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ABSTRACT 

 

OPTIMIZE THE NIU SPLIT HOPKINSON PRESSURE BAR APPARATUS FOR 

CONDUCTING HIGH STRAIN RATE TENSILE TEST ON S304 FOILS 

 

Jiale Ji, M.S. 

Department of Mechanical Engineering 

Northern Illinois University, 2022 

Jenn-Terng Gau, Director 

 

Split Hopkinson Bar (SHB) methods are widely used to experimentally characterize the 

mechanical properties of materials such as metals, concrete, and ceramics undergoing rapid 

deformation. NIU had a split-Hopkinson tensile apparatus that can conduct coarse tensile test, but 

it can’t output the useful signal. The aim of this thesis is to optimize the existing apparatus, so the 

high strain rate tensile tests for the stainless steel 304 can be conducted and useful signal can be 

got.  

The alignment of the bars is critical for a good signal that has less noise.  To eliminate the 

noise signal, some accurate fixture is designed. A new reflective tensile test apparatus is used to 

get better data. Based on the one-dimensional wave propagation theory, when compression wave 

arrives at the interface of the two identical bars, it will propagate almost totally. However, a tension 

wave will still pull the bars to be split. A new specimen is also designed corresponding. This new 

specimen not only has no influence to the propagation of the compression wave, but also can bear 

the tensile wave. By testing with some samples, the feasibility of this device is proved. An open-

source MATLAB code is immigrated to analyze the data outputted by the oscilloscope. The 

procedures and tips about the using of the code is introduced in the thesis. 
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CHAPTER 1. INTRODUCTION 

1.1 History of Split Hopkinson Pressure Bar 

The Hopkinson pressure bar was first proposed by Bertram Hopkinson in 1914 (Lang, 

2012). His design consisted of a long steel bar, a short steel billet (test specimen), and a ballistic 

pendulum. Hopkinson would impact one end of the steel bar using an explosive charge, generating 

a compressive wave that would travel through the bar and into the steel billet. The idea was to 

generate pressures in the bar that would resemble pressures seen in an impact. From these 

experiments, Hopkinson was able to generate pressure-time curves that would describe an impact 

event.  

The process of the Split Hopkinson Pressure Bar (SHPB) data has been extensively studied 

for over 73 years, beginning with Kolsky’s modifications to the Hopkinson Pressure Bar. In 1949 

Kolsky added a second pressure bar to Hopkinson’s original design. Instead of putting a billet at 

the far end of the bar, he sandwiched it in between the bars. This split bar system is how the 

Hopkinson split bar apparatus got its name. This design has become the most common and widely 

used technique to determine dynamic material properties (Lang, 2012). 

Since Harding was the first to develop the tensile Hopkinson-bar technique in 1960, various 

modifications have been made to generate a tensile loading pulse in the Split Hopkinson Bar (SHB) 

system (Huang, et al., 2006). Nicholas places a shoulder between the two Hopkinson Pressure 

Bars, so the initial compression wave will bypass the specimen and then be reflected in tension to 
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load the specimen. Staab and Gilat (1991) introduced a direct-tension Split Hopkinson-bar 

apparatus. The specimen is loaded by a tensile wave generated by the release of a prestressed 

section of the incident bar. In recent decades, direct impact on an impact block connected to the 

input bar was employed to generate a tension pulse. A weight bar tube or a gas gun with a strike 

tube was generally used for generating the load. 

1.2 Background of SHPB 

Split Hopkinson Bar (SHB) methods are widely used to experimentally characterize the 

mechanical properties of materials such as metals, concrete, and ceramics undergoing rapid 

deformation (Gerlach, Kettenbeil, & Petrinic, 2012). Strain rates are between 400 and 5,000 𝑠−1 

in the usual SHPB tests. Also, the rise time of the stress pulse in conventional steel split Hopkinson 

pressure bar is typically less than 10 𝜇s. These mechanical properties determined in rapid 

deformation or high strain rate tests are also called dynamic properties. Nowadays, the SHB are 

generally classified into compression (SHCB), torsion (SHTOB), and tension (SHTB) split 

Hopkinson bars.  

A conventional SHCB consists of a striker bar, an incident bar, and a transmission bar as 

schematically illustrated in Fig. 1-1 (Chen, Zhang, & Forrestal, 1999). A specimen is placed 

between the incident bar and the transmission bar. When the striker bar impacts the incident bar, 

an elastic compressive stress pulse, referred to as the incident pulse 𝜀𝑖, is generated and propagates 

along the incident bar toward the specimen. When the incident pulse reaches the specimen, part of 

the pulse 𝜀𝑟 is reflected backward into the incident bar due to the impedance mismatch at the bar-

specimen interface. The remaining part of the pulse 𝜀𝑡 is transmitted into the specimen and, 
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eventually, into the transmission bar. Axial strain gages mounted on the surfaces of the incident 

and transmission bars provide time-resolved measures of the elastic strain pulses in the bars. The 

specimen (a short, small diameter cylinder) is placed between the incident and transmitter bars. 

Usually, a lubricant is applied at the contact surfaces, and it is assumed that the specimen is loaded 

only by an axial compression force, since the lubricant prevents any shear traction on the end 

surfaces as the specimen is deformed.  

 

Fig. 1-1: Schematic of a conventional Split Hopkinson pressure bar 

The most important feature of SHPB is that it avoids the difficulty of directly measuring 

the strain-stress of an object under a high strain rate loading. Using elastic wave theory, the force 

(and hence the stress), strain rate, and strain in the specimen can be determined from the stress 

waves in the bars. The technique was introduced with compression loading by Kolsky and has 

subsequently been modified for tension and torsion applications. It uses those three pulses 𝜀𝑖, 𝜀𝑟, 

and 𝜀𝑡 to calculate the stress, strain, and strain rate of the specimen. Because of using three pulses 

or waves, this method is named the three-wave theory. Below are the formulas based on three-

wave theory (discussed in detail in chapter 2):  
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𝜀 =
𝑐

𝑙𝑠
∫ (𝜀𝑖 − 𝜀𝑟 − 𝜀𝑡)

𝑡

0
𝑑𝑡                                              (1.2.1) 

𝜎 =
𝐸𝐴(𝜀𝑖+𝜀𝑟+𝜀𝑡)

2𝐴𝑠
                                                       (1.2.2) 

𝜀̇ =
𝑐

𝑙𝑠
(𝜀𝑖 − 𝜀𝑟 − 𝜀𝑡)                                                 (1.2.3) 

Where 𝜀 is strain, c is the speed of stress wave in the bars, 𝑙𝑠 is the gauge length of the specimen, 

𝜎 is the stress, E is the Young’s Modulus of the bars, A is the area of the bars, 𝐴𝑠 is the area of the 

specimen, 𝜀̇ is the strain rate. The strain rate is the differential of strain respect to time. 

The dimensions of the bars, the specimen, and the amplitude of the loading wave are 

designed such that, during the test, the specimen is loaded beyond the elastic limit. It is still in the 

plastic field while the bars remain elastic. When the amplitude of the stress pulse exceeds the 

dynamic yield strength of the soft specimen within this rise time, homogeneous deformation in the 

specimen cannot be reached before failure occurs due to the low elastic wave velocities in the low-

impedance materials. Upon loading by the incident pulse, the specimen will deform plastically 

near the impact end and the deformation will remain small near the other end. This non-

homogeneous deformation results in a non-equilibrium stress state. To reach equilibrium in the 

specimen, the loading pulse should travel back and forth inside the specimen more than three times.  

After the stress wave passes through and back the bars three or more times, it is assumed 

that the deformation is uniform, and the stress and strain at both ends of the specimen are equal 

(showed by eq. 1.2.4). Therefore, the whole specimen is under the uniform state of uniaxial 

compression throughout the test. When the results are under a uniform state, the two-wave theory 

(discussed more in chapter 2) will be used to analyze the properties. In the two-wave theory, the 



5 
 
stress in the specimen is calculated by dividing the force in the specimen (determined from the 

transmitted wave) by the cross-sectional area. The strain rate is the difference between the 

velocities of the end surfaces of the specimen (can get only from the wave that is reflected from 

the specimen to the incident bar, because of the uniform state) divided by its length. The strain is 

determined by integrating the strain rate. The main equations for two-wave theory are shown 

below: 

𝜀𝑖 + 𝜀𝑟 = 𝜀𝑡                                                                 (1.2.4) 

𝜎 =
𝐸𝐴𝜀𝑡

𝐴𝑠
                                                                    (1.2.5) 

𝜀 = −
2𝑐

𝑙𝑠
∫ 𝜀𝑟

𝑡

0
𝑑𝑡                                                              (1.2.6)                                            

𝜀̇ = −
2𝑐

𝑙𝑠
𝜀𝑟                                                                   (1.2.7)       

Where 𝜀 is strain, c is the speed of stress wave in the bars, 𝑙𝑠 is the gauge length of the specimen, 

𝜎 is the stress, E is the Young’s Modulus of the bars, A is the area of the bars, 𝐴𝑠 is the area of the 

specimen, 𝜀̇ is the strain rate. Substitute Eq. (1.2.4) into eq. (1.2.1), (1.2.2) and (1.2.3); eq. (1.2.5), 

(1.2.6) and (1.2.7) can be derived.                                

The experiments show that up to about 30% axial strain, the specimen remains cylindrical 

in shape; however, at larger strains, the specimens start to barrel, which means that the specimen 

at that stage is no longer under a uniform state of uniaxial compression. 
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1.3 Split Hopkinson Tensile Bar (SHTB) 

Tensile SHB tests are more difficult to conduct and analyze. A typical specimen for a 

tensile test has a dog bone geometry, with a middle section of a small cross-sectional area (gage 

section) and ends with a larger area (Gilat, Schmidt, & Walker, 2008). Rounded fillets comprise 

the transition from the gage section to the larger ends, which are attached to the bars of the SHTB 

apparatus. The strain distribution within the gage section and in the rounded fillets adjacent to the 

gage section depends on the exact geometry and properties (yield stress and strain hardening rate) 

of the specimen. Therefore, the specimen must be designed such that most of the gage section is 

under a state of uniaxial tension.  

In the compression test, the stress is calculated by dividing the force in the specimen 

(determined from the transmitted wave) by the cross-sectional area. The approach to determine the 

strain rate in an SHTB test is more involved because the portion of the specimen coupon between 

the ends of the bars includes the central gage section and the rounded fillets. If the deformation is 

confined only to the gage section, then the strain rate can be accurately calculated by dividing the 

difference between the velocities of the end of the bars by the length of the gage section. However, 

at least some of the relative motion between the bars is due to deformation within the fillets.  

The full-field strain measurement provides means for examining the validity and accuracy 

of the tests. In tests where the deforming section of the specimen is well defined and the 

deformation is uniform, the strains measured with the image correlation technique agree with the 

average strain that is determined from the split Hopkinson bar wave records. If significant 

deformation is taking place outside the gage section, and when necking develops, the strains 
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determined from the waves are not valid, but the image correlation method provides an accurate 

full-field strain history. 

Take a usual SHTB test with the image correlation method as an example (Gilat, Schmidt, 

& Walker, 2008), the axial strain measured with the image correlation method along the specimen 

is shown in Fig. 1-2. The figure displays the strain at every fifth frame, or approximately every 

44.5 𝜇𝑠. This waterfall plot shows that in the early part of the test, the strain is nearly uniform 

along 70% of the gage length. As the specimen deforms, the length of the portion of the gage 

section that is under uniform deformation decreases gradually until the necking develops. The 

strain near the ends of the gage section is smaller. Figure. 1-2 shows also that some plastic 

deformation is taking place outside the gage section in the rounded fillets. 

 

Fig. 1-2: Progression of strain distribution along with the specimen in the SHTB test 

1.4 Signal Analysis 

Transforms and filters are tools for processing and analyzing discrete data and are 

commonly used in signal-processing applications and computational mathematics. When data is 
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represented as a function of time or space, the Fourier transform decomposes the data into 

frequency components. The Fast Fourier Transformation (FFT) function uses a fast Fourier 

transform algorithm that reduces its computational cost compared to other direct implementations. 

The convolution and filter functions are also useful tools for modifying the amplitude or phase of 

input data using a transfer function. 

The frequency of the stress wave pulse signal is lower than the noise signals, and thus the 

FFT and Wavelet Transform (WT) are commonly adopted to act as a filter. Nevertheless, since the 

stress wave pulse is a kind of transient and non-stationary signal with a noise ratio and fast 

mutation process, the filter methods based on FFT, and WT cannot remove the noisy interference 

while retaining the original signal. Compared with signal de-noising methods based on FFT and 

WT, the Hilbert–Huang Transform (HHT) method has a better performance in dealing with such 

short-time abrupt and high-noise signals as well as being easier to calculate (Ai, Zhao, Wang, & 

Li, 2019). The basic computational process of HHT can be summarized as decomposing the signal 

into Intrinsic Mode Functions (IMF) by means of Empirical Mode Decomposition (EMD) and then 

performing HHT on the IMF. Therefore, the instantaneous frequency of the non-stationary signal 

is obtained. After the high-frequency instantaneous noise is removed, the remaining IMF 

components are reconstructed to obtain the final filtered result. To ensure that the IMF decomposed 

by the EMD retains the actual physical meaning of the instantaneous frequency and amplitude, it 

is necessary to set a stop filtering condition to control the number of iteration selections in the 

decomposition calculation. The standard deviation (SD) commonly used in the EMD 

decomposition is as the following expression: 
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𝑆𝐷 = ∑
|ℎ𝑘−1(𝑡)−ℎ𝑘(𝑡)|2

ℎ𝑘−1(𝑡)2
𝑇
𝑡=0                                                  (1.4.1) 

Where ℎ𝑘−1(𝑡) and ℎ𝑘(𝑡) are IMF components of the original data. When the SD is smaller than 

a pre-given value, the filtering process will stop. To further verify and analyze the filtering results, 

FFT energy spectrum of the original and filtered signals were adopted to verify the filtering effect. 

 



 

 

CHAPTER 2. FORMULA DERIVATION AND MATHEMATICS 

2.1 Introduction of Stress Wave 

Stress waves produced by an impact load are typically characterized by fast rise and fall 

times, high amplitude, and short duration (Iskander, Omidvar, & Bless, 2015). Stress waves 

transmitted through an elastic-plastic material can be separated into two distinct waves, an elastic 

wave with a magnitude in the Hugoniot elastic limit (HEL) and a plastic wave.  

When a localized disturbance is applied suddenly into a medium, it will propagate to other 

parts of this medium (Haddad, 2000). The local excitation is not detected at the other positions of 

the medium instantaneously, as some time would be necessary for the disturbance to propagate 

from its source to other parts of the medium. This fact constitutes a general basis for the interesting 

subject of "wave propagation". For instance, the transmission of sound in air, the propagation of a 

seismic disturbance in the earth, and the transmission of radio waves, among others. In the case, 

when the suddenly applied disturbance is mechanical, e.g., an impact force, the resulting waves in 

the medium are due to mechanical stress effects and, thus, these waves are referred to as 

"mechanical stress waves", or simply "stress waves".  

In rigid body dynamics, it is assumed that, when an external force is applied to any point 

of the body, the resulting effect sets every other point of the body instantaneously in motion, and 

the applied force can be considered as producing a linear acceleration of the whole body, together 

with an angular acceleration about its centroid (Kelly, 2.2 One-dimensional Elastodynamics, 

2014). 
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In the theory of deformable media, the body is in equilibrium under the action of the 

externally applied forces, and the occurring deformations are assumed to have reached their 

equilibrium static values (Haddad, 2000). This assumption could be sufficiently accurate for 

problems in which the time between the application of the force and the setting up of effective 

equilibrium is short compared with the time in which the observation is made. However, if the 

external force is applied for only a short period of time, or it is changing rapidly, the resulting 

effect must be considered from the point of view of stress wave motion. 

Mechanical stress waves originate due to a forced motion of a portion of a deformable 

medium. As the other parts of the medium are deformed, because of such motion, the disturbance 

is transmitted from one point of the medium to the next and the disturbance, or wave, progresses 

through the medium. In this process, the resistance offered to deformation by the consistency of 

the medium, as well as the resistance to motion due to the inertia, must be overcome. As the 

disturbance propagates through the medium, it carries along with various amounts of kinetic and 

potential energies. Energy can be transmitted over considerable distances by wave motion. The 

transmission of energy is affected because motion is passed on from one particle to the next and 

not by any sustained bulk motion of the entire medium. Mechanical waves are characterized by 

the transport of energy through motions of particles about an equilibrium position. Thus, bulk types 

of motion of a medium such as those that occur in the turbulence of fluid are not classified as wave 

motion (Haddad, 2000). 
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2.2 One-dimensional Elastostatics and Elastodynamics 

In elastostatics problems, it is not necessary to know how the load was applied, or how the 

material particles moved to reach the stressed state; it is necessary only that the load was applied 

slowly enough so that the accelerations are zero, or that it was applied sufficiently long ago that 

any vibrations have died away and movements have ceased. There are three main equations in the 

elastostatics problems: 

𝑑𝜎

𝑑𝑥
+ 𝑏 = 0                   Equation of equilibrium (2.2.1) 

𝜀 =
𝑑𝑢

𝑑𝑥
      Strain-Displacement Relationship (2.2.2) 

𝜎 = 𝐸𝜀                          Constitutive Equation (2.2.3) 

Where E is Young’s Modulus, b is a body force (per unit volume). The unknowns in these three 

equations are the stress 𝜎, strain 𝜀 , and displacement u. These equations can be combined to give 

a second-order differential equation in u, called Navier’s Equation: 

𝑑2𝑢

𝑑𝑥2 +
𝑏

𝐸
= 0                1-D Navier’s Equation (2.2.4) 

This equation requires two boundary conditions to obtain a solution (Kelly, 2.1 One-dimensional 

Elastostatics, 2014). 

In rigid body dynamics, it is assumed that when a force is applied to one point of an object, 

every other point in the object is set in motion simultaneously (Kelly, 2.2 One-dimensional 

Elastodynamics, 2014). In static elasticity, it is assumed that the object is at rest and is in 
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equilibrium under the action of the applied forces; the material may well have undergone 

considerable changes in deformation when first struck, but one is only concerned with the final 

static equilibrium state of the object. Elastostatics and rigid body dynamics are sufficiently 

accurate for many problems but when one is considering the effects of forces that are applied 

rapidly, or for very short periods of time, the effects must be considered in terms of the propagation 

of stress waves. The analysis presented below is for one-dimensional deformations. The 

assumptions are that (1) material properties are uniform over a plane perpendicular to the 

longitudinal direction, (2) plane sections remain plane and perpendicular to the longitudinal 

direction, and (3) there is no transverse displacement. 

In the case of elastodynamics, u=u (x, t) and consider the governing equations: 

𝜕𝜎

𝜕𝑥
+ 𝑏 = 𝜌𝑎                   Equation of Motion (2.2.5) 

Where a is the acceleration. Expressing the acceleration in terms of the displacement, combining 

eq. (1.2.3), (1.2.4) and (1.2.5), the dynamic version of Navier’s equation can be derived: 

𝐸
𝜕2𝑢

𝜕𝑥2 + 𝑏 = 𝜌
𝜕2𝑢

𝜕𝑡2                                                   (2.2.6) 

In most situations, the body forces will be negligible, and so consider the partial differential 

equation:  

𝜕2𝑢

𝜕𝑥2 =
1

𝑐2

𝜕2𝑢

𝜕𝑡2                    1-D Wave Equation (2.2.7) 

Where c=√
𝐸

𝜌
, is the speed of wave propagating in the materials. It will be proved in Appendix A. 
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2.3 Particle velocities and Stress wave speed 

A stress wave travels at speed c through the material from the point of disturbance, e.g., 

applied load (Kelly, 2.2 One-dimensional Elastodynamics, 2014). When the stress wave reaches a 

given material particle, the particle vibrates about an equilibrium position. When the stress wave 

passes away from the particle, the particle goes back to its original position. As for the parts that 

have not been disturbed yet, they just keep in equilibrium. Fig. 2-1 shows the situation of the whole 

bar that is disturbed. Since the material is elastic, no energy is lost, and the solution predicts that 

the particle will vibrate indefinitely, without damping or decay, unless that energy is transferred 

to a neighboring particle. This type of wave, where the disturbance (particle vibration) is in the 

same direction as the direction of wave propagation, is called a longitudinal wave. The wave 

equation is solved subject to the initial conditions and boundary conditions. The initial conditions 

are that the displacement u and the particle velocity 
𝜕𝑢

𝜕𝑡
 are specified at t  0 (for all x). The 

boundary conditions are that the displacement u and the first derivative 
𝜕𝑢

𝜕𝑥
 are specified (for all t). 

This latter derivative is the strain, which is proportional to the stress. In problems where there is 

no boundary (an infinite medium), no boundary conditions are explicitly applied. A semi-infinite 

medium will have one boundary. For a rod of finite length, there will be two boundaries and a 

boundary condition will be applied to each boundary. 
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Figure 2-1: Stress wave travelling at speed c through an elastic rod 

Rewrite the 1-D Wave Equation (2.2.7) as: 

𝜕𝜎

𝜕𝑥
= 𝜌

𝜕𝑣

𝜕𝑡
                                                              (2.3.1) 

Where v is the particle velocity. Consider an element of material which has just been reached by 

the stress wave, seen in Fig. 2-2. The length of material passed by the stress wave in a time interval 

∆𝑡 is c∆𝑡. During this time interval, the stressed material at the left-hand side of the element moves 

at (average) velocity v and so moves an amount vt. The strain of the element is then the change 

in length divided by the original length: 

𝜀 = −
𝑣

𝑐
                                                                 (2.3.2) 

Under the small strain assumption, this implies that v  c, also that the density of the element will 

change as it is compressed, but again this change in density is small and can be neglected in the 

linear elastic theory. This formula will be introduced in detail in the next section. 

 The stress on the free side of the element is zero. Then eq. (2.3.1) leads to: 
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∆𝜎

𝑐∆𝑡
= 𝜌

𝑣

∆𝑡
                                             (2.3.3) 

And so: 

∆𝜎 = 𝜌𝑐𝑣                                              (2.3.4) 

where ∆𝜎 is the discontinuity in the stress across the wave front. 

 

Figure 2-2: Stress wave passing through a material element 

Since ∆𝜎 = 𝐸𝜀, one has c=√
𝐸

𝜌
. The wave speeds for some materials are given in Table 2-1. The 

wave speeds for typical engineering materials are in the of order km/s. Therefore, when load is in 

the elastic field, the particle velocities will be in the range 0  50 m/s. 
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Table 2-1: Elastic Wave Speeds for Several Materials 

Material 
𝜌(

𝑘𝑔

𝑚3
) 

E (GPa) C(m/s) 

Aluminum Alloy 2700 70 5092 

Brass 8300 95 3383 

Copper 8500 114 3662 

Lead 11300 17.5 1244 

Steel  7800 210 5189 

Glass  1870 55 5300 

Granite  2700 26 3120 

Limestone  2600 63 4920 

 

Consider steel: the velocity at which the material ceases to behave linearly elastic (taking 

the yield stress to be 400MPa) is v  Y /c 10m/s. 

Fig. 2-3 shows a schematic diagram of SHPB; specifically, a split Hopkinson pressure 

compression bar. The working principle is that the striker impacts the incident bar first, then elastic 

stress wave will be produced in the incident bar. Then, the wave will propagate along with the 

incident bar, specimen, and transmitted bar. Since the material of the specimen is different from 

those two bars’, there will be a reflected wave that passes back through the incident bar. 

After the impact, a compressive stress wave with a magnitude of 𝜎 = 𝜌𝑐𝑣/2  develops in 

the input bar. In eq. (2.3.4), ∆𝜎 = 𝜌𝑐𝑣. Thus, here is the derivation of the magnitude of 𝜎 =

𝜌𝑐𝑣/2:  
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Fig. 2-3: The moment before impact 

In this figure, it shows the moment before the impact. The left bar is the striker, and the right bar 

is the incident bar. Their Young’s modulus, density, cross-sectional area, and wave speed are 

𝐸𝑠𝑡 , 𝜌𝑠𝑡, 𝐴𝑠𝑡, 𝐶𝑠𝑡 and 𝐸𝑖 , 𝜌𝑖 , 𝐴𝑖 , 𝐶𝑖, respectively. 

Fig.2-4: The moment at impact 

Figure 2-4 shows the moment at impact. The 𝑣𝑖 and 𝑣𝑠𝑡 are the velocities of the particles at the 

incident bar and striker, respectively. The 𝑐𝑖 and 𝑐𝑠𝑡 are the wave speed in the incident bar and 

striker, respectively. At surface S-I, from continuity condition, there will be 𝑣𝑠𝑡 equals to 𝑣𝑖. 

According to Newton’s third law:  

-∆𝜎𝑠𝑡𝐴𝑠𝑡 = ∆𝜎𝑖𝐴𝑖  (the direction of stress needs to be inspected)     (2.3.5) 



19 
 
It means the action force equals the reaction force. If taking the right direction as positive, in other 

word, the increasing stress equals to that of the decreasing. 

From equation (2.3.4), the ∆𝜎𝑠𝑡 is from the change of velocity of the particle. So, ∆𝜎𝑠𝑡 should be: 

 ∆𝜎𝑠𝑡 = 𝜌𝑠𝑡 × 𝑐𝑠𝑡 × 𝑣𝑠𝑡 − 𝜌𝑠𝑡 × 𝑐𝑠𝑡 × 𝑣0                  (2.3.6) 

Similarly, the 𝜎𝑖 equals to: 

 ∆𝜎𝑖 = 𝜌𝑖 × 𝑐𝑖 × 𝑣𝑖 − 𝜌𝑖 × 𝑐𝑖 × 0                            (2.3.7)  

Then it becomes: 

−𝐴𝑠𝑡 × (𝜌𝑠𝑡 × 𝑐𝑠𝑡 × 𝑣𝑠𝑡 − 𝜌𝑠𝑡 × 𝑐𝑠𝑡 × 𝑣0) = ( 𝜌𝑖 × 𝑐𝑖 × 𝑣𝑖 − 𝜌𝑖 × 𝑐𝑖 × 0)× 𝐴𝑖       (2.3.8) 

Since 𝑣𝑠𝑡 equals to 𝑣𝑖: 

𝑣𝑖 = 𝑣𝑠𝑡 =
𝜌𝑠𝑡×𝑐𝑠𝑡× 𝑣0×𝐴𝑠𝑡

𝜌𝑠𝑡×𝑐𝑠𝑡×𝐴𝑠𝑡+𝜌𝑖×𝑐𝑖×𝐴𝑖
                          (2.3.9) 

Substitute eq. (2.3.9) into the eq. (2.3.6) and eq. (2.3.7): 

∆𝜎𝑠𝑡 = 𝜌𝑠𝑡 × 𝑐𝑠𝑡 (
𝜌𝑠𝑡×𝑐𝑠𝑡× 𝑣0×𝐴𝑠𝑡

𝜌𝑠𝑡×𝑐𝑠𝑡×𝐴𝑠𝑡+𝜌𝑖×𝑐𝑖×𝐴𝑖
− 𝑣0) = −𝜌𝑠𝑡𝑐𝑠𝑡

𝜌𝑖×𝑐𝑖× 𝑣0×𝐴𝑖

𝜌𝑠𝑡×𝑐𝑠𝑡×𝐴𝑠𝑡+𝜌𝑖×𝑐𝑖×𝐴𝑖
 (2.3.10) 

∆𝜎𝑖 = 𝜌𝑖 × 𝑐𝑖 ×
𝜌𝑠𝑡×𝑐𝑠𝑡× 𝑣0×𝐴𝑠𝑡

𝜌𝑠𝑡×𝑐𝑠𝑡×𝐴𝑠𝑡+𝜌𝑖×𝑐𝑖×𝐴𝑖
                (2.3.11) 

If the striker and incident bar are identical materials and have the same cross-sectional area, that 

means: 𝜌𝑠𝑡 = 𝜌𝑖 = 𝜌, 𝑐𝑖 = 𝑐𝑠𝑡 = 𝑐, 𝐴𝑖 = 𝐴𝑠𝑡 = 𝐴, therefore: 
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∆𝜎𝑠𝑡 = −
𝜌𝑐𝑣0

2
                                                       (2.3.12) 

∆𝜎𝑖 =
𝜌𝑐𝑣0

2
                                             (2.3.13) 

So, when the striker and incident bar are identical material and have the same cross-sectional area, 

the magnitude of stress wave in the incident bar is 
𝜌𝑐𝑣0

2
. The magnitude has a linear relationship 

with respect to the velocity of the striker. In other words, if one wants to get a higher stress, he can 

increase the velocity of the striker linearly. 

2.4 The way to calculate strain of strain gauge from the Wheatstone bridge circuit 

For this experiment, strain gauges are used to measure the strain that occur in the bars. 

However, strain gauges can’t output any signals actively; they just change their resistances when 

they have deformation. Therefore, some tools are needed to record the resistances change history. 

A normal ohmmeter can’t work well in this situation because the resistances vary very quickly, 

people even can’t see the change from the ohmmeter. An oscilloscope with trigger function and a 

high sampling rate can record the fast variations. On the other hand, if oscilloscope is used in this 

system, one must convert the variations of resistances into electric signals like voltage or current. 

Thus, a Wheatstone Bridge Circuit is used because it can convert the resistance change into voltage 

change and enlarge it so that it can be tracked by high-speed oscilloscopes (Zhu, 2019). A typical 

Wheatstone quarter bridge setup is shown in Figure 2-5. R1, R2, and R3 have the same resistance 

as the strain gauge at zero loading conditions. An external voltage would be applied between points 

A and B. When the bridge is balanced, there would be no output between points C and D. Once 
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the strain gauge is loaded, the change of resistance would break the balance, and a potential 

difference would be generated between points C and D, which would be recorded by the 

oscilloscope.  

 

Fig. 2-5: Schematic of Wheatstone Bridge Circuit (quarter bridge) (Zhu, 2019) 

However, in the real test, lead wires are used to connect the strain gauges with the 

Wheatstone Bridge Circuit. If using a two-wire strain gauge, it cannot build up a balanced bridge 

circuit because the wires have their own resistances, shown in the Figure 2-6.  

 

Fig. 2-6: Two-wire Strain gauge circuit 
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The resistance of the unstrained strain gauge is identical to R1, R2 and R3. So, it has:  

𝑅1

𝑅2
=

𝑅3

𝑅𝑔
                                                             (2.4.1) 

But it must take the resistances of lead wires into the calculation, so it gets: 

𝑅1

𝑅2
≠

𝑅3

𝑅𝑔+2𝑅𝐿
                                                      (2.4.2) 

It breaks the balance of equation (2.4.1). In other words, this circuit cannot balance either. Thus, a 

three-wire strain gauge must be used. It is shown in Figure 2-7. It can be found that the balance 

remains when wires used have the same initial resistance, as shown in equation (2.4.3). 

𝑅1

𝑅2
=

𝑅3+𝑅𝐿

𝑅𝑔+𝑅𝐿
                                                      (2.4.3) 

 

 

Fig.2-7: Three-wire Wheatstone Bridge Circuit 

The formula to get strain is (Lang, 2012):  
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strain(ε) =
−4Vr

GF(1+2Vr)
(1 +

RL

Rg
)                             (2.4.4) 

This formula will be explained in Appendix B. In the eq. 2.4.4, RL is the resistance of lead wire 

and Rg is the nominal resistance of the gauge. GF is the gauge factor and it is from the strain 

gauge’s manual. As for the physical meaning, it is: 

GF =
∆𝑅/𝑅

∆𝐿/𝐿
=

∆𝑅/𝑅

𝜀
                                  (2.4.5) 

𝑉𝑟 is the voltage ratio and is defined as: 

𝑉𝑟 =
𝑉𝑐ℎ(𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑)−𝑉𝑐ℎ(𝑢𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑)

𝑉𝑒𝑥
                   (2.4.6) 

where 𝑉𝑒𝑥 is the external voltage and 𝑉𝑐ℎ is the output voltage. Resistors R1 and R2 are half 

bridge completion resistors, R3 is the dummy gauge, and R4 is the active strain sensing gauge. 

So, through the three wave signals: incident wave, reflected wave and the transmitted wave, 

have strains denoted as 𝜀𝑖, 𝜀𝑟 and 𝜀𝑡 , respectively. Since the voltage signal is a function of 

time, the strain from the strain gauge should also be a function of time. At a particular time 𝑡𝑎, 

the incident strain should be 𝜀𝑖(𝑡𝑎). Similarly, the reflected strain and transmitted strain are 

𝜀𝑟(𝑡𝑎) and 𝜀𝑡(𝑡𝑎), respectively. 

2.5 Calculate the stress and strain rate with the strain gotten 

From the signals in the oscilloscope, the direction of oscillation (compression or tension) 

of the reflected wave is always opposite to the original wave. For instance, when the incident wave 
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is a compression wave, the reflected wave back to the incident bar must be a tensile wave. 

Meanwhile, these two directions of wave propagation are opposite too. Some examples are shown 

in the following figures:  

 

Fig. 2-8: Propagation of the reflected & refracted waves 

 

Fig. 2-9: Phenomenon shows the difference between the reflected and original waves 
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From eq. 2.3.2, 𝑣⃗ = −𝜀 × 𝑐; where  𝑣⃗ is the velocity of the particles in the bar, 𝜀 is the 

strain of bars, and 𝑐 is the velocity of the wave. One can get 𝜀 from the signals recorded by the 

oscilloscope. The magnitude of 𝑐 is known, so one can figure out the magnitude of 𝑣⃗ by this 

formula. It is important to get the magnitude of 𝑣⃗, because by integrating 𝑣⃗ respect to time, one 

will get the displacement 𝑢⃗⃗ of bars. And regarding to conditions talked about previously, the 

particles in the bar only oscillate when there is a disturbance and will go back equilibrium position 

afterwards. At the beginning, the disturbance will propagate in the bar without energy loss, so the 

strain at the position of the strain gauges will repeat at the end of the bar. Therefore, the strain from 

the strain gauges are used to describe the strain at the end of bar. In other words, the 𝑣⃗ and 𝑢⃗⃗ is 

from 𝜀, therefore, the 𝑣⃗ and 𝑢⃗⃗ at the end of bar are known as well. By subtracting the displacements 

of both ends of the bars, the deformation of the specimen can be determined. In other words, the 

strain of the specimen, because one knows the original length of strain gauge. So, vector 𝑣⃗ is 

derived below. 

There are four kinds of wave propagation, the first one is a compression wave propagating 

along with the positive coordinate direction, as shown below: 

 

Fig. 2-10: Compression wave propagates along with positive X axis 



26 
 
An assumption here in shown in a micro-element in the bar. From Figure 2-9, after the time t, the 

wave propagates from the bar’s left end to the right. So, the length of this element is 𝐿⃗⃗ = 𝑐 × 𝑡, 

and the displacement of left end is 𝑢⃗⃗ whereas the deformation of the bar is 𝛿. Since this is a small 

element, the strains are uniform. That means 𝑢⃗⃗ = − ∫ 𝜀𝑑𝑥
𝐿

0
 can be transferred into 𝑢⃗⃗ = −𝜀 × 𝐿⃗⃗ =

−𝜀 × 𝑐 × 𝑡. The sign is inspected through Figure 2-9. The velocity of the particle is 𝑣⃗ =
𝑑𝑢⃗⃗⃗

𝑑𝑡
=

−𝜀 × 𝑐. The three other situations are a tensile wave propagating along the positive X axis, a 

compression wave propagating along the negative X axis, and a tensile wave propagating along 

the negative X axis. They are shown in Figures 2-10, 2-11, and 2-12, respectively. By checking 

these three figures, it shows that 𝑣⃗ = −𝜀 × 𝑐 is satisfied in every propagation situation.  

 

Fig. 2-11: A tensile wave propagating along the positive X axis 
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Fig.2-12: A compression wave propagating along the negative X axis 

 

Fig.2-13: A tensile wave propagating along the negative X axis 
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 Figure 2-13 shows the impact moment of the compression test. At the right end of the left 

bar, it includes two types of strain: incident strain (𝜀𝑖) and reflected strain (𝜀𝑟) at the same moment. 

However, they have opposite directions of propagation. At the left end of the right bar, there is 

only one transmitted strain which is 𝜀𝑡. 𝐶𝑖 , 𝐶𝑟 , and 𝐶𝑡 are the propagation directions of incident 

wave, reflected wave and transmitted wave, respectively. This figure has a detailed view of the 

right end of the left bar about the strain. 𝑢1⃗⃗⃗⃗⃗ is the displacement of the right end of the incident bar 

and 𝑢2⃗⃗⃗⃗⃗ is the displacement of the left end of the transmitted bar. Thus, the deformation of the 

specimen is 𝑢2⃗⃗⃗⃗⃗ − 𝑢1⃗⃗⃗⃗⃗. 

 

Fig. 2-14: The impact moment of compression test 

𝑢1⃗⃗⃗⃗⃗ = ∫ 𝑣1⃗⃗⃗⃗⃗
𝑡

0
𝑑𝑡 = ∫ (𝑣𝑖⃗⃗⃗ ⃗ + 𝑣𝑟⃗⃗ ⃗⃗ )

𝑡

0
𝑑𝑡 = ∫ (−𝑐𝑖⃗⃗⃗𝜀𝑖 − 𝑐𝑟⃗⃗⃗⃗ 𝜀𝑟)𝑑𝑡

𝑡

0
          (2.5.1) 
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𝑣1⃗⃗⃗⃗⃗ is the velocity of particle at the end and it includes two parts: one is the velocity from the 

incident wave 𝑣𝑖⃗⃗⃗ ⃗ and the other one is the velocity from reflected wave 𝑣𝑟⃗⃗ ⃗⃗ . Through the formula 

𝑣⃗ = −𝜀 × 𝑐, displacement can be derived by integrating the strain. The wave speed is stable as 

the material is the same, and one can find the direction of incident wave is opposite to the direction 

of reflected wave, so it is: 

𝑐 = 𝑐𝑖⃗⃗⃗ = −𝑐𝑟⃗⃗⃗⃗                                                         (2.5.2) 

As talked in section 2.4, the strain of the particles is a function about time. Then, plug eq. 2.5.2 

into eq. 2.5.1, it becomes: 

𝑢1⃗⃗⃗⃗⃗ = 𝑐 ∫ (−𝜀𝑖 + 𝜀𝑟)
𝑡

0
𝑑𝑡                                           (2.5.3) 

For the displacement of the left end of the transmitted bar, it is: 

𝑢2⃗⃗⃗⃗⃗ = ∫ 𝑣𝑡⃗⃗ ⃗⃗
𝑡

0
𝑑𝑡 = ∫ −𝑐𝑡⃗⃗⃗ ⃗𝜀𝑡

𝑡

0
𝑑𝑡                                     (2.5.4) 

Similarly, 𝑐𝑡⃗⃗⃗ ⃗ = 𝑐, then: 

𝑢2⃗⃗⃗⃗⃗ = 𝑐 ∫ −𝜀𝑡
𝑡

0
𝑑𝑡                                     (2.5.5) 

The deformation of the specimen is: 

𝑢2⃗⃗⃗⃗⃗ − 𝑢1⃗⃗⃗⃗⃗ = 𝑐 ∫ (𝜀𝑖 − 𝜀𝑟 − 𝜀𝑡)
𝑡

0
𝑑𝑡                     (2.5.6)           

The strain of specimen is: 
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𝜀𝑠 =
𝑢2⃗⃗⃗⃗⃗⃗ −𝑢1⃗⃗⃗⃗⃗⃗

𝐿𝑠
=

𝑐

𝐿𝑠
∫ (𝜀𝑖 − 𝜀𝑟 − 𝜀𝑡)

𝑡

0
𝑑𝑡                           (2.5.7)      

Here, 𝑐 is replaced by c. c is the scalar velocity of the wave, because all of the velocity waves have 

been transferred to the positive direction, which means c can represent 𝑐 right now. 𝐿𝑠 is the 

original length of specimen. 

The stress at the rightest surface of the incident bar is: 

𝜎 = 𝐸𝜀 = 𝐸(𝜀𝑖 + 𝜀𝑟)                                         (2.5.8) 

Thus, the force of the right end of the incident bar is:  

𝐹𝑟𝑖
⃗⃗ ⃗⃗ ⃗ = 𝜎 × 𝐴 = 𝐸(𝜀𝑖 + 𝜀𝑟)𝐴                        (2.5.9) 

Where A is the cross-sectional area of the incident bar. 

Regarding Newton’s third law, the force on the left side of the specimen is: 

𝐹𝑙𝑠
⃗⃗⃗⃗⃗⃗ = −𝐹𝑟𝑖

⃗⃗ ⃗⃗ ⃗ = −𝐸(𝜀𝑖 + 𝜀𝑟)𝐴                      (2.5.10) 

At the different ends of a rod, the directions of forces that produces the same stress 

(compression or tension) are opposite. For example, at the bar’s positive surface (right side), a 

compression stress (negative stress) is from a negative force. On the other hand, at the negative 

surface (left side) of the bar, a compression stress is from a force faces to positive direction. 

Therefore, it is found that the signs of force and stress are opposite at the negative surface and the 

signs are the same at the positive surface, also known as the theory of tensor. Therefore, the stress 

at the left surface of the specimen is: 
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 𝜎𝑙𝑠 =
−𝐹𝑙𝑠⃗⃗⃗⃗⃗⃗⃗

𝐴𝑠
=

𝐸(𝜀𝑖+𝜀𝑟)𝐴

𝐴𝑠
                                           (2.5.11) 

Here As is the cross-sectional area of the specimen. 

In the experiment, because of high strain-rates, the strain at the left side of the specimen 

will not act simultaneously with the strain at the right surface of the specimen. In this model, the 

specimen will undergo compression stress twice. One is from the incident bar and the other is from 

the transmitted bar. 

In the transmitted bar, the strain is 𝜀𝑡. So, the stress acts on the left side of the bar 𝜎𝑡 =

𝐸 × 𝜀𝑡. Because it is the left side of the transmitted bar, the applied force is: 

 𝐹⃗ = −𝜎𝑡 × 𝐴 = −𝐸 × 𝜀𝑡 × 𝐴 (2.5.12) 

Here A is the cross-sectional area of the transmitted bar. Since the two bars are identical in size, 

the cross-section areas of both bars are the same. 

 From Newton’s third law, the reaction force on the right side of the specimen is: 

 𝐹𝑟𝑠
⃗⃗⃗⃗⃗⃗ = −𝐹⃗ = 𝐸 × 𝜀𝑡 × 𝐴 (2.5.13) 

So, the stress at the right surface of the specimen is: 

 𝜎𝑟𝑠 =
𝐸 × 𝜀𝑡 × 𝐴

𝐴𝑠
 (2.5.14) 

The average stress on the whole specimen is: 
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 𝜎𝑠 =
𝜎𝑙𝑠 + 𝜎𝑟𝑠

2
=

𝐸(𝜀𝑖 + 𝜀𝑟 + 𝜀𝑡)𝐴

2𝐴𝑠
 (2.5.15) 

From this model, 𝜎𝑙𝑠 and  𝜎𝑟𝑠 happen at different times. Thus, this is an average stress about time. 

 When the specimen reaches force equilibrium, as shown in the Figure 2-14, 𝐹𝑙𝑠
⃗⃗ ⃗⃗ ⃗ = −𝐹𝑟𝑠

⃗⃗⃗⃗⃗⃗ . 

From eq. 2.5.10 and eq. 2.5.13, total strain is: 

 𝜀𝑖 + 𝜀𝑟 = 𝜀𝑡  (2.5.16) 

Plug eq. 2.5.16 into eq. 2.5.15 and eq. 2.5.7, it becomes: 

 

𝜎𝑠 =
𝐸𝜀𝑡𝐴

𝐴𝑠
 (2.5.17) 

 

𝜀𝑠 = −
2𝑐

𝐿𝑠
∫ 𝜀𝑟

𝑡

0

𝑑𝑡 (2.5.18) 

The strain rate is: 

 

𝜀𝑠̇ =
𝑑𝜀𝑠

𝑑𝑡
= −

2𝑐

𝐿𝑠
𝜀𝑟  (2.5.19) 

 

Fig. 2-15: Specimen is in equilibrium 



33 
 
𝜀𝑡 and  𝜀𝑟  are only used to get the stress, strain and strain rate in eq. 2.5.17, eq. 2.5.18 and eq. 

2.5.19. In other words, the reflected wave and transmitted wave is required to calculate all 

necessary values which is why this method is called the two-wave method.  

 The second part is the tensile test and is quite similar to the compression test. Figure 2-15 

shows the normal tensile test. Like the compression test, the displacements of the two ends of the 

bars need to be determined. Therefore, the displacement of the right end of the incident bar is:  

 

𝑢1⃗⃗⃗⃗⃗ = ∫ 𝑣1⃗⃗⃗⃗⃗
𝑡

0

𝑑𝑡 = ∫ (𝑣𝑖⃗⃗⃗ ⃗ + 𝑣𝑟⃗⃗ ⃗⃗ )
𝑡

0

𝑑𝑡 = ∫ (−𝑐𝑖⃗⃗⃗𝜀𝑖 − 𝑐𝑟⃗⃗⃗⃗ 𝜀𝑟)𝑑𝑡
𝑡

0

 (2.5.20) 

The displacement of the left end of the transmitted bar is: 

 

𝑢2⃗⃗⃗⃗⃗ = ∫ 𝑣𝑡⃗⃗ ⃗⃗
𝑡

0

𝑑𝑡 = ∫ −𝑐𝑡⃗⃗⃗ ⃗𝜀𝑡

𝑡

0

𝑑𝑡 (2.5.21) 
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Fig. 2-16: A usual schematic of SHPTB 

 From the Figure 2-15, it is: 

 𝑐𝑖⃗⃗⃗ = −𝑐𝑟⃗⃗⃗⃗ = 𝑐𝑡⃗⃗⃗ ⃗ = 𝑐 (2.5.22) 

Rewrite eq. 2.5.20 and eq. 2.5.21: 

 

𝑢1⃗⃗⃗⃗⃗ = 𝑐 ∫ (−𝜀𝑖 + 𝜀𝑟)
𝑡

0

𝑑𝑡 (2.5.23) 

 

𝑢2⃗⃗⃗⃗⃗ = 𝑐 ∫ −𝜀𝑡

𝑡

0

𝑑𝑡 (2.5.24) 

The deformation of the specimen is: 
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𝑢2⃗⃗⃗⃗⃗ − 𝑢1⃗⃗⃗⃗⃗ = 𝑐 ∫ (𝜀𝑖 − 𝜀𝑟 − 𝜀𝑡)
𝑡

0

𝑑𝑡 (2.5.25) 

The strain of the specimen is: 

𝜀𝑠 =
𝑢2⃗⃗⃗⃗⃗⃗ −𝑢1⃗⃗⃗⃗⃗⃗

𝐿𝑠
=

𝑐

𝐿𝑠
∫ (𝜀𝑖 − 𝜀𝑟 − 𝜀𝑡)

𝑡

0
𝑑𝑡                           (2.5.26)   

The strain rate of the specimen is:    

𝜀𝑠̇ =
𝑑𝜀𝑠

𝑑𝑡
=

𝑐

𝐿𝑠
(𝜀𝑖 − 𝜀𝑟 − 𝜀𝑡)                               (2.5.27)   

From eq. 2.5.26, it can be seen that the formula of the stain in the tensile test specimen is 

the same as the formula (eq.2.5.7) for the strain in the compression test. Usually, this formula is 

not used to calculate the tensile strain because in the compression test, the specimen is sandwiched 

between two bars. Therefore, the subtraction of the displacements of the two bars is the 

compressive deformation in the specimen. For the tensile test, due to the geometry of specimen 

and the way the specimen is connected with the bars, the real strain of the specimen is different 

compared to the strain calculated by this formula. The better method to get the strain and strain 

rate of the specimen is via the Digital Image Correlation (DIC). However, the stress formulas are 

still accurate and used for the tension tests since the forces are consistent all the time. The 

derivation of tensile stresses by the three-wave method as well as the strain, strain rate and stress 

via the two-wave method is the same as the compression test. 

 



 

 

CHAPTER 3. THE PREPARATION FOR CONDUCTING THE 

EXPERIMENT 

3.1 Install the strain gauge  

The incident wave, reflected wave, and transmitted wave are inside the two bars. They are 

elastic waves, in other words, the elastic strain wave. That is why the strain gauges are required in 

this experiment. It is critical to install the strain gauge correctly. Here are the procedures and tips 

for bonding the strain gauges and soldering them on the bar. All chemical reagents and physical 

accessories are shown in Figure 3-1. 

Surface preparation procedures   

a. Degrease the part of the bar where the strain gauges are going to be installed on with 

CSM-3 by using gauzes. 

b. Polish this area with a dry silicon carbide paper with a roughness of P400. 

c. Place one drop of M-PREP CONDITIONER A solution there and re-polish it with the 

P400 sandpaper. 

d. Use some gauze to remove the liquid on the surface. 

e. Make a mark on the bar. Usually, it is a circumferential circle that is used to make sure 

the strain gauge is parallel to the axial direction of the bar. If the bar is a steel bar, using 

a ballpoint pen; if it is an AL bar, using a pencil to draw the marker. 

f. Use the M-PREP CONDITIONER A and cotton swabs to get rid of the pencil or 

ballpoint pen ink. Technically, the slight scratch is still leaving on the bar. 
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g. Clean the surface with gauze. 

h. Clean the whole area with M-PREP NEUTRALIZER 5A solution and cotton swabs. 

i. Wipe the area with a piece of new gauze again. 

The preparation work of the strain gauge 

a. Clean a glass plate with M-PREP NEUTRALIZER 5A and gauzes. Wipe it only in one 

direction to make sure there is no new dirt. 

b. Pick up a strain gauge with a blunt tweezer and put it on the glass plate. The side of 

resistance wire is on the top.  

c. The type of tape used is PCT-2M. Because the first 2’’ tape was exposed in the air all 

the time, it should be cut off. Use the following 2’’of long tape every time. 

d. Fold the tape at the free end a little bit to get a convenient non-sticky end. 

e. Tear off the tape and tape the stain gauge along with the longitudinal direction 

carefully. Avoid any air bubbles as much as possible. If there are any air bubbles 

between the strain gauge and tape, the tape should be removed and repeat steps d and 

e. 

Transport the strain gauge from the glass plate and bond it on the bar 

a. Lift the whole tape and strain gauge at a small angle from the glass plate. 

b. Align the two corner triangles seen in the corners of the strain gauge along with the line 

drawn before. When the alignment is good, fix the strain gauge on the surface of the 

bar and press and push down the tape in one direction.  

c. Lift the tape up again but at a small angle until the whole strain gauge is exposed again. 

Because the strain gauge is bonded with tape, the bottom of strain gauge is exposed to 

the air right now. 
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d. Place a small amount of 200 CATALYST with the small brush and paint it on the 

bottom of strain gauge.  

e. It will take at least 60 seconds to dry the 200 CATALYST. 

f. Place a drop of M-BOND 200 ADHESIVE underneath the strain gauge. 

g. Swipe the tape with gauze and then press the position of strain gauge immediately. 

h. Keep pressing the position of the strain gauge for two minutes and leave it there for 

another two minutes at least. 

i. Remove the tape. 

Soldering process 

a. To eliminate the interference of the resistance of lead wire, there are three separate lead 

wires are used to connect the strain gauge with the amplifier. But there are only two 

soldering points on the strain gauge. So, two of the lead wires should be twisted 

together as one. For here, the black and white wire will be twisted together.  

b. Melt a small amount of lead wire using the solder pencil and drop a little of the molten 

lead on the BONDABLE TEMINALS CPF-75C work area. 

c. Place some molten lead onto the legs of the stain gauge.  

d. Curve the leg wires of the strain gauge in horizontal plane to make a dome shape to 

create a buffer for the wire. 

e. Bend the head of lead wire down to touch the tab on the BONDABLE TERMINALS 

CPF-75C and solder them together.  

f. Solder the lead wires for the amplifier on the tab also. 

g. Remove rosin with M-LINE ROSIN SOLVENT and dry it with gauze three times. 

h. Protect the soldering point with M-COAT A. 
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Fig. 3-1: Chemical reagent and accessories 

3.2 Methods against Electric Magnetic Interference (EMI) 

Protection layer for the wires 

The lead wires between the strain gauges and the amplifiers are too thin to prevent the EMI 

in the environment. Therefore, it is necessary to make some protection foils for the wires. Based 

on the theory of Faraday’s cage, a layer of aluminum foil is used to cover the outer skin of wires. 

A layer of tape is used to fix the aluminum foil and then this cage should be grounded. Because 

the lead wire is needed to be soldered with the BONDABLE TERMINALS on the bars and 

adaptors for the amplifier, there has to be some naked wires outside. However, the length of the 

naked wires should be shorter than a half inch.  
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Fig. 3-2: Protected lead wire for strain gauge 

Ground connection 

Since the signal collection system measures the electric signal, the system should be at the 

zero electric voltage position. In other words, all conductions in the system should be grounded. 

The conductors include the incident bar, the transmitted bar, the gun barrel, and the oscilloscope 

which are all grounded together.  

For the incident bar, the transmitted bar and the gun barrel, a ground wire was twined on 

the bar and then taped.  
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Fig. 3-3: The grounded wire on the bars 

For the lead wires of the strain gauges, there is a Faraday’s cage outside the wire. To make 

sure the Faraday’s cage work well, it needs to be grounded. The method is that a wire with a clip 

head clamps a small part of the aluminum foil.  

 

Fig. 3-4: The method to ground the Faraday Cage 
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 There is a ground connector on the oscilloscope. The grounded method for that 

oscilloscope is that a wire with a clip head clamps the connector.  

 

Fig. 3-5: The method for grounding the oscilloscope 

 In other words, grounding the system means the electric potential of all conductors should 

be the same. Thus, the method used here is that all lead wires are connected with a steel plate that 

lies on a bigger steel plate. 
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Fig. 3-6: The steel plate used as ground 

3.3 The setting of the amplifier and the oscilloscope 

 The strain gauge measures the strain in the bars by changing its resistance passively but 

the oscilloscope can only analyze the voltage and current signal. So, the strain gauge is connected 

with an amplifier that has a Wheatstone bridge circuit inside that can transfer the variable of 

resistance of the strain gauge into a voltage signal. Another function of the amplifier is to enlarge 

the voltage signal. The connection between the lead wires of the strain gauges and the input adaptor 

of the amplifier is shown in Figure 3-7. The female connector J and H are connected together. 

Three lead wires of the strain gauges are connected with A, C and L respectively. As discussed 

before, two of these three wires are combined together, and they should be connected with A and 

C respectively. The setting of the interface of the amplifier is shown in Figure 3-8. 
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Fig. 3-7: The connection between the lead wires of the strain gauges and the input adaptor of the 

amplifier 

 

Fig. 3-8: The interface of the amplifier 
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 The collection mode of the oscilloscope for the experiments is by using the single trigger 

mode. The input mode for the oscilloscope is an analog signal input. Analog channels 1 and 2 are 

used. Each voltage division for channels 1 and 2 are 500 mv. The time represented by each square 

is 100 ms. The trigger mode is an edge trigger and it uses a rising slope. The trigger source is from 

channel 1 and the trigger level is 200 mv. The sample rate is 4 MSa/s. The meaning of these 

parameters and the way to change them can be founded in the user manual of the oscilloscope.  

 

Fig. 3-9: The interface of the oscilloscope 

 



 

 

CHAPTER 4. MECHANISM OPTIMIZATION 

4.1 Introduction of a general reflective SHTB 

 The reflective Hopkinson tension bar is determined by changing the connection method 

between the specimen and the loading rod based on the compression rod. Nicholas established a 

reflective tensile experiment (T, 1981). A compression ring with the same diameter as the 

experimental rod is added to the periphery of the tensile sample. When the compression wave starts 

to pass through the sample, the compression ring mainly bears the force. The compression wave 

is reflected from the end face of the transmission rod to form a tensile wave and then returns to the 

sample. Tensile loading is performed, so it is called a "reflective stretching". Figure 4-1 shows 

Nicholas’s loading method. Figure 4-2 shows a schematic diagram of the reflective SHTB. 

 

Fig. 4-1: Nicholas’s loading method 

 

Fig. 4-2: A schematic diagram of the reflective SHTB 
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 Take a typical reflective SHTB as an example. Figure 4-3 shows the wave propagation 

process in a typical reflective SHTB. The bullet hits the transmission rod in the axial direction with 

a certain velocity, causing a compressive stress wave to propagate in the rod. When the pressure 

pulse reaches the interface between the specimen and the pressure rod, it passes through the cross 

section formed by the pressure ring and the specimen in an ideally non-dissipative manner. 

Substantially, there are a few pulses 𝜀𝑒 that are reflected back into the transmitted bar. The cross-

sectional area of the compression ring is designed to be more than 10 times larger than the cross-

sectional area of the specimen, so it will withstand a major part of the compressive pulse, leaving 

the specimen with little or no compression and only elastic deformation. The compression pulse 

continues to travel through the sample, and when it reaches the free end of the incident rod, it 

propagates back in the form of a tensile wave. When the tensile wave reaches the sample, part of 

it passes through the sample to form a transmitted signal 𝜀𝑡, and the other part is reflected to form 

a reflected signal 𝜀𝑟. Since the pressure-bearing ring is not fixed on the pressure rod in any form, 

it can only bear compressive stress and cannot bear tensile stress, so the tensile pulses all act on 

the sample. 
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Fig. 4-3: The wave propagation process in a typical reflective SHTB 

4.2 The reflective SHTB in the NIU 

 Based on the theory and design, a type of reflective SHTB apparatus was designed. As 

Figure 4-2 shown, it mainly has three parts that are the projectile, the transmitted bar and the 

incident bar. Figure 4-4 shows the device in the NIU. There is a gas tank that is used to launch the 

projectile by high pressure air. The gun barrel is a hollow steel pipe used as the rail for the 

projectile. The outer diameter of gun barrel is 0.75 inch, and the inner diameter is 0.5 inch which 

is also the diameter of the projectile, the incident bar and the transmitted bar.   
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Fig. 4-4: The SHTB in NIU 

 Technically, the geometry of the specimen for the high strain rate tensile test should like 

the dog-bone. Figure 4-5 shows a general specimen for the tensile test. The specimen used is 

0.1mm of thickness foil. Figure 4-6 is the plane drawing of the specimen. Those two holes on the 

specimen are used to align the sample with the bars and perform the tensile test.  
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Fig. 4-5: A general drawing of the specimen for the tensile test (Peirs, Verleysen, Paepegem, & 

Degrieck, 2011) 

 

Fig. 4-6: The drawing of the specimen for SHTB in NIU 
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To assemble the specimens on the bars, the new bars with a special end were designed. 

Figure 4-7 is the drawing of the new bar. Figure 4-8 shows the assemble condition of samples and 

bars. In this design, there is no pressure ring to transport the stress wave. However, at the beginning 

of every experiment, the transmitted bar and the incident bar touch each other to propagate all 

elastic wave. As shown in the Figure 4-8, the specimen is only placed on the bars, there is no other 

constrains to fix it except two pins whose function is only alignment now.  Therefore, the specimen 

will not influent the propagation of the first compression wave, and almost all compression wave 

will propagate through bars. However, the specimen will bear the influence of the tensile wave. 

When the compression wave is reflected back at the free end of the incident bar and becomes a 

tensile wave, this tensile wave will make the incident bar to move. However, at this moment, the 

transmitted bar has no movement. There is no other connections between the incident bar and the 

transmitted bar except the specimen. Therefore, the incident bar will pull the specimen by the pin 

on the bar, and the specimen will pull the transmitted bar by the pin on the bar correspondingly. 

That is how this tensile test process.  

 

Fig. 4-7: The drawing of the new bar 
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Fig. 4-8: The assemble condition of samples and bars 

4.3 New fixtures for the gun barrel 

 In the past, one of the ends of the barrel was mounted on the rail with some clay. It was 

unsteady. Because of the huge energy produced by the collision between the projectile and incident 

bar, and high-pressure air, misalignment between the projectile and incident bar often happened. 

However, the good alignment for the experiment is critical. There will be less oscillation noise 

when there is a better alignment. So, some accessories were made to improve the alignment. Figure 

4-9 shows the fixture for the end of the gun barrel. This fixture is supported by an adjustable 

platform. Therefore, when the gun barrel misalignments with the incident bar, they can be adjusted 

back alignment. The half-circle design of the fixture can prevent the movement of the gun barrel 

and makes the fixture reliable. 
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Fig. 4-9: The fixture for the end of the gun barrel 



 

 

CHAPTER 5. DATA ANALYSIS 

5.1 Eliminate the interference effect noise 

 During the experiment, the ideal touch condition between the incident bar and the 

transmitted bar is impossible. Thus, the interface effect will appear when the compression wave 

propagates from the incident bar to the transmitted bar. That interface effect noise 𝜀𝑒 is inevitable. 

Figure 5-1 shows a typical interference by interface effect in the reflective tensile test (Lu, Chen, 

Lin, Zhao, & Zhang, 2013).  

 

Fig. 5-1: A typical interference by interface effect in the reflective tensile test 
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The noise 𝜀𝑒 influents the transmitted wave mainly. Here are steps to amend it: 

1. Calculate the speed inside the bars. Find the start time points of the first compression waves 

in the two bars respectively, and then calculate the time difference∆𝑡. So, the speed of wave 

𝑐0 in the bar is:𝑐0 =
𝐿

∆𝑡
. Where L is the length of the bar. In the experiment, the incident 

bar and the transmitted bar have the same geometry and physical properties. During the∆𝑡, 

the elastic wave passes through the second half of the incident bar and the first half of the 

transmitted bar. So, the distance of the elastic wave traveling equals the total length of a 

bar. 

2. Collect the interference𝜀𝑒. If the start point of the first compression wave in the incident 

bar is used as the zero point, the start time point of interference is𝑡1 =
2𝐿

𝑐0
. The sampling 

duration equals the duration of the incident wave. 

3. Collect the transmitted wave𝜀𝑡. Find the start point of transmitted wave 𝑡2 =
3𝐿

𝑐0
. the 

sampling width equals the width of the incident wave. 

4. Amend the transmitted wave.  Add 𝜀𝑒 and 𝜀𝑡 together, the revised transmitted wave 𝜀𝑡
′ is 

got. 

5.2 The procedures to use MATLAB to analyze data and the result 

 There is an open-source MATLAB code online to analyze the data of SHPB experiment 

(Francis, Whittington, Lawrimore, & al., 2017). Here are procedures to use it to analyze the data 

of the tensile test: 
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1. Open the code ‘SHPB_Analysis_Tool.m’ in MATLAB 2020 or newer MATLAB. 

2.  Click the Run in the Editor Tab, and then the ‘SHPB_Analysis_Tool.fig’ will be opened. 

3. Make an Excel file that only includes the data of the transmitted bar and the incident bar. 

In other words, there are only two columns of data in this file. 

4. The rest of procedures are all finished in the interface of the ‘SHPB_Analysis_Tool.fig’. 

Next step is importing data. Click File -> Load -> Gauge Voltage -> Grouped -> Excel -> 

Automatic, and then choose the Excel File in the next window. 

5. In Dataset, please choose your file again. Because it can accommodate many data files at 

the same time. 

6. Fill up the sample geometry tab. It includes the length, diameter, and the cross-section area 

of the specimen. 

7. Create the bar about the experiment. In this step, the tab of the bar, Gauge Factor, Sampling 

Frequency, Modulus, Density, Wave speed, Diameter of the bar, the distance between the 

strain gauge and the specimen are needed. Based on the elastic wave theory, the Modulus, 

Density, and Wave speed are only needed any two of them, the third one can be calculated 

using the other two. 

8. Rough Crop the wave in the Voltage Signal Editing tab. This step is to crop the portion of 

the signal that will be used.  

9. Null the incident bar and the transmitted bar. Because of the EMI and noise signal, the start 

point of each signal is not at zero potential voltage. However, the calculation should be at 

zero potential voltage. 
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10. In wave clipping, select the right incident wave, and then click the ‘align to the incident’ 

wave button to select the corresponding reflected wave and the transmitted wave. There 

should be the ‘Global Optimization Tool’ extension in your MATLAB to use the ‘align to 

the incident’ function. In other case, three waves can be determined manually by selecting 

the proper ‘pulse width’ and the right position of three waves. These functions are at the 

bottom of the ‘wave clipping’ interface. 

11. When every step above is done, click apply; and then click ‘plot/Display’ tab on the top. 

12. Many kinds of plots can be outputted, like engineering strain-engineering stress (3 wave), 

true strain-true stress (1 wave), and strain-strain rate (1 wave) and so on. 

By using this MATLAB code, the dynamic properties of the material can be got. In this 

experiment, twelve layers of stainless steel 304 that have 0.1 mm of thickness were used. Figure 

5-2 is the result of this experiment.  

 

Fig. 5-2: The strain-stress curve of specimen



 

 

CHAPTER 6. CONCLUSION 

 This report explains and derives formulas of the one-dimension wave propagation theory 

and its application in the split Hopkinson bar experiment. It introduces the wave condition in the 

bars and how to use three waves from the bars to calculate the dynamic properties of the specimen 

in detail. It also summarizes the formula to transfer the voltage signal to strain signal in the bars. 

So, it almost introduces all basic theories about the SHPB. In chapter 3, it introduces a lot of 

preparation job, including the installment of strain gauges, the usage of oscilloscope and the 

amplifier. It shows the new generation SHTB apparatus in NIU. It is a reflective SHTB. The new 

samples, new bars and new implementation are introduced. An open-source MATLAB code is 

referenced in the data processing job. The function of the code is huge and it is convenient. The 

procedures how it was used is explained in detail. 

 Due to the precision of the apparatus, the data of the stainless steel 304 with 0.1 mm 

thickness can’t be got by this device yet. However, a sample with thicker height is good to use for 

this machine. And useful signal was analyzed with MATLAB code. Although the accuracy of 

result is not perfect, the feasibility is proved. Therefore, the future work is that improve the 

precision of the system and try some ways to test the 0.1mm thick specimen. 
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APPENDIX A 

 

The 1-D wave propagation equation is: 

 

𝑐2 ×
𝜕2𝑢

𝜕𝑥2
=

𝜕2𝑢

𝜕𝑡2
 (A-1) 

This equation describes the relationship between the displacements of particles (u) in the system 

and the position of particle (x), the time (t). In other words, the u is a binary function u=f (x, t). 

 

Fig. A-1: A bar  

Figure A-1 shows a normal bar with a moveable particle A. A particle whose original 

position is A, and after time 𝑡1, this particle moves to position A’. It can be written mathematically 

as: U [𝐴, 𝑡1]= 𝐴′⃗⃗⃗⃗ − 𝐴. The 𝐴 and 𝐴′⃗⃗⃗⃗  represent the original coordinates of the particle and the new 

coordinate of the particle, respectively. Therefore, U represents the displacement of particles.  

However, this displacement is in a coordinate system that is relatively static to the bar. For 

example, if a bar is moving right at a uniform speed 𝑣⃗ relative to ground.  At the same time, the 
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particle A after time 𝑡1 moves to the A’ position. Then, the distance that particle A moves relative 

to ground is 𝑢⃗⃗ + 𝑣⃗ × 𝑡. Relative to the bar, the A particle only moves 𝑢⃗⃗. 

Therefore, particles have movements relative to the system, and the movements is a 

function of time. In other words, it is a disturbance to the system. Similarly, a wave is also a 

disturbance to its carrier. Therefore, eq. A-1 is a wave equation. For a solid object, the term 𝑐 =

√
𝐸

𝜌
 in the eq. A-1, which E is the Young’s Modulus of solid, and  𝜌 is the density of the solid. The 

procedures below explain the physical meaning of c.  

The general solution for eq. A-1 is: 

𝑢 = 𝑓(𝑥 − 𝑐 × 𝑡)                                      (A-2) 

Where f is a function of 𝑥 − 𝑐 × 𝑡..  

 The calculation to prove this solution is right will be shown. The first derivation of u respect 

to x is:  

𝜕𝑢

𝜕𝑥
= 𝑓′(𝑥 − 𝑐 × 𝑡)                                               (A-3) 

The second derivation of u respect to x is: 

𝜕2𝑢

𝜕𝑥2 = 𝑓′′(𝑥 − 𝑐 × 𝑡)                                  (A-4) 

The first derivation of u respect to t is:  

𝜕𝑢

𝜕𝑡
= −𝑐 × 𝑓′(𝑥 − 𝑐 × 𝑡)                                     (A-5) 
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The second derivation of u respect to x is: 

𝜕2𝑢

𝜕𝑡2 = 𝑐2 × 𝑓′′(𝑥 − 𝑐 × 𝑡)                           (A-6) 

From eq. A-4 and eq. A-6, it has 𝑐2 × 
𝜕2𝑢

𝜕𝑥2 =
𝜕2𝑢

𝜕𝑡2  and this is the eq. A-1. So, the general solution of 

this equation is 𝑢 = 𝑓(𝑥 − 𝑐 × 𝑡).  

In eq. A-2, x is the particle’s position in the system, u is the displacement of particle, and t 

is the time. For example, there is a wave 𝑢 = 𝑓(𝑥 − 𝑐 × 𝑡) inside one bar, it is shown in Figure A-

2. At the beginning, t=0, a point whose coordinate is 𝑥0 moves a distance 𝑢0 to the position whose 

coordinate is 𝑥0
′  due to the wave/disturbance. Transferring this movement into a mathematic 

expression is 𝑢0 = 𝑓(𝑥0 − 𝑐 × 0) = 𝑓(𝑥0). There is another one particle whose coordinate is 𝑥1, 

and 𝑥1 = 𝑥0 + 𝑐 × ∆𝑡. So, the displacement of particle 𝑥1 after ∆𝑡 time from beginning is 𝑢1 =

𝑓(𝑥1 − 𝑐 × ∆𝑡) = 𝑓(𝑥0 + 𝑐 × ∆𝑡 − 𝑐 × ∆𝑡) = 𝑓(𝑥0) = 𝑢0. This means that after ∆𝑡 time, the 

particle 𝑥1 repeats the movement of particle 𝑥0 at the beginning. In other words, the disturbance 

happened at particle 𝑥0 initially passes through a distance 𝑐 × ∆𝑡 during ∆𝑡 time. So, the speed of 

the propagation of this disturbance or wave is c and it has its units in velocity. In an elastic-plastic 

solid, c represents the speed of elastic wave propagation. 

 

Fig. A-2: A wave in a rod  



 

 

APPENDIX B 

The derivation of Eq. 2.4.4 is shown here. The Wheatstone Bridge Circuit is shown again in 

figure B-1. 

 

Fig.B-1: Three-wires Wheatstone Bridge Circuit 

In eq. 2.4.6, it has two terms: 𝑉𝑐ℎ(𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑) 𝑎𝑛𝑑 𝑉𝑐ℎ(𝑢𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑). From the circuit figure, we 

can get 𝑉𝑐ℎ(𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑) and 𝑉𝑐ℎ(𝑢𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑): 

 

𝑉𝑐ℎ(𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑) = 𝑉𝑒𝑥 × (
𝑅3 + 𝑅𝐿

𝑅4 + ∆𝑅 + 𝑅3 + 2𝑅𝐿
−

𝑅2

𝑅1 + 𝑅2
) (B.3) 

   

 

𝑉𝑐ℎ(𝑢𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑) = 𝑉𝑒𝑥 × (
𝑅3 + 𝑅𝐿

𝑅4 + 𝑅𝐿 + 𝑅3 + 𝑅𝐿
−

𝑅2

𝑅1 + 𝑅2
) (B.4) 

Rewrite eq. 2.4.6: 

 

𝑉𝑟 =
𝑅3 + 𝑅𝐿

𝑅4 + ∆𝑅 + 𝑅𝐿 + 𝑅3 + 𝑅𝐿
−

𝑅3 + 𝑅𝐿

𝑅4 + 𝑅𝐿 + 𝑅3 + 𝑅𝐿
 (B.5) 

 

Use 𝑅5 = 𝑅4 + 𝑅𝐿 + 𝑅3 + 𝑅𝐿 = 2 × (𝑅3 + 𝑅𝐿) = 2 × (𝑅4 + 𝑅𝐿). From theory of Wheatstone 

Bridge: 𝑅3 = 𝑅4 = 𝑅𝑔. So, rewrite eq. B.3: 

 

𝑉𝑟 =
−∆𝑅

2 × (𝑅5 + ∆𝑅)
 (B.6) 

Plug eq. B.4 into the eq.2.4.4: 
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𝜀 =

2 × ∆𝑅
𝑅5 + ∆𝑅

∆𝑅
𝑅𝑔𝜀

+ 2 ×
∆𝑅
𝑅𝑔𝜀

× [
−∆𝑅

2 × (𝑅5 + ∆𝑅)
]

× (1 +
𝑅𝐿

𝑅𝑔
) (B.7) 

   

 

𝜀 =
2 × ∆𝑅

∆𝑅
𝑅𝑔𝜀

× (𝑅5 + ∆𝑅) −
∆𝑅2

𝑅𝑔𝜀

× (1 +
𝑅𝐿

𝑅𝑔
) 

(B.8) 

   

 

𝜀 =
2 × ∆𝑅 × 𝑅𝑔𝜀

∆𝑅 × (𝑅5 + ∆𝑅) − ∆𝑅2
× (1 +

𝑅𝐿

𝑅𝑔
) (B.9) 

   

Cancel the∆𝑅, it has: 

 

𝜀 =
2 × 𝑅𝑔𝜀

𝑅5
× (1 +

𝑅𝐿

𝑅𝑔
) (B.10) 

It has 𝑅5 = 𝑅4 + 𝑅𝐿 + 𝑅3 + 𝑅𝐿 = 2 × (𝑅3 + 𝑅𝐿) = 2 × (𝑅4 + 𝑅𝐿) and𝑅3 = 𝑅4 = 𝑅𝑔. So, 

rewrite eq. B.8: 

 

𝜀 =
𝑅𝑔𝜀

𝑅𝑔 + 𝑅𝐿
× (1 +

𝑅𝐿

𝑅𝑔
) (B.11) 

 

 

𝜀 =
𝑅𝑔𝜀

𝑅𝑔 + 𝑅𝐿
+

𝑅𝐿𝜀

𝑅𝑔 + 𝑅𝐿
=

(𝑅𝑔 + 𝑅𝐿)𝜀

𝑅𝑔 + 𝑅𝐿
= 𝜀 (B.12) 
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