1 ) ;

144 end

145 f unc t i on vChanged ( u i e d i t f i e l d )

146 A = u i e d i t f i e l d . Value ;

147 draw ( axes1 ) ;

148 i f A > avg %f o r c i n g no n e g i t i v e speeds .

149 avg = A + 0 . 0 0 3 ;

150 di sp ( ’Amp can not be g r e a t e r than average . Avg r e s e t to =

A + 0.003 ’ )

151 u i e d i t f i e l d . Value = avg ; %changes wrong th ing . . . .

152 end

153 end

154 f unc t i on aChanged ( u i e d i t f i e l d )
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155 F = u i e d i t f i e l d . Value ;

156 draw ( axes1 ) ;

157 end

158 f unc t i on fChanged ( u i e d i t f i e l d )

159 P = u i e d i t f i e l d . Value ;

160 draw ( axes1 ) ;

161 end

162 f unc t i on avgChanged ( u i e d i t f i e l d )

163 avg = u i e d i t f i e l d . Value ;

164 i f avg < A %fo r c i n g no n e g i t i v e speeds .

165 avg = A + 0 . 0 0 3 ;

166 di sp ( ’Amp can not be g r e a t e r than average . Avg r e s e t to =

A + 0.003 ’ )

167 u i e d i t f i e l d . Value = avg ;

168 end

169 end

170 f unc t i on timeChanged ( u i e d i t f i e l d )

171 runtime = u i e d i t f i e l d . Value ;

172 end

173

174 % i n i t i a l i z e func t i on / f i nd i n g LJ

175 f unc t i on f indLJ ( uibutton )

176

177 di sp ( ’ I n i t i l i z i n g LJ ’ ) ;

178 %\\\ Finding and s e t t i n g up the LJ
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179 % Make the UD .NET assembly v i s i b l e in MATLAB.

180 l jasm = NET. addAssembly ( ’LJUDDotNet ’ ) ;

181 l judObj = LabJack . LabJackUD .LJUD;

182

183 % Read and d i sp l ay the UD ve r s i on .

184 di sp ( [ ’UD Driver Vers ion = ’ num2str ( l judObj . GetDriverVers ion

( ) ) ] ) % Probably uneces sary −mjem

185

186 % Open the f i r s t found LabJack U3 .

187 [ l j e r r o r , l j h and l e ] = ljudObj . OpenLabJackS ( ’ LJ dtU3 ’ , ’

LJ ctUSB ’ , ’ 0 ’ , true , 0) ;

188 di sp ( ’ LabJack found ’ ) % Display f o r check po int

189

190 % Star t by us ing the p i n c o n f i g u r a t i o n r e s e t IOType so that

a l l pin

191 % ass ignments are in the f a c t o r y d e f au l t cond i t i on .

192 l judObj . ePutS ( l jhand l e , ’LJ ioPIN CONFIGURATION RESET ’ , 0 , 0 ,

0) ; %s e t s a l l pin c on f i g s to d e f a l u t − mjem

193 di sp ( ’ De fau l t s s e t ’ ) %check po int

194

195 % inn i t i a n t i o n / s e t up s e c t i o n .

196 % Create ar rays and get constant va lue s .

197 aEnableTimers = NET. createArray ( ’ System . Int32 ’ , 2) ;

198 aEnableCounters = NET. createArray ( ’ System . Int32 ’ , 2) ;

199 aTimerModes = NET. createArray ( ’ System . Int32 ’ , 2) ;
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200 aEnableCounters = NET. createArray ( ’ System . Int32 ’ , 2) ;

201 aReadTimers = NET. createArray ( ’ System . Int32 ’ , 2) ;

202 aUpdateResetTimers = NET. createArray ( ’ System . Int32 ’ , 2) ;

203 aReadCounters = NET. createArray ( ’ System . Int32 ’ , 2) ;

204 aResetCounters = NET. createArray ( ’ System . Int32 ’ , 2) ;

205 aTimerValues = NET. createArray ( ’ System . Double ’ , 2) ;

206 aCounterValues = NET. createArray ( ’ System . Double ’ , 2) ;

207 di sp ( ’ Arrays c r ea ted ’ ) %check po int

208

209 %Timer mode f r e q output s e t up

210 LJ tc1MHZ DIV = ljudObj . StringToConstant ( ’LJ tc1MHZ DIV ’ ) ; %

I n i t i a n t i n g c l o ck base mode to 1MHz

211 aEnableTimers (1 ) = 1 ; % Enable Timer0 ( uses FIO4) .

212 aEnableTimers (2 ) = 1 ; % Enable Timer1 ( uses FIO5) .

213 aEnableCounters (1 ) = 0 ; % enable Counter0 .

214 aEnableCounters (2 ) = 1 ; % Enable Counter1 ( uses FIO6) .

215 di sp ( ’ Timers and Counters enabled . ’ )

216 t cP inOf f s e t = 4 ; % Of f s e t i s 4 , so t imers / counter s s t a r t at

FIO4 .

217 t imerClockBaseIndex = LJ tc1MHZ DIV ; % Base c l o ck i s 1MHz

with d i v i s o r support

218 t imerClockDiv i so r = 2 ; % s e t t i n g c l o ck d i v i s o r

219 LJ tmFREQOUT = ljudObj . StringToConstant ( ’LJ tmFREQOUT ’ ) ;

220 aTimerModes (1 ) = LJ tmFREQOUT;

221
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222 end

223 f unc t i on avgOmega( uibutton )

224 di sp ( ’ Enabling s t epper ’ )

225 % Set DAC0 to 0 v o l t s .

226 vo l tage = 0 ;

227 binary = 0 ;

228 l judObj .eDAC( l jhand l e , 0 , vo l tage , binary , 0 , 0) ;

229 di sp ( [ ’DAC0 s e t to ’ num2str ( vo l t age ) ’ V ’ ] )

230 % Set DAC1 to 5 .0 v o l t s .

231 vo l tage = 5 . 0 ;

232 l judObj .eDAC( l jhand l e , 1 , vo l tage , binary , 0 , 0) ;

233 di sp ( [ ’DAC1 s e t to ’ num2str ( vo l t age ) ’ V ’ ] )

234

235

236 %get i t going at avg rpm

237 di sp ( ’ Pushing avg omgea ’ ) ;

238 avg = 3 ;

239 base = 1e6 ;

240 current rpm = avg ;

241 rpm2freq = (48/11) ∗(18 e3 /60) ;

242 MM = round ( base /(2∗ t imerClockDiv i so r ∗ current rpm ∗ rpm2freq ) ) ; %

rounded to be an i n t e g e r

243 aTimerValues (1 ) = MM;

244 %push con f i g u r a t i on and va lue s
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245 l judObj . eTCConfig ( l j hand l e , aEnableTimers , aEnableCounters ,

t cP inOf f s e t , t imerClockBaseIndex , t imerClockDiv i sor ,

aTimerModes , aTimerValues , 0 , 0) ;

246 di sp ( [ ’ Timer value = ’ num2str ( aTimerValues (1 ) ) ] )

247

248 end

249 f unc t i on f eedConf ig ( uibutton )

250 di sp ( ’ Enabling s t epper ’ )

251 % Set DAC0 to 0 v o l t s .

252 vo l tage = 0 ;

253 binary = 0 ;

254 l judObj .eDAC( l jhand l e , 0 , vo l tage , binary , 0 , 0) ;

255 di sp ( [ ’DAC0 s e t to ’ num2str ( vo l t age ) ’ V ’ ] )

256 % Set DAC1 to 5 .0 v o l t s .

257 vo l tage = 5 . 0 ;

258 l judObj .eDAC( l jhand l e , 1 , vo l tage , binary , 0 , 0) ;

259 di sp ( [ ’DAC1 s e t to ’ num2str ( vo l t age ) ’ V ’ ] )

260

261 dt = 0 . 1 ;

262 t o t a l = t i c ; %s t a r t i n g g l oba l t imer

263 lap = t o t a l ; %s t a r t i n g lap t imer

264 f l a g = 1 ;

265 whi le ( f l a g )

266 tot t ime = toc ( t o t a l ) ;

267 lapt ime = toc ( lap ) ;
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268 i f lapt ime > dt

269 %SOMEHOW CALC w( time ) va lue to push

270 %t = toc ( lap ) ;

271 f r e q = avg∗N∗F/60 ; %cy c l e s / sec

272 omega = A∗ s i n (2∗ pi ∗( f r e q ∗ tot t ime − P) ) + avg ; %w( t )

273 di sp ( ’ f e ed ing ’ ) ;

274 base = 1e6 ;

275 current rpm = omega ;

276 rpm2freq = (48/11) ∗(18 e3 /60) ;

277 MM = round ( base /(2∗ t imerClockDiv i so r ∗ current rpm ∗

rpm2freq ) ) ; % converted RPM to timer value ( rounded

)

278 aTimerValues (1 ) = MM;

279 %push con f i g u r a t i on and va lue s

280 l judObj . eTCConfig ( l j hand l e , aEnableTimers ,

aEnableCounters , t cP inOf f s e t , t imerClockBaseIndex ,

t imerClockDiv i sor , aTimerModes , aTimerValues , 0 , 0)

;

281 lap = t i c ; %r e s e t lap t imer

282 end

283 lapt ime = toc ( lap ) ;

284 i f toc ( t o t a l ) > runtime

285 f l a g = 0 ; %ex i t whi l e loop when max time i s reached

286 di sp ( ’ break loop ’ )

287 end
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288 end

289 %d i s a b l e s s t epper

290 di sp ( ’Runtime complete , s t epper o f f ’ ) ;

291 vo l tage = 5 . 0 ;

292 binary = 0 ;

293 l judObj .eDAC( l jhand l e , 0 , vo l tage , binary , 0 , 0) ;

294 di sp ( [ ’DAC0 s e t to ’ num2str ( vo l t age ) ’ V ’ ] )

295 % Set DAC1 to 0 .0 v o l t s .

296 vo l tage = 0 . 0 ;

297 l judObj .eDAC( l jhand l e , 1 , vo l tage , binary , 0 , 0) ;

298 di sp ( [ ’DAC1 s e t to ’ num2str ( vo l t age ) ’ V ’ ] )

299

300 %d i s s a b l i n g timmers // shuts o f f s i g n a l

301 aEnableTimers (1 ) = 0 ; % d i s ab l e Timer0 ( uses FIO4) .

302 aEnableTimers (2 ) = 0 ; % d i s ab l e Timer1 ( uses FIO5) .

303 aEnableCounters (1 ) = 0 ; % d i s ab l e Counter0 .

304 aEnableCounters (2 ) = 0 ; % d i s ab l e Counter1 ( uses FIO6) .

305 l judObj . eTCConfig ( l j hand l e , aEnableTimers , aEnableCounters ,

t cP inOf f s e t , t imerClockBaseIndex , t imerClockDiv i sor ,

aTimerModes , aTimerValues , 0 , 0) ;

306 di sp ( ’ Timers and Counters d i s ab l ed . Shutt ing o f f s i g n a l . ’ )

307 end

308 f unc t i on shutdownLJ ( uibutton )

309 vo l tage = 5 . 0 ;

310 binary = 0 ;
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311 l judObj .eDAC( l jhand l e , 0 , vo l tage , binary , 0 , 0) ;

312 di sp ( [ ’DAC0 s e t to ’ num2str ( vo l t age ) ’ V ’ ] )

313 % Set DAC1 to 0 .0 v o l t s .

314 vo l tage = 0 . 0 ;

315 l judObj .eDAC( l jhand l e , 1 , vo l tage , binary , 0 , 0) ;

316 di sp ( [ ’DAC1 s e t to ’ num2str ( vo l t age ) ’ V ’ ] )

317

318 %d i s s a b l i n g timmers

319 aEnableTimers (1 ) = 0 ; % d i s ab l e Timer0 ( uses FIO4) .

320 aEnableTimers (2 ) = 0 ; % d i s ab l e Timer1 ( uses FIO5) .

321 aEnableCounters (1 ) = 0 ; % d i s ab l e Counter0 .

322 aEnableCounters (2 ) = 0 ; % d i s ab l e Counter1 ( uses FIO6) .

323 l judObj . eTCConfig ( l j hand l e , aEnableTimers , aEnableCounters ,

t cP inOf f s e t , t imerClockBaseIndex , t imerClockDiv i sor ,

aTimerModes , aTimerValues , 0 , 0) ;

324 di sp ( ’ Timers and Counters d i s ab l ed . Shutt ing o f f s i g n a l . ’ )

325

326 end

327

328

329 %Make f i g u r e v i s i b l e !

330 f . V i s i b l e = ’ on ’ ;

331

332

333 end



APPENDIX B

VERIFICATION CODE
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B.1 Main Script: verScript.m

1 % Ve r i f i c a t i o n Sc r i p t

2 % Takes s e r i e s o f frames , c a l c ua t e s and s t o r e s ver tex l o c a t i o n s

a c r o s s

3 % frames o f v ideo

4 c l o s e a l l ;

5

6 %read in frames

7 vid =’ . / Hold Frame1/ ’ ;

8 f rames=d i r ( [ vid , f i l e s e p , ’ ∗ .bmp ’ ] ) ;

9

10 %Test v ideo 1

11 s i z = 280 ;

12 cent = [605 , 6 6 0 ] ;

13

14 %Test v ideo 2

15 % s i z = 291 ; % ” rad iu s ” o f t r an l g e in frame

16 % cent = [ 5 6 5 , 6 6 2 ] ; %p i x e l l o c a t i o n s s o f c en t e r o f t r i a n g l e

17

18 %Test v ideos 3−8

19 % s i z = 280 ;

20 % cent = [595 , 6 5 5 ] ;

21

22 dt = 1/30 ;
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23 f o r i i = 1 : s i z e ( frames , 1 )

24 i f ( rem( i i , 3 0 ) == 0)

25 i i

26 end

27 img pass=(imread ( [ vid , f i l e s e p , frames ( i i ) . name ] ) ) ;

28 ver t1 ( i i , : ) = edgeFind3Circ l e s ver t1Out ( img pass , s i z , cent ) ;

29 t ( i i ) = i i ∗dt ; %s t o r e g l oba l time

30 end
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B.2 Vertex Calculator: edgeF ind3Circles vert1Out.m

1 f unc t i on [ bLocal1 ] = edgeFind3Circ l e s ver t1Out ( img , t r i S i z e , c en t e r )

2 % edgeFind3Ci rc l e s takes image , c en t e r l o ca t i on , and t r i a n g l e s i z e

and g i v e s

3 % vertex l o c a t i o n f o r a p a r t i c u l a r frame

4 % Images need to a l r eady be loaded in to memory be f o r e passed

in to t h i s f unc t i on ( a l r eady do imread )

5 frame = img ;

6 D = t r i S i z e ;

7 trueCent = cente r ;

8

9 % convert image to g r ay s c a l e and do edge de t e c t i on

10 img gray = rgb2gray ( frame ) ;

11 img edge = edge ( img gray , ’ canny ’ , 0 . 25 , 4) ;

12

13 % Adding graph to help with e r r o r check ing

14 f i g u r e (7 )

15 subplot ( 1 , 2 , 1 ) ; imshow( frame ) ; hold on ; ax i s on ;

16 subplot ( 1 , 2 , 2 ) ; imshow( img edge ) ;

17 hold on

18 ax i s on

19

20 % f ind a l l the t rue p i x e l s in frame ( should be a l l the p i x e l s on

the edge
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21 % of the t r i a ng l e , may need to add ex c l u s i v e cond i t i on to exc lude

cente r

22 % point p i x e l s .

23 [ I , J ] = f i nd ( img edge ) ;

24 %subplot ( 1 , 2 , 1 ) ; p l o t (J , I , ’ ro ’ )

25

26 % Reference v e r t i c e l o c a t i o n s

27 topVert = [ trueCent (1 ) ; trueCent (2 )−D] ;

28 l e f tV e r t = [ trueCent (1 ) − s q r t (3 ) ∗D/2 , trueCent (2 ) + D/ 2 ] ;

29 r i gh tVer t = [ trueCent (1 ) + sq r t (3 ) ∗D/2 , trueCent (2 ) + D/ 2 ] ;

30 %p l o t t i n g r e f v e r t i c e s

31 p lo t ( topVert (1 ) , topVert (2 ) , ’ bo ’ )

32 p lo t ( l e f tV e r t (1 ) , l e f tV e r t (2 ) , ’mo ’ )

33 p lo t ( r i gh tVer t (1 ) , r i gh tVer t (2 ) , ’ go ’ )

34 x = [ topVert (1 ) , l e f tV e r t (1 ) , r i gh tVer t (1 ) ] ;

35 xMid = mean(x ) ;

36 y = [ topVert (2 ) , l e f tV e r t (2 ) , r i gh tVer t (2 ) ] ;

37 yMid = mean(y ) ;

38 p lo t (xMid , yMid , ’ ro ’ )

39 % Condit ions f o r the three s i d e s

40 cond1 = f i nd ( ( J−topVert (1 ) ) . ˆ2 + ( I−topVert (2 ) ) .ˆ2<Dˆ2 & (J−

l e f tV e r t (1 ) ) . ˆ2 + ( I−l e f tV e r t (2 ) ) .ˆ2<Dˆ2) ;

41 cond2 = f i nd ( ( J−l e f tV e r t (1 ) ) . ˆ2 + ( I−l e f tV e r t (2 ) ) .ˆ2<Dˆ2 & (J−

r i gh tVer t (1 ) ) . ˆ2 + ( I−r i gh tVer t (2 ) ) .ˆ2<Dˆ2) ;
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42 cond3 = f i nd ( ( J−topVert (1 ) ) . ˆ2 + ( I−topVert (2 ) ) .ˆ2<Dˆ2 & (J−

r i gh tVer t (1 ) ) . ˆ2 + ( I−r i gh tVer t (2 ) ) .ˆ2<Dˆ2) ;

43 i f ( isempty ( cond1 ) | isempty ( cond2 ) | isempty ( cond3 ) )

44 % Change r e f e r e n c e t r i a n g l e

45 % new r e f v e r t i c e s , s imply r ewr i t e

46 topVert = [ trueCent (1 ) ; trueCent (2 )+D] ;

47 l e f tV e r t = [ trueCent (1 ) − s q r t (3 ) ∗D/2 , trueCent (2 ) − D/2 ] ;

48 r i gh tVer t = [ trueCent (1 ) + sq r t (3 ) ∗D/2 , trueCent (2 ) − D/2 ] ;

49 % new cond i t i on s based on new r e f t r a i n g l e , s imply r ewr i t e

50 cond1 = f i nd ( ( J−topVert (1 ) ) . ˆ2 + ( I−topVert (2 ) ) .ˆ2<Dˆ2 & (J−

l e f tV e r t (1 ) ) . ˆ2 + ( I−l e f tV e r t (2 ) ) .ˆ2<Dˆ2) ;

51 cond2 = f i nd ( ( J−l e f tV e r t (1 ) ) . ˆ2 + ( I−l e f tV e r t (2 ) ) .ˆ2<Dˆ2 & (J−

r i gh tVer t (1 ) ) . ˆ2 + ( I−r i gh tVer t (2 ) ) .ˆ2<Dˆ2) ;

52 cond3 = f i nd ( ( J−topVert (1 ) ) . ˆ2 + ( I−topVert (2 ) ) .ˆ2<Dˆ2 & (J−

r i gh tVer t (1 ) ) . ˆ2 + ( I−r i gh tVer t (2 ) ) .ˆ2<Dˆ2) ;

53 end

54 subplot ( 1 , 2 , 2 )

55 p lo t ( J ( cond1 ) , I ( cond1 ) , ’m∗ ’ ) ;

56 p lo t ( J ( cond2 ) , I ( cond2 ) , ’ g∗ ’ ) ;

57 p lo t ( J ( cond3 ) , I ( cond3 ) , ’b∗ ’ ) ;

58 %[ temp ] = [ J ( cond3 ) , I ( cond3 ) ]

59

60 % Fi t s f o r three s i d e s

61 s i d e1 = p o l y f i t ( J ( cond1 ) , I ( cond1 ) ,1 ) ;

62 s i d e2 = p o l y f i t ( J ( cond2 ) , I ( cond2 ) ,1 ) ;
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63 s i d e3 = p o l y f i t ( J ( cond3 ) , I ( cond3 ) ,1 ) ;

64

65 %cond i t i o na l to s ee i f s l ope i s g r e a t e r than 286 .5

66 i f ( abs ( s i d e1 (1 ) ) > 286 .5 | abs ( s i d e2 (1 ) ) > 286 .5 | abs ( s i d e3 (1 ) )

> 286 .5 )

67 %one o f the s i d e s i s v e r t i c a l then and we must do a d i f f e r e n t

way to

68 %f ind v e r t i c e s o f t r i a n g l e

69 i f ( abs ( s i d e1 (1 ) ) > 286 .5 )

70 %s ide1 i s v e r t i c a l

71 x1 = J ( cond1 ) ; %the x va lue s f o r t h i s s i d e

72 l i n e 1 = x1 (1 ) ; %equat ion f o r the l i n e o f s i d e1

73

74 %p l o t t i n g l i n e s on frame

75 subplot ( 1 , 2 , 1 ) ;

76 x loc = trueCent (1 )−D/2∗ l i n s p a c e (−1 ,1 ,25) ;

77 %x l i n e ( l i n e1 , ’m− ’)

78 p lo t ( xloc , po lyva l ( s ide2 , x l oc ) , ’ g− ’ )

79 p lo t ( xloc , po lyva l ( s ide3 , x l oc ) , ’b− ’ )

80

81 %ca l c u l a t i n g v e r t i c e s

82 bGlobal1 = [ l i n e1 , po lyva l ( s ide2 , l i n e 1 ) ] ; %two v e r t i c e s

shared with l i n e 1

83 bGlobal3 = [ l i n e1 , po lyva l ( s ide3 , l i n e 1 ) ] ;

84 % une f f e c t ed ver tex
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85 A2 = [− s i d e3 (1 ) 1;− s i d e2 (1 ) 1 ] ;

86 C2 = [ s i d e3 (2 ) ; s i d e2 (2 ) ] ;

87 bGlobal2 = inv (A2) ∗C2 ;

88

89 e l s e i f ( abs ( s i d e2 (1 ) ) > 286 .5 )

90 %s ide2 i s v e r t i c a l

91 x2 = J ( cond2 ) ;

92 l i n e 2 = x2 (1 ) ;

93

94 %p l o t t i n g l i n e s on frame

95 subplot ( 1 , 2 , 1 ) ;

96 x loc = trueCent (1 )−D/2∗ l i n s p a c e (−1 ,1 ,25) ;

97 p lo t ( xloc , po lyva l ( s ide1 , x l oc ) , ’m− ’ )

98 %x l i n e ( l i n e2 , ’ g− ’)

99 p lo t ( xloc , po lyva l ( s ide3 , x l oc ) , ’b− ’ )

100

101 %ca l c u l a t i n g v e r t i c e s

102 bGlobal1 = [ l i n e2 , po lyva l ( s ide1 , l i n e 2 ) ] ;

103 bGlobal2 = [ l i n e2 , po lyva l ( s ide3 , l i n e 2 ) ] ;

104 A3 = [− s i d e1 (1 ) 1;− s i d e3 (1 ) 1 ] ;

105 C3 = [ s i d e1 (2 ) ; s i d e3 (2 ) ] ;

106 bGlobal3 = inv (A3) ∗C3 ;

107

108 e l s e %( abs ( s i d e3 (1 ) ) > 286 .5 )

109 %s ide3 i s v e r t i c a l
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110 x3 = J ( cond3 ) ;

111 l i n e 3 = x3 (1 ) ;

112

113 %p l o t t i n g l i n e s

114 subplot ( 1 , 2 , 1 ) ;

115 x loc = trueCent (1 )−D/2∗ l i n s p a c e (−1 ,1 ,25) ;

116 p lo t ( xloc , po lyva l ( s ide1 , x l oc ) , ’m− ’ )

117 p lo t ( xloc , po lyva l ( s ide2 , x l oc ) , ’ g− ’ )

118 %x l i n e ( l i n e3 , ’ b− ’)

119

120 %ca l c u l a t i n g v e r t i c e s

121 bGlobal2 = [ l i n e3 , po lyva l ( s ide2 , l i n e 3 ) ] ;

122 bGlobal3 = [ l i n e3 , po lyva l ( s ide1 , l i n e 3 ) ] ;

123 A1 = [− s i d e1 (1 ) 1;− s i d e2 (1 ) 1 ] ;

124 C1 = [ s i d e1 (2 ) ; s i d e2 (2 ) ] ;

125 bGlobal1 = inv (A1) ∗C1 ;

126

127 end

128

129 e l s e

130 %case o f no v e r t c a l s i d e s

131 %plo t i ng the s i d e l i n e s on frame to check

132 subplot ( 1 , 2 , 1 ) ;

133 x loc = trueCent (1 )−D/2∗ l i n s p a c e (−1 ,1 ,25) ;

134 p lo t ( xloc , po lyva l ( s ide1 , x l oc ) , ’m− ’ )
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135 p lo t ( xloc , po lyva l ( s ide2 , x l oc ) , ’ g− ’ )

136 p lo t ( xloc , po lyva l ( s ide3 , x l oc ) , ’b− ’ )

137

138 % Ver t i c e s in g l oba l c oo rd i an t e s

139 A1 = [− s i d e1 (1 ) 1;− s i d e2 (1 ) 1 ] ;

140 C1 = [ s i d e1 (2 ) ; s i d e2 (2 ) ] ;

141 bGlobal1 = inv (A1) ∗C1 ;

142 A2 = [− s i d e3 (1 ) 1;− s i d e2 (1 ) 1 ] ;

143 C2 = [ s i d e3 (2 ) ; s i d e2 (2 ) ] ;

144 bGlobal2 = inv (A2) ∗C2 ;

145 A3 = [− s i d e1 (1 ) 1;− s i d e3 (1 ) 1 ] ;

146 C3 = [ s i d e1 (2 ) ; s i d e3 (2 ) ] ;

147 bGlobal3 = inv (A3) ∗C3 ;

148

149 end

150

151 % checking by p l o t t i n g v e r t i c e s

152 subplot ( 1 , 2 , 2 )

153 p lo t ( bGlobal1 (1 ) , bGlobal1 (2 ) , ’mx ’ )

154 p lo t ( bGlobal2 (1 ) , bGlobal2 (2 ) , ’ gx ’ )

155 p lo t ( bGlobal3 (1 ) , bGlobal3 (2 ) , ’ bx ’ )

156

157 % Convert v e r t i c e s to l o c a l coordandate ( c ent e r o f t r i a n g l e i s

( 0 , 0 ) )

158 bLocal1 (1 ) = bGlobal1 (1 ) − trueCent (1 ) ;
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159 bLocal1 (2 ) = bGlobal1 (2 ) − trueCent (2 ) ;

160 bLocal2 (1 ) = bGlobal2 (1 ) − trueCent (1 ) ;

161 bLocal2 (2 ) = bGlobal2 (2 ) − trueCent (2 ) ;

162 bLocal3 (1 ) = bGlobal3 (1 ) − trueCent (1 ) ;

163 bLocal3 (2 ) = bGlobal3 (2 ) − trueCent (2 ) ;

164

165 end
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B.3 Data Processing: dataPostPros.m

1 f unc t i on [ thetM , w] = dataPostPros ( ver texLocat ions , timeMtx )

2 %dataPostPros takes ver tex l o c a i on mtx and re t runs theta and omega

3 % Takes ver tex data and time mtx , f i n d s theta f o r each frame and

unwraps , f i n d s omega .

4 % Works f o r a camera frame ra t e o f 30 fp s

5

6 t = timeMtx ;

7 ver t1 = ver t exLocat i ons ;

8 %dt based on 30 fp s

9 dt = 1/30 ;

10 %f ind i ng the ta s and smooth

11 thetM = unwrap ( atan2 ( ver t1 ( : , 2 ) , ve r t1 ( : , 1 ) ) ) ∗180/ p i ;

12 j = f i nd ( d i f f ( thetM)>60) ;

13 f o r I = 1 : l ength ( j )

14 thetM( j ( I )+1:end ) = thetM( j ( I )+1:end ) −120;

15 end

16 %omega

17 w = d i f f ( thetM) /dt ; %−1

18 % w = ( thetM ( 3 : end ) − 2∗ thetM ( 2 : end−1) + thetM ( 1 : end−2) ) /(2∗ dt ) ;

%−2

19 % w = ( thetM ( 5 : end ) − 2∗ thetM ( 4 : end−1) . . .

20 % + 2∗ thetM ( 3 : end−2) − 2∗ thetM ( 2 : end−3) . . .

21 % + thetM ( 1 : end−4) ) /(4∗ dt ) ; %−4
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22 % s i z e (w) ;

23 %p l o t t i n g r e s u t l s

24 f i g u r e (4 )

25 hold on

26 t i t l e ( ’ Test 1 : Raw Theta v . s . Time ’ )

27 x l ab e l ( ’Time ( s ) ’ )

28 y l ab e l ( ’ Theta ( deg ) ’ )

29 p lo t ( t , thetM , ’ g∗ ’ )

30 hold o f f

31 f i g u r e (5 )

32 hold on

33 t i t l e ( ’ Test 1 : Omega v . s . Theta ’ )

34 y l ab e l ( ’Omega ( deg/ s ) ’ )

35 x l ab e l ( ’ Theta ( deg ) ’ )

36 p lo t ( thetM ( 1 : end−1) ,w, ’m∗ ’ )

37 y l i n e (−24) ; %th i s i s expected average v l e o c i t y based on age ra te o f

4RPM

38 ylim ( [ −60 ,20 ] ) ;

39 hold o f f

40 f i g u r e (6 )

41 hold on

42 t i t l e ( ’ Test 1 : Vertex Locat ions ’ )

43 x l ab e l ( ’ x ( p i x e l s ) ’ )

44 y l ab e l ( ’ y ( p i x e l s ) ’ )

45 p lo t ( ver t1 ( : , 1 ) , ve r t1 ( : , 2 ) , ’b−∗ ’ )
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46 ax i s equal

47 hold o f f

48

49 end
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