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Abstract 
 

Automatic Machine Learning-Guided Methods for 3D Synapse 
Quantification in Confocal Neuron Images 

 

Jonathan Sanders, M.S. 

Department of Computer Science 

Northern Illinois University, 2016 

Jie Zhou, Ph.D., Director 

 

 This thesis explores computational methods for automatically detecting and quantifying 

synapses in complex 3D neuronal images.  The resulting approach is a novel combination of 

traditional image processing, machine learning algorithms, and multi-channel comparison 

methods designed to overcome the unique challenges posed by these images.  The methods 

investigated combine the strengths of each of these components in order to produce an overall 

method that is capable of fully detecting the synapses in large 3D confocal neuron images with 

minimal interaction.  Human annotation of 3D neuron images remains prohibitively difficult and 

subjective, and computational analysis tools are highly desirable in the expanding field of 3D 

neuronal imaging.  Validation techniques were also designed and implemented in order to test                   

these methods for this thesis, including construction of a gold standard set of manually 

annotated synapse images.  These are unique in their own right as there are currently no other 

data sets available for comparison.  These methods were tested on multiple partial dendritic 

tree 3D images and a complete 3D dendrite with good outcomes.  Quantitative validation was 

performed using the gold standard set to check the accuracy of synapse quantification, also 

with favorable results. 
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Chapter 1 

Introduction 

 

Within the brain there are many distinct cell types, all fulfilling their unique role.  One 

cell in particular is the subject of intense scrutiny and still has yet to be fully understood by 

modern science and medicine.  This cell is the neuron, a highly specialized cell that when 

networked with other neurons comprises the underlying framework for all thoughts and 

actions.  The neuron is the fundamental unit of the nervous system and brain that processes 

information and relays it to various parts of the body.  These specialized cells form the basis for 

the circuitry of the brain in a similar way to the transistors used to construct modern computer 

hardware.  There exist small gaps called synapses that serve as the junctions between neurons.  

Understanding synapse structure and their distribution among neurons is important to 

understanding neural functioning as a whole as well as neurological diseases and development 

(Fiala, Spacek, & Harris, 2002). Similarly, the distribution of synapses within a neuron is 

important to understanding the assembly, function, and plasticity of the nervous system as a 

whole, which has implications in many biological fields in addition to medical research 

(Kerschensteiner, Morgan, Parker, Lewis, & Wong, 2009; Liu, 2004; Morgan, Schubert, & Wong, 

2008; Soto et al., 2011) 
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Capturing images of neurons is challenging, and most conventional imaging techniques 

have two major pitfalls: they are in only two dimensions, and they are cluttered with 

overlapping neurons.  These images are large and complex, and attempts to analyze those using 

manual methods prove to be both difficult and subjective.  The ability to image the distribution 

of synapses within a single neuron via a laser scanning confocal microscope has recently been 

made possible by advancements in staining techniques, but even at single-neuron resolution, 

manual annotation is still extremely labor intensive (Scott, Raabe, & Luo, 2002; Shrestha & 

Grueber, 2011). Due to natural variances in the intensity of the stain and the limitations of the 

imaging system, there is often residual noise and contrast variation in the neuron images.  

Noise in this case refers to defects in the image composed of unwanted structures and 

aberrations resulting from the image capture process.  These factors complicate analysis and 

require the use of more robust detection algorithms than simple segmentation in order to 

extract useful information about the subcellular distribution of synapses. 

 Current annotation methods for analyzing these images are slow and rely heavily on 

manual input.  This increases subjectivity and is very inefficient for a large-scale study of these 

images.  Instead, computational tools need to be used to examine the data for the sake of 

efficiency and reliability.  There are computational challenges associated with analyzing this 

data, but overcoming them is worth the gain in speed and effectiveness.  Neuron structure and 

function is of keen interest to medical research initiatives.  It is well documented that the 

subcellular distribution of synapses is important to the pathology of many neurological 
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disorders (Fiala, Spacek, & Harris, 2002; Kerschensteiner, Morgan, Parker, Lewis, & Wong, 2009; 

Kim et al., 2012).   

The purpose of this thesis is specifically to design and implement algorithms for the 

accurate quantification of synapses from 3D laser confocal microscope images.  These 

algorithms employ machine learning, multi-channel colocalization and adaptive thresholding 

techniques.  Additionally, it was necessary to create methods and a gold standard data set for 

validating these algorithms, which was a complex research undertaking on its own.  There are 

currently no other widely available gold standard data sets available for synapses in 3D confocal 

images.  

The general organization of this thesis is as follows: first, the biological background for 

synapse quantification within the context of neuroscience is explored in Chapter 2.  This is 

followed by an explanation of the imaging technology used to capture the images used for this 

thesis in Chapter 3.  Chapter 4 is dedicated to defining other terminology necessary to 

understand the synapse detection methods.  Chapter 5 discusses the related literature.  

Chapter 6 describes the methods used to detect synapses and the process of constructing a 

validation set to verify the success of these methods.  Finally, Chapter 7 presents the qualitative 

and quantitative results and a discussion of these results, and Chapter 8 highlights the 

conclusions. 

 

  

 



 
 

Chapter 2 

Background 

 

Neurons function by transmitting electro-chemical impulses from cell to cell via 

specialized gaps known as synapses.  This process, called neurotransmission, involves many 

cellular structures and complex chemical interactions.  One of the core themes in the biological 

sciences is the relationship between structure and function.  To better understand the function 

of something, get a more detailed look at the structure.  In this way, the structure of neurons is 

strongly correlated to their function in the body.  The following description of neurons is still a 

generalization, and like all living systems there can be a great deal of variation and exceptions.  

Neurons are branching, thin, and are divided into three main components: the axons, 

dendrites, and the soma.  The axon and dendrites usually branch away from the soma and are 

the information sending and receiving ends respectively.  Signals enter the neuron on the 

dendrite side of the cell and are transmitted across the soma and down the axon where they 

are then passed on to other neurons (Lodish et al., 2000). 

The signal being relayed by a neuron is carried in the form of an electrical potential 

across the outer membrane.  This action potential is created by the controlled flow of charged 

ions from special channels and pumps on the surface of the neuron.  In the resting state, 

positive sodium ions are pumped out of the cell and positive potassium ions are pumped into 



5 
 

the cell.  The ion channels on the surface of the cell are normally closed off but are 

sensitive to electrical charge.  Once a signal has started and the voltage changes in one region 

of the neuron, nearby ion channels open to allow positively charged sodium to flood back into 

the cell.  This creates a sharp increase in voltage across the membrane.  That exponentially 

triggers more ion channels to open.  Shortly after that, the potassium channels open, allowing 

the positive potassium ions to flood out of the cell, equalizing the voltage once again.  The 

signal then cascades down the surface of the neuron in this way, and the ion pumps work to 

move the sodium and potassium ions back to the ready state (Huxley, 2002).  

 The areas where neurons pass along their signal to each other are highly specialized 

structures known as synapses.  The axons and dendrites of neighboring cells don’t usually make 

physical contact with one another.  Instead they are separated by a small gap.  The electrical 

signal propagated down the outside of the neuron isn’t normally strong enough to pass over 

these gaps.  Instead, complex chemical machinery takes over in order to convert the electrical 

signal into a purely chemical one.  The small areas that sit opposed to one another across this 

synaptic gap are densely populated with receptors and specialized channels.  The arrival of the 

action potential at a synapse induces these channels to release organic molecules called 

neurotransmitters into the synapse space.  These are capable of diffusing across the space and 

reaching the receptors on the other side.  The side that releases neurotransmitters is typically 

referred to as the pre-synaptic neuron, and the receptor side is the post-synaptic neuron.  This 

describes a spatial relationship between the synaptic components that also implies a 

directionality to the overall flow of information from neuron to neuron (Turbes & Schneider, 
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1989).  The presence of these channels and receptors as well as the terminology referring to 

the pre- and post-synaptic neurons will be relevant in later chapters.  There are several kinds of 

neurotransmitter molecules, each associated with different types of neurons and signals.  

Often, a receptor will set off a new action potential in the post-synaptic neuron, allowing the 

signal to flow continuously from one neuron to the next.  These are called excitatory receptors 

and their adjacent synapses are called excitatory synapses.  Some neurotransmitter/receptor 

combinations even function to decrease the action potential in the post-synaptic neuron, 

reducing the chance that it will transmit a signal.  These are inhibitory synapses.  Though they 

are not directly comparable, it is easy to picture neurons arranged in a similar way to common 

computer hardware logic gates in order to control the flow of signals through the nervous 

system. 

Despite wide-ranging research in physiology and neurology, the subcellular distribution 

and density of neuronal components, particularly synapses, is still poorly understood.  It is not 

known for certain what correlations lie between the locations and density of synapses and the 

structure of the associated neurons.  The exact structural relationships between synapses and 

neurons is likely very important to the function of the nervous system, and a great deal can be 

learned from analyzing synapse distribution (Defilipe, Alonso-Nanclares, & Arrellano, 2002; 

Menon et al., 2013).  

 

 



 
 

Chapter 3 

Imaging and Microscopy 

 

Microscopy is a broad term for using tools to view objects normally smaller than the 

resolution of the eye.  Conventional light field microscopy relies on an external or ambient light 

source to illuminate the specimen and generate the image.  This technique is fast, easy to 

perform, and is still in common use in almost every biological lab.  Most scientists’ first 

exposure to microscopic imaging will be in the form of a traditional wide-field light microscope.  

The two other aspects of microscopy that are very important in the context of this thesis are 

fluorescence staining and confocal microscopy.  The key feature of fluorescence imaging is the 

use of fluorescent particles to generate the light used to illuminate the sample as opposed to 

relying on an external light source.  Confocal microscopy is a technique for increasing the 

optical resolution and lowering the impact of noise in the form of ambient light while allowing 

for precision focusing and resolution that is superior to general wide-field microscopy.  Most 

microscope technologies are not mutually exclusive in practical application, and almost any way 

to combine them has some value to the modern scientist.  It is important to understand these 

techniques and their associated challenges in order to see the true application of these 

technologies in the study of neuronal structure.   
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Light 
 

It is also important to have a basic understanding of light physics in order to simplify the 

following discussion of imaging technology.  Light is a form of electromagnetic radiation that 

can be described as both a wave and a particle, but the wave nature of light is more relevant in 

this context.  The most readily observable type of electromagnetic radiation is the visible light 

that human eyes use to see.  Light waves all travel at the same speed in a given medium, but 

they can appear in different colors, including those above and below the range of human vision, 

based on their wavelength.  Shorter wavelengths confer higher energy, with violet being the 

shortest wavelength of visible light and red being the longest.  The ability to discern between 

different wavelengths of light and control the optical properties of light waves is key to modern 

microscopy.  It should be noted that light waves can overlap and interfere with one another just 

like other types of mechanical waves. 

 

 Confocal Imaging 
 

One key piece of imaging technology is laser confocal microscopy.  One of the major 

drawbacks of conventional microscopes is that they can only resolve objects down to a 

minimum size.  This size is related to the wavelength of light used to perform the imaging and 

the numerical aperture of the lenses used.  Numerical aperture is a rating of how well a lens 

captures light from a sample, and higher rated lenses are more effective for imaging.  Shorter 

wavelengths of light yield higher resolution.  Even with the best lenses and optimal lighting, the 
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lower limit of resolution can still be larger than the structure being imaged.  The main reason 

resolution degrades at this limit is due to the wave properties of light.  When many individual 

beams of light are passed through a sample and focused into the lenses of a microscope, they 

interfere with one another causing overlapping patterns called Airy disks around objects in the 

image.  Near maximum resolution, these interference patterns result in near total degradation 

of the image.  

Confocal microscopy is a technique for reducing the impact of this kind of interference 

by using a very narrow and highly consistent light beam focused by a pinhole aperture to image 

the sample.  Instead of generating a complete image of the sample by bathing it in light, the 

precisely focused beam of light is scanned across the image, one point at a time, and the result 

is a composite image of much higher resolution than could be achieved with wide-field 

microscopy.  The precision focus of a confocal microscope also allows it to image at varying 

depth of a sample allowing for the construction of 3D images (Webb, 1996). It should be noted 

that the Z-directional scanning in 3D confocal images is based on the mechanical movement of 

the microscope stage, not the laser apparatus.  Due to this, there is a discrepancy in Z-

directional resolution compared to the X and Y directions.  The Z direction is of much lower 

resolution comparatively, and considerations must be made with this in mind when analyzing 

these images. 
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Fluorescence 
 

Fluorescence is a property of certain chemicals to emit light after absorbing light or 

other electromagnetic radiation.  Unlike simply reflecting light, where light bounces off of the 

object, fluorescent particles absorb the excitatory photon and re-emit a new photon of a 

different wavelength.  This property can be exploited to great effect in microscopy by applying 

fluorescent stains to samples and then exposing them to a light source of the correct 

wavelength to excite the fluorescent stain.  Fluorescent stains may even absorb light above the 

visible spectrum such as ultra-violet while emitting light in the visible spectrum, allowing the 

florescent material to glow without the interference of another visible light source.   

 Many fluorescent materials do not glow indefinitely while exposed to their excitation 

wavelength.  This is due to an effect known as photobleaching.  While exposed to the light 

source, the absorption and emission of light can chemically damage the fluorescent particles, 

temporarily or permanently lowering their light emitting potential (Ghauharali & Brakenhoff, 

2000).  When used to illuminate microscope samples, this implies that care has to be taken not 

to over-expose samples and ruin a potential imaging opportunity.    

In order to target fluorescent stains so that they will attach to desired structures in the 

sample, a technique known as immunofluorescence is used.  Many fluorescent materials are 

biological compounds and can be chemically bonded to immune system proteins.  The immune 

system uses a vast array of chemical antibodies that recognize specific chemical antigens.  The 

relationship of these two molecules is much like two puzzle pieces fitting together.  It is possible 

to bond a fluorescent particle or fluorophore to an antibody that targets a specific antigen in 
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order to illuminate features in a sample (Maity, Sheff, & Fisher, 2013).  For example, if it was 

desirable to view the DNA in a sample cell, a fluorophore attached to an antibody that only 

attaches to DNA could be used.  Either by filtering out the wavelength of light used to 

illuminate the fluorophore or using an ultraviolet source, a very clean image of the DNA could 

be resolved. 

 Immunostaining is subject to a key problem that can be difficult to work around.  

Antibodies are usually specific to their antigen, but it is always possible and even inevitable that 

some of the immunostain ends up in undesirable regions of the sample.  This is due to clumping 

of the stain, failure to bond to the antigen, or any number of other biological factors.  

Immunostain that is not in the desired position can be the source of lots of noise when imaging. 

 

Laser Scanning Confocal Images of Neurons 
 

These techniques of confocal imaging and immunostaining are well suited to being 

combined.  Laser confocal fluorescence microscopy is widely used in many scientific fields.  By 

performing immunostaining and then imaging the sample with a confocal microscope with a 

wavelength that matches the fluorophore used, very high-resolution three-dimensional images 

can be created.  The narrow beam of the confocal microscope and the act of scanning it across 

the sample minimizes the possibility of photobleaching and degrading the fluorophore.  

Photobleaching can still occur if the sample is scanned too rapidly or too slowly, and proper 

imaging takes a great deal of skill and good judgment from the microscope operator.  Neurons 
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can be stained with immunofluorescent techniques, and their complex three-dimensional 

geometry makes them a good fit for laser scanning confocal imaging.   

 

Automatic Detection 
 

Though it is now possible to image neurons using modern technology in increasingly 

higher quality and quantity, the technology to analyze and interpret them has lagged behind.  

Great advancements have been made in morphological tracing of the neuron structure, 

including some here at the NIU Image Learning and Analytics Lab, but automatic synapse 

analysis in images of complex neurons is not as well explored (Myatt, Hadlington, Ascoli, & 

Nasuto, 2012; Xiao & Peng, 2013).  Current biological research about the subcellular 

distribution of synapses is mostly limited to painstaking manual analysis of small subsections of 

the neuron.  Additionally, operating in a three-dimensional space is very difficult for a human to 

do and can introduce a large degree of subjectivity into any manual analysis (Zhou & Peng, 

2011).  In many other fields of biological study, especially in genetic data and image analysis, 

semi- and fully automatic analysis techniques are very desirable (Libbrecht & Noble, 2015).  

Reducing the impact of subjectivity and human error is a compelling reason to explore 

automatic analysis. 

 

 

 



 
 

Chapter 4 

Terminology  

 

 Digital Images 
 

 The neuronal images analyzed in this thesis are three-dimensional multi-channel digital 

images produced by the previously discussed microscope techniques, namely 

immunofluorescence and laser confocal microscopy.  Even though modern digital images are 

very sophisticated and are of high quality, there are certain important technical considerations 

that need to be taken into account when analyzing them.  Unlike their real-world counterparts, 

digital images are abstractions that only partially represent an object.  They cannot fully 

reproduce every aspect of the object, even in three-dimensional images.  If you imagine a real 

object sitting in a Cartesian coordinate system, there are an infinite number of points that could 

be used to represent its volume and an infinite number of colors that could be used to describe 

it.  A digital storage medium has only a finite amount of space to store information about an 

image, so it must be simplified and abstracted in order to create a digital representation of a 

real object or image. 

Fundamental to the nature of digital images is the process of choosing a finite way of 

representing the object.  In computer graphics, the unit chosen to represent a discrete point in 

a digital image is called a pixel in two dimensions and a voxel in three dimensions.  
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In this research, since three-dimensional images are the primary concern, the term voxel will be 

used in most cases.  Imaging algorithms must perform a process called sampling where a finite 

set of pixels or voxels are used to represent the whole image.  This necessitates the sacrifice of 

some details of the object but allows for the image to be represented in a format that can be 

interpreted by a computer and operated on mathematically.  Each sampled point in the object 

corresponds to an exact location in a Cartesian coordinate space, and the image is essentially 

converted into a matrix.  When an image is represented this way, each pixel or voxel may have 

an associated set of values that describe how that region appeared in the original object.  These 

values correspond to the value of the matrix element at the x and y locations in the image 

matrix.   

The simplest type of digital image is a binary image.  In this case, each voxel is 

represented by its x, y, and z coordinates and a corresponding bit value indicating if the voxel is 

part of the object or not.  A binary image is therefore said to have a bit depth of one.  If a larger 

value is used to describe the voxel, usually 0-255, the image can now represent intensity as a 

monochromatic gradient.  Such images would have a bit depth of eight, though higher bit 

depths can also be used to represent a finer gradient.  Any color can be broken up into red, 

green, and blue intensity values, a color model that is a good fit for digital images due to the 

display specifications of computer screens.  Based on this assertion, a color image can be 

constructed by storing three separate values for each voxel representing the intensity of its red, 

green, and blue color components.   
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The images used in this research are in the form of three value voxels, each 

corresponding to an associated color channel, with a slight but useful modification.  The signal 

wavelength emitted by fluorophores in a confocal fluorescent microscope image is rarely a pure 

red, green, or blue wavelength.  Instead of recording the exact color breakdown of the 

observed signal as a full-color image, the signal wavelength can be interpreted in a gray-scale 

based only on intensity.  Each type of fluorescent stain can then be arbitrarily assigned a color 

channel and a false color image can be constructed from three different fluorescent signals.  In 

the neuron images, one stain is usually used to image the neuron morphology, leaving other 

channels available to image the synapses.  This is very beneficial for analysis efforts because 

each channel discretely represents information about a particular facet of the neuron.  It is 

possible to consider one channel at a time when processing these images, and that greatly 

simplifies the task of separating what is a synapse from what is neuron morphology. 

 

 Segmentation  
 

Separating synapses from the rest of a neuron image is an example of an image 

segmentation task.  Segmentation refers to determining which voxels in the image are in the 

foreground (objects of interest) and which are in the background.  The end result of image 

segmentation is usually a binary image describing the foreground and background with the bit 

values for each voxel.  There is no single guiding algorithm by which segmentation is 

accomplished.  Instead, many different approaches can be used to accomplish the desired 
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result.  Segmentation can be as simple as thresholding and image processing based on a 

particular value or may involve many complex steps.  A threshold refers to a value used to 

discretize the voxels in an image into binary values.  It works by simple comparison to the value 

of a voxel.  If the value is higher than the threshold, the corresponding voxel in the binarized 

segmentation result is conventionally set to the value 1.  If it is below the threshold value, it is 

set to 0 instead.  Furthermore, the threshold for an image need not be a global value.  It may be 

the case that image intensity varies from region to region inside the image, and a single global 

value is not capable of representing all of the foreground.  Instead, there can be many 

thresholds corresponding to different regions in the image.  In this case, it is called local 

thresholding, though the end result is still a binarized image.  In order to determine a threshold 

for an image, it is especially useful to construct an image histogram representing the values of 

all voxels in the image.  An image histogram plots the values of all voxels in the image by 

frequency.  This allows for the determination of threshold values by simple analysis of the 

histogram and is very important in many segmentation approaches.  In the case of identifying 

synapses inside of three-dimensional neuron images, simple segmentation procedures, even 

local thresholding algorithms, are insufficient to completely determine what is a synapse and 

what is not a synapse.  Indeed, the exact identification of synapses in an image is a contentious 

process even within the neuroscience community (Burette, Collman, Micheva, Smith, & 

Weinberg, 2015). 
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 Robust Automatic Threshold Selection 
 

There is one very specialized type of binary segmentation involved in the synapse 

detection process that necessitates more comprehensive explanation.  This is robust automatic 

threshold selection, or RATS.  The RATS algorithm is a local thresholding approach that 

attempts to limit the impact of contrast variance among regions in the image and instead 

calculates many local thresholds specific to sub-regions in the image (Wilkinson, 1998).  RATS 

functions by combining two key steps in order to binarize the whole image.  The first is the use 

of a recursive sectioning of the original image into smaller regions by use of a quad-tree.  This 

works by dividing the image into four equal-sized regions and then dividing each of those 

regions into four more regions until they are a minimum size.  Then each of the sub-regions is 

subjected to analysis of a discrete differentiation operator called a Sobel operator to 

approximate the image gradient around each pixel in each sub-region recursively all the way to 

the leaf regions of a specified minimum size.  Then RATS uses the gradient -sum of each pixel in 

the sub-region to calculate the local threshold for that region.  In order to limit the effects of 

noise and reduce stark variances between sub-regions, if a sub-region’s calculated threshold is 

below a specified noise value, it inherits the threshold of the parent region in the tree 

structure.  After each sub-region has been calculated, the final thresholds are interpolated for 

the whole image and used to assign the final binary value for the segmentation.   
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Machine Learning and Computer Vision 
 

Separating the important components from images is a vast field of research in its own 

right and is often related to the field of computer vision.  Human visual systems perform this 

kind of analysis extremely rapidly and in highly diverse ways.  A person is capable of extracting 

relevant objects from a scene in almost any conditions where their vision is otherwise not 

impaired.  In order to do this, the visual system uses an assemblage of different types of 

distinguishing features to identify objects.  It is a great challenge to enable a computer system 

to be able to interpret the matrix representations of images in a meaningful way.  This 

expansive concept delves into many specialized fields and is the subject of a great deal of 

interest in modern computer science.  The work in this thesis was accomplished using relatively 

well-established computer vision and machine learning concepts that were applied in a new 

way and in combination with other technologies in such a way as to be unique.  It is necessary 

to have a general understanding of the concepts of machine learning to appreciate their 

application in this context.   

Machine learning is used most often to solve a classification problem, where it is 

desirable to sort data into several different classes by making a decision based on the attributes 

of the data.  The key difference between a purely statistical classification and a machine 

learning algorithm is the capacity for the machine learning algorithm to learn from a training 

set of data and develop an internal model for prediction.  The general flow for machine learning 

and classification involves several steps shown in Figure 1.  First, the classification problem  
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Figure 1: Typical machine learning based classification flow. 

 

 

 

must be defined in appropriate terms (1).  Then raw samples are collected of the items to be 

classified (2).  This includes sound information, pixel values, recorded values from sensors, or 

any other form of digitally representable data.  Next, the samples are refined by feature 

extraction (3), though it is possible to directly operate on the raw sample data.  Any valuable 

descriptor of a sample can be a feature, and there exists a wide range of feature extraction 

algorithms that can calculate or choose valuable features from a sample.  Feature extraction (3) 

is a way to highlight more important aspects of the sample data.  In supervised machine 

learning applications, some of the samples are manually labeled according to their class, and 
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these samples are used to train the machine learning algorithm.  Different machine learning 

algorithms have different methods for training themselves, but the overall goal is to produce a 

model that has minimal error when classifying the training data.  Once the model has been 

trained and features are extracted, the set of features can again be refined by statistical feature 

selection (4).  Finally the samples are classified (5) by the machine learning model which assigns 

them a label (6).  

 

Haar Wavelet Feature Extractor 

 

The feature extractor chosen for use in this thesis is the Haar wavelet transform.  This 

extractor applies the discrete Haar wavelet matrix to the data passed to it, producing an output 

of features equal in dimension to the original data.  This transform has the effect of highlighting 

sharp contrast differences in the horizontal, vertical, and diagonal directions.  This 

transformation is scalable to any number of dimensions.  However, full extension of these 

features from 2D to 3D can lead to a big increase in the number of features that is cubic to the 

side length of the region.  So we used an anisotropic extension that performs full transforms 

along the x-y direction and then obtains the weighted combination of the coefficients along the 

z direction (Zhou, Lamichhane, Sterne, Ye, & Peng, 2013). Such features can be particularly 

suitable for 3D confocal microscopic images since the transformation adapts to the anisotropic 

nature of confocal imaging where z resolution is typically less than x-y resolution. 
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Support Vector Machine Classifier 

 

A support vector machine is a type of supervised learning model that uses training 

points to construct a feature space and separate that space into two areas.  Once this space has 

been divided, testing data can be mapped into this space, and the class of each point is 

predicted by where it falls relative to the dividing plane of the SVM.  The SVM works by 

optimizing the maximum separation of the training points such that the separating plane is as 

far as possible from the nearest training sample of each of the classes (Chapelle, Haffner, & 

Vapnik, 1999).  For cases where the training classes are not clearly separable by a plane, the 

feature space can be transformed over a kernel space using a kernel function to make the 

problem separable. 

BIOCAT – Modular Bio-Image Analysis   
 

BIOCAT stands for BIOlogical Image Classification and Analysis Tool.  It is a bio-image 

analysis and modular machine learning tool developed by the NIU Image Learning and Analytics 

Lab (ILAAL) to provide a GUI-driven interface for the application of feature extraction and 

machine learning algorithms for biological image data (Zhou et al., 2013). Many ILAAL members 

have worked on BIOCAT over time, and it is a key resource both within the lab and for public 

use.  The BIOCAT GUI was used to explore possible machine learning algorithms for use in 

synapse detection, and the BIOCAT API was used to invoke the machine learning algorithms 

within the actual synapse detection methods. 

 



 
 

Chapter 5 

Literature Review 

 

While machine learning has been used in analysis of two-dimensional biological images, 

there are few examples of machine learning-guided synapse quantification, and even fewer in 

the three-dimensional setting.  There are specific challenges associated with analyzing confocal 

3D neuron images.  They are anisotropic on the Z direction, meaning that the resolution is much 

lower between the Z axis and the X/Y axes due to the scanning mechanisms of the microscope.  

Immunostained images often have staining artifacts present in them, and they can vary in 

contrast across the image.  

Most biological image analysis is performed on 2D images.  Operating in 2D greatly 

simplifies the problem by directly reducing the computational complexity of analysis.  Existing 

general methods for quantifying 2D biological images are largely not applicable to 3D images or 

are prohibitively inefficient in 3D (Carpenter, Kamentsky, & Eliceiri, 2012; Shamir, Delaney, 

Orlov, Eckley, & Goldberg, 2010; Wählby, Lindblad, Vondrus, Bengtsson, & Björkesten, 2002). 

The majority of these methods were developed for general image processing and result in low 

robustness when applied to complex 3D images.  Existing object or threshold-based detection 

algorithms are either constrained to 2D analysis or are also insufficient to handle the complex 
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3D images (Kim et al., 2012; Meseke et al., 2009).  In general, there are very few automated 3D 

biological image analysis tools available.   

There have been advancements in 3D biological object detection for structures such as 

cells and nuclei (Bjornsson et al., 2008; Chen, Velliste, Weinstein, Jarvik, & Murphy, 2003; Zhou 

& Peng, 2011), but as far as we are aware, there are no prior automatic learning-guided 

algorithms specifically for the extraction of synaptic information from 3D confocal microscope 

images. There has recently been research into machine learning-guided analysis of electron 

microscope (EM) neuron images (Navlakha, Suhan, Barth, & Bar-Joseph, 2013).  This study is the 

most directly comparable in terms of operating on 3D images and specifically targeting 

synapses, as well as the application of machine learning algorithms for synapse detection, but it 

is fundamentally different due to the use of EM images.  These types of images are of much 

higher resolution but are more difficult to produce and may interfere with the natural 

arrangement of subcellular structures. 

 



 
 

Chapter 6 

Methods 

 

 Overview 
 

 Isolating synapses and extracting information about them from a three-dimensional 

neuron image is a complex task.  The greatest barrier to manual annotation is the large size of 

these images and their three-dimensional geometry.  It is difficult for the human eye to 

navigate three-dimensional representations, as we can only see a 2D view on a computer 

screen.  The process of synapse detection and quantification involves several key steps and 

algorithms.  The main goal of this thesis was to explore approaches to identifying synapses in 

these images using largely automatic means in order to reduce the impact of human 

subjectivity in the detection of synapses and to allow for much faster and more accurate 

processing of three-dimensional images compared to other techniques.  To accomplish this, a 

general algorithm was implemented as a small set of plugins for the ImageJ platform (Abramoff, 

Magalhaes, & Ram, 2004) and standalone Java applications that were capable of detecting 

synapses in the test images when operated in a pipeline.  The overall theme of the algorithm 

was to start with a large set of candidate voxels and reduce them at every step until only the 

synaptic centers remained.  
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The overall flow for synapse quantification is depicted below in Figure 2.  The images to 

be processed were first split into their individual color channels corresponding to the cell 

morphology and synapse channels present in the image and preprocessed using several 

classical image enhancement techniques (1).  After this, the core synapse detection algorithm 

was used to extract the candidates from the main synapse channel (2).  In order to use a 

machine learning module in the detection, the correct model needed to be selected.  BIOCAT 

was used to determine what model was to be used for synapse detection.  This was 

accomplished by loading regions of interest representing positively identified synapses and 

negatively identified regions into BIOCAT’s interactive model selection feature.  This was used 

to compare different combinations of feature extractors and classifiers directly.  Once the 

model was chosen based on this comparison, and trained on a set of data from the images to 

be analyzed, the learning-guided synapse detection algorithm was applied to the synaptic 

channel.  The positively identified synaptic markers resulting from this step were then 

compared based on proximity to the structures in the other image channels.  If there was 

another synaptic channel present, that comparison was completed (3) before comparison to 

the morphology (4).  The intention of this proximity comparison was to reduce the impact of 

false positives reported due to aberrant stain in the synapse channel and increase the overall 

fidelity of the final synaptic count.  Finally, the synapses were quantified based on their 

distribution in the dendritic arbor (5).  The details of each of these steps will be described in 

more detail in the next subsections. 
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4. 

Density analysis 

Detected synapses 

Morphology colocalization 

Optional extra synapse channel 

colocalization 

Preprocessing / Channel splitting  

Apply discriminative model 

to main synapse channel 

 Detect synapse centers 

Select and train 

discriminative model 

1. 

2. 

3. 

Synapse Quantification Overview 

Figure 2: Main flow for synapse detection. 
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Preprocessing  
 

 Before being analyzed using the learning-guided algorithm, the original multi-channel 

image had to be split and some preprocessing performed.  Splitting the image was 

accomplished using the ImageJ platform to separate the color channels of each image into 

independent gray-scale images.  Figure 3 below shows an example of an image split into 

component color channels.  From here each channel, synapse and morphology, was processed 

independently until they are recombined to formulate the final synapse detection result.  All 

channels were subject to a rolling-ball background subtraction of radius 5 in order to reduce 

low-intensity background noise.  Rolling-ball subtraction is the process of correcting for uneven 

background intensity in an image by averaging the intensity of a region under a scanning ball 

and subtracting the averaged value from the image.  By passing the ball over the complete 

image, areas of low intensity are reduced to a more even intensity while foreground objects are 

largely unaffected.  On images where intracellular noise was a problem, the morphology 

channel was subtracted from the post-synaptic marker channel in a pixel-to-pixel operation in 

an effort to remove the noise. The effects of this preprocessing are demonstrated in Figure 4. 
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Raw Green Blue Red 
(main)

Figure 3: Splitting a neuron image into individual color channels.  In this image, the green 
channel is pre-synaptic markers, the blue is morphology, and the red is the post-synaptic 
marker. 

Raw Post-synapse Background Subtraction Morphology Subtraction 

Figure 4: Processing the synapse channel to remove noise. 
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Model Selection and Training  
 

 Many machine learning models were considered for use for synaptic detection.  Model 

selection was accomplished using the BIOCAT user interface and its comparison functionality.  

First, training data had to be selected for each family of neuron images so that the machine 

learning models could be constructed.  The machine learning problem was formulated as a 

voxel neighborhood-based binary predictor.  That is, for each voxel to be classified, the region 

around it should be considered and used to come to a decision about that voxel.  For each 

neuron image, sets of positive and negative 9x9x3 voxel regions of interest (ROIs) were selected 

randomly, representing synapse centers and areas that were not synapse centers, respectively.  

Examples of these types of training ROIs can be seen below in Figure 5.  These regions were 

loaded into BIOCAT using its “model selection and training” mode.  BIOCAT allows for the 

combination of feature extractor algorithms and feature classifiers into algorithm chains that 

can then be run, saved, and compared directly.  Candidate chains were created from commonly 

useful modules and were tested on the training data sets. 
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Figure 5: Example positive and negative ROIs used for training the discriminative model. 

 

 

 

 Synapse Marker Detection 
 

Once the image channels had been preprocessed the main synaptic marker channel was 

passed to the core machine learning-guided detection algorithm.  In the case of the pre- and 

post-synaptic images, this was the post-synaptic marker channel.  This algorithm is at the heart 

of this thesis and does the majority of the important work in detecting synapses in the images.  

This was implemented by me as an ImageJ plugin that takes the synaptic image channel, 

training ROI data for the machine learning model, a BIOCAT algorithm chain, and various 
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thresholding and file I/O parameters.  Once initiated, the machine learning model specified in 

the BIOCAT chain file was trained on the training ROI data.  Once this was complete, a binary 

image copy of the synapse channel was constructed using code adapted from the open-source 

ImageJ RATS algorithm with generous thresholding parameters on every slice of the 3D image.  

When invoking RATS thresholding on an image, three parameters were required: the estimated 

global intensity of the noise in the image, a scaling factor, and a minimum pixel size for the 

quad-tree division of the image.  For the neuron images, a noise estimate value of 3 or 4 was 

used, a scaling factor of 3 was set according to the recommendation of the original plugin 

author, and the minimum leaf size was automatically calculated to provide a five-level deep 

quad-tree.  The purpose of this mask is to avoid analyzing voxels that are clearly backgr-und, 

greatly improving the overall performance of this stage of processing.  A sample section of this 

mask is depicted in Figure 6.  The synapse voxels make up a relatively small percent of the large 

3D volume.  Applying the machine learning model to all of these many millions of obviously 

background areas is inefficient.  Instead, the algorithm considers only voxels that correspond to 

the foreground of the binary mask created by RATS.   
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For every voxel corresponding to the foreground of the mask, a region around the voxel 

that roughly corresponded with the average size of a synapse was extracted and passed to the 

trained machine learning model.  The model performed feature extraction and classification 

according to the BIOCAT algorithms supplied in the chain file and then classified each voxel as 

positive or negative.  Positive voxels are taken to be near a synapse center, and these were 

collected and output from the synapse annotator ImageJ plugin.   

The result of the plugin was a set of 3D voxel aggregates that were determined to be 

close to synaptic centers by the machine learning model.  The center of these objects was then 

found by a connected component analysis and center of mass calculation using the 3D Object 

Counter ImageJ plugin (Bolte & Cordelières, 2006).  This was done to reduce the small clusters 

of positively identified synapse center candidates to a single point per synapse.  This reduction 

in candidate voxels is demonstrated in Figure 7. 

Preprocessed Synapse RATS Mask 

Figure 6: RATS used to supervise machine learning analysis.  If 
the RATS mask is lenient, it serves to exclude the majority of 
background voxels from the machine learning classification. 



33 
 

 

 

 

 

Multi-Channel Comparison 
 

Once the main synapse centers were been calculated, the set of candidate synapses was 

reduced by comparison to the other image channels to improve the accuracy of the detection.  

Staining artifacts in the post-synaptic channel and intracellular noise resulting from stain 

present inside the neuron can result in false-positive post-synaptic markers.  By comparing the 

results of the synapse detection to the other channels, these false results can be screened out.  

Comparison to the other image channels was performed by proximity analysis between the 

previously detected synaptic markers and the structures present in the other image channels, 

as described below. 

Raw Post-synapse Model Output Center Detection 

Figure 7: Application of the machine learning model and center detection. 
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Pre-Synaptic Marker Comparison 

 

The pre-synaptic channel, if present in an image, was not stained on only the target 

neuron but was instead stained on all neurons that fell within the imaging area.  This resulted in 

a great number of pre-synaptic markers relative to post-synaptic, the bulk of which were not 

related to the target neuron at all.  Rather than try to extract each of these pre-synaptic 

markers, it was decided to use them as a logical check for the already-detected post-synaptic 

markers.  The pre-synaptic marker channel was preprocessed more aggressively using ImageJ 

tools to extract a binarized mask of the approximate locations of pre-synaptic marker stain.   

The process for creating the binarized comparison mask of the pre-synaptic marker 

channel was composed of several traditional image processing steps.  The pre-synaptic marker 

channel was subjected to a rolling-ball background subtraction of radius 5, despeckled, contrast 

enhanced by 3% globally, and then despeckled again to highlight the pre-synaptic markers 

while reducing the noise present in the image.  After that, the partially processed image was 

segmented using a 3D watershed algorithm for ImageJ (Legland, Arganda-Carreras, & 

Schindelin, 2016) to isolate the approximate locations of the pre-synaptic markers. 
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The result of this preprocessing was a binarized image representing the locations of the 

pre-synaptic markers in the image.  Using a custom ImageJ plugin developed by me, the results 

from the main synapse detection were compared to the mask by proximity.  A synaptic marker 

was only output from this step if it was within a 3D space of 9x9x5 voxels of any pre-synaptic 

channel.  This space is the approximate size of a synapse within these images.  An example of 

the pre-synaptic marker channel preprocessing is shown in Figure 8. 

 

 

 

  

Raw Pre-synaptic 
Channel 

Processed Channel 

Figure 8: (left) An example of the raw pre-synaptic channel.  (right) 
After background subtraction and 3D watershed processing of the 
channel. 
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Morphology Comparison 

 

     The morphology channel is present in all of the images.  This channel is the result of 

staining target proteins on the cell membrane of the neuron.  For synapse detection, this 

channel is used to exclude areas of synaptic stain that are not located near the neuron 

structure.  These areas are considered to be artifacts from the image staining and preparation 

process in the lab and can’t easily be eliminated fully before imaging occurs.  Two different 

approaches were attempted for morphology colocalization, traditional preprocessing and 

comparison to a 3D neural reconstruction generated by another member of our lab.  Due to the 

promising progress of our lab’s neural reconstruction research, it was decided to incorporate 

this technique into synapse detection.  The neural reconstruction comparison was used for the 

final reported results.   

 The 3D neural reconstructions were used to further reduce the set of candidate 

synapses by removing those that were not proximal to the dendrite morphology.  This was 

accomplished using a Java-based tool designed by former ILAAL members who took a 3D 

neurite file (the morphology), a synaptic marker file, and image size parameters as input and 

outputted the markers that were sufficiently close to the neuron structure while omitting those 

that were not.  The output of this step was considered to be the final synapse detection. 
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Density Analysis 
 

At the same time as morphological colocalization, each synapse was tagged according to 

the diameter of the nearest neuron morphological segment.  The Java tool used to perform the 

morphological colocalization was originally designed to perform the comparison of synapses to 

neurite diameter, but the accurate detection of the possible synapses by the methods proposed 

in this thesis was required before this could be done.  Because this tool was also capable of 

screening out candidate synapses that are not close to dendrite morphology, the density 

analysis and colocalization steps were accomplished with this one tool.  This tool took a 

candidate synapse file, a neural reconstruction file, and image size parameters as input.  The 

neuron branches were binned into categories based on a size range, and the proximity of each 

candidate synapse was compared to the neuron morphology.  The output of this tool was a file 

of synapses labeled based on the size of their associated neurites and distribution statistics 

including density per length of each size category and density per surface area of each size 

category.  Little is known about the density distribution of synapses in complex neurons such as 

LPTC (Defilipe et al., 2002; Menon et al., 2013).  This analysis, while still in its preliminary stages, 

is one of the first to explore the density distribution in these neurons. 

 

 Validation 
 

 There are no other official gold standard counts for the synapses in these images, nor is 

there very much available information about the subcellular distribution of the synapses in the 
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dendritic tree.  In order to perform a quantitative analysis of the synapse detection methods, a 

set of sample small regions from the images to be tested was constructed.  These regions 

comprise only a tiny fraction of the image, but they are representative of the whole while still 

being manageable for manual annotation.  Manual annotation of the full-size images that 

contain many hundreds of synapses is prohibitively difficult, while smaller regions can be more 

carefully considered.  Several of these regions were selected and manually annotated by 

members of the lab with input from our collaborators at Ye Lab, University of Michigan Life 

Sciences Institute.  These test regions formed a gold standard set for comparison that was used 

to judge the effectiveness of synapse detection on the larger images.  The development of 

these test regions alone is considered to be a large contribution to the synapse detection 

research efforts.   

 The results of the synapse detection algorithms were compared to the test sub-regions 

using a specialized program that compared the manually annotated synapses in each test 

region with the automatically detected synapses and calculated useful quantitative metrics 

describing the effectiveness of the detection algorithms for each test region.  This tool reported 

the fraction, precision, recall, and F-measure for each region.  Fraction was defined as the 

number of synapses detected within the bounds of the test region divided by the number of 

gold standard synapses manually annotated for that region.  This metric provided a 

straightforward way of determining if the synapse detection algorithm was detecting an 

appropriate number of synapses.  Precision was defined as the number of synapses detected by 

the algorithm that were proximal to a manually annotated synapse divided by the number of 
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detected synapses.  This metric determined if the detection algorithms were returning false-

positive results such as noise or staining artifacts.  Recall was the number of manually 

annotated synapses that were proximal to a detected synapse divided by the number of 

manually annotated synapses.  This represented the relevance of the detected synapses, 

providing information about how many manual synapses were missed by the detection 

methods.  Finally, the F-measure was the harmonic mean of the precision and recall statistics.  

It provided a useful unified statistic to judge the overall effectiveness of the detection on each 

region.   

 

 



 
 

Chapter 7 

Results 

 

 

 Data Sets 
 

The images used to test synapse quantification were partial and whole dendritic trees 

from Drosophila melanogaster lobula plate tangential cell (LPTC) horizontally sensitive neurons 

provided by the Bing Ye Lab at University of Michigan Life Sciences Institute, seen below in 

Figure 9 and Figure 10 respectively.  Though both LPTC neurons, these images are not stained 

for the same structures and are not of the same exact neuron.  These neurons possess complex 

structures and are related to the optical processing and flight control systems in Drosophila m. 

The process of creating these images is difficult and time intensive, as it can take upwards of 72 

hours of work by lab scientists to properly prepare and image a neuron sample.  The true 

number of synapses in the dendritic tree is unknown, and the method proposed in this thesis is 

one of the first automated methods for estimating the total amount.  These images were 

captured via a laser scanning confocal microscope system and then reconstructed into 3D.  The 

whole dendritic tree image was stitched together using Amira software (Stalling, Stalling, 

Westerhoff, & Hege, 2005) before it was sent to our lab.  The majority of the visualizations in 

this section were created using the Vaa3D multi-dimensional data visualization and analysis tool 
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Figure 9: A maximal intensity projection of a partial dendritic tree image.  The blue channel is the 
neuron morphology, red is post-synaptic markers, and green is the pre-synaptic markers. 
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Figure 10: A maximal intensity projection of the complete dendritic tree image. The red channel 
is the morphology. The green channel is the possible synapses. 
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developed by the Peng Lab at the Allen Institute for Brain Science (Peng, Ruan, Long, Simpson, 

& Myers, 2010). This GUI-driven image visualization application allows for easier examination 

and manipulation of 3D images than a slice-based application such as ImageJ. 

 

 Model Selection 
 

 Before a full analysis of the images was performed, an appropriate machine learning 

model was chosen.  The main interface of BioCAT was used to efficiently compare algorithm 

chains consisting of feature extractors and classifiers and select the most appropriate chain for 

synapse detection.  Figure 11 shows the comparison and testing of chains performed by 

BIOCAT.  The model was chosen after training on a set of 20 positive and 20 negative ROIs of 

size 9x9x3 voxels from the Kibra 004 partial dendritic tree along with a 5-fold cross validation.  

The most powerful feature extractor was determined to be the 3D anisotropic wavelet, or Haar 

wavelet transform, for both image types tested.  The most effective classifiers were the multi-

layer perceptron (MLP) and the support vector machine (SVM).  Combining the 3D Haar wavelet 

extractor with either of these classifiers yielded a recognition rate of 95-100% depending on the 

variance in cross validation.  As can be seen in Figure 11, the Haar wavelet + MLP and the Haar 

wavelet + SVM are the highest performing overall chains.  Due to the shorter training time and 

negligible accuracy differences between it and the MLP, the SVM was used for testing. 
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Figure 11: Comparison of 18 algorithm chains for 3D synapse detection tested in BIOCAT. 

 

 

 

 Synapse Quantification 
 

  Partial Dendritic Tree Images  

 

There were four pre- and post-synapse partial dendritic tree images tested using these 

methods.  These were all 1024x1024 images with between 128 and 155 slices in the z direction.  

The partial dendritic tree images were composed of three channels: cholinergic post-synaptic 

Dα-7 markers stained with green fluorescent protein (GFP), pre-synaptic nc82markers stained 

with DyLight649, and overall morphology stained with red fluorescent protein (cD8-RFP).  
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Together the three-channel image has a bit depth of 24, with each channel having a bit depth of 

8.  These images are a subset of a series of images representing an entire neuron, but the 

images designated as 004, 006, 008, and 010 are of the complex dendritic tree and were the 

most relevant for synapse detection.  Despite not being a complete dendritic tree, these images 

are still very dense with synapses and are a good representation of the overall complex neuron 

structure in 3D.  Each of these images was fully processed including pre-synaptic marker 

detection and morphology colocalization.  The learning model was trained on ROIs selected in 

Image 004, and the same learning model was applied to the other images in the set.  A small 

section of a final image can be seen in Figure 12.  Some areas that appear to be false negatives 

are excluded by one of the processing steps.  These regions could be false negatives, or they 

may be correctly removed based on a failure to meet the criterion of the detection methods.  

Visually, it can be very difficult to tell.  In the Validation section below this is discussed in more 

detail.  

The synapse detection algorithm performed well on these dense images, giving a 

plausible estimate for synapse count and locations within the dendritic tree sections.  Areas of 

synaptic stain that were not near to the neuron morphology and pre-synaptic markers were 

successfully excluded.  Even regions of high synapse density were usually successfully counted.  

Both very bright and very dim synapses are represented in the results.   
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Figure 12: Final synapse detection of a small region of partial dendritic image 004.  The red 
channel is the post-synaptic channel, green is pre-synaptic, and blue is the morphology. 
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For the four partial dendrite images, synapses were quantified using the succession of 

reductive steps described above, starting with machine learning-guided post-synaptic marker 

detection and then performing multi-channel comparison to reduce the candidate set of 

synapses until a final result was reached.  Table 1 shows the detected synapses undergoing 

reduction at each major step for these four images. 

 

 

 

 

 

Table 1 : Synapse detection in the partial dendritic trees using three channels 

 

 

 

  

Image ML guided  Pre-synapse  Morphology Final Count 

004 2488 -255 -190 2043 

006 2100 -875 -225 1000 

008 2997 -1443 -411 1143 

010 1219 -680 -154 385 
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Whole Dendritic Tree Image 

 

 One complete dendritic tree image was processed using these methods.  This image was 

actually a composite stitched together in the image providers lab (Ye Lab at University of 

Michigan) using the Amira data visualization software.  The resulting image was 1296x2333x59 

voxels in size.  The whole dendritic tree image has two channels: the GABAergic post-synaptic 

RDL stained with Cy5 and the overall morphology again labeled by cD8-RFP.  

The complete dendrite image was quantified using almost the same steps as above.  

There was no pre-synaptic channel for this image, so only morphological colocalization was 

performed.  Table 2 shows the detected synapses at each step for the complete dendrite 

image. 

 

 

 

Table 2: Synapse detection in the complete dendritic tree using two channels 

Image ML guided  Morphology Final Count 

whole dendrite 1328 -283 1045 
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Density Analysis 
 

Density analysis of the synapses within the dendritic branch structure is an ongoing 

undertaking of the ILAAL, and the results of the methods in this thesis directly enabled work to 

proceed in this area.  The determination of quantitative results for synapse density is still being 

developed, but the preliminary qualitative results are striking and worth presenting here.  As 

mentioned above, the final step of morphological colocalization also groups synapses based on 

the diameter of the nearest synapse branch.  In Figure 13, a visual of this grouping overlaid on 

top of the morphological reconstruction can be seen.  In order to facilitate a qualitative 

assessment of the synapse distribution, the detected synapses are colored on a scale from blue 

to red.  Synapses near larger branches are blue, while those near narrower branches shift 

increasingly towards red.  Figure 14 represents the distribution of synapses in the complete 

dendritic tree image with the same coloration.   
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Figure 13: Partial dendritic image 004 with reconstruction and density color-coded synapses.  
Synapses near larger branches are blue, while those near narrower branches shift increasingly 
towards red. 
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Figure 14: The complete dendritic image shown with only the color-coded synapses.  Again, blue 
synapses are proximal to large branches, moving to red synapses at narrow branches. 
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 Validation 
 

 Quantitative determination of the success of these methods was a significant challenge 

on its own.  Partial dendritic image 004 was used to construct a comparison set and validate the 

effectiveness of the synapse detection.  Ten sub-regions of size 150x150x10 voxels were 

randomly selected from the image, such that each region contained at least 20 synapses.  These 

regions can be seen as a 2D projection below in Figure 15.  These were manually annotated 

using the Vaa3D tool by three different lab members, and the final results were combined and 

agreed upon by each annotator.  In order to provide a direct comparison with the synapse 

detection algorithms, the manual annotations were performed after the morphology channel 

subtraction described above in Methods.  Without performing this preprocessing step first, the 

intracellular artifacts present in the image greatly obfuscate the synapses and render manual 

annotation prohibitively difficult.  After this gold standard set was chosen and agreed upon, the 

specialized validation program was used to automatically calculate the fraction, precision, 

recall, and F-measure for the ten test regions (Table 3).  It should be noted that while this set 

was used as the gold standard set in order to quantify the overall success of this algorithm, that 

doesn’t mean that the manual annotation was perfect or that the synapses chosen for the set 

were absolutely correct.  Even our neuroscientist collaborators are not entirely sure of the 

location of each synapse in these images.  It is necessary to have a basis for comparison, 

however, and the combined opinion of several human annotators was deemed acceptable. 
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Figure 15: Ten validation regions selected for an image.  Note that  

the regions that appear to overlap are in fact on different Z slices. 

 

Table 3: Validation results for ten test regions 

Region 
Gold 

Standard Detected Fraction Precision Recall F-measure 

1 32 30 93.75% 80.00% 78.12% 79.05% 

2 42 42 100.00% 76.19% 83.33% 79.60% 

3 39 29 74.36% 79.31% 66.67% 72.44% 

4 31 24 77.42% 100.00% 74.19% 85.19% 

5 28 18 64.29% 77.78% 67.86% 72.48% 

6 36 30 83.33% 70.00% 72.22% 71.09% 

7 46 37 80.43% 70.27% 65.22% 67.65% 

8 29 27 93.10% 81.48% 86.21% 83.78% 

9 28 24 82.14% 91.30% 78.57% 84.46% 

10 25 23 92.00% 82.61% 84.00% 83.30% 

AVERAGE 336 284 84.08% 80.89% 75.64% 77.90% 
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 Comparison to Other Methods 
 

 In order to demonstrate the effectiveness of these proposed methods, the results were 

compared to the traditional 3D Object Counter ImageJ plugin (Bolte & Cordelières, 2006).  Both 

the global threshold-based Object Counter and its RATS threshold variant were tested on partial 

dendritic tree image 004.  Additionally, the purely machine-learning driven BIOCAT can be used 

for comparison by calculating the centers of the objects produced by the 3D ROI annotation 

mode.  Before performing any of these tests, the image was treated to the same general 

preprocessing techniques that were used to prepare the image for machine learning-guided 

detection.  The morphology channel was subtracted from the post-synaptic channel, and 

rolling-ball background subtraction of radius 5 was applied.   

Table 4 contains an overview of the comparison methods.  Table 5 contains the full 

validation results for comparison to the Object Counter 3D ImageJ plugin.  Table 6 contains the 

comparison to OC3D used with adaptive (RATS) thresholding, and finally Table 7 shows the 

comparison to direct annotation with BIOCAT. 

 

Table 4: Overview of the comparisons performed on partial dendrite image 004 

Test 
Gold 
Standard Detected Fraction Precision Recall F-measure 

OC3D 336 418 125.21% 49.78% 75.40% 59.40% 

OC3D-RATS 336 374 111.32% 61.05% 80.80% 69.16% 

BIOCAT 336 320 95.26% 71.61% 75.60% 72.90% 

Proposed  336 284 84.08% 80.89% 75.64% 77.90% 
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Table 5: Object Counter 3D validation.  Performed with a global threshold 

Region 
Gold 
Standard Detected Fraction Precision Recall F-measure 

1 32 33 103.12% 57.58% 62.50% 59.94% 

2 42 50 119.05% 62.00% 73.81% 67.39% 

3 39 48 123.08% 54.17% 84.62% 66.05% 

4 31 41 132.26% 60.98% 87.10% 71.73% 

5 28 26 92.86% 34.62% 53.57% 42.06% 

6 36 58 161.11% 43.10% 77.78% 55.47% 

7 46 48 102.17% 44.68% 60.87% 51.53% 

8 29 44 151.72% 45.45% 82.76% 58.68% 

9 28 31 110.71% 51.61% 75.00% 61.15% 

10 25 39 156.00% 43.59% 96.00% 59.96% 

AVERAGE 336 418 125.21% 49.78% 75.40% 59.40% 

 

 

 

 

Table 6: Object Counter 3D + RATS comparison 

Region 
Gold 
Standard Detected Fraction Precision Recall F-measure 

1 32 30 93.75% 53.33% 53.12% 53.23% 

2 42 52 123.81% 59.62% 78.57% 67.79% 

3 39 42 107.69% 64.29% 89.74% 74.91% 

4 31 33 106.45% 84.85% 93.55% 88.99% 

5 28 23 82.14% 56.52% 75.00% 64.46% 

6 36 49 136.11% 57.14% 86.11% 68.70% 

7 46 46 100.00% 65.22% 78.26% 71.15% 

8 29 36 124.14% 58.33% 86.21% 69.58% 

9 28 30 107.14% 56.67% 71.43% 63.20% 

10 25 33 132.00% 54.55% 96.00% 69.57% 

AVERAGE 336 374 111.32% 61.05% 80.80% 69.16% 
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Table 7: BIOCAT comparison 

Region 
Gold 
Standard Detected Fraction Precision Recall F-measure 

1 32 32 100.00% 71.88% 75.00% 73.40% 

2 42 42 100.00% 71.43% 83.33% 76.92% 

3 39 30 76.92% 70.00% 58.97% 64.02% 

4 31 26 83.87% 88.46% 74.19% 80.70% 

5 28 17 60.71% 64.71% 50.00% 56.41% 

6 36 41 113.89% 68.29% 86.11% 76.17% 

7 46 45 97.83% 57.78% 71.74% 64.01% 

8 29 34 117.24% 67.65% 89.66% 77.11% 

9 28 23 82.14% 82.61% 75.00% 78.62% 

10 25 30 120.00% 73.33% 92.00% 81.61% 

AVERAGE 336 320 95.26% 71.61% 75.60% 72.90% 
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Discussion 
 

 The proposed methods for synapse quantification are very promising.  Even among 

neuroscientists, the validity of a proposed synapse is open to debate  (Burette et al., 2015).  

Current synapse quantification is more often defined by the probability of a location being a 

synapse rather than a strict binary determination (Isaacson & Walmsley, 1995).  The use of 

multiple channels to confirm the initial detection is in agreement with this ideology.  By 

confirming with multiple factors, the final detected synapses are more trustworthy.  Future 

investigations into automatic synapse detection could explore the benefits of assigning a 

probability to each candidate synapse, rather than the simple binary determination yielded by 

the current methods. 

 In the partial dendritic images, visual inspection as well as validation using the gold 

standard set indicates that the synapse detection is a success.  There seem to be false negatives 

in the above Figure 12, but it is possible that these areas fail to meet one of the multi-channel 

comparison criteria or that the machine learning-guided extraction step determined these 

areas to be not similar enough to the training synaptic ROIs.  In any case, the careful 

construction of the validation gold standard set was created to try to determine the overall 

performance.  

 As shown in Table 3 above, the average F-measure for the validation performed on 

partial dendritic image was 77.9%.  The precision of these methods is on average higher than 

the recall by around 5%, indicating that the synapse detection is generally conservative in its 
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output.  The synapses that are detected are 80.89% in agreement with the gold standard, but 

there are some false negatives that lower the recall.  These validation statistics indicate that 

there is a general agreement between the human annotation and the results of the synapse 

detection methods, even if there is not complete certainty of the location of each synapse 

within these test regions. 

 The initial machine learning-guided detection step is the most critical and most complex 

component of the methods.  This step was very successful and was instrumental in overcoming 

the challenges of intensity variance between synapses.  This step was also very effective at 

eliminating background noise from the estimation.  By restricting the machine learning 

algorithms to only a subset of the total image using a very lax RATS masking, the strengths of 

both segmentation and machine learning identification were leveraged while remaining 

efficient and effective.  The learning model itself proved to be stable and reliable after training, 

and was able to successfully annotate multiple images within the partial dendritic image set 

with a good outcome.  

 Considering the comparisons to other methods, it can be seen in Table 4 that the 

proposed methods outperform both the naïve Object Counter 3D and simple BIOCAT 

annotation.  This is likely due to several key factors.  The multi-channel analysis that the 

proposed methods are capable of performing helps to eliminate false positives and increase 

overall precision of the detection.  Indeed, the proposed methods yielded an average precision 

of 80.89%, outpacing the other comparison methods by a large margin.  The OC3D-RATS test 

produced very high recall, but this is due to the gross overestimation of total synapses in the 
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image.  The accuracy of this test was therefore low, at only 61.5%.  The comparison to BIOCAT 

annotation is especially helpful because it highlights the strengths of combining the machine 

learning core with the other steps such as multi-channel comparison and adaptive thresholding.  

In the proposed methods, the RATS mask serves to narrow the focus of the machine learning 

detection, and then comparison to other channels increases overall precision by reducing the 

impact of false positives from noise in the synapse channel.  It should also be noted that the 

restriction of the machine learning analysis by the RATS mask to only a subset of the total 

image voxels allows the proposed methods to act many times faster than BIOCAT’s whole-

image annotation. 



 
 

Chapter 8 

Conclusions 

 

This thesis presents automatic methods for quantification of synapses in 3D confocal 

images.  The need for automated image analysis is a major opportunity for both computer 

scientists and biologists to collaborate in order to develop solutions that are uniquely suited to 

this task.  The methods presented here were ultimately successful in extracting and quantifying 

these synapses in a way that is unique among other biological image analysis methods.  The 

combination of classic image processing techniques and machine learning algorithms for the 

analysis of biological images is an exciting research pursuit.  The time investment it would take 

to manually perform a tally of synapses in one of these 3D images is staggering, and the 

proposed methods only take a few minutes to perform synapse detection, not including 

selecting training data for the discriminative model.  Even with that factored in, only a tiny 

fraction of the synapses in an image need be counted by hand in order to produce a satisfactory 

outcome.   

The specialized tools developed for this thesis will continue to be used for the 

exploration of synaptic images.  These tools represent a new degree of interdisciplinary 

collaboration between biologists and computer scientists, a rising trend that promises to help 
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break down roadblocks impeding biological research while allowing many computer science 

techniques to find new life in new applications.    

Additionally, the creation of a validation scheme and testing set for the partial dendritic 

image can be considered to be a success on its own, as there are no commonly available 

annotated 3D synapse image sets.  Despite the validation regions being much smaller than the 

total image, they satisfactorily represent the whole and are a useful starting point for a 

quantitative assessment of the success of these synapse detection methods.  While it would be 

better to have larger and more varied validation data, at the current time, those developed for 

this thesis are among the only such sets available. 

 

Future Work  
 

 The methods presented in this thesis have demonstrated their usefulness in detecting 

synapses in complex 3D neuronal images, but an even more streamlined implementation for 

the complete pipeline is desirable.  The actual implementation of these methods as a set of 

Java-based plugins and standalone tools could benefit from packaging into a single more user-

friendly tool.  Certainly these methods are many, many times faster than manual annotation 

already, even with the necessary user interaction to operate the separate programs.  The major 

work of synapse detection is still automated, thus decreasing the impact of human error on the 

detection, which is one of the primary goals of these methods.   
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