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ABSTRACT 

 

APPLICATION OF DATA AND GEOSPATIAL ANALYSIS IN ENERGY AND HEALTH 

SYSTEMS 

 

Ali Faghani, MS 

Department of Mechanical Engineering 

Northern Illinois University, 2021 

Dr. Mahdi Vaezi, Director 

 

Having sustainable energy and health systems are the main factors in the vision plan of 

every country. Both of these systems are correlated with a variety of frameworks, including social, 

physical, technological, political, and economic factors. Therefore, different types of analytics 

methods can be implemented to develop the required assessments for those who make plans since 

understanding the effect of such factors individually, also their interactions, and the overall effect 

is crucial. With this regard, applications of data analysis and geospatial techniques in both energy, 

and health systems have recently gained attention.  

The proposed research here deployed advanced data analytics methods and Geographic 

Information Systems (GIS) to study energy and health systems, obtain understandings and make 

predictions, also analyze the corresponding data based on their spatial location and organizing 

multiple layers of information into visualizations. The proposed research is comprised of two 

sections. First, Geographic Information Systems and different data analytics methods were used 

to evaluate the potential of Municipal Solid Waste (MSW) as a renewable energy source in the 

state of Illinois. Our results demonstrated that Illinois is capable of producing 6,295,385.77 MWH 

annual energy using incineration technology from MSW. Also, using Anaerobic Digestion (AD) 



technology in MSW management would enable the state to be capable of producing more than 

1,140,493,710,450.00 Litres biogas per year.  

Second, we expanded the application of data and geospatial analysis in the health system 

and deployed advanced data analytics methods, geographical information system (GIS), and 

predictive epidemiological models to analyze the anti-contagion policies implemented by the states 

across the country to slow the spread of COVID-19. Also, by implementing a meta-analysis in 

conjunction with multi-criteria decision-making methods, a Lung Cancer Risk Index (LCRI) was 

produced representing the probability of individuals getting lung cancer. The methods that have 

been developed for the extended applications of data and geospatial analysis in health can be used 

for various complex decision making and index generating purposes in engineering disciplinary 

such as additive manufacturing to evaluate the effect of process factors (e.g., injection, 

concentration, material characteristics, speed, temperature and so forth) individually and 

collectively to optimize the process and increase the performance. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

The aim of this thesis is to investigate the applications of data and geospatial analysis in both 

mechanical engineering (energy management) and health systems. In this regard, using data and 

geospatial analysis we evaluated the potential of the state of Illinois in achieving recovery energy 

in both forms of electricity and biofuels out of Municipal Solid Waste (MSW). Also, we extended 

the application of data and geospatial analysis in health systems and evaluated the effect of non-

pharmaceutical interventions in control the spread of infectious disease (COVID-19) across the 

united states. Besides we combined a meta-analysis and multi-criteria decision making method to 

generate an index for lung cancer. Our developed methodology in chapter 3 of this thesis can be 

implemented for complex engineering problems (e.g., additive manufacturing, biofuel process) to 

investigate the effect of different parameters and generate required indices. 

1.1.1 Energy System 

The world is undergoing a sustainable development to address concerns such as energy security 

and global warming. In this regard, global endeavors have been undertaken to minimize 

anthropogenic greenhouse gas emissions (GHG), which are the major contributor to global climate 

change. Because of urbanization demand and population growth, energy consumption is predicted 

to rise by 28% between 2015 and 2040, especially in developing economies and fossil fuel-based 

power plants continue to remain the world's principal source of energy [1]. Under such 
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circumstances, renewable energy needs to grow with a faster pace in order to prevent global 

warming consequences by replacing the conventional fuels and meet energy requirements.  

Due to the huge demand for energy and importance of energy security, most of developed 

countries tend to introduce and utilize the alternative energies (e.g., renewable energy) to 

maximize their energy potential and reduce their vulnerability in providing the long-term energy 

supply. In this regard, managing the energy sources plays a significant role in energy sustainability 

and security. Energy management decisions are typically complex operations that depend on a 

variety of theoretical frameworks, including social, physical, technological, political, and 

economic factors. Therefore, different types of analytics methods can be implemented to develop 

the required assessment and accordingly make the appropriate decisions. In this regard, advanced 

analytical methods (e.g., negative binomial regression, Poisson regression, meta-analysis) and 

geographical information system (GIS) can be utilized as a powerful tool to study the reported 

data, obtain understandings and make predictions, analyze the data based on their spatial locations 

and organize multiple layers of information into visualizations. 

Recently, application of geographical information system (GIS) in different aspects of energy 

management has attracted numerous attentions. A review on literature demonstrated that GIS is 

widely utilized in the exploration and development of renewable energy resources. It is also a 

reliable tool in locating the optimal places and determining the ideal corridors for resource transfer 

and distribution. Solar, wind, geothermal, hydrogen, tidal, wave, hydropower, biomass, nuclear, 

and fossil fuels are some of the resources that used in the energy industry in correlated with their 

locations.  
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Following a GIS based approach Siyal et al. [2] conducted a research and assessed the wind 

energy considering geographic and environmental restrictions in Sweden. Given the system 

performance, topographic restrictions, environmental, and land use constraints, they calculated the 

wind energy potential for the study region. Their findings demonstrated that Sweden has enough 

wind energy potential and land available for wind energy installations to meet the country's 

projected renewable energy ambitions. Application of Geographic Information Systems (GIS) in 

evaluating the solar potential has been investigated by several studies [3, 4]. For instance, Groppi 

et al. [5] studied the solar energy potential and  energy consumption in urban areas. They 

mentioned that The evaluation's major goal was to strengthen urban buildings' independence from 

fossil fuels. Their findings indicated a significant association between reduction of non-renewable 

thermal energy demand and enhancing the buildings efficiency.  

Municipal solid waste (MSW) management is becoming a dominant issue in metropolitan 

areas as a result of the rapid growth in population. The rapid pace of municipal solid waste 

generation, the complexity of created garbage, and the paucity of land are all concerns that require 

very immediate attention. Performing waste management analysis needs advanced analytical tools 

since it involves numerous data and calculations. Therefore, owing to the capability of GIS as a 

powerful tool, its application in waste management has attracted researcher’s attentions [6-10]; 

however, more investigation are required to be conducted. Due to the importance of waste 

management and recent demand for the application of data and geospatial analysis in that field, we 

evaluated the potential of the state of Illinois in producing energy from MSW which has been 

elaborated in chapter 2. 
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1.1.2 Health System 

Due to the fast acceleration of technology and information technology nowadays, using new 

approaches to record health-related data and accordingly perform data analysis has attracted a lot 

of attention [11]. Thanks to advances in information technology coupled with medical fields, the 

bioinformatics plays a key role in enhancing the efficiency of health systems [12, 13]. In fact, 

health as one of the most important aspects of human life has rooted in different environmental, 

social, individual and biological factors and for those who make the main health decisions, the 

effect of these factors separately, their interaction and also their whole effect on the health status 

of the society is crucial [14, 15]. Depends on the availability of data, type of the data and data 

collection method, the appropriate for data managing and analyzing would be defined.  

Selecting the appropriate data analytics method is a key to provide reliable results in public 

health research studies. Depending on the research topic, the type of data (e.g. continuous, ordinal, 

binary), and the study design, the most appropriate statistical methodology can be applied and 

accordingly the corresponding variables will be defined and evaluated [16]. Public health research 

employs a wide range of statistical techniques, owing to its strong epidemiological and 

biostatistical basis. The review of the implemented analytics methods on health studies indicates 

that descriptive statistics (e.g. means, standard deviations and percentages), contingency table 

analyses (e.g., chi-square tests, mcNemar’s test), Pearson’s correlation, linear and logistic 

regression and t-tests are frequently used [17, 18]. With the help of data and statistical analysis, 

the association between factors (individual, social, demographical, biological and geographical) 

would be evaluated. Also, for those factors that are statistically significant, the correlations would 
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be developed which would obtain a better understanding for the health policymakers and as a result 

will improve the public health system. 

Besides data analysis methods and techniques, geographic information system (GIS) has been 

highlighted as a powerful tool in evaluating the health system, health status and health decision 

making [19-21].  A review of literature indicates that geospatial analysis can be used as an effective 

means to approach a variety of policy, and planning issues in public health which is capable of 

describing, analyzing, modeling, and visualizing health and place issues in different areas [22-25]. 

There is evidence that demonstrate how GIS has influenced health policy in depth. Disease 

mapping and disease modeling are of the most common applications of GIS in public health that 

play a pivotal role in disease presentation [26, 27]. Predicting the future spread of disease, 

identifying the factors that may foster or inhibit the disease transmission, evaluating the 

implemented health policies and highlighting the high-risk areas for disease prevention are other 

applications of using GIS in public health [28-31]. Furthermore, risk analysis is another application 

of GIS that allows researchers and practitioners to easily and objectively link many various sources 

of environmental exposure to people's residence locations throughout time [32]. The purpose of 

these assessments is to identify critical needs, improve control effectiveness, and prevent outbreaks 

and epidemics. In many circumstances, GIS is used in conjunction with epidemiological 

knowledge of illness outbreaks to help avoid additional victims [33]. 

Although data analytics methods and geographic information system (GIS) can separately be 

deployed to provide the required results, combining the advanced statistical models and geographic 

information system (GIS) as a powerful tool is capable of integrating different types of data and 

analyzing them based on their spatial location which can play a pivotal role in health decision 
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making [23, 34, 35]. This combination organizes different information layers into visualizations 

presenting by a broad range of maps  and is a reliable tool for the prediction of disease patterns 

and parasite ecology associations [36, 37]. Providing suitable ground to make the appropriate 

decision in the health-related fields is rely on firstly the effective parameters which cause the health 

issues, their reliability, the implemented health policies, and also the accurate analysis of these 

amount of data and their corresponding locations.  

In this thesis, by deploying both data analytics method and geographic information system 

(GIS), two different applications have been discussed. First, using advanced analytics methods 

(Negative Binomial Regression (NBR) and Poisson Regression (PR)) in conjunction with GIS, a 

comprehensive study was conducted and the effect of anti-contagion policies on control of 

COVID-19 across the united states has been investigated. Second, following the systematic review 

method (PRISMA), the major and minor modifiable risk factor of lung cancer were discerned and 

implementing a meta-analysis and using Analytical Hierarchy Process (AHP), a novel lung cancer 

index was generated. 

1.2 Objectives of the Research 

While the overall objective of the research was to use data and geospatial analysis in energy and 

health systems by providing details to corresponding policymakers, the specific objectives of the 

research are:  

a) To highlight the potential capacity of MSW as a source of energy in the state of Illinois 

b) To develop comprehensive Municipal Solid Waste (MSW) management framework/model 

for assessing the MSW management options for the state of Illinois.  
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c) To generate the corresponding maps that will help governments, county administrators, 

city councils, private organizations, investors, landfill owners etc. make informed decisions 

about diverting MSW from landfills and converting into energy. 

d) To develop a predictive epidemiological model (modified SEIR) and combined it with 

statistical and geospatial analyses to analyze the anti-contagion policies implemented by 

the states across the country to slow the spread of COVID-19.  

e) To generate the policy ratio index (PRI) representing the performance of implemented 

policy in response to covid-19 for all the 50 states of the US. 

f) To assess the potential associations of policies, individually and collectively, with COVID-

19 incidence and mortality, and evaluate the impact of every policy.  

g) To present all the major and minor modifiable long cancer risk factors by conducting a 

comprehensive study. 

h) To produce a Lung Cancer Risk Index (LCRI) representing the probability of developing 

lung cancer for individuals using advanced analysis (meta-analysis) and multi-criteria 

decision-making methods (e.g., AHP). 

i) To present the overall effect of each of modifiable lung cancer risk factors while 

simultaneously considering all the risk factors.  

1.3 Limitations of the Study 

For the first part of the thesis (developing a Municipal Solid Waste (MSW) framework/model for 

then state of Illinois): 
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- The accuracy in presented data was limited to the most updated geographical information 

available for the study area. 

For the second part of the thesis (evaluating the effectiveness of implemented policies on control 

the spread of COVID-19 in the US): 

-  The lack of accurate data about COVID-19 cases, especially asymptomatic cases, in the 

U.S. [38], posed a challenge to verifying the developed epidemiologic model’s case and 

death values. For the third part (lung cancer modifiable risk index): 

1.4 Organization of the Thesis 

The thesis consists of four chapters, two of which are based on submitted papers. This thesis is a 

consolidation of papers, each chapter of which is intended to be read independently.  As a result, 

some concepts and data are repeated.  The current chapter provides a background on the application 

of data and geospatial analysis on both energy and health systems. The importance of both data 

analytics and GIS (individually and in conjunction with each other) in energy and health studies 

have been elaborated. 

Chapter two is focused on developing a Municipal Solid Waste (MSW) management 

framework/model for the state of Illinois to enable the policy makers, governments and county 

administrators make informed decisions about diverting MSW from landfills and converting into 

energy. Chapter three is an extended application of data and geospatial analysis in health systems 

and investigates two different applications. First, the association between implemented anti-

contagion policies and the spread of COVID-19 across the United States. and second, generating 

a cancer risk index by implementing multi-criteria decision-making analysis in conjunction with 
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meta-analysis. Finally, chapter four demonstrates the conclusions and provides recommendations 

for future research. 
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CHAPTER 2: APPLICATION OF DATA AND GEOSPATIAL ANALYSIS IN 

MECHANICAL ENGINEERING (ENERGY MANAGEMENT)  

2.1 Introduction 

The world is going through an energy transition from fossil fuels to renewables in order to address 

energy security and global warming issues. Biomass feedstock, including agricultural and forest 

harvesting residues and municipal solid wastes (MSW), are among widely-available renewable 

resources of energy. Biomass can substitute fossil fuels and prevent burning- and landfilling-

related GHG emissions, also water and land pollutions, associated with traditional handling of 

residues and wastes, particularly MSW, thus promoting sustainable development [36].  

The volume and complexity of waste produced has increased as a result of economic 

expansion, urbanization, and improved living conditions in urban centers. In developing countries, 

urbanization is increasingly increasing and solid waste management is a major priority for all 

modern societies.  Waste management activities are impacted by rising solid waste generation rates 

and disposal costs, health and environmental considerations, landfilling capacity, new laws, 

political situation, and public attitudes [39]. In order to limit the environmental impact of solid 

waste, strategic waste management, pollution control technology, and waste handling and disposal 

legislation have been developed with the help of implementing and deploying powerful tools such 

as geographical information system [40].  

We performed a literature review to provide a better understanding of applications of GIS in 

waste management. Literature demonstrated that GIS has been effectively used for siting the 

recycling drop-off facilities [41]; Waste collection system [42]; Municipal solid waste collection 

[43]; Suitability for landfill [44]; Solid waste collection routes optimization [45]; Disposal site 

SUN
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selection [46]; Selection of landfills [47]; Selection of dumpsites and transport routes [48] and 

numerous other applications. All those research studies indicate the importance of waste 

management and the potential of deploying GIS to evaluate the available and produced waste and 

provide layer of information. Thus, we started collecting the required data for the state of Illinois 

to evaluate the potential of waste management in the state. 

In the State of Illinois, based on a study by the Illinois Recycling Association [49], 19.3 M tons 

of MSW (including residential; industrial, commercial, and institutional; and construction and 

demolition wastes) was generated in 2015 (19% more than the average waste per capita in the 

United States [50]), with 12.1 M tons of it (~62%) was landfilled in 35 locations. The total GHG 

emissions produced from the annual landfilled MSW was estimated at 2,516,928 M ton CO2e. This 

is equivalent to the annual GHG emissions from approximately 461,000 passenger vehicles, or the 

carbon sequestered annually by 17,600 acres of forest preserved from deforestation. Moreover, 

multitude of other long-term problems such as leachate management and land use change have to 

be addressed with landfilled waste.  

On the other hand, coal contributes about 40% in generating electricity in Illinois; ranking the 

5th state in the nation in net coal imports by weight [51]. The coal plants are responsible for more 

than 80% of the asthma-triggering sulfur dioxide, and produced about 60% of the carbon dioxide 

and smog-forming nitrogen dioxide emitted by the companies across the State of Illinois in 2018 

[52]. Diverting MSW from landfills to conversion facilities to produce value-added products such 

as electricity and biofuels (e.g., co-combustion of coal and MSW in power plants, and producing 

synthetic gas via gasification or anaerobic digestion of MSW, etc.) could potentially reduce air, 
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land and water pollutions associated with landfills as well as coal-based power plants, and ensure 

long term sustainable, secure and clean source of energy for the State of Illinois. 

2.2 Methods  

2.2.1 Description of Study Area 

The State of Illinois is located in the Midwest region of the United States and is one of the states in 

the Great Lakes region of North America. The state’s total land is 157,913.4 April 2020. The state 

is 95.9% land and 4.1 % water, with a population density of 232.0 individuals per square mile, 

ranking it as the 18th most populous state in the United States. The population of Illinois is mainly 

concentrated in the state's north east, particularly in the Chicago metropolitan area. Chicago is the 

state's largest city. The states subdivided into 102 counties as showed in Figure 1. 

 

Figure 1: Map of the study area 
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2.2.2 Data Collection and Spatial Information 

Detail spatial information is essential to successfully manage the municipal solid waste system. 

This data corresponds to the geographic region of the study territory, as well as spatial data 

associated to waste collecting protocols. To the best of our knowledge, there are no data on MSW 

to value added availability for energy production purposes in the state of Illinois. Accordingly, the 

first stage in this study was data collection on landfill distribution and spatial locations. Next, more 

information about the converting those waste to energy has been provided. Figure 2 represents 

both location and capacity of landfills in the state of Illinois. Also, the disposal volume distribution 

of Illinois has been shown in Figure 3. 

 

2.2.3 Methodology Used 

To perform this chapter, we utilized ArcGIS 10.1 software, which employs GIS technology to 

process geospatial data [17]. We used high-resolution data in either vector (point, line, or polygon) 

or raster (cells with a resolution of 30 x 30 m) format. GIS is a powerful tool for importing, 

managing, and analyzing geographically based data. Three steps are involved in implementing the 

method for this chapter. First, spatial database of study area was provided. Next, deploying the 

GIS techniques, reallocation of MSW in study area investigated and then, the estimation of the 

amount of waste to add value and siting the corresponding facilities were followed. The process 

developed in ArcGIS to identify collection points is iterative and has the key criteria of high waste 

to added potential. The flowchart of the iterative process is depicted in Figure 4. 
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Figure 2: Location and capacity of landfills in Illinois 
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Figure 3: Disposal volume distribution in Illinois 
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Figure 4: Iteration process for waste management in the state 
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Initially, the information on landfill availability at the smallest territory sub-division of the study 

region is combined with the MSW map, to provide the spatial location of the main sources and 

facilities. A 3 by 3 miles’ grid was laid over the map to divide the map area into small quadrants. 

The area was calculated in each cell and then multiplied by the approximate waste production 

index for each region to provide a better picture of waste production. To perform the iterative 

process, the cell values in an area with a 5 miles’ radius were summed up in ArcGIS, and the result 

was assigned to the cell in the center. The cell sum was calculated for each quadrant in the study 

area. Figure 5 shows a representation of the cell sum operation.  The map obtained in GIS (after 

the cell sum operation) gives information on each cell’s potential to waste to added values. From 

this map, a zone with high capacity was selected in every iteration.  

 

a 

 

b 

 

c 

Figure 5: Cell sum method; a) assigned the border values, b) initial values in each cell, c) the 

middle cell value 

2.3 Results 

MSW is made up of a variety of energy-dense items such as paper, plastics, yard waste, and wood-

based products. In the United States, around 85 pounds of MSW can be burned as fuel to generate 

power. Our collected data represents the huge potential of the state of illinois in creating the 
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required facilities to develop waste to added value processes. We evaluated the MSW generation 

in 7 different regions of the state and the total percentage of MSW generated for each of those 

region which has been presented in Table 1. Also, Figure 6 (a) demonstrated the portion of MSW 

generated in those Regions. Our results revealed that the annual amount of MSW generation for 

the state of Illinois is more than 17,438,741.75 tones. Figure 6 (b) showed the distribution of MSW 

generation across the state in a county scale. 

Table 1: The total percentage of MSW generated 

Region Northwestern 

Illinois 

Chicago 

Metropolitan 

Peoria/Quad 

Cities 

East 

Central 

Illinois 

West 

Central 

Illinois 

Metropolitan 

East St. 

Louis 

Southern 

Illinois 

MSW 

Generated (% 

of Total MSW) 

5.6 71.5 5.3 6.1 3.8 5 2.7 

 

 

Having an appropriate evaluation on the distribution of MWS, providing the detail about the 

composition of the MSW in the state is important.  The composition of generated MSW has a 

direct impact on selecting the appropriate methods, procedure and technology in converting MSW 

to energy or added value products. Our results for the state of Illinois showed that the weight 

percentage of composition is for Construction and Demolition (C&D) and papers are more than 

other MSW types (26.7 and 24.8%, respectively). In this regard, the weight percentage of 

composition for organics, plastics, textiles, metals, glasses, inorganics, beverage containers and 

household hazardous waste were estimated to be 20, 10.7, 3.8, 4.1, 2.9, 5.9, 0.2 and 0.9, 

respectively. Figure 7 Demonstrated the variation in MSW composition for different regions of 
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the state of Illinois. As it expected, the Chicago Metropolitan has the highest MSW generated in 

the state. 

 

 

 
 

a b 

 

Figure 6: MSW generated a) in 7 regions across the state of Illinois, b) per county  

 Due to the potential of the state of Illinois in producing energy out of MSW, we conducted a 

research to provide the most appropriate technology (technical and cost efficient). Waste-to-energy 

systems or technologies come in a variety of shapes and sizes. The mass-burn method is the most 

frequent in the United States, in which unprocessed MSW is burned in a big incinerator with a 
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boiler and a generator to generate energy There are other which remove the majority of non-

combustible components in order to produce refuse-derived fuel.  

Our review showed that Incineration, Pyrolysis and Anaerobic digestion are of those efficiency 

that can be deployed in order to convert MSW to different forms of energy. Using life cycle 

assessment, Dong et al. [53] conducted a research and compared waste-to-energy technologies of 

gasification and incineration. According to their results, environmental impacts of gasification are 

lower than incineration technology.  They mentioned that the quality of the incoming MSW, and 

process emission level at stack are highly correlated with the performance of incineration process. 

Czajczyńska et al. [54] performed a comprehensive study and investigated the potential of 

pyrolysis processes in waste management. They mentioned that determining the appropriate 

pyrolysis method is depending on the principles of pyrolysis, most recent developments, various 

process conditions, and residues. The main aim of their research was to investigate the link 

between the pyrolysis conditions, the chemical and mineralogical composition and the advantages 

of pyrolysis in the waste management.  Anaerobic digestion is another technology that used to 

achive recovery energy from MSW. This process is a net energy-producing process which 

produces energy in the form of biogas and compared to untreated organic waste on land, causes 

less environmental pollution. Anaerobic digestion attracted a lot of attentions [55-58]. Table 2 

Demonstrated the above-mentioned technology, their efficiency, and both input and output. 
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Figure 7: Composition of MSW for different regions of Illinois 

Table 2: Technology from MSW to energy generation 

Technology Description Efficiency 

(MWh/ton) 

Input Output 

Incineration MSW burnt in a boiler at 

1000 – 2000 C 

0.5 Mixed MSW Electricity and 

heat 

Pyrolysis Decomposition of organic 

waste in absence of oxygen 

at 200 – 300 C  

0.3 Sorted MSW Liquid oil, Char, 

gas 

Anaerobic 

digestion 

Biological Process of 

breakdown of Organic 

MSW  

0.15 Sorted MSW Electricity, Heat, 

LNG 
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Due to the importance of abovementioned technology, following our methodology, we estimated 

the amount of energy that can be recovered by developing and building the appropriate facilities 

in the state of Illinois. Figure 8 represents the potential of incineration process for the state of 

Illinois. Our results demonstrated the total electricity output to be 6,295,385.77 MWH and the total 

amount of waste generated in 7 different regions that was 17,438,741.75 tonnes the incineration 

process in the state. 

Following the same approach, results for the state of Illinois indicated the total yields of 

pyrolytic oil to be 190,082.29 MJ. Our analysis demonstrated the total weight of biomass was 

9,504,114.25 tonnes. The potential capacity of pyrolytic in generating electricity across the state 

has been presented in Figure 9.  

Moreover, we evaluated the potential of achieving recovery energy from MSW using 

Anaerobic Digestion (AD) technology. Our results revealed that the annual amount of biomass for 

the state of Illinois is 9,504,114.25 tonnes and using Anaerobic Digestion facilities, the total biogas 

yields would be a much as 1,140,493,710,450.00 Litres per year. The potential capacity to produce 

biogas through Anaerobic digestion technology in 7 regions across the state of Illinois has been 

shown in Figure 10. 
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Figure 8: Potential capacity to generate electricity in 7 regions across the state of Illinois 
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Figure 9: Potential capacity to generate electricity in 7 regions across the state of Illinois via 

Pyrolysis 
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Figure 10: Potential capacity to produce biogas through Anaerobic digestion technology in 7 

regions across the state of Illinois 

There exists a potential to produce 1,000 Mm3/yr of CH4 through anaerobic digestion of organic 

MSW (which could be subsequently used in gas turbines to generate electricity), and 2,000 GWh 

electricity via waste-to-energy (WTE) plants using MSW across the state of Illinois. this 

preliminary study demonstrates the vast potential across the State of Illinois to produce clean 

energy from MSW. In addition to environmental benefits, this will promote clean energy 

technologies, create job opportunities, diversify energy resources and help toward a more 

sustainable economic development of the State of Illinois.  
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CHAPTER 3: EXTENDED APPLICATION OF DATA AND GEOSPATIAL ANALYSIS 

IN HEALTH SYSTEM 

In this chapter, two different applications of data and geospatial analysis in the health system are 

discussed.  

PART A: ASSOCIATION OF ANTI-CONTAGION POLICIES WITH THE SPREAD OF 

COVID-19 IN THE UNITES STATES 

3.1 Introduction 

In December 2019, an unknown infectious disease outbreak in China, identified as severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), raised worldwide concern [59, 60]. The novel 

coronavirus pandemic accounts for 176,694,000 infections and has claimed the lives of 3,830,000 

individuals globally as of 16 June 2021. In the United States (U.S.), there were nearly 34,380,000 

confirmed cases and over 615,000 deaths of people who tested positive for SARS-CoV-2 as of 16 

June 2021 [61]. The first COVID-19 case in the U.S. was reported in Washington State on 22 

January 2020 [62, 63]. In the absence of reliable pharmaceutical interventions, in the first several 

months of the pandemic to combat the virus, governments worldwide implemented anti-contagion 

policies to curb transmission. States and federal governments implemented public health 

interventions, including social distancing, travel restrictions, and business closures, to reduce the 

growth rate of COVID-19 across the nation (see Table 3) [64-70]. Although previous research 

shows some policies’ negative impact on the economy was significant [71-73], the association of 

SUN
Rectangle
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all the major anti-contagion policies with COVID-19 spread has not been fully examined at a state 

and national level.  

To study the impact of policy implementation, investigating the evolution of COVID-19 is 

crucial [74, 75]; thus, well-known compartmental mathematical models (e.g., SIR, SEIR) have 

often been applied [76-79]. Using those models, previous studies predicted the spread of COVID-

19 in Europe [80], China [81], Italy [82], Germany [83], Iran [84], and various communities in 

South Korea, India, Australia, and the U.S. [85]. However, these research studies deployed 

simplified models incapable of producing reliable estimates since such models consider the 

transmission rate to be constant, imposing limitations on predicting other parameters (e.g., daily 

susceptible and infected cases) [86]. Furthermore, COVID-19 epidemiological studies mostly used 

reported infected cases as the response value, which comprises primarily diagnosed symptomatic 

infections but does not take diagnosed asymptomatic and non-diagnosed cases into account [87, 

88]. In investigating the effect of policies, previous studies mainly focused on evaluating one [88-

92] or a few implemented orders [93-95]. They failed to report all policies’ overall associations, 

or the most important policies in effect, with COVID-19 spread. 

To address these shortcomings for the U.S., we first modified the SEIR model by updating the 

model parameters on a daily basis using the daily death statistics reported for every state. 

Accordingly, we used our predicted number of daily infected cases (included all the infected 

categories) for every state produced by the modified SEIR model as the response value and the 

implemented anti-contagion policies as predictors in a comprehensive statistical analysis.  
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Table 3: Most frequently implemented anti-contagion policies across the U.S. Table is sorted 

based on the implementation date. 

No. Policies Description First time 

implemented 

in 

1 Relaxed regulations to become a 

caregiver 

Extends the licensing for doctors and 

assistants, removes requirements for 

medical students to join the workforce 

29 February 

WA 

2 Suspended provisions requiring in-

person notarization of legal 

documents 

Digital notarization is allowed for 

documents 

1 March 

NY 

3 Insurance coverage for all diagnosis 

testing and partial treatment for 

COVID-19 

Insurance companies cover telehealth 

meetings and co-pay for COVID-19 testing 

and treatment 

5 March 

CA-WA-NV 

4 Temporarily suspend evictions Renters and homeowners cannot lose their 

house or apartment due to COVID-19 

complications 

6 March 

IN 

5 Restaurant dine-in restrictions Restaurants can only do delivery and 

takeout 

9 March 

RI 

6 Mandatory quarantine for travelers 

into the state 

Anyone traveling into the state must avoid 

contact with others for 14 days 

11 March 

AK 

7 Prohibiting visitation in hospitals 

and extended living facilities 

Visitors aren't allowed in hospitals or 

nursing homes 

13 March 

NH 

8 Schools closure K-12 schools closed for the remainder of 

the school year 

16 March 

AK, AZ, DE, 

FL, IA, KY, 

LA, MD, MI, 

MT, NV, NH, 

NM, NC, ND, 

OR, PA, SC, 

UT, VA, WV, 

WY 

9 Travel restriction/advisory to/from 

states 

Warning against or restrictions to travel 

between states 

17 March 

AK 

10 Ceasing non-emergency medical and 

dental procedures 

Any surgeries, evaluations, etc. that aren't to 

save lives are canceled 

18 March 

OH 

11 Non-essential business closure (stay-

at-home order) 

Any business that is not essential should be 

closed 

19 March 

CA 

12 Safer-at-home order  Usually enacted as a less extreme stay-at-

home, non-essential businesses can open 

19 March 

CA 

13 Mandatory social distancing 

protocols for businesses 

If businesses are to open, they must provide 

personal protection equipment for workers, 

adhere to social distancing policies, restrict 

the number of people inside the facilities, 

and alert the Public Health Department if 

workers test positive. Also, all workers who 

can perform their jobs from home should 

work remotely 

24 March 

VA 

  (Continued on following page) 
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Table 3 continued   

14 Social distancing/gatherings and 

meetings restrictions 

Gatherings with members outside the 

household are prohibited 

4 April 

AL 

16 Face covering requirement Everyone over an acceptable age is required 

to wear a cloth face covering in outdoor and 

indoor (public) areas 

17 April 

NY 

 

As a result, we evaluated the individual and overall effects of the most frequently implemented 

anti-contagion policies. For the first time in the COVID-19 literature, we present a novel index 

(policy ratio) highlighting the associations between policy implementation and COVID-19 spread 

for every state of the U.S. To perform the present research, we selected the most frequently 

implemented COVID-19 anti-contagion policies in the U.S. The study data includes policy 

activity, policy implementation duration, and the number of implemented policies in each of the 

50 U.S. states for the study period, as presented in Figure 11. 

3.2 Methods  

3.2.1 Data Collection 

We selected the most frequently implemented COVID-19 anti-contagion policies in the U.S. out 

of more than 50 policies issued from February 29, 2020 (see Table 3). The study data includes 

policy activity in each of the 50 U.S. states from March 1, through July 31, 2020 [96-98] (see 

Figure 1). We chose the end of July as the cut-off time because COVID-19 policy activity became 

relatively stable in the U.S.  
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Figure 11: The duration of every policy in every state during the study period. States are ordered 

alphabetically based on their abbreviations. The policies listed can be found in Table 1. 
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The number of daily COVID-19 cases, deaths, and tests were obtained and cross-checked from 

multiple sources, including the Centers for Disease Control and Prevention (CDC) [99], Johns 

Hopkins Coronavirus Resource Center [100], The New York Times COVID data repository [101], 

and Worldometers data center [102] to ensure data integrity and consistency. The study used 

COVID-19 outcome measures (cases and deaths) starting two weeks after each policy was 

implemented and suspended to account for the response lag.  

3.2.2 Epidemiological Analysis 

Compartmental models are frequently used to model infectious diseases [103]. One such model, 

the Susceptible-Infectious-Recovered (SIR) model, has been used since the beginning of the 

COVID-19 pandemic to predict the spread [85, 104-106] and simulate the progress of COVID-19 

[107, 108]. However, the SIR model fails to consider the latent phase—when the individual is 

infected but not yet infectious—which is an important period in the case of COVID-19 [109]. 

Adding a latent/exposed population can incorporate the latent phase within the SIR model. In this 

way, infected individuals move from susceptible to exposed to infected [110, 111]. As such, the 

Susceptible-Exposed-Infectious-Recovered (SEIR) model is defined by four coupled nonlinear 

ordinary differential equations (ODEs) as Eqs. 1-4 [112]: 

𝑑𝑆(𝑡)

𝑑𝑡
= −

𝛽𝐼(𝑡)

𝑁
𝑆(𝑡) 

(1) 

𝑑𝐸(𝑡)

𝑑𝑡
=

𝛽𝐼(𝑡)

𝑁
𝑆(𝑡) − 𝜎𝐸(𝑡) 

(2) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜎𝐸(𝑡) − 𝛾𝐼(𝑡) 

(3) 



32 

 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡) 

(4) 

where N, S, E, I, and R represent the number of individuals in the population who are susceptible, 

exposed, infectious, and removed (recovered/deceased), respectively. Also, 𝛽, 𝜎, and 𝛾 are the 

contact, infection, and recovery rates, respectively. In the present study, to obtain a more accurate 

result using the SEIR model, we recall the ODEs (Eqs. 1-4) in pythonTM and initialize the 

parameters Et-1, It-1, and Rt-1. In this regard, for every simulation, we assumed the number of 

susceptible individuals equals the corresponding regional population collected from the U.S. 

Census Bureau [113]. Also, the number of exposed, infected, and recovered individuals on the first 

day of the study period was set at 1, 0, and 0, respectively.  

To provide a reliable result for each state, the general SEIR model needed to be trained for 

every state using the corresponding reported state data. Otherwise, there would have been no 

differentiation among the contact rates (𝛽). To train the model based on the available death data, 

we added the case fertility rate (CFR, the proportion of people who die from a 

specified disease among all individuals diagnosed with the disease over a certain period). Based 

on the CFR estimations for COVID-19 reported in the literature, we initialized the CFR to be 

0.01% of the total population [114, 115]. Later, we implemented an optimizer using the least 

squares method to minimize the difference between the predicted and actual daily death rate for 

every state. In reality, due to the implementation of anti-contagion policies, the contact rate (𝛽) 

and basic reproduction number (R0, the number of secondary cases an individual would produce 

in a completely susceptible population [116, 117]) are not constant. Therefore, we defined 𝛽 as 

time-dependent, representing the effective reproduction number (Rt, the number of secondary 

cases an individual would produce at any specific time [117, 118]). Having a time-dependent 

https://www.britannica.com/science/disease
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contact rate will increase the reliability of the model with the real-life situation [119]. Moreover, 

to estimate the values of incubation periods (i.e., the period of the days from the time the individual 

is exposed to the virus to the onset of symptoms) and infectious periods (i.e., the period in which 

an individual is infectious), we examined several studies [120-124] and considered the 

corresponding values to be 3 days and 10 days, respectively. Accordingly, both infection (𝜎) and 

recovery rates (𝛾), which are defined as the reciprocal of incubation and infectious periods, were 

calculated. As a result, the daily total number of susceptible, exposed, infected, and recovered 

cases for every state were estimated. We used the total numbers of daily infected cases for every 

state as response values to perform the statistical analysis.  

There are four categories of infected cases, including non-diagnosed symptomatic, non-

diagnosed asymptomatic, diagnosed symptomatic, and diagnosed asymptomatic [125]. According 

to previous studies [126-128] and the CDC [129], most people who were infected with COVID-

19 were asymptomatic, and daily reported cases mainly included those symptomatic since they 

were the individuals more likely to get tested [130]. To perform comprehensive modeling, our 

modified SEIR model considers all those categories and represents the total number of daily 

infected cases for every state. We used this number as the response values for performing our 

statistical analysis. Also, to evaluate the overall effect of anti-contagion policy implementation, 

we used the SEIR model in two different scenarios. First, we considered every state’s total 

population to predict the daily number of infected cases if there were no policies in effect. Next, 

we evaluated the daily number of infected cases with the policies in effect. Implementing the anti-

contagion policies impacts both the number of daily cases and daily deaths. Since the reported 

number of infected cases (i.e., number of infected cases reported on data sources for each state) 
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was not an accurate representation of the total infected cases, we used the daily reported deaths 

data to optimize the SEIR model. As a result, having the data of both scenarios, we calculated the 

policy ratio, or the average ratio of total infected cases when no policy was in effect compared to 

when policies were implemented, as Eq. 5:  

𝑃𝑜𝑙𝑖𝑐𝑦 𝑅𝑎𝑡𝑖𝑜 (𝑃𝑅) =

∑
𝐼𝑛𝑝 − 𝐼𝑃

𝐼𝑛𝑝

𝐽𝑢𝑙𝑦 31

𝑀𝑎𝑟𝑐ℎ 1

𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑡𝑖𝑚𝑒
 

 

(5) 

where 𝐼𝑛𝑝 is the total number of daily infected cases when there is no policy in effect and 𝐼𝑃 is the 

total number of daily infected cases when policies are implemented. The larger policy ratio 

represents the greater potential effect of policies in controlling COVID-19.  

Figure 12 shows the flow diagram of the modified SEIR model developed in this study. 

 

Figure 12: Flow diagram of modified SEIR model. 
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3.2.3 Statistical and Geospatial Analysis 

To perform the statistical analysis, we defined the predictors (implemented anti-contagion 

policies) as categorical variables either in-effect or suspended. We used our modified SEIR model 

outcomes (i.e., the daily number of total infected cases) as response values to investigate every 

policy’s potential effect in each U.S. state using statistical analysis. To find a statistically 

significant association between our predictors and response values, the appropriate regression 

modeling, either Negative Binomial Regression Modeling (NBRM) or Poisson Regression 

Modeling (PRM), was selected depending on data equidispersion or overdispersion [131, 132]. All 

the analyses were performed considering 95% confidence intervals (95% CI). We evaluated both 

tolerance and the variance inflation factors to diagnose the collinearity in multiple regression by 

observing the R2 of regressing one predictor on all other predictors throughout the analysis. 

Accordingly, we removed all statistical noise (i.e., random irregularity). To investigate the effect 

of any probable noise and outlier, we examined the models using Akaike Information Criterion 

(AIC) and Bayesian Information Criterion (BIC). All statistical analyses were performed using 

SPSS (International Business Machines Corporation (IBM), Armonk, NY, USA). As a result, after 

removing noises and checking all the criteria (e.g., p-value (<0.05), CI (95%)), we determined 

which policies and to what extend decreased the number of daily infected cases for every state of 

the U.S. throughout the study period. Accordingly, we demonstrated the most effective anti-

contagion policies in control of COVID-19 across the nation.   

To find the associations between population density, area land, the effective reproduction number 

and policy ratio we used the geospatial analysis and superimposed different layers of data. I this 

regard, we collected the data and created the required layers using ArcGIS. Next, having the results 

https://www.google.com/search?rlz=1C1GCEA_enIR861IR861&sxsrf=ALeKk02Ua8nAR0atNlbDFQc8AEQzwS_h2Q:1606499097373&q=Armonk&stick=H4sIAAAAAAAAAONgVuLQz9U3qEyqSnnEaMwt8PLHPWEprUlrTl5jVOHiCs7IL3fNK8ksqRQS42KDsnikuLjgmngWsbI5FuXm52UDAOuI7o5LAAAA
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of the epidemiological model, we ran the statistical analysis to predict the total number of infected 

cases. later, we created a layer of data using ArcGIS representing the status of the pandemic across 

the nation. Accordingly, having other layers of data including, population, state’s area in squared 

miles and state land types (urban, rural) we generated the map for population density. Also, we 

followed the same approach and prepared the layers of data for demographic and socioeconomic 

factors as well.  

In the next step, after completing our epidemiological and statistical analysis or both with policy 

and without policy implemented scenarios, we calculated the policy ratio for each state and 

accordingly prepared the corresponding layer of data. We also generated the map representing the 

variation of the effective reproduction number for all the 50 states of the U.S. After preparation of 

all of these separate layers of data as the map layer, we overlaid all the layers (superimposed) and 

evaluated whether there is any significant association between those factors. Our results showed 

the population density is highly correlated with the policy ratio. Also, we found a significant 

association between policy ratio and both the number of infected cases and deaths (see Results for 

more details).  

3.3 Results 

3.3.1 The Most Effective Policies 

Our findings reveal that among all policies, mandatory quarantine upon entering a state (order No. 

6 (see Table 3)), businesses implementing social distancing protocols (order No. 13), and 

mandating mask use (order No. 16) are the policies associated with reducing COVID-19 spread. 

There was a significant association between policy implementation and reduction in the total 
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number of infected cases in the country for 55%, 75%, and 45% of the states that implemented 

mandatory quarantine upon entering a state, businesses implementing social distancing protocols, 

and mandating mask use, respectively. To reveal specific policy action that may help explain 

slowing the spread of infection, Figure 13 demonstrates the states which showed a significant 

decrease in the number of infected cases after implementing orders 6, 13, and 16. The findings 

suggested that implementing those policies is associated with an average 40% reduction in the 

total number of infected cases. Zeroing in on one state, for example, New York, shows that 

mandating mask use was associated with a 66% decrease in the total number of infected cases. 

Similarly, implementing the mandatory quarantine upon entering a state was associated with a 

48% reduction in the total number of infected cases in New York. Table 4 presents the details of 

the multivariable binomial regression analyses, including the incidence rate ratio (i.e., the 

exponents of coefficients in the multiplicative Poisson model) and standard error for orders 6, 13, 

and 16.  

3.3.2 Novel Policy Ratio Index 

We defined and calculated a policy ratio (the average ratio of total infected cases when no policy 

was in effect compared to when policies were implemented - see Methods) for every state to 

represent the overall association of policy implementation with controlling the spread of COVID-

19. Figure 14 demonstrates the value of the policy ratio calculated for each U.S. state. Alaska had 

the greatest impact (policy ratio: 3666), and South Dakota had the least impact (policy ratio: 17) 

from policy implementation, respectively. 

 



38 

 

 

Figure 13: The association of each of three policies (mandating mask use, businesses 

implementing social distancing protocols, and mandatory quarantine upon entering a state) with 

a reduction in the number of COVID-19 infected cases. The colored lines represent the upper and 

lower bounds of the association. Also, the vertical dashed line demonstrates the average value of 

association for all states shown here. 
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Table 4:Multivariable Negative Binomial Regression (MNBR) analysis on COVID-19 infected 

cases (incidence rate ratio for the orders 6, 13, and 16; Exhibit is sorted alphabetically based on 

the states’ abbreviations) 

State Order 

No. 

IRR SE Sig CI (95%) 

L H 

AR 6 0.66 0.092 0.000 0.56 0.80 

AZ 6 0.49 0.211 0.001 0.32 0.74 

CO 13 0.74 0.128 0.021 0.58 0.96 

CT 13 0.37 0.127 0.000 0.29 0.48 

CT 6 0.39 0.140 0.000 0.29 0.51 

IL 6 0.53 0.176 0.000 0.38 0.76 

IN 13 0.65 0.087 0.000 0.55 0.77 

KS 16 0.71 0.181 0.057 0.50 1.01 

KS 13 0.70 0.153 0.019 0.52 0.94 

LA 13 0.55 0.165 0.000 0.40 0.77 

MA 16 0.60 0.176 0.004 0.43 0.85 

MA 13 0.43 0.163 0.000 0.31 0.59 

MD 13 0.65 0.171 0.013 0.47 0.91 

MA 6 0.54 0.106 0.000 0.43 0.66 

MI 6 0.50 0.155 0.000 0.37 0.68 

MT 6 0.71 0.038 0.000 0.66 0.76 

ND 13 0.84 0.072 0.015 0.73 0.97 

NE 13 0.67 0.061 0.000 0.59 0.75 

NJ 13 0.64 0.156 0.004 0.47 0.87 

NJ 6 0.65 0.141 0.002 0.49 0.85 

NM 16 0.70 0.045 0.000 0.64 0.76 

NY 16 0.34 0.130 0.000 0.26 0.44 

NY 6 0.52 0.200 0.001 0.35 0.77 

OH 13 0.58 0.110 0.000 0.47 0.73 

PN 16 0.61 0.158 0.002 0.45 0.83 

PN 13 0.65 0.100 0.000 0.54 0.79 

RI 16 0.70 0.090 0.000 0.59 0.84 

SC 6 0.80 0.095 0.022 0.67 0.97 

VT 13 0.04 0.179 0.000 0.03 0.05 

VT 6 0.49 0.273 0.008 0.28 0.83 

WA 16 0.67 0.142 0.005 0.51 0.89 

WA 13 0.50 0.136 0.000 0.39 0.66 

WI 13 0.77 0.104 0.010 0.62 0.94 

WV 16 0.56 0.123 0.000 0.44 0.71 

WV 13 0.66 0.103 0.000 0.54 0.80 

WY 13 0.87 0.049 0.005 0.79 0.96 
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Figure 14: The distribution of policy ratio and population density over the study period (1 March 

to 31 July 2020. The average effective reproduction number (Rt) for every state is presented in 

parenthesis 

Figure 15 compares the cumulative number of infected cases considering two different 

scenarios—one if there were no policies in effect (Figure 15a) and one with policies implemented 

(Figure 15b). Considering our calculated policy ratio and the cumulative number of infected cases 

reported by the end of July [101], we estimated the total number of infected cases when no policies 

were in effect. We estimate that implementing policies was associated with an average 58% 

reduction in the total number of infected cases (average of the column titled, “Estimated reduction 

in the number of infected cases due to implementing policies (%)” in Table 5). The anti-contagion 

policies were associated with nearly 10.8 million fewer Americans becoming infected by 31 July 

2020.  
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According to research by Ioannidis [133], the COVID-19 infection fatality ratio (IFR; i.e., the 

proportion of deaths among all infected individuals) for the locations with mortality rates less than 

the global average (i.e., < 118 deaths/million) and high death rate (i.e., more than 500 deaths per 

million) is 0.20 and 0.57%, respectively. Johns Hopkins Coronavirus Resource Center [100] 

reported that the mortality rate of COVID-19 in the U.S. is more than 500 deaths per million. 

Therefore, considering the total number of infected cases when no policies were in effect 

(predicted by the present study) and 0.57% as the IFR, implementing the examined policies was 

associated with 61,560 fewer deaths nationwide as of 31 July 2020. Based on other estimations of 

IFR by Russel et al. [134] at 1.3% for all the ages combined and Brazeau et al. [135] at 1.15% (for 

high-income countries), the number of fewer deaths nationally associated with implementing the 

policies may have been as many as 140,000. Table 5 presents the cumulative number of reported 

and predicted infected cases and deaths considering two policy implementation scenarios.  
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Figure 15: The cumulative number of infected cases: a) no policies; b) policies in effect 
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Table 5: Evaluating the total number of infected cases and deaths when policies were in effect vs. no-policy scenario (1 March 2020 

through 31 July 2020) 

State Number of 

predicted 

infected cases 

when no 

policy was in 

effect 

Number of 

reported 

infected cases 

when policies 

were in effect 

Estimated 

reduction in 

the number of 

infected cases 

associated 

with 

implementing 

policies (%)

Number of 

predicted 

deaths (using 

IFR = 0.57%) 

when no policy 

was in effect

Number of 

predicted deaths 

(using IFR = 

1.15%) when no 

policy was in 

effect  

Number of 

predicted deaths 

(using IFR = 

1.3%) when no 

policy was in 

effect  

Number of 

reported 

deaths 

 AL 331,681 87,723 74 1,891 3,814 4,312 1,580 

 AK 138,407 3,675 97 789 1,592 1,799 21 

 AZ 712,450 174,108 76 4,061 8,193 9,262 3,695 

 AR 80,448 42,511 47 459 925 1,046 453 

 CA 1,916,071 502,273 74 10,922 22,035 24,909 9,222 

 CO 80,431 46,948 42 458 925 1,046 1,841 

 CT 62,317 49,810 20 355 717 810 4,432 

 DE 23,769 14,788 38 135 273 309 585 

 FL 1,861,756 470,378 75 10,612 21,410 24,203 6,842 

 GA 306,548 171,342 44 1,747 3,525 3,985 3,674 

 HI 6,638 2,088 69 38 76 86 25 

 ID 210,317 20,853 90 1,199 2,419 2,734 193 

 IL 313,968 180,701 42 1,790 3,611 4,082 7,703 

 IN 111,056 67,800 39 633 1,277 1,444 2,965 

 IA 140,251 44,753 68 799 1,613 1,823 872 

 KS 49,502 28,123 43 282 569 644 358 

 KY 43,770 30,981 29 249 503 569 753 

 LA 209,009 116,394 44 1,191 2,404 2,717 3,949 

 ME 7,422 3,912 47 42 85 96 123 

(Continued on following page) 43
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Table 5 continued 

 MD 118,255 88,907 25 674 1,360 1,537 3,493 

 MA 160,540 117,612 27 915 1,846 2,087 8,609 

 MI 176,558 90,752 49 1,006 2,030 2,295 6,453 

 MN 99,424 54,503 45 567 1,143 1,293 1,640 

 MS 151,879 58,747 61 866 1,747 1,974 1,663 

 MO 84,372 51,045 40 481 970 1,097 1,305 

 MT 121,693 3,977 97 694 1,399 1,582 60 

 NE 78,374 26,211 67 447 901 1,019 338 

 NV 180,528 48,142 73 1,029 2,076 2,347 831 

 NH 12,728 6,583 48 73 146 165 415 

 NJ 239,825 183,535 23 1,367 2,758 3,118 15,819 

 NM 65,739 20,600 69 375 756 855 642 

 NY 765,994 419,723 45 4,366 8,809 9,958 32,372 

 NC 514,268 122,433 76 2,931 5,914 6,685 1,947 

 ND 42,466 6,473 85 242 488 552 107 

 OH 243,230 91,159 63 1,386 2,797 3,162 3,489 

 OK 89,995 36,456 59 513 1,035 1,170 541 

 OR 222,801 18,510 92 1,270 2,562 2,896 325 

 PA 184,196 116,787 37 1,050 2,118 2,395 7,261 

 RI 31,443 19,022 40 179 362 409 1,007 

 SC 522,328 89,016 83 2,977 6,007 6,790 1,712 

 SD 10,219 8,764 14 58 118 133 130 

 TN 765,659 103,144 87 4,364 8,805 9,954 1,047 

 TX 3,020,528 441,688 85 17,217 34,736 39,267 7,265 

 UT 174,314 40,249 77 994 2,005 2,266 308 

 VT 4,825 1,414 71 28 55 63 57 

 VA 157,735 89,888 43 899 1,814 2,051 2,174 

 WA 298,581 58,726 80 1,702 3,434 3,882 1,654 

 WV 9,342 6,642 29 53 107 121 116 

(Continued on following page) 
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Table 5 continued 

 WI 181,027 57,020 69 1,032 2,082 2,353 943 

 WY 18,837 2,726 86 107 217 245 26 

Total 15,353,514 4,539,615 701 87,514 176,563 199,597 153,035 

1 Represents the overall reduction in the number of infected cases considering the total predicted number of infected cases when no policy 

was in effect, and the total reported number of infected cases when policies were in effect. 
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We evaluated the relation between our policy ratio and both normalized reported number of 

cases and deaths across the nation. Results demonstrated a significant negative association between 

policy ratio and those two criteria. This means the higher policy ratio is associated with fewer 

infected cases and deaths, which confirms the association of policy implementation with reducing 

COVID-19 spread (p-value < 0.05). Additionally, we investigated the relationship between the 

state policy ratio and population density. The correlation analysis exhibited a significant negative 

association (p-value < 0.05), demonstrating that policies have a greater association with reducing 

COVID-19 spread in the states with less population density. To test this correlation, using the 

modified SEIR model developed here, we calculated the effective reproduction number (Rt) over 

the study period in the states with greatest population density, including New Jersey (2.26), Rhode 

Island (1.78), and Massachusetts (2.13), and the least population density, including Montana 

(1.60), Wyoming (1.52) and Alaska (1.36). Our findings indicated that, on average, the effective 

reproduction number was 40% higher in states with the largest population density. This confirms 

an increase in the probability of becoming infected in more populated areas and, accordingly, a 

decrease in the potential of anti-contagion policies controlling COVID-19 in these areas. This 

finding is consistent with other research study by Hu et al. that showed that contact rates tend to 

increase with density [136]. Figure 14 presents the population density distribution, the policy ratio, 

and the average effective reproduction number for each state.  

3.4 Discussion 

We have presented COVID-19 case outcomes as they relate to the top 16 anti-contagion policies 

implemented in each of the U.S. states from 1 March 2020 through 31 July 2020. This study differs 
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from other COVID-19 epidemiology and policy studies in that we modified the SEIR model and 

combined it with a comprehensive statistical analysis to better capture symptomatic and 

asymptomatic cases and examine, for the first time, the association of all the major policies 

implemented in the U.S. states with COVID-19 spread during the first six months of the pandemic. 

Additionally, we predicted the total number of COVID-19 infected cases and deaths if no policies 

were implemented to highlight the potential impact of anti-contagion policies in controlling 

COVID-19 in the U.S. Moreover, we calculated the average effective reproduction number for 

every U.S. state, indicating the number of secondary infections likely to occur from a single 

infection in every state. 

Our findings show the policies of mandating mask use, businesses implementing social 

distancing protocols, and mandatory quarantine upon entering a state were associated with an 

average 40% reduction in the total number of infected cases. Additionally, policies implemented 

across the states may have saved nearly 10.8 million people from being infected. Considering 

different IFRs reported by other research studies and our estimated number of infected cases, 

results demonstrated that policies may have been associated with 140,000 fewer deaths 

nationwide. Note that previous studies based reported IFR values based on symptomatic cases only 

[137]. Yet, the majority of COVID-19 infected cases are asymptomatic [99]. Therefore, using the 

previously reported values of IFR, we expected the number of estimated deaths (Table 5) to be 

more than the reported number of deaths for all the U.S. states; however, it is not. The lower than 

expected reported number of deaths could be due to various other factors, such as population 

density, age, race, and ethnicity. We also calculated the average effective reproduction number for 

all U.S. states, and our results demonstrated a direct association between the population density 
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and the effective reproduction number. This finding is not surprising given that when individuals 

are in closer proximity to one another, the droplet transmission and airborne transmission increase 

causing an acceleration in the spread of the virus [138, 139]. The policies of mask-wearing and 

businesses implementing social distancing found potentially effective in this study are consistent 

with other U.S. anti-contagion policy observational studies [140, 141]. However, our study 

provides even greater evidence for these policies because our epidemiological and statistical 

analysis accounted for many infected cases not included in other studies, which depended only on 

reported COVID-19 rates.  

Several policies examined in this study did not show significant associations with reducing the 

number of infected cases across the U.S. One such policy that stands out is school closure which 

has sparked much debate throughout the COVID-19 pandemic [142]. Research based on previous 

influenza viruses indicated children would be major spreaders of the coronavirus [143]. However, 

the evidence produced since states first implemented school closure in mid-March 2020 supports 

our findings and indicates children are at significantly less risk for COVID-19 infection [144, 145]. 

However, children’s role in spreading the disease remains unclear [146].  

Further evidence that school closure may not be significantly linked to increasing infection 

rates can be seen in Europe when, throughout the fall of 2020, in contrast to the widespread 

canceling of in-person education in the U.S., schools remained opened using safety precautions 

like mask-wearing and ventilation without it significantly accelerating disease spread [147]. 

Experts have criticized school closures, arguing that closing schools may have caused social, 

economic, and health problems even more common and more severe than those due to COVID-19 

[148], including increased risk of loneliness, addiction to videogames and binge-watching, 
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alteration of circadian rhythms, direct or assisted domestic violence, and academic achievement 

gaps [149-151]. In learning from past pandemic research, a 2014 review by Mangtani [152] 

commissioned by the Department of Health in England (now known as the Department of Health 

and Social Care) concluded that “the benefit of school closure in reducing clinically important 

outcomes needs to be balanced against secondary adverse effects.”  

Social distancing (i.e., prohibiting gatherings with members outside the household), non-

essential business closure (stay-at-home order), and safer-at-home orders were three other 

prominent policy areas not associated with a significant reduction in COVID-19 spread. One 

reason for these findings may be the difficulty with grouping the many types and levels of social 

distancing measures or restricting people to their homes into just one or two categories. The various 

aspects such as geographic level of examination, COVID-19 incidence rates at the time of 

implementation, duration, frequency, and intensity of such orders make evaluative studies on these 

policies difficult to compare to one another. For example, Thu et al. [153] reported a wide variation 

in the effectiveness of social distancing measures between ten highly infected countries. 

Additionally, the timing of social distancing, business closure, and safer-at-home orders in terms 

of how soon after the first reported case and how frequently (continuous versus intermittent) the 

policy is implemented can impact their effectiveness in reducing infection spread [154, 155].  

The lack of accurate data about COVID-19 cases, especially asymptomatic cases, in the U.S. 

[38], posed a challenge to verifying our epidemiologic model’s case and death values. While we 

used existing data to estimate these values, we can further analyze their precise association with 

policy implementation as more accurate retrospective case data becomes available over time. A 

limitation of this study is that the data does not account for the interactions between policies. We 
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recommend future investigation into the interplay of policies to determine potential synergies and 

conflict, rollout approach, and communication strategies to emphasize prioritization. This analysis 

focuses mainly on COVID-19 infected cases and also considers deaths. However, we did not 

examine hospitalizations. Future investigations should include hospitalizations to represent 

severity and, together with health system capacity data, identify inadequacies in medical care to 

inform medical response-related policies.  

The ultimate goal of this research is to help inform discussion about further policy actions state 

and national governments can take to curb infection spread now and during future pandemics. 

With 3 out of 16 (19%) of the examined policies accounting for the majority (about 75%) of 

positive policy-related impact on COVID-19, Pareto’s principle [156], or the “80/20 rule,” surfaces 

here.  As the country continues reopening businesses and schools, decision-makers should focus 

on policies emphasizing mask-wearing, social distancing, and quarantining travelers as they may 

have the greatest chance of preventing the spread of COVID-19.  

 

 

 

 

 



PART B: CONSTRUCTION A NOVEL INDEX OF LUNG CANCER RISK BASED ON 

MODIFIABLE FACTORS 

3.5 Introduction 

In the United States, cancer is the second leading cause of death [157], with lung cancer accounting 

for almost one-quarter of cancer-related deaths [158]. The American Cancer Society estimates that 

235,760 new lung cancers will be diagnosed in 2021 and that this disease will claim the lives of 

more than 131,000 men and women in this country [159]. Numerous studies have examined the 

predominant risk factors for developing lung cancer [160-166]. The main risk factors are smoking 

[167], radon exposure [168], genetic susceptibility [169], gender [170], air pollution [171], body 

mass index [172], diet [173], indoor air pollution [174], passive smoking [175] and occupational 

exposure[176]. Of these, tobacco smoking, radon exposure, exposure, secondhand smoke, and 

alcohol consumption are modifiable lung cancer risk factors [177] (behaviors and exposures that 

can be changed [178]). Furthermore, evidence indicates the air pollution may also be considered a 

modifiable lung cancer risk factor [179, 180].  

Our literature review demonstrated the association of each of the modifiable risk factors with 

developing lung cancer as follows: (1) tobacco smoking, the leading cause of lung cancer with 22-

fold higher risk for current smokers [181, 182]; (2) radon exposure, the cause of 13.4% of lung 

cancer deaths [183]; (3) outdoor air pollution, associated with an increased risk of lung cancer in 

urban areas due to higher amounts of suspended particles; (4) indoor air pollution, cooking fumes 

is one example leading to a 5 to 20% increase in lung cancer risk [184-186]; (5) secondhand 



52 

 

 

smoking, accounts for 3000 deaths per year due to lung cancer in the US [187, 188] and comprises 

one-third of lung cancer cases among nonsmokers [189]; (6) occupational exposure: overall 

contribution to lung cancer is relatively small [186] at between 9 and 15% [187]; (7) alcohol 

consumption, as one of the modifiable lung cancer risk factor may increase lung cancer risk after 

controlling for cigarette smoking [190-192].   

Although many studies have investigated associations between individual risk factors and lung 

cancer risk or mortality [169, 193-201], less is known about how these factors interact to cause 

lung cancer or influence disease progression. Among the few published studies on the interaction 

between lung cancer risk factors, they focus on only a subset of risk factors. For example, one 

study showed that more than 85% of radon-induced lung cancer deaths were among smokers [202]. 

Ahrendt et al. [203] demonstrated a higher risk of lung cancer by examining the contribution of 

alcohol consumption and smoking. A study by Osann [204] found a significant interaction between 

smoking and family history. Another study [205] showed a significant interaction between history 

of other lung disease, secondhand smoke, smoking, and lung cancer. 

For many study designs used in lung cancer risk factor research (e.g., case-control study, cohort 

study), there are limitations in providing a sample population that includes all major risk factors 

[206]. A significant challenge for such study designs is obtaining a sample population with a 

smoking history, occupational exposure and pollution, and other risk factors. To the best of our 

knowledge, no study has simultaneously investigated all of the modifiable risk factors of lung 

cancer. While several studies have demonstrated the individual and combined association between 
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two or a few major lung cancer risk factors, little is known about the association of each risk factor 

while considering all the major modifiable risk factors in the causation of lung cancer.  

Developing a predictive model considering the major and minor modifiable risk factors of lung 

cancer is the scope of the present study. In this research, we performed a comprehensive review to 

discern the modifiable risk factors of lung cancer. We then collected the corresponding quantitative 

data (odds ratios (OR) and relative risks (RR)) to evaluate the overall effect size (i.e., a quantitative 

value measuring the strength of the relationship between two variables [207]) for each of the 

modified risk factors. To perform, we ran a meta-analysis on our collected data. Later, having 

those values, we developed a system to assign weights to risk factors and sorted them based on 

their degree of importance using Analytical Hierarchy Process (AHP); a the well-known multi-

criteria decision making methods [208]. Consequently, we developed a lung cancer risk index 

based on modifiable factors. This index development methodology is intended to guide researchers 

in developing health indices based on multiple risk factors. Additionally, this index can inform 

public health officials and policymakers in decisions related to resource allocation for lung cancer 

prevention.   

3.6 Methods 

3.6.1 Search Strategy and Study Selection 

Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines [209], we conducted database searches (from January 1990 up to April 2021) in 

PubMed (including MEDLINE) and Google Scholar for full-length published articles. We utilized 
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the following keywords strings to capture relevant studies: “lung cancer” in conjunction with 

”smoking,” “passive smoking,” “secondhand smoke,” “environmental tobacco smoking,” “radon, 

” “occupational,” “air pollution,” “alcohol consumption,“ and “risk factors.” We included any 

article appearing in our keyword string search in initial abstract review. We reviewed titles and 

abstracts to ensure that the keywords were elaborated upon through the papers. The study inclusion 

criteria were (1) randomized controlled trial, prospective cohort study, retrospective cohort studies, 

case-cohort study, or nested case–control study; (2) reported the relative risk (RR) or odds ratio 

(OR) associated with increased risk; and (3) reported the 95% confidence intervals (CIs). We 

assessed the quality of the articles included in the present study using appraisal checklists provided 

by JBI (formerly known as "Joanna Briggs Institute"); an international organization focused on 

improving evidence as it relates to the feasibility, appropriateness, meaningfulness, and 

effectiveness of healthcare interventions [210]. 

The initial search yielded 1197 papers. After we removed 268 due to being duplicates or 

otherwise ineligible, the titles and abstracts for each of these studies were reviewed. After 

excluding 820 studies after the abstract reviews, at least two of the researchers reviewed the 

remaining studies’ full text. The authors further excluded 48 studies due to not reporting the 

relative risk or odds ratio and nine studies that reported CIs that were less than 95%. We included 

the remaining 52 articles in the analysis. The selection process suggested by PRISMA guidelines 

[211] is detailed in Figure 16. 
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* Papers were excluded based on the abstract and/or title. Those papers that did not meet the inclusion criteria (see methods) and 

did not present any quantitative value for risk factors.  

Figure 16: Flowchart of search methodology and article selection 

3.6.2 Quantitative Association of Each Risk Factor 

We reviewed 52 papers that were qualified after applying the appraisal checklist (see search 

strategy and study selection) to understand how, quantitatively, those risk factors contribute to 
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the occurrence of lung cancer.  We presented the contribution of important risk factors to lung 

cancer using OR and RR are presented (Table 6). 

 

3.6.3 Analytical Methods 

3.6.3.1 Meta-analysis 

To develop a more accurate estimate of the effect magnitude and establish statistical significance 

with studies having conflicting or disparate results, we developed a meta-analysis to obtain a 

pooled estimate of lung cancer risk factors from the collected studies. In this regard, the association 

between risk of smoking, occupational and radon exposure, secondhand smoking, indoor and 

outdoor air pollution, alcohol consumption, and occurrence of lung cancer was derived as a 

weighted average of study-specific estimates of the OR, using inverse variance weights [212]. The 

potential for publication bias was evaluated by funnel plots and the methods described by Egger 

et al. [213] and Begg et al. [214]. We analyzed the studies using a random-effects model [215] and 

considered heterogeneity and within-study variance. We evaluated heterogeneity using Cochrane’s 

Q-statistic [216] and the I2 statistic tests [217]. 
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Table 6: Point estimates of the most important modifiable lung cancer risk factors 

Risk factor Gender Type/Content Measure Point 

estimate 

95% CI 

Lower limit 

95% CI 

Upper limit 

Ref 

Smoking Male OR 7.82 4.59 13.30 [218] 

Smoking Female OR 11.76 7.50 18.42 [218] 

Smoking (United States smokers) Both OR 40.4 21.8 79.6 [219] 

Smoking (Japanese smokers) Both OR 3.5 1.60 7.50 [219] 

Smoking Male OR 9.6 5.64 16.30 [220] 

Smoking Female OR 27.9 14.9 52.0 [220] 

Smoking Female RR 3.4 1.75 6.61 [221] 

Smoking Male RR 4.39 3.92 4.92 [222] 

Smoking Female RR 2.79 2.44 3.20 [222] 

Smoking Both OR 14.9 12.3 18.1 [223] 

Smoking Male OR 5.0 2.0 12.7 [224] 

Smoking Both OR 9.40 6.9 12.8 [225] 

Smoking Female OR 13.6 12.3 15.1 [226] 

Smoking Male OR 11.3 10.2 12.4 [226] 

Smoking Female OR 8.94 7.54 10.6 [227] 

Smoking Female OR 4.87 1.34 17.75 [174] 

Radon exposure Both (200+ Bq/m3) OR 1.29 0.98 1.70 [228] 

Radon exposure Both (150-199 Bq/m3) OR 1.19 0.86 1.66 [228] 

Radon exposure Both (100-149 Bq/m3) OR 1.22 0.88 1.69 [228] 

Radon exposure - North America Both ( up to 100 Bq/ m3) OR 1.106 1 1.28 [229] 

(Continued on following page) 
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Table 6 continued 

Radon exposure - China Both (up to 100 Bq/m3) OR 1.139 1.01 1.37 [229] 

Radon exposure Both (100 Bq/m3) OR 1.33 1.01 1.36 [230] 

Radon exposure Both OR 1.73 1.27 2.35 [231] 

Radon exposure - Germany Both (up to 80 Bq/m3) OR 1.59 1.08 2.27 [197] 

Radon exposure - Germany Both (above 80 Bq/m3) OR 1.93 0.99 3.77 [197] 

Radon exposure Both 50-80  Bq/m3 RR 1.08 0.79 1.47 [232] 

Radon exposure Both 80-140 Bq/m3 RR 1.18 0.86 1.61 [232] 

Radon exposure Both above 140 Bq/m3 RR 1.44 1 2.06 [232] 

Occupational exposure Both (welding fumes) OR 2.50 1.0 6.5 [225] 

Occupational exposure Both (asbestos) OR 1.50 0.5 4.4 [225] 

Occupational exposure Both (wood dust) OR 1.90 1.2 3.1 [225] 

Occupational exposure Both (diesel exhaust) OR 3.10 2.1 4.5 [225] 

Occupational exposure Both OR 1.60 1.4 2.1 [161] 

Occupational exposures Both OR 2.10 1.3 3.3 [161] 

Occupational exposure Both (crystalline silica) OR 1.37 1.14 1.65 [233] 

Occupational exposure Both (crystalline silica) OR 1.41 1.22 1.62 [234] 

Occupational exposure Both (diesel exhaust) OR 1.43 1.23 1.67 [234] 

Occupational exposure Both (polycyclic aromatic 

hydrocarbons) 

OR 1.53 1.14 2.04 [234] 

Occupational exposure Both (asbestos) OR 1.78 0.94 3.36 [235] 

Occupational exposure (Low 

concentrations) 

Both (asbestos) OR 1.17 0.92 1.5 [236] 

Occupational exposure (medium or high 

concentrations) 

Both (asbestos) OR 2.16 1.21 3.88 [236] 

Second hand smoking (highly exposed) Both RR 2.01 1.33 2.60 [237] 

(Continued on following page) 
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Table 6 continued 

Second hand smoking Both OR 1.26 1.06 1.47 [238] 

Second hand smoking Female OR 1. 31 0.99 1.72 [239] 

Second hand smoking Both RR 1.08 0.6 1.94 [240] 

Second hand smoking Both RR 1.05 0.6 1.86 [241] 

Second hand smoking Female OR 2.95 1.32 6.57 [174] 

Second hand smoking Both OR 1.57 1.07 2.31 [242] 

Second hand smoking Both RR 1.9 1.0 3.50 [243] 

Second hand smoking Female RR 1.3 1.0 1.7 [244] 

Second hand smoking Female OR 1.3 0.7 1.5 [245] 

Outdoor air pollution Both (pesticides) OR 5.10 3.1 8.3 [225] 

Outdoor air pollution Both RR 1.25 1.18 1.32 [246] 

Outdoor air pollution Both (mortality) RR 1.23 1.16 1.30 [246] 

Outdoor air pollution Both (diesel) OR 3.10 2.1 4.5 [225] 

Outdoor air pollution Both OR 1.46 0.89 2.40 [247] 

Outdoor air pollution (low concentrations) Both (nitrogen dioxide) OR 1.14 0.78 1.67 [247] 

Outdoor air pollution (high concentrations) Both (nitrogen dioxide) OR 1.30 1.02 1.66 [247] 

Outdoor air pollution Both (PM2.5) OR 1.29 0.95 1.76 [248] 

Outdoor air pollution Both (nitrogen dioxide) OR 1.34 1.07 1.69 [248] 

Outdoor air pollution Both (nitrogen dioxide) OR 1.3 1.02 1.66 [249] 

Outdoor air pollution Both (PM10) OR 1.05 0.65 1.69 [249] 

Outdoor air pollution Both (sulfur dioxide) OR 1.15 0.92 1.43 [249] 

Outdoor air pollution Both (PM2.5) RR 1.14 1.04 1.23 [250] 

Outdoor air pollution Both (NOx) RR 1.08 1.02 1.15 [251] 

Outdoor air pollution Both (SOx) RR 1.01 0.94 1.08 [251] 

(Continued on following page) 
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Table 6 continued 

Outdoor air pollution Both (PM10) RR 1.66 1.21 2.27 [252] 

Outdoor air pollution Both (NOx) RR 1.10 0.97 1.23 [253] 

Outdoor air pollution Both (SOx) RR 1.01 0.98 1.03 [253] 

Indoor air pollution  Both HAP exposure OR 1.77 1 3.14 [254] 

Indoor air pollution Both (PAH25) OR 2.21 1.67 2.87 [255] 

Indoor air pollution Both (NO2) OR 2.06 1.19 3.49 [255] 

Indoor air pollution (ex-smokers) Both OR 4.30 2.7 6.8 [185] 

Indoor air pollution Both (cooking only) OR 1.15 0.97 1.37 [256] 

Indoor air pollution Both (heating and cooking) OR 1.17 1.01 1.37 [256] 

Indoor air pollution Female wood or straw as 

cooking fuels 

OR 1.77 1.08 2.91 [242] 

Indoor air pollution Both Coal consumption 

(heating and cooking) 

OR 1.29 1.03 1.61 [257] 

Indoor air pollution Female cooking oil OR 2.54 1.40 4.30 [258] 

Indoor air pollution Female Coal consumption 

(heating and cooking) 
OR 1.3 0.3 5.80 [245] 

Alcohol consumption Both (>60 g/day) OR 1.44 1.01 2.07 [190] 

Alcohol consumption Both (>20 g/day) OR 1.42 1.06 1.90 [196] 

Alcohol consumption Both OR 1.60 1.00 2.04 [259] 

Alcohol consumption Both (white wine) OR 1.20 1.01 1.42 [260] 

Alcohol consumption     Both (alcoholism) RR 2.40 2.29 2.51 [261] 

Alcohol consumption     Both Above 9 drinks/month RR 1.1 0.7 1.6 [259] 

Alcohol consumption     Both Above 1 drink/day RR 1.9 1.0 3.4 [262] 

Alcohol consumption     Both Above 0.5 drink/week RR 1.1 0.6 2.1 [263] 

Alcohol consumption     Both Above 7 drinks/week RR 1.2 0.8 1.7 [264]
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Considering the confidence intervals (CIs), we calculated all studies’ standard errors (SEs). 

We used the OR, logOR, and the corresponding SEs as data points for conducting the meta-

analysis. For each risk factor, all the studies were plotted in order of decreasing variance of the 

logOR, where the horizontal lines represent the 95% CIs. All statistical manipulations were 

conducted using the meta-analysis package for R (metaphor Version 2, MA, USA). We used the 

results of our meta-analysis as an input to the following AHP analysis to increase the accuracy of 

outcomes since the meta-analysis could remove noise and decrease biases [265, 266]. 

3.6.3.2 Analytic Hierarchy Process (AHP) 

AHP is known as one of the most widely used Multi-Criterion Decision Making (MCDM) methods 

[267]. As an analytical model, AHP has been implemented in healthcare and the number of studies 

applying AHP in healthcare has increased since 2005 [268]. Since AHP is capable of quantitatively 

prioritizing our risk factors by producing the weights for all of lung cancer major and minor 

modifiable risk factors, we selected it as our analytics method in the present study.  

For each risk factor, we used the overall effect size calculated from the meta-analysis for 

smoking, occupational and radon exposure, secondhand smoking, indoor and outdoor air pollution, 

and alcohol consumption. To illustrate we analyzed the studies (Table 6; Fig. 16) using a random-

effects model (see Meta-analysis) and imported the outcomes of that model (overall odds ratio) as 

our input variables in AHP for each of the risk factors.  For the purpose of our analysis, since the 

odds ratio is a good approximation of relative risk when the outcome is rare, we consider odds 

ratio to represent relative risks. This approximation has been used in prior studies [269]. Having 
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the odds ratios (calculated from meta-analysis) for all the risk factors, we normalized the ratios 

using Eq. 6:  

𝑋normalized =
𝑋 − 𝑋min 

𝑋max − 𝑋min
 (6) 

where Xnormalized is the normalized ratio, X is the average ratio of each risk factor, and Xmin and 

Xmax are the minimum and maximum ratio of the same risk factor, respectively. We sorted all the 

ratios between 0 and 1 to establish priority amongst risk factors using pairwise comparison. In this 

regard, having the normalized values of ratios and using the assessment matrix, we created the 

pair-wise comparison matrix (i.e., a matrix to perform the process of comparing risk factors in 

pairs to evaluate their relative importance). To define the assessment matrix in AHP for pairs with 

equal, weak, obvious, intense, and extreme importance, the values of 1, 3, 5, 7, and 9 were 

assigned, respectively [270]. Also, values of 2, 4, 6 and 8 were assigned for intermediate 

importance. 

To illustrate, as the first step, the relative importance of smoking versus radon exposure, 

occupational exposure, secondhand smoking, outdoor air pollution, indoor air pollution and 

alcohol consumption were assigned considering the assessment matrix. This step was then repeated 

for all risk factors. Next, an n by n matrix was created where n represented the number of modified 

risk factors. Next, having one of the eigenvalues of the matrix, we defined the eigenvectors and 

solved the linear system considering the matrix coefficient using Eq. 7. 

𝐴𝑋 = 𝜆𝑋 𝑜𝑟 (𝐴 − 𝜆𝐼𝑛)𝑋 = 0 (7) 
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where 𝐴 was the comparison matrix of order n and 𝜆 is one of its eigenvalues. X represented the 

eigenvector of A associated to 𝜆, and 𝐴 − 𝜆𝐼𝑛 represented the matrix coefficient. It should be noted 

that to calculate the eigen values and vectors of the matrix, MATLAB (MathWorks, 

Massachusetts, USA) is frequently used which is recommended by authors.  Eventually, the 

derived eigenvector was used to specify the weights of each risk factor where the eigenvector 

represents the coefficient of the index (see Association of modifiable risk factors in developing 

lung cancer using AHP). As a result, the contribution of each risk factors to causation of lung 

cancer was estimated.  

        To check the reliability of our results we evaluated the Consistency Ratio (CR). In this regard, 

we first calculated the Consistency Index (CI1) using Eq. 8: 

𝐶𝐼1 =  (𝜆𝑚𝑎𝑥 − 𝑛)/(𝑛 − 1) (8) 

where 𝜆𝑚𝑎𝑥 was the maximum eigenvalue and n represented the order of the matrix. Accordingly, 

the Consistency Ratio was calculated by dividing the Consistency Index (CI1) by the index for the 

corresponding random matrix (RI) using Eq. 9: 

𝐶𝐼1 =  𝐶𝐼1/𝑅𝐼 (9) 

The values for RI has been presented by Saaty considering the matrix size [271]. Also, Saaty [271] 

suggested that the CR needs to be less than 0.1 to produce consistent results. It should be noted 

that, although AHP has been used in numerous MCDM, it has the limitation that imposes a single 

cut point on the data. This means a continuous number cannot be assigned to the index coefficients 

(A1 to A7). 
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3.7 Results 

3.7.1 Overall Effect Size of Lung Cancer Modifiable Risk Factors  

We evaluated the association of modifiable risk factors in developing lung cancer by running a 

meta-analysis on the data collected (Table 6). Our results indicated the overall effect size for 

smoking, radon exposure, indoor air pollution, secondhand smoke, exposure to cancer-causing 

agents, alcohol consumption, and outdoor air pollution were 8.63, 1.24, 1.76, 1.43, 1.60, 1.45, and 

1.25, respectively. Therefore, smoking and radon exposure were the most and least important 

modifiable risk factors that increase the probability of lung cancer.  

3.7.2 Association of Modifiable Risk Factors in Developing Lung Cancer Using AHP 

We evaluated the association of each risk factor in developing lung cancer by implementing AHP 

and using the overall OR effect sizes calculated through meta-analysis for each of the modifiable 

lung cancer risk factors (Table 7). The consistency ratio of the present study was 0.07, i.e., within 

recommended range of smaller than 0.1, which demonstrated the consistency of the analysis.  

Having the final weight for all the modifiable risk factors, we produced a Lung Cancer 

Risk Index (LCRI) representing the probability of getting lung cancer as follows: 

𝐿𝐶𝑅𝐼 = 0.461𝐴1 + 0.185𝐴2 + 0.132𝐴3 + 0.078𝐴4 + 0.076𝐴5 + 0.038𝐴6 + 0.030𝐴7 (9) 

where A1 to A7 represent smoking, indoor air pollution, exposure to cancer-causing agents 

(occupational exposure), alcohol consumption, secondhand smoke, outdoor air pollution, and 

radon exposure, respectively. It should be noted that A1 to A7 take 0 or 1 only, where 0 indicated 
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the corresponding risk factor was not in effect and 1 indicated the corresponding risk factor was 

in effect. For instance, in developed countries, heat source such as coal doesn’t apply for cooking; 

therefore, in the case of utilizing the index to evaluate the risk of lung cancer for individuals living 

in those countries, the A2 can be considered to be 0. The 𝐿𝐶𝑅𝐼 could have any value between 0 to 

1 in which 0 means no lung cancer risk and 1 represents the highest risk of lung cancer occurrence. 

The index represents the risk of lung cancer occurrence for individuals. 

Table 7: Average odds ratio and final weights of modifiable risk factors of lung cancer 

Risk factor Overall 

effect size   

Final Weight 

(%) 

Smoking 8.63 46.1 

Indoor air pollution 1.76 18.5 

Occupational exposure 1.60 13.2 

Alcohol consumption 1.45 7.8 

Second hand smoking 1.43 7.6 

Outdoor air pollution 1.25 3.8 

Radon exposure 1.24 3.0 
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CHAPTER 4:  CONCLUSION AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 

4.1 Conclusion 

The aim of this thesis was to investigate the applications of data and geospatial analysis in both 

mechanical engineering (energy management) and health systems. In this regard, using data and 

geospatial analysis we evaluated the potential of the state of Illinois in achieving recovery energy 

in both forms of electricity and biofuels out of Municipal Solid Waste (chapter 2) (MSW). Our 

results demonstrated that Illinois is capable of producing 6,295,385.77 MWH annual energy using 

incineration technology from MSW. Also, using Anaerobic Digestion (AD) technology in MSW 

management enables the state to be capable of producing more than 1,140,493,710,450.00 Litres 

biogas per year. Moreover, our study showed that the total weight of biomass (MSW composite) 

is 9,504,114.25 tonnes per year and using the pyrolytic technology, more than 190,082.29 MJ can 

be annually produced. 

We demonstrated that there exists a potential to produce 1,000 Mm3/yr of CH4 through 

anaerobic digestion of organic MSW (which could be subsequently used in gas turbines to generate 

electricity), and 2,000 GWh electricity via waste-to-energy (WTE) plants using MSW across the 

state of Illinois. This study study demonstrates the vast potential across the State of Illinois to 

produce clean energy from MSW. In addition to environmental benefits, this will promote clean 

energy technologies, create job opportunities, diversify energy resources and help toward a more 

sustainable economic development of the State of Illinois.  
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In addition, we extended the application of data and geospatial analysis in health system to 

analyze the impact of anti-contagion policies implemented by the states across the country to slow 

the spread of COVID-19. Also, by implementing a meta-analysis in conjunction with multi-criteria 

decision-making methods, a Lung Cancer Risk Index (LCRI) was produced representing the 

probability of individuals to get lung cancer. The methods that have been developed for the 

extended applications of data and geospatial analysis in health systems can be used for various 

complex decision making and index generating purposes in engineering disciplinary such as 

additive manufacturing to evaluate the effect of process factors (e.g., injection content, speed, 

temperature) individually and collectively to optimize the process and increase the performance.  

4.2 Recommendations for Future Research 

The ultimate goal of this research project was to develop comprehensive MSW management 

framework/model for assessing the MSW management options that provides the user the 

possibility to compare various scenarios in terms of economic feasibility as well as environmental 

assessments. The result of this study can help governments, county administrators, city councils, 

private organizations, investors, landfill owners etc. make informed decisions about diverting 

MSW from landfills and converting into energy. We recommend future investigation to used our 

procedure and results and add more layer of data and information to find the best location for 

creating facilities to achieve energy from MSW. Furthermore, the proposed research has broad 

applicability to the other states and worldwide, hence sustained research, development and 

outreach activities are recommended. 
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