Rate my professors: electronic word of mouth and expectancy violations theory in the classroom

Dathan Nathaniel Simpson II

Follow this and additional works at: https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations

Recommended Citation
Simpson, Dathan Nathaniel II, "Rate my professors: electronic word of mouth and expectancy violations theory in the classroom" (2019). Graduate Research Theses & Dissertations. 4626.
https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations/4626

This Dissertation/Thesis is brought to you for free and open access by the Graduate Research & Artistry at Huskie Commons. It has been accepted for inclusion in Graduate Research Theses & Dissertations by an authorized administrator of Huskie Commons. For more information, please contact jschumacher@niu.edu.
ABSTRACT

RATE MY PROFESSORS: ELECTRONIC WORD OF MOUTH AND EXPECTANCY VIOLATIONS IN THE CLASSROOM

Dathan N. Simpson II, MA
Department of Communication
Northern Illinois University, 2019
Mary Lynn Henningsen, Director

Sites like Rate My Professors (RMP) offer abundant, potentially problematic foundations of expectations about instructors in higher education. Framed in expectancy violations theory, this thesis investigated the relationship between online ratings and learning. To conduct an experimental test of EVT in this context, three RMP reviews (i.e., positive, neutral, negative) were created to induce an expectation of instructor clarity. Two lectures were filmed (i.e., clear, unclear) to violate or affirm the expectation students may have formed from the reviews. The results of the experiment indicated that violation of expectations did not influence learning (i.e., quiz score, cognitive learning, or most subscales of affective learning). Instead, there was a consistent effect for the clarity of the video message. Despite the formation of expectations through RMP reviews, the results indicated that expectations did not influence learning as much as actual clarity did. These findings suggest that, although RMP may be abundant, it may also be benign.
NORTHERN ILLINOIS UNIVERSITY
DEKALB, ILLINOIS

MAY 2019

RATE MY PROFESSORS: ELECTRONIC WORD OF MOUTH AND
EXPECTANCY VIOLATIONS THEORY
IN THE CLASSROOM

BY
DATHAN NATHANIEL SIMPSON II
©2019 Dathan N. Simpson II

A THESIS SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE
MASTER OF ARTS

DEPARTMENT OF COMMUNICATION

Thesis Director:
Dr. Mary Lynn Henningsen
ACKNOWLEDGEMENTS

I would like to thank Dr. Henningsen for her help on this project. I could not have done this without your support and guidance. Thank you for inspiring me and showing me how exciting quantitative research is. I would also like to thank Dr. Valde and Dr. Bryan for serving on my committee and providing valuable input.
DEDICATION

Thank you to my grandfather, Raymond Van Stockum, for giving me the opportunity to pursue my education.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LIST OF TABLES</th>
<th>vi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter</td>
<td></td>
</tr>
<tr>
<td>1. INTRODUCTION AND LITERATURE REVIEW</td>
<td>1</td>
</tr>
<tr>
<td>Electronic Word of Mouth</td>
<td>2</td>
</tr>
<tr>
<td>eWOM in Higher Education</td>
<td>4</td>
</tr>
<tr>
<td>Expectancy Violations Theory</td>
<td>5</td>
</tr>
<tr>
<td>Learning</td>
<td>10</td>
</tr>
<tr>
<td>Grade Orientation and Learning Orientation</td>
<td></td>
</tr>
<tr>
<td>Clarity</td>
<td>14</td>
</tr>
<tr>
<td>2. HYPOTHESES AND RESEARCH QUESTIONS</td>
<td>16</td>
</tr>
<tr>
<td>3. METHOD</td>
<td>18</td>
</tr>
<tr>
<td>Participants</td>
<td>18</td>
</tr>
<tr>
<td>Design</td>
<td>18</td>
</tr>
<tr>
<td>Procedures</td>
<td>19</td>
</tr>
<tr>
<td>Measures</td>
<td>20</td>
</tr>
<tr>
<td>4. RESULTS</td>
<td>25</td>
</tr>
<tr>
<td>Preliminary Analysis</td>
<td>25</td>
</tr>
<tr>
<td>Manipulation Checks</td>
<td>25</td>
</tr>
<tr>
<td>Hypothesis Tests for Learning</td>
<td>28</td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Learning Orientation, Grade Orientation, and Expectations</td>
<td>31</td>
</tr>
<tr>
<td>Expectations: Violation Valance, Importance, and Expectedness</td>
<td>32</td>
</tr>
<tr>
<td>5. DISCUSSION</td>
<td>34</td>
</tr>
<tr>
<td>Limitations and Directions for Future Research</td>
<td>37</td>
</tr>
<tr>
<td>Conclusion</td>
<td>38</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>40</td>
</tr>
<tr>
<td>APPENDIX: RMP SURVEY</td>
<td>44</td>
</tr>
<tr>
<td>Table</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>1. Measures of Learning and Expectations</td>
<td>20</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION AND LITERATURE REVIEW

Prior research has focused on the influence electronic word of mouth (i.e., eWOM) about instructors has on student learning (e.g., Edwards, 2007). Students have the ability to find information about their instructors on sites like Rate My Professors (i.e., RMP). This electronic word of mouth allows students to express positive and negative evaluations of instructors to the public. eWOM ratings of faculty differ from in-class course evaluations because the latter are not shared with future students. Students selecting courses with new faculty may rely on these sites for information. These sites provide information that might become students’ expectations of the instructor. When an interaction between the faculty member and student occurs, the expectation may be maintained, positively violated, or negatively violated. Expectancy violations theory (EVT; Burgoon & Hale, 1988) offers a useful theoretical framework to examine the expectations students hold because of eWOM and the subsequent effects of expectations on learning outcomes.

Electronic Word of Mouth

Previous research on eWOM has focused on the motives for sharing information and not as much on the motives for reading eWOM. However, there may be a parallel between the motives for sharing and reading eWOM. The research on eWOM is focused on brands. Specifically, the motives for sharing positive and negative brand reviews. Brand eWOM research has also looked into intention to buy a product after reading eWOM. This may translate to student intention of taking a class after reading eWOM of instructors.

As the number of social media sites and their users increased, brands as well as consumers have noted the rising importance of positive and negative eWOM (Wu, 2015). The
sharing of negative information online is motivated by the need for consumers to protect themselves and others from bad experiences (Wu, 2015). Sharing positive and negative WOM fulfills two different sets of needs for people (Alexandrov, Lilly, & Babakus, 2013). When sharing brand information, Alexandrov et al. found that positive WOM was influenced by the satisfaction of social needs, whereas negative WOM was influenced by social intentions and social comparison. The findings of Wu and Alexandrov et al. suggest negative WOM is perceived of as a way to help others by sharing information about a particular brand or company. Likewise, students may feel RMP ratings help future students when deciding to enroll in a class.

Offline, individuals engage in negative WOM with their interpersonally close social peers and family (DuBois, Bonezzi, & De Angelis, 2016). Individuals tend to engage in positive WOM with those lower in interpersonal closeness (DuBois, Bonezzi, & De Angelis, 2016). This is consistent with Chen’s (2017) findings. Chen reported that strangers shared self-enhancing WOM in the beginning stages of a relationship. After friendships progressed, individuals were more likely to share negative WOM (Chen, 2017). Chen argued that the progression of positive to negative WOM is done as a way of seeking social acceptance. Students might be motivated to share the experience they had with a faculty member with other students to fulfill similar social needs.

Consumers engage in WOM, particularly negative WOM, for a number of reasons. When consumers feel anger, frustration, or irritation they engage in negative WOM to vent about the issue or to seek revenge (Wetzer, Zeelenberg, & Pieters, 2007). Individuals who experienced regret, disappointment, and uncertainty engaged in WOM as a way of warning others because of a disconfirmed expectancy (Wetzer et al., 2007). Although WOM works to inform others about a
product, person, or experience, the reasons for WOM seem to be motivated by self-interests. Alexandrov et al. (2013) stated, “WOM is the outcome of the intention to engage in a social interaction that is initiated by the intention to satisfy self-needs” (p. 532). After taking a class a student may feel the need to engage in social interaction on RMP. This may be initiated because of a positive or negative experience in the classroom, and the sharing of such experiences may be done to satisfy the student's self-needs.

Okazaki (2009) found many of the same findings of WOM to be true of eWOM. In their study Okazaki found that participants engaged in eWOM as a way of expressing their social identity. Okazaki made this connection as participants disclosed the same information online to those they know offline. The primary purpose of these disclosures is information sharing, which is consistent with previous WOM research (Okazaki, 2009). This may mean students also share information about instructors in a similar way both online and offline.

Online platforms have given consumers (and students) the ability to disseminate their positive and negative experiences. eWOM can be shared with interpersonally close friends or with strangers; some sites such as RMP allow for users to share anonymously with strangers. eWOM may also be performed/shared on platforms other than that of the product/company itself. Reviews posted on the company’s website were viewed no differently than an independent website (Lee & Youn, 2009). However, when a review was posted on a personal blog, the blogger’s motivation for the review came into question (Lee & Youn, 2009). Credibility of eWOM influencers is important to readers; Reichelt, Sievert, and Jacob (2014) found that trustworthiness was a dominant factor in perceived credibility of reviews.
A study by Olabarri-Fernandez, Monge-Benito, and Usín Enales (2015) explored college students’ evaluations of online reviews and intent to buy among college students. They found students analyze reviews in two stages. In the first stage, they look at the overall ratings of a product. For a purchase to be made it must have a majority of positive reviews. In the second stage students sought reviews that had more detail than the product description, experiences with the product, and reviews that appeared less biased (Olabarri-Fernandez et al., 2015). Students “shopping” for classes could use sites like Rate My Professors (RMP) and make similar evaluations in their decision to take a class or not.

eWOM in Higher Education

RMP, a popular site used by students, allows students to share their evaluations of professors, instructors, and TAs. On their website, RMP states their site hosts 19 million ratings on over 1.7 million professors in over 7,500 schools. Timmerman (2008) found that RMP scales of quality were highly correlated with those of popular university measures. Timmerman also found student interpretations of instructor performance to be valid assessments. Timmerman argues this shows RMP reviews are not dominated by biased posts from dissatisfied students, but an accurate interpretation of the instructor’s performance. Similarly, Brown, Baillie, and Fraser (2009) found RMP ratings to be significant predictors of instructors’ performance when compared to traditional student evaluations. In addition to instructor performance, this platform offers the ability to share more information than traditional instructor evaluations and face-to-face WOM. As current and former students can anonymously share their experiences and opinions of instructors, RMP has the potential to exert a bigger impact for other students than traditional course evaluations.
On RMP, students can share information such as the overall quality of the professor, difficulty of the course, and even the “hotness” of the professor (ratemyprofessors.com). Students can also share if they used the textbook, if extra credit was given, and if attendance would be required in order to pass the course. Students can create tags such as “tough grader,” “lecture heavy,” “caring,” and “gives good feedback” (ratemyprofessors.com). Students can see how many times these tags were used, signifying the likelihood that they would appear in the course.

Students who reviewed RMP profiles tended to view the ratings as honest and reflective of instructors’ abilities (Brown et al., 2009). Brown et al. argue this may lead students to consider RMP reviews when making academic decisions. When examining RMP to make academic decisions, Kindred and Mohammed (2005) found instructor competence and intelligence to be the two main characteristics students looked for in reviews. Students reading these online reviews start to form expectations about the instructor and the class.

A study by Edwards, Edwards, Qing, and Wahl (2007) showed that students who had been presented with positive eWOM perceived instructors as credible and attractive compared to students who received negative eWOM. This information is important in understanding what happens when student-instructor interaction moves beyond eWOM and into the classroom. The influence eWOM has on credibility and attractiveness judgments affects how students learn in the classroom.

Expectancy Violations Theory

Expectancy violations theory (Burgoon & Hale, 1988) explains how expectations lead to interpretation and understanding of communication. The theory assumes that individuals hold
expectations about the behaviors of others (Burgoon & Hale, 1988) Expectations held by individuals are shaped by societal norms and are also formed by “idiosyncratic differences based on prior knowledge of the other” (Burgoon & Hale, 1988, p. 60). RMP and eWOM are one observation that a student could use to make expectations about a faculty member prior to taking a course with the faculty member.

A violation of an expectation occurs when one person’s behavior does not follow the pattern that the other person believes will happen in an interaction (Burgoon & Hale, 1988). The experience of a violation leads to arousal (Burgoon & Hale, 1988). This arousal distracts the violated from the interaction and directs thinking to the violation instead (Burgoon & Hale, 1988). After recognition that a violation occurred, the violated engages in a two-step process to interpret the valence of the violation (Burgoon & Hale, 1988). During the first step of interpretation, the violated takes into account characteristics of the violator derived before and during the interaction to determine the communicator reward valance (Burgoon & Hale, 1988). Pre-interaction characteristics include factors such as attractiveness (social and physical), gender, status, and potential future interactions (Burgoon & Hale, 1988). Factors derived from the interaction include rewards, positive feedback, or “amusing communication style” (Burgoon & Hale, 1988, p. 62). These characteristics come together to weigh if continuing the interaction, despite the violation, will result in more rewards than costs. The violator is categorized with a high or low reward valance (Burgoon & Hale, 1988).

The valence of the communicator influences the interpretation and evaluation of the violation, which then influences the valence applied to the violation (Burgoon & Hale, 1988). Interpretation involves examination of behaviors and their implicit messages and meanings
(Burgoon & Hale, 1988). Interactions carry many interpretations producing several alternative outcomes, and communicator valence may influence the interpretation. When the behavior is unambiguous, communicator reward may mediate how a violation is evaluated (Burgoon & Hale, 1988).

After considering the communicator reward, interpretation, and evaluation, a valence is assigned to the violation (Burgoon & Hale, 1988). Positively evaluated behaviors are assigned, such as they came from a communicator deemed positive or the violation itself was deemed positive (Burgoon & Hale, 1988). Positively assigned violations should produce favorable communication and consequences (Burgoon & Hale, 1988). Negatively deemed behaviors are those that produce unfavorable communication and consequences (Burgoon & Hale, 1988). When an instructor violates students’ expectations, the valance applied to the interaction could have an impact on the outcome of student learning.

Violations can vary in form, intensity, and the impact they have (Afifi & Metts, 1998). This means violations committed by instructors vary in magnitude and consequences to student learning. Both instructors and students hold a general expectation of classroom behaviors determined by socially acceptable norms, even if they have no previous experience with the individual (Levine & Anders, 2000). When students have no experience with an instructor, they are motivated to reduce uncertainty, one method being through RMP reviews (Kindred & Mohammed, 2005). These reviews vary in valence: positive, negative, and neutral. RMP reviews reflect individual experiences that instructors have no control over. However, no matter how accurate or inaccurate these reviews are, students reading them are going to form some expectation of the instructor from the review process.
Students enter the classroom with some notion of what will occur based on RMP reviews; these expectations may or may not hold true. In a study examining the influence of instructor ethnicity and gender, Anderson (2010) found these two characteristics to be influencing factors in evaluations. One of Anderson’s findings was the expectation of female instructors to express more warmth than male instructors. This expectation can be reinforced on RMP as students can mark if the instructor was “caring.” As a result, students will enter the classroom with the notion their instructor will be caring. According to Anderson’s study, students were more comfortable in a classroom that maintained stereotypes or expectations. This may mean students who have read a RMP review have elaborated expectations and increased chances of a violation occurring.

In addition to personal characteristics of an instructor, RMP reviews also create expectations of the course itself. Users on RMP have the ability to rate the amount of course work they had in a particular course. These eWOM reports may form workload expectations. A study by Mottet, Parker-Raley, Cunningham, Beebe, and Raffeld (2006) demonstrated that instructors who had high nonverbal immediacy and violated the amount of expected course work were still received positively.

Instructor availability was one area where immediacy did not affect students when course work load was negatively violated (Mottet et al., 2006). Students expected instructors to be available and had negative responses when this need was not met. RMP allows posters to include how available they perceived the instructor was. This study did not consider the expectations of course work that students may have when going into a classroom.

EVT posits that positive violations of expectations will produce favorable outcomes, while negative violations will result in negative outcomes (Burgoon & Hale, 1988). Students
may form these high or low expectations before entering the classroom, informed through sites such as RMP. Some research has investigated EVT in the classroom. For example, Koermer and Petelle (1991) found that students who had high expectations and positive experiences gave their instructors high ratings. Students with unmatched expectations to experiences rated their instructors lower on evaluations, even when the expectation was positively violated (Koermer & Petelle, 1991).

Students hold a social expectation that instructors are both competent and trustworthy (Sidelinger & Bolen, 2016). However, these characteristics do not neutralize an expectancy violation (Sidelinger & Bolen, 2016). Instead, Sidelinger and Bolen reported that instructor’s perceived goodwill acted to neutralize negative violations. This research shows that when an expectancy violation occurs, instructor qualities and behaviors may mitigate the violation.

The clarity of an instructor may be one expectation that students hold. RMP allows users to say how “lecture heavy” the course is and can post comments on the clarity/ease of understanding of the instructor. Instructor clarity can influence student learning (Bolkan, 2016; Bolkan, Goodboy, & Kelsey, 2016). Bolkan et al. found that when students had a strong motivation to learn and instructors were high in clarity, student knowledge increased. This research is further supported by Bolkan (2016), who reported that instructor clarity decreased receiver apprehension and increased students’ ability to process course material.

A study conducted by Houser (2006) showed that both traditional and nontraditional students expected a high level of clarity from their instructors. When examining the research on clarity and student learning, Titsworth, Mazer, Goodboy, Bolkan, and Myers (2015) found that clarity had a stronger influence on affective learning than cognitive learning. It is apparent that
instructor clarity plays a central role in students’ learning experience. It is also apparent that students expect their instructors to competently explain class material, though this is an expectation that is not always fulfilled.

Learning

In higher education, actual learning is often assessed by indications that students have recalled and applied information in assessments like tests, papers, and quizzes. Actual learning may also be related to several other learning indicators. In the instructional communication literature, learning is often connected to cognitive and affective learning. For example, Chesebro and McCroskey (2001) investigated whether students’ reports of cognitive learning matched their levels of learning. There results indicated that students’ reports of cognitive learning did match their levels of actual learning. In the next sections, cognitive learning and affective learning are described as secondary indicators of learning.

Cognitive Learning

Frisby, Mansson, and Kaufmann (2014) studied the cognitive learning of students. They defined cognitive learning as the student’s perception of knowledge acquisition, retention, and application. Rather than actually recalling and retaining information, cognitive learning reflects the perception of having done so.

Cognitive learning has been associated with clarity in past research. In a study on instructor immediacy and clarity, Bolkas, Goodboy, and Myers (2017) found that instructor clarity was an important factor in reducing students’ cognitive load and increasing cognitive learning. As direct evidence of the connection, Myers, Goodboy, et al. (2014) reported that instructor clarity and humor increase students’ level of cognitive learning. Myers et al. (2014)
also found that when instructors were perceived as caring and confirming, levels of cognitive learning increased. There is a connection between clarity and cognitive learning in prior research. In addition, the instructional communication literature indicates that affective learning is an important aspect of student learning.

Affective Learning

Affective learning is the attitude that students hold for the subject, the course, and the instructor (Kearney, Plax, & Wendt-Wasco, 1985). Trait and state motivation of students influences their affective learning positively (Christophel, 1990). Students who hold a positive outlook on course content are more likely to learn the cognitive course content (Kearney, Plax, & Wendt-Wasco, 1985). The extant literature suggests that affective learning is influenced by instructor immediacy, clarity, and caring (Chesbro & McCroskey, 2001; Kearney, Plax, & Wendt-Wasco, 1985; Teven & McCroskey, 1996).

eWOM also affects affective learning. Edwards et al. (2007) found that students who were given positive eWOM reported higher levels of affective learning than students who received negative eWOM or none. Related to eWOM indirectly, Teven and McCroskey (1996) found that when instructors were perceived to be caring, it positively influenced students’ affective learning. This expectation can be formed through eWOM as users are able to report on how caring they perceived the instructor to be.

Edwards, Bresnahan, and Edwards (2008) found positive eWOM that utilized humor appeals increased affective learning and motivation compared to positive eWOM with no humor appeal. Edwards, Edwards, Shaver, and Oaks (2009) examined how expectations formed from eWOM influenced cognitive and behavioral learning. They reported that positive eWOM
increased cognitive recall and behavioral learning compared to participants with negative or no eWOM. These studies show that students are affected by the eWOM they read about instructors.

In their article, Edwards et al. (2008) discuss WOM studies as limited and not encompassing of negative WOM. Edwards et al. (2009) examined how student expectations formed through eWOM influenced cognitive and behavioral learning. Edwards et al. (2007) examined how students perceive their instructors to be credible and attractive after eWOM and its influence on student affective learning. Although an excellent first step, the extant literature has been limited by evaluating eWOM and perceptions rather than actual learning contexts after eWOM. It would be helpful to investigate the connections among eWOM expectations, learning, cognitive learning, and affective learning.

Grade Orientation and Learning Orientation

Some students reading RMP may be motivated to find general information about classes, while other students may be looking for instructors who are more lenient in their grading. The college classroom has a mix of students, some more motivated to learn and others more motivated by their grade (Eison, Pollio, & Milton, 1986). Learning-orientated (i.e., LO) students tend to view the classroom as a place to expand their knowledge; they place less emphasis on grades than on knowledge (Eison et al., 1986). On the other hand, grade-orientated (i.e., GO) students see grades as a motivating factor in their classes (Eison et al., 1986). Instructional communication research has relied on LO and GO to characterize and classify students. For example, Houser (2006) found that nontraditional students, who are typically older, were more learning orientated than their younger traditional student counterparts.
Recognizing that a student may not be solely grade orientated or learning orientated, orientations in the LOGO II scale were explicated as four subcategories: high LO and high GO, high LO and low GO, low LO and high GO, and low LO and low GO (Eison et al., 1986). The first group, students with high LO and high GO, are motivated to learn and earn high grades. The second category of students have high LO and low GO; this group places learning above grades. Students in the third category (i.e., those with low LO and high GO) are motivated by grades but not learning. The fourth category contains students low in both LO/GO; these students are not motivated by learning or grades.

These classifications describe how students approach the classroom. Their learning orientation can influence how they think of the course, the material, and the instructor. Goodboy and Frisby (2014) found that grade-orientated students tended to be more expressive and vengeful when communicating dissent. These students believed they deserved a high grade but did not exhibit the effort to achieve high grades (Goodboy & Frisby, 2014). When looking at learning-orientated students, Goodboy and Frisby (2014) found they were more likely to rhetorically express dissent. This may be due to the fact they appreciate the learning process and wanted to communicate directly with the instructor to resolve issues when they arose.

Vallade, Martin, and Weber (2014) found that students with high grade orientation believed they did not have to work hard to earn higher grades. As a result, when lower grades were earned by these students, they viewed the grading process of the instructor as unfair (Vallade et al., 2014). This perception of the grading process impacts the student's perception of the course and the instructor. Students may be motivated to express this dissent on sites like RMP. This dissent will then influence the expectation of future students.
Clarity

There are a number of instructional variables that could influence student learning, could demonstrate an association with LO and GO, and could be varied in expectation and faculty instruction. One of the most important appears to be the clarity of teaching (Titsworth et al., 2015). Although clarity has been a commonly investigated feature of teaching, the term has struggled to be defined by a cohesive definition (Titsworth et al., 2015). Some explication work to define clarity has been recently conducted by Bolkan (2017). As such, Bolkan’s multidimensional definition of clarity will be used in this research.

The first dimension of clarity is the concept of signaling; this refers to the organization of messages (Bolkan, 2017). This includes summaries of content, outlining lessons, and emphasizing content (Bolkan, 2017). Vagueness, the second dimension outlined by Bolkan, is characterized by unclear statements, utterances (e.g., uh, um), and mazes. Mazes include false starts (starting but not finishing statements) and halts in speech. The third dimension is faculty use of examples in lessons (Bolkan, 2017). The use of relevant examples to explain course material affects how much students acquire and retain information (Bolkan, 2017). The fourth dimension outlined by Bolkan is coherence and redundancy. Coherence includes irrelevant material faculty incorporate into lessons which can take away from comprehension of relevant course material (Bolkan, 2017). Redundancy refers to repetition of information which may cause confusion among students on the core concepts they should focus on (Bolkan, 2017). The fifth dimension involves the appropriate pacing of lessons for student comprehension and learning (Bolkan, 2017). Information given too fast will influence student memory of course materials (Bolkan, 2017). The sixth dimension is interaction, this is how faculty assess student learning
(Bolkan, 2017). Faculty who make time for questions and addressing lack of comprehension creates clarity in instruction (Bolkan, 2017).
CHAPTER 2

HYPOTHESES AND RESEARCH QUESTIONS

This study seeks to add to the literature on eWOM and EVT. As students use RMP, they are able to form expectations for courses and instructors. While RMP use might decrease uncertainty, it may also lead to the formation of expectations that could be violated (or affirmed) in class. This violation or confirmation could influence students’ learning. This study will focus on how clarity expectations and expectation violations influence learning, cognitive learning, and affective learning.

In the theory, positive violations of expectations result in positive evaluations and outcomes while negative violations of expectations result in negative evaluations and negative outcomes (e.g., Afifi & Metts, 1998; Burgoon & Hale, 1988). The logic of EVT in this context is formally stated in the first hypothesis.

H1: There will be an interaction effect for valence of expectations and clarity on learning. RMP expectation violations will influence learning, cognitive learning, and affective learning such that (H1a) positive expectation violations (i.e., negative RMP and clear videos) will result in the greatest levels of learning, (H1b) neutral RMP expectations (i.e., neutral RMP and both clear and unclear videos) will result in moderate levels of learning, and (H1c) negative expectation violations (i.e., positive RMP and unclear videos) will result in the lowest levels of learning.

In addition to the predicted influence of expectations, there is a great deal of evidence to suggest that clarity will also directly influence students’ ability to learn (Titsworth et al., 2015). Given the meta-analytic findings (Titsworth et al., 2015) in the extant literature, clarity is expected to promote learning. That relationship is stated in the second hypothesis.
H2: There will be a main effect for clarity on learning. Clarity of instruction in a teaching video message will influence learning, cognitive learning, and affective learning such that clear videos will result in higher learning than unclear videos.

Previous research (e.g., Houser, 2006) has demonstrated that LO and GO influence student priorities in higher education. In this study, LO and GO may influence the formation of expectations about faculty from their review of RMP ratings. If that is the case, students’ LO or GO would be associated with measures of expectations. That speculation, however, is not the direct reflection of prior research. As such, the role of LO and GO was posed as the following research question:

RQ1: Are grade orientation and learning orientation associated with expectations?

The primary focus of this investigation was on how expectations established by reviewing RMP reviews influenced learning. Afifi and Metts (1998) indicated that expectations were not unidimensional. In their research, they established that expectations varied in valence, importance, and expectedness of behavior. The context of the Afifi and Metts research was close interpersonal relationships. To assess whether the dimensions of violations parallel valence, importance, and expectedness in the instructional context, the following research question was investigated:

RQ2: Do RMP expectations and video clarity influence expectations?
CHAPTER 3

METHOD

Participants

Participants (N=220) were recruited from lower and upper division communication courses at a large, midwestern university. A total of 103 males, 115 females, and 1 non-binary individual participated in the study. The age of students ranged from 18 to 37 ($M = 21.36$, $SD = 2.87$). Participants were primarily Caucasian (N=116), African American (N=54), Hispanic (N=29), Asian/Asian American (N=9), Mixed/Other (N=6), and Middle Eastern (N=1). Most students were able to earn extra credit for their participation in the study.

Design

Independent Variables. This study employed a 3 (RMP: positive, neutral, negative) x 2 (Video Clarity: clear, unclear) factorial design. All the RMP reviews included statements indicating that the instructor would be female and would appear young. Statements about her credibility were included to account for her young appearance. The rest of the content of the reviews were varied to induce clarity expectations. The positive review included comments such as “her lectures are always organized and clear.” To create a neutral review about the instructor, the review included comments like “some of the time I was able to follow the flow of Professor Stanley’s lecture.” The negative review included statements such as “her lectures were very unorganized” and “Professor Stanley is not able to clearly define the material.” The example reviews also included numeric information to place the instructor as positive, average, or negative on the RMP rating scales. The reviews were balanced to be similar in word length and intensity.
Two short lectures were filmed for the study. The individual who performed the lecture was a communication student and forensics competitor from a nearby midwestern college. She was chosen for her ability to enact the clarity manipulations in the video. Shamanism was chosen for the subject of the lecture to reduce the likelihood of participants having prior knowledge of the material. To induce clarity, the lectures varied in many of Bolkan’s (2017) dimensions of clarity (i.e., signaling, vagueness, examples, coherence and redundancy, pacing, and interaction). The clear video included transitions and examples. The unclear lecture lacked transitions and relevant examples as well as including vagueness, redundancy, and fast pacing.

Dependent Variables. To examine the impact of clarity violations the actual learning of students was measured through a quiz based on material covered in the video. Cognitive learning was measured through Frisby et al.’s (2014) cognitive learning measure. Affective learning was measured with McCroskey’s (1994) measure.

Procedures

Upon IRB approval, students were recruited by email that contained a link to the online survey. The link directed students to a consent form. Participants were randomly assigned to one of the three expectation conditions (RMP: positive, negative, neutral). After reading reviews, the participants answered questions to measure their expectation of instructor clarity. Next, students completed a learning orientation/grade orientation scale. Participants were then randomly assigned to a video condition (i.e., clear, unclear). After watching the video, participants completed a quiz about content from the lecture. The participants then completed measures to assess expectations, cognitive learning, affective learning, and instructor clarity. The final
section of the survey requested demographic information. Participants were directed to a debriefing statement.

Measures

The scales in the study were measured on 7-point scales. A few of the original measures (e.g., McCroskey, 1994) were originally designed with a 5-point scale. Because it would be clearer and more consistent for participants, all scales were measured uniformly with a 7-point response scale. The scales were assessed with measurement analysis to determine reliability, parallelism, and similar item-to-item correlations. A correlation matrix of the measures is provided in Table 1.

Table 1

Measures of Learning and Expectations

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.07</td>
<td>.04</td>
<td>.05</td>
<td>.14</td>
<td>.04</td>
<td>.07</td>
<td>.08</td>
<td>.03</td>
<td>.13</td>
<td>.18</td>
<td>.07</td>
<td>.19</td>
<td>.09</td>
<td>.08</td>
<td>.14</td>
<td>.14</td>
<td>.01</td>
</tr>
<tr>
<td>2</td>
<td>-.07</td>
<td>-.06</td>
<td>.01</td>
<td>-.08</td>
<td>-.11</td>
<td>-.09</td>
<td>-.10</td>
<td>-.14</td>
<td>.06</td>
<td>.08</td>
<td>.08</td>
<td>.02</td>
<td>-.10</td>
<td>.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-.03</td>
<td>-.04</td>
<td>-.10</td>
<td>.03</td>
<td>.10</td>
<td>.18</td>
<td>-.00</td>
<td>.15</td>
<td>.11</td>
<td>.00</td>
<td>-.09</td>
<td>.31</td>
<td>.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.50</td>
<td>.66</td>
<td>.58</td>
<td>.60</td>
<td>.26</td>
<td>.66</td>
<td>.57</td>
<td>-.62</td>
<td>-.36</td>
<td>.34</td>
<td>-.30</td>
<td>.66</td>
<td>.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>.29</td>
<td>.46</td>
<td>.50</td>
<td>.28</td>
<td>.37</td>
<td>.36</td>
<td>-.24</td>
<td>-.18</td>
<td>.32</td>
<td>-.21</td>
<td>.41</td>
<td>.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>.46</td>
<td>.51</td>
<td>.23</td>
<td>.57</td>
<td>.49</td>
<td>-.66</td>
<td>-.32</td>
<td>.35</td>
<td>-.40</td>
<td>.54</td>
<td>.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>.71</td>
<td>.53</td>
<td>.65</td>
<td>.55</td>
<td>-.48</td>
<td>-.45</td>
<td>.35</td>
<td>-.36</td>
<td>.64</td>
<td>.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>.50</td>
<td>.82</td>
<td>.66</td>
<td>-.51</td>
<td>-.40</td>
<td>.36</td>
<td>-.34</td>
<td>.60</td>
<td>.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>.34</td>
<td>.52</td>
<td>-.14</td>
<td>-.23</td>
<td>.25</td>
<td>-.10</td>
<td>.31</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>.68</td>
<td>-.66</td>
<td>-.34</td>
<td>.43</td>
<td>-.34</td>
<td>.70</td>
<td>.07</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-.57</td>
<td>-.37</td>
<td>-.36</td>
<td>-.24</td>
<td>.56</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>.41</td>
<td>-.26</td>
<td>.53</td>
<td>-.62</td>
<td>.11</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-.17</td>
<td>.42</td>
<td>-.51</td>
<td>-.19</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-.26</td>
<td>.45</td>
<td>.14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-.42</td>
<td>-.36</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Clarity Expectation. A four-item scale was created to assess student expectations of clarity after reading the RMP review (e.g., “the faculty member will be clear”). The scale was reliable, $\alpha=.95$ ($M=4.52$, $SD=1.67$). These items were embedded into questions that were designed to mask the intent of the measure.

LO/GO. The 32-item Learning Orientation/Grade Orientation measure developed by Eison et al. (1986) was used to operationalize LO and GO. This measure contained two subscales. The learning orientation subscale consisted of 16 items. Items in this subscale consisted of statements such as “easy classes that are not pertinent to my educational goals generally bore me.” This subscale was only nominally reliable, $\alpha=.63$ ($M=4.90$, $SD=0.68$). Three items were removed during the measurement analysis to increase reliability, but 13 items were retained in the study. The grade orientation subscale consisted of 15 items after removing an item to increase reliability ($\alpha=.72$, $M=3.27$, $SD=0.76$). In this subscale, students rated statements like “I try to find out how easy or hard an instructor grades before signing up for a course.”

Violation Valence, Importance, and Expectedness. The measure of violation valence, importance, and expectedness was adapted from Afifi and Metts (1998). The adaptation of questions was necessary because the context of this study differs from the original context and the behaviors differ from the behaviors in the original study.

The valance subscale consisted of five items to assign a valance to the violation ($\alpha=.77$, $M=4.13$, $SD=1.23$). This subscale asked participants to rate statements such as “the speaker's response was very positive.” Importance of the violation was measured through a six-item subscale ($\alpha=.79$, $M=4.30$, $SD=1.17$). This subscale included statements such as “the speaker’s presentation seems important to the class.” The final subscale measured the
expectedness of the response. This six-item subscale included statements like “I think the speaker’s behavior is expected” (α=.90, M=4.31, SD=1.22).

Cognitive Learning. The cognitive learning measure was adapted from Frisby et al. (2014). The adaptation was necessary because the original scale was derived for semester courses. The updated items reflected one-time video viewing. This 10-item measure included statements such as “I have learned a great deal in this short lecture” to measure the participants’ perceptions of how much they had learned (α=.90, M=4.25, SD=1.22).

Affective Learning. The measure of affective learning was adapted from McCroskey’s (1994) measure. Like cognitive learning, the primary adaption was from a semester of observation to the context of viewing the video online. These semantic differential measures include four subscales to measure students' attitudes toward learning. The first subscale consisted of four items (α=.87, M=4.75, SD=1.38). This measure was adapted for use with a single video and topic rather than the whole course of study of the student. These items measured the students’ affect toward the content by having students rate how “bad/good” they thought the content of the lecture was. The second subscale consisted of four-items to measure student affect toward the content area. Participants rated how “unlikely/likely” they were to seek out more information in this area (α=.89, M= 3.45, SD=1.56). The third, four-item subscale measured student affect toward the speaker (α=.88, M= 4.80, SD=1.38). In this subscale participants rated how “bad/good” they thought the speaker in the video was. The fourth, four item subscale measured student affect toward future interactions with the speaker. Participants were asked to rate how “improbable/probable” they were to seek out a future class with the instructor (α=.95, M= 3.76, SD=1.72).
Clarity. Bolkan’s (2017) measure of instructor clarity was adapted for this study. The original scale reflected evaluation of a semester-long, face-to-face course. The adaptations adjusted the timing and medium. This measure consists of five subscales. The first subscale measured instructor disfluency ($\alpha = .93$, $M=3.75$, $SD= 1.65$). In this four-item subscale, participants rated items such as “the speaker had a hard time articulating his/her thoughts.” The second, four-item subscale measured working memory overload ($\alpha = .94$, $M=3.94$, $SD= 1.63$). This subscale measured how students perceived the information being presented (i.e., “There was so much to learn during the filmed lecture that I had a hard time keeping up during the video”). The third subscale measured instructor interaction ($\alpha = .82$, $M=4.61$, $SD=1.26$). In this four-item subscale, participants reported their perceptions of what the speaker would be like in an actual class. Items in this subscale included statements such as “in an actual class this speaker seems like they would take the time to answer class questions if things don’t make sense.” The fourth subscale consisted of four items which measured the perceived coherence of the instructor ($\alpha = .89$, $M=3.06$, $SD= 1.23$). In this subscale participants rated items like “this speaker went off topic when lecturing.” The final subscale measured students’ perceptions of how well the lecture was structured ($\alpha = .92$, $M= 4.19$, $SD= 1.46$). This four-item subscale had students assess statements such as “the short lecture was organized into specific, manageable content blocks.”
Results

Preliminary Analysis

In the preliminary analyses, there were no differences for sex on the dependent variables or manipulation check measures of expectation and clarity. There was a correlation between year in school and score on the learning quiz ($r=.18, p=.01$). Participants’ scores on the quiz increased as their year in school went up.

Manipulation Checks

RMP Clarity Expectations. To assess if the induction for RMP expectations of clarity was successful, a one-way ANOVA was conducted with RMP version as the independent variable and the measure of clarity expectation as the dependent variable. This manipulation check measure was presented in the protocol after presentation of the RMP induction but before exposure to the video. As a result, the clarity of the video induction was not included as a factor in the analysis of the success of the RMP induction. The induction was successful, $F(2,11) = 104.79, p<.00$, partial $\eta^2 = .50$. The participants in the positive RMP ($M=5.77, SD=1.06$) conditions reported higher expectation of the clarity than the neutral ($M=4.79, SD=0.85$) or negative ($M= 2.92, SD=1.57$) conditions. This shows the manipulation was successful at inducing varied expectations of clarity.

Video Clarity Induction. The manipulation check measures for the clarity of the video were adapted from Bolkan (2017) and included disfluency, working memory overload, interaction, coherence, and structure. Participants viewed the lecture after reading the RMP induction; as a result, the effectiveness of the induction was assessed by a series of 3 (RMP: positive, neutral, negative) x 2 (Video: clear, unclear) ANOVAs. The inductions were the
independent variables in the analyses and each subscale of clarity was a dependent variable in the analysis.

The first clarity subscale was disfluencies; reports of lower levels of disfluencies would indicate greater clarity. To assess if the clarity of the video induction was successful, a 3 (RMP: positive, neutral, negative) x 2 (Video: clear, unclear) ANOVA was conducted with the inductions as the independent variables and the disfluency as the dependent variable in the analysis. The main effect for the type of video was statistically significant, $F(1, 211) = 80.50, p < .001$, partial $\eta^2 = .28$. Participants in the clear video conditions, $M=2.90, SD=1.28$, reported less disfluency than participants in the unclear video conditions, $M=4.63, SD=1.54$. The main effect for the RMP condition, $F(2, 211) = 0.78, p = .46$, partial $\eta^2 = .007$, and the interaction effect, $F(2,211) = 0.13, p = .88$, partial $\eta^2 = .001$, were not statistically significant. These results support the successful induction of the clarity in the video.

The second clarity subscale was working memory overload; reports of higher levels of working memory overload would indicate less clarity. To assess if the clarity of the video induction was successful, a 3 (RMP: positive, neutral, negative) x 2 (Video: clear, unclear) ANOVA was conducted with the inductions as the independent variables and working memory overload as the dependent variable in the analysis. The main effect for the type of video was not statistically significant $F(1, 212) = 1.15, p = .28$, partial $\eta^2 = .016$. Participants in the clear video conditions, $M=3.82, SD=1.67$, reported similar working memory overload as the participants in the unclear video conditions, $M=4.06, SD=1.60$. The main effect for the RMP condition, $F(2, 212) = 1.69, p = .187$, partial $\eta^2 = .016$, and the interaction effect, $F(2, 212) = .469, p = .626$, partial $\eta^2 = .126$, also were not statistically significant.
The third clarity subscale was interaction; reports of higher levels of interaction would indicate greater clarity. To assess if the clarity of the video induction was successful, a 3 (RMP: positive, neutral, negative) x 2 (Video: clear, unclear) ANOVA was conducted with the inductions as the independent variables and interaction as the dependent variable in the analysis. The main effect for the type of video was statistically significant, $F(1, 212) = 11.18, p < .001$, partial $\eta^2 = .050$. Participants in the clear video conditions, $M = 4.89, SD = 1.22$, reported slightly higher interaction than participants in the unclear video conditions, $M = 4.33, SD = 1.25$. The main effect for the RMP condition, $F(2, 212) = 1.99, p = .140$, partial $\eta^2 = .018$, and the interaction effect, $F(2, 212) = .052, p = .949$, partial $\eta^2 < .001$, were not statistically significant.

The fourth clarity subscale was coherence. Coherence was coded by Bolkan (2017) to reflect a lack of coherence, so higher coherence on the scale indicated lower levels of clarity. To assess if the clarity of the video induction was successful, a 3 (RMP: positive, neutral, negative) x 2 (Video: clear, unclear) ANOVA was conducted with the inductions as the independent variables and coherence as the dependent variable in the analysis. The main effect for the type of video was statistically significant, $F(1, 210) = 24.61, p < .001$, partial $\eta^2 = .105$. Indicating more clarity, participants in the clear video conditions, $M = 2.68, SD = 1.14$, reported lower values on the coherence scale than participants in the unclear video conditions, $M = 3.46, SD = 1.20$. The main effect for the RMP condition, $F(2, 210) = .886, p = .414$, partial $\eta^2 = .008$, and the interaction effect, $F(2, 210) = 1.35, p < .263$, partial $\eta^2 = .013$, were not statistically significant.

The fifth clarity subscale was structure; higher reports of structure indicated higher levels of clarity. To assess if the clarity of the video induction was successful, a 3 (RMP: positive, neutral, negative) x 2 (Video: clear, unclear) ANOVA was conducted with the inductions as the
independent variables and structure as the dependent variable in the analysis. The main effect for
the type of video was statistically significant, \(F (1, 211) = 38.98, p < .001, \) partial \(\eta^2 = .156. \)
Participants in the clear video conditions, \(M = 4.74, SD = 1.26, \) reported more structure than
participants in the unclear video, \(M = 3.61, SD = 1.42. \) The main effect for the RMP condition was
significant, \(F (2, 211) = 4.59, p = .011, \) partial \(\eta^2 = .042. \) Participants in the positive condition,
\(M = 4.50, SD = 1.56, \) and neutral conditions, \(M = 4.23, SD = 1.40, \) reported higher levels of
structure than participants in the negative RPM condition, \(M = 3.83, SD = 1.33. \) The interaction
effect, \(F (2, 211) = .736, p = .480, \) partial \(\eta^2 = .007, \) was not significant. These results support the
successful induction of clarity in the video. Both the RMP condition and video condition were
significant main effects. The effect for the video was more substantial, suggesting support for a
successful induction.

The induction for clarity in the videos was successful. The primary components of clarity
(i.e., disfluency, coherence, and structure) all followed the pattern of a successful induction. The
subscale of interaction also indicated a successful induction of clarity. Structure was the only
clarity subscale that was influenced by the RMP code. The subscales of working memory
overload and interaction were less observable indicators of clarity; working memory overload
was not statistically significant. These categories of clarity were not directly manipulated in the
making of the videos. Overall the set of results suggest successful induction of clarity in the
videos.

Hypotheses Tests for Learning

The first hypothesis in the study predicted an interaction of clarity expectations and video
clarity on the measures of learning (i.e., quiz, cognitive learning, and affective learning). The
second hypothesis predicted a main effect for video clarity on the same measures of learning. Because the tests share the same dependent variables, they are assessed concurrently by outcome measure.

To test the hypotheses, the quiz score served as the dependent variable in an ANOVA with the RMP condition and video condition serving as the independent variables in the analysis. The main effect for video type was not statistically significant, $F = (1, 205) = .87, p = .352$, partial $\eta^2 = .004$. Participants in the clear, $M = 7.39, SD = 1.81$, and the unclear, $M = 7.16, SD = 1.73$, conditions scored similarly on the quiz. The main effect for RMP condition, $F = (2, 205) = .664, p = .516$, partial $\eta^2 = .006$, was not statistically significant. Participants in the positive, $M = 7.36, SD = 1.85$; neutral, $M = 7.39, SD = 1.73$; and negative review conditions, $M = 7.07, SD = 1.73$, had similar quiz scores. The interaction effect was also not statistically significant, $F = (2, 205) = .230, p = .795$, partial $\eta^2 = .002$. The hypotheses were not supported for actual learning.

In addition to quiz scores, measures of perceptions of learning were included in the survey. To further test the hypotheses, the cognitive learning level served as the dependent variable in an ANOVA with the RMP condition and the video clarity condition serving as the independent variables in the analysis. The main effect for video type was statistically significant, $F = (1, 213) = 8.437, p = .004$, partial $\eta^2 = .038$. Participants in the clear conditions, $M = 4.50, SD = 1.16$, reported higher levels of cognitive learning than participants in the unclear lecture, $M = 4.02, SD = 1.24$. The main effect for the RMP condition, $F = (2, 213) = .792, p = .454$, partial $\eta^2 = .007$, and the interaction effect, $F = (2, 213) = 1.36, p = .260$, partial $\eta^2 = .013$, were not statistically significant. For cognitive learning, H2 was supported but not H1.
In the final tests of learning measures, affective learning effects were assessed. The subscale affect toward content served as the dependent variable in an ANOVAs with the RMP condition and video condition serving as the independent variables. The main effect for video type was statistically significant, $F(1, 207) = 18.11, p < .001$, partial $\eta^2 = .08$. Participants in the clear condition, $M = 5.13, SD = 1.26$, reported higher levels of affect toward content than those in the unclear condition, $M = 4.36, SD = 1.39$. The main effect for RMP condition, $F(2, 207) = .73, p = .484$, partial $\eta^2 = .007$, and the interaction effect, $F(2, 207) = .08, p = .918$, partial $\eta^2 = .001$, were not statistically significant.

The second subscale of affective learning reflects affect toward content area. In an ANOVA, the study’s independent variables were used to investigate differences in affective learning toward the content area. The main effect for the video type, $F(1, 207) = 1.54, p = .216$, partial $\eta^2 = .007$, was not statistically significant. The main effect for RMP condition, $F(2, 207) = 0.22, p = .80$, partial $\eta^2 = .002$, was not statistically significant. The interaction effect also was not statistically significant, $F(2, 207) = 1.66, p = .193$, partial $\eta^2 = .016$.

The third subscale of affective learning is affect toward the speaker. That subscale was used in an ANOVA that paralleled prior tests. The main effect for type of video, $F(1, 207) = 48.92, p < .001$, partial $\eta^2 = .191$, was statistically significant. Participants in the clear video conditions reported higher levels of affect toward the speaker, $M = 5.39, SD = 1.10$, than the unclear video, $M = 4.19, SD = 1.39$. The main effect for the RMP condition, $F(2, 207) = 1.16, p = .316$, partial $\eta^2 = .011$, and the interaction effect, $F(2, 207) = 1.52, p = .220$, partial $\eta^2 = .015$, were not statistically significant.
To test the hypotheses with the final subscale, affect toward future interaction with the speaker served as the dependent variable in an ANOVA with the RMP condition and the video clarity condition as the independent variables. The main effect for type of video, $F= (1, 209) = 21.13, p< .001$, partial $\eta^2 = .092$, was significant. Participants in the clear video conditions reported higher levels of affect toward the speaker, $M= 4.27, SD= 1.65$, than the unclear video, $M= 3.25, SD =1.66$. The main effect for RMP condition, $F= (2, 209) = 4.77, p=.009$, partial $\eta^2 = .044$, was also statistically significant. Participants in the positive RMP condition, $M= 4.18, SD= 1.77$, reported more affect toward the speaker than participants in the neutral, $M= 3.74, SD= 1.77$, and the negative conditions, $M= 3.35, SD= 1.69$. The interaction effect, $F= (2, 209) =.704, p=.496$, partial $\eta^2 = .007$, were not significant.

In general, the hypotheses predicted a main effect for clarity (i.e., H2) and an interaction effect of RMP expectation condition and clarity to test the predictions of EVT (i.e., H1). Although the EVT predictions were not supported for the learning measures, there was a consistent effect for clarity on perceptions of learning. In support of H2, clear videos were associated with higher reports of cognitive learning and of three of the four subscales of affective learning. These results fail to show support for H1 but do support H2.

Learning Orientation, Grade Orientation, and Expectations

Learning Orientated. The research question addressed whether LO and GO were associated with expectations. To assess the relationships among LO and the three expectation measures, a series of correlations were conducted. There was no relationship between LO valance of expectations ($r= -.058, p=.398$). LO and violation importance were not correlated ($r= \ldots$
Overall these findings show a learning orientation was not associated with expectations.

Grade Orientated. Similar correlational analyses were conducted to assess the relationships among grade orientation and measures of expectations. There were no association between GO violation valance ($r=-.02, p=.67$), violation importance ($r=-.04, p=.55$), or expectedness of the behavior ($r=-.10, p=.13$). These results show grade orientation was not associated with expectations. Generally, in answer to the first research question, this study did not demonstrate that LO or GO were associated with expectations.

Expectations: Violation Valence, Importance, and Expectedness

The second research question asked if the violation valence, importance, and expectedness were associated with the RMP reviews or the clarity of the video. A series of ANOVAs were conducted with the RMP reviews and video clarity as the independent variables and the EVT subscales as the dependent variables. With the subscale of violation valence as the dependent variable, the main effect of the type of video, $F=(1, 211) = 36.75, p<.001$, partial $\eta^2=.148$, was statistically significant. Participants in the clear video conditions, $M=4.59$, $SD=1.03$, reported a more positive valance than participants in the unclear video condition, $M=3.65$, $SD=1.24$. The main effect for RMP condition, $F=(2, 211) =.51, p=.602$, partial $\eta^2=.005$, and the interaction effect, $F=(2, 211) =.656, p=.520$, partial $\eta^2=.006$, were not statistically significant.

An ANOVA was conducted with the subscale of violation importance as the dependent variable and the RMP reviews and video clarity as the independent variables. The main effect of the type of video, $F=(1, 214) =3.45, p=.065$, partial $\eta^2=.016$, was not significant. The main
effect for RMP condition, $F = (2, 214) =1.60$, $p=.208$, partial $\eta^2 = .015$, was not statistically significant. The interaction effect was also not statistically significant, $F = (2, 214) =.58$, $p = .560$, partial $\eta^2 = .005$.

The final subscale, expectedness of the behavior, was also analyzed in an ANOVA. The main effect of the type of video, $F = (1, 211) =45.14$, $p<.001$, partial $\eta^2 = .176$, was statistically significant. Participants in the clear video conditions, $M= 4.82$, $SD= 0.94$, reported higher levels of expectedness than participants in the unclear video conditions, $M= 3.80$, $SD= 1.26$. The main effect for RMP condition, $F = (2, 211) =.32$, $p = .725$, partial $\eta^2 = .003$, and the interaction effect, $F = (2, 211) = .12$, $p = .89$, partial $\eta^2 = .001$, were not statistically significant. The expectation measures (particularly valance and expectedness) demonstrated similar effects for the importance of video clarity that were evident in the tests of learning measures. In answer to the research question, the clarity of the video was important to participants reviewing video lectures more so than RMP expectation.
As students have access to information about instructors prior to enrollment, it is important to know how available information may affect student learning. RMP hosts reviews that students post and read about faculty. RMP reviews function to establish expectations for how instructors will teach their classes. The goal of this study was to examine expectations that are formed by RMP reviews and their subsequent effects on learning. To that end, this study focused on expectations for clarity that are established by posts on RMP. The study assessed whether expectancy violations theory (Burgoon & Hale, 1988) effectively characterized instructor clarity expectation violations.

Importantly, the RMP manipulation effectively and robustly induced different clarity expectations. The results of this study, however, suggest that expectations had little effect on student learning. The predicted interaction between expectations formed by reviewing RMP posts and clarity of a video message was not associated with learning (as operationalized by a quiz, cognitive learning, or affective learning). Because the manipulation check was successful, these findings imply that actual teaching practices overwhelm expectations created prior to instruction.

The findings in this study are consistent with prior research that has established that students’ expectations are formed by eWOM reviews on RMP. For example, Edwards et al. (2007) reported that positive RMP reviews influenced expectations about instructor credibility
and attractiveness. In this study, RMP reviews influenced expectations about instructor clarity. The expectations, however, were not associated with learning in the present investigation.

The primary finding of this study reflects the importance of clarity in instructional communication. The clarity of the video influenced cognitive learning, affective learning, and expectations of the students who watched the videos. The clarity results in this research are consistent with studies by Bolkan et al. (2016) and Bolkan (2016) that reported that instructor clarity increased student learning. In their meta-analysis, Titsworth et al. (2015) found clarity had a stronger impact on affective learning than cognitive learning than learning. Those meta-analytic findings are consistent with this study as well. Additionally, the results pertaining to affective learning and clarity are consistent with the findings of Chesebro and McCroskey (2001). They found that instructor clarity had an impact on student affective learning.

These findings have practical implications for instructors and show that instructors need to be clear. It may seem obvious that clarity enhances learning however; knowing and enacting clarity behaviors are not as straightforward. Instructors may struggle with how to increase clarity or in understating what clarity; in the classroom means. This study provided support for Bolkan’s (2016) five dimensions of clarity, these can be used by instructors as a strategy to increase clarity. Applying these dimensions to class lectures can strengthen teaching abilities and enhance learning.

Previous RMP studies (e.g., Edwards et al., 2009; Edwards et al., 2008; Edwards et al., 2007) explored the impact RMP reviews had on student learning outcomes. The goal of this study was to extend that line of research by presenting both RMP reviews and the opportunity to
learn by watching a short video. The results of this study extend and clarify RMP expectations and the RMP/learning relationship. Specifically, RMP expectations were easily overshadowed by information about the actual teaching clarity of an instructor. When learning was measured after viewing a teaching video, the expectations from RMP had little effect on learning but the clarity of the video influenced most of the indicators of learning (with the exception of actual quiz scores).

The results of this study do not show strong support for EVT (Burgoon & Hale, 1988). Though an expectation was formed through RMP, when a violation was introduced it did not influence students’ actual learning. There was some support for EVT when looking at the results of the affect toward future interaction subscale of the affective learning measures. The affect toward future interaction was significantly related to the RMP expectation and the video condition. EVT posits that after experiencing a violation, the violated takes into account the costs and rewards of continuing or terminating the interaction (Burgoon & Hale, 1988). Participants receiving the clear condition reported they were more likely to engage in future interactions with the instructor than participants receiving the unclear condition. The RMP expectations were also associated with seeking out the opportunity for future interaction. This shows some support for EVT.

Though RMP expectations did not have an impact on learning, expectations formed through RMP may influence other outcomes. One outcome after reading a RMP review may be the decision to not take a class; a student may decide not to register for a class or to drop a class after registering but before attending. The RMP expectation may also lead students to seek out
WOM from other students. Students may want to get a more personal account of a class or instructor than what they gained through eWOM. Expectations may also influence student interest in the class, which may influence their motivation in the class.

Limitations and Directions for Future Research

One limitation of the study was the reliability of Eison et al.’s (1986) LO/GO measure. Measurement analysis indicated only moderate reliability for both subscales. Items had to be removed during the measurement analysis to even reach nominal alphas. It is possible that the items in the measure need to be revised for a 21st-century student audience. The measure itself could be shortened; at its current length participants may not be carefully reading each item. The items in the current measure may not actually identify a LO/GO student. For example, one item in the measure states “I do not find studying at home to be interesting or pleasing” (Eison et al., 1986, p.56). This item was a part of the GO subscale. According to the measure, students who do not find studying at home to be pleasurable would fall into the GO category. This item does not consider that individuals may prefer or perform better in different environments and does not determine if they are LO/GO. Another item from the measure states, “I discuss interesting material that I’ve learned in class with my friends or family” (Eison et al., 1986, p.56). If a participant agreed with this statement, he or she would be categorized as a learning-orientated student. A student may recognize that their friends or family may not be interested in the information and decide not to share it with them.

These kinds of items do not reflect whether a student is more concerned with learning or grades. The measure could be revised to directly address learning and grades instead of trying to
indirectly determine a student’s LO/GO orientation. For example, a revised scale could directly ask if students are more concerned with their grades or about learning. It could also ask them questions about if they view classes/education as a formality to gain employment or if they view their education as a way to better themselves.

Another limitation of the study may have been that only one topic was used for the video lecture that induced clarity. The topic was chosen because it was a neutral subject that students would not have likely encountered before. A future study could replicate the findings in this study with additional topics. Similarly, a future study may replicate and extend this study by lengthening the RMP reviews.

Future research might investigate how students at different levels of their education seek information about instructors and classes. As year in school increases, students may have a more established social network in their fields of study and seek information through WOM. Freshmen may lack such a social support or be unfamiliar with their campus/field of study and therefore seek out eWOM, such as RMP.

Conclusion

This study created three RMP reviews (positive, negative, neutral) and two short lectures (clear and unclear) to see if instructor violation of clarity influenced student learning outcomes. It was predicted that learning would be higher in the positive violation condition and lower in the negative violation condition. Clarity was also predicted to influence learning directly. The results did not support expectation violation explanations of the learning results for actual learning (measured by a quiz), cognitive learning, or affective learning. The results were
consistent with the prediction that clarity would directly influence learning but only for cognitive and affective learning rather than quiz scores. The expectations that students formed by reviewing RMP reviews were overshadowed by the importance of clarity within teaching messages. Further, the expectation evaluations of the messages (i.e., violation valence, importance, and expectedness) were influenced more by video clarity than expectations from eWOM. Although faculty might be concerned that there is an anonymous online place for students to post eWOM, that concern may be qualified by the results of this study that clearly demonstrate that actual teaching practices are far more important than online reviews.
REFERENCES

APPENDIX

RMP SURVEY
I agree to participate in the research project titled “Rate My Professor: Electronic Word of Mouth and Expectancy Violations Theory in the Classroom” being conducted by Dathan Simpson (graduate student) and Dr. Henningsen (Faculty), at Northern Illinois University. I have been informed that the purpose of the study is to gain better understanding the impact faculty communication has on student learning. I understand that if I agree to participate in this study, I will be asked to do the following: View a filmed lecture, and complete surveys. The total time should take around thirty minutes.

I am aware that my participation is voluntary and may be withdrawn at any time without penalty or prejudice, and that if I have any additional questions concerning this study, I may contact Dathan Simpson, (dsimson3@niu.edu) or Dr. Henningsen, (henningsen@niu.edu). I understand that if I wish further information regarding my rights as a research subject, I may contact the Office of Research Compliance at Northern Illinois University at (815) 753-8588.

I understand that the intended benefits of this study include nominal learning and contribute to generalizable knowledge that can be utilized in the classroom.

I have been informed that the data are anonymous. The data will be stored on a password protected computer to ensure confidentiality.

I understand that my consent to participate in this project does not constitute a waiver of any legal rights or redress I might have as a result of my participation. Based on the information in this description, please answer the following question.

Do you agree to participate?

Clarity Expectation

The faculty member will be a woman.
The faculty member will be a man.
The faculty member will be young.
The faculty member will be old.
The faculty member will be a good teacher.
The faculty member will NOT be a good teacher.
The faculty member will be clear.
The faculty member will be unclear.
The faculty member will be enthusiastic.
The faculty member will NOT be enthusiastic.

LO/GO

Easy classes that are not pertinent to my educational goals generally bore me.
I get annoyed when lectures or class presentations are only rehashes of easy reading assignments.
I enjoy classes in which the instructor attempts to relate material to concerns beyond the classroom.
I appreciate the instructor who provides honest and detailed evaluation of my work through such evaluation is unpleasant.
I am more concerned about seeing which questions I missed than I am with finding out my test grade.
I find the process of learning new material fun.
A teacher’s comments on an essay test mean more to me than my actual test score.
I prefer to write a term paper on interesting material than to take a test on the same general topic.
I dislike courses in which a lot of material is presented in class, or in readings, that does not appear on exams.
I do not find studying at home to be interesting or pleasant.
Instructors expect too much out-of-class reading and study by students.
I think that without regularly scheduled exams I would not learn and remember very much.
Written assignments (i.e., homework, projects, etc.) that are not graded are a waste of a student’s time.
I think it is unfair to test students on material not covered in class lectures and discussions, even if it is in reading assignments.
I dislike courses which require ungraded out-of-class activities.
I think grades provide me a good goal to work toward.
I stay after interesting classes to discuss material with the instructors.
I participate in out-of-class activities even when extra credit is not given.
I try to keep all my old textbooks because I like going back through them after the class is over.
I do optional reading that my instructors suggest even though I know it won’t affect my grade.
I browse in the library even when not working on a specific assignment.
I discuss interesting material that I’ve learned in class with my friends or family.
I try to make time for outside reading despite the demands of my course work.
I buy books for courses other than those I am actually taking.
I cut classes when confident that lecture material will not be on the exam.
I get irritated by students who ask questions that go beyond what we need to know for exams.
I will withdraw from an interesting class rather than risk getting a poor grade.
I try to find out how easy or hard an instructor grades before signing up for a course.
When looking at a syllabus on the first day of class, I turn to the section on tests and grades first.
I’m tempted to cheat on exams when I’m confident I won’t get caught.
I borrow old term papers or speeches from my friends to meet class requirements.
I try to get old tests when I think the instructor will use the same question again.

Actual Learning (Shamanism Quiz)

Shamanism is generally found in hunter gatherer societies.
Shamanism is a religion just like Judaism or Christianity.
One characteristic of shamanism is the use of trance to enter into a spirit world.
Shamanism is prevalent in Asia, Eastern Europe, and South America.
Shamans treat diseases, usually of a psychosomatic nature.
The belief in a world of spirits, is not an essential part of shamanic beliefs.
Early shamanic beliefs eventually influenced Christianity.
Hallucinogenic drugs are not used by Shamans to enter into a trance.
Shamans treat individuals who have been possessed by spirits.
The Huichol of Mexico perform rituals to maintain world balance.

Violation Expectedness, Valance, and Importance adapted for Afifi and Metts

The speaker’s video was not what I expected in a negative way.
The speaker showed a very negative behavior compared to the Rate My Professor review.
The speaker’s video was not what I expected in a positive way.
The speaker showed a very positive behavior compared to the Rate My Professor review.
The speaker’s video was a positive way to learn.
The speaker’s presentation was of little importance.
The speaker’s presentation was very important.
I thought the speaker’s presentation would be important to the class.
The speaker’s presentation seems important to the class.
The speaker’s presentation would hurt the future relationship with students if they took a class in the future.
The professor’s presentation would harm the future relationships with students in class.
This speaker’s behavior seems typical to me.
I think this speaker’s behavior is typical.
I think the speaker’s behavior is expected.
The speaker seems to be behaving in an expected way.
The professor’s behavior is surprising.
The professor’s behavior is surprising.

cognitive Learning
I have learned a great deal in this short lecture.
I have learned more about this topic in other ways than in this short lecture.
My knowledge on this topic has increased since the beginning of the short lecture.
I have learned nothing in this short lecture.
I can see clear changes in my understanding of this topic.
I did not understand what I learned in this short lecture.
I can clearly recall information from this short lecture.
I am unable to recall what I have learned in this short lecture.
I would be unable to use the information from this short lecture.
I have learned information that I can apply.
Affective Learning

I feel the filmed short lecture content is:

1. Bad 1 2 3 4 5 6 7 Good
2. Valuable 1 2 3 4 5 6 7 Worthless
3. Unfair 1 2 3 4 5 6 7 Fair
4. Positive 1 2 3 4 5 6 7 Negative

My likelihood of seeking out more information in this content area is:

5. Unlikely 1 2 3 4 5 6 7 Likely
6. Possible 1 2 3 4 5 6 7 Impossible
7. Improbable 1 2 3 4 5 6 7 Probable
8. Would 1 2 3 4 5 6 7 Would not

Overall, the speaker in the filmed lecture is:

9. Bad 1 2 3 4 5 6 7 Good
10. Valuable 1 2 3 4 5 6 7 Worthless
11. Unfair 1 2 3 4 5 6 7 Fair
12. Positive 1 2 3 4 5 6 7 Negative

Were I to have the opportunity, my likelihood of seeking out a class with this specific teacher would be:

13. Unlikely 1 2 3 4 5 6 7 Likely
14. Possible 1 2 3 4 5 6 7 Impossible
15. Improbable 1 2 3 4 5 6 7 Probable
16. Would 1 2 3 4 5 6 7 Would not
1. The speaker had a hard time articulating his/her thoughts
2. The speaker had a hard time coming up with appropriate examples to explain course concepts
3. The speaker did not seem confident in his/her explanation of course concepts
4. The speaker had a hard time explaining things in a simple manner

Working memory overload
1. The amount of information presented in the short lecture was overwhelming
2. There was so much to learn during the filmed lecture that I had a hard time keeping up during the video.
3. I felt flustered trying to keep up with the amount of information presented in the lecture.
4. The short lectures made me feel anxious because of the amount of information we were asked to learn all at one time

Interaction
1. Watching this video makes me think in an actual class the speaker would first explain things and then stop so we can ask questions
2. In an actual class this speaker seems like they would make sure to ask questions to find out if we understand what we are learning
3. This speakers would seems like they would take the time to answer class questions if things don’t make sense
4. In an actual class the speaker would most likely repeat things when we don’t understand them

Coherence
1. The speaker went off topic when lecturing
2. This speaker went on unrelated tangents when we were discussing ideas in class
3. In the video, we often receive information that is not essential to learning course concepts
4. There was a lot of unnecessary information in our lectures

Structure
1. The speaker’s lecture was well organized
2. The short lectures was organized into specific, manageable content blocks
3. The speaker made the material easier to learn by teaching us one step at a time
4. It is easy to follow along with the structure of the speaker’s lessons

Demographics:
Age
Year in school
Race/ethnicity
Major
Sex/Gender