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ABSTRACT

APPROXIMATE BAYESIAN COMPUTATION IN
NONPARAMETRIC BAYESIAN MODELS

Erina Paul, Ph.D.
Department of Mathematical Sciences 

Northern Illinois University, 2017 
Sanjib Basu, Director

Many scientific problems require statistical inference in complex models. Bayesian nonpara-

metric models provide a flexible modeling and inference framework for such problems. There is a

substantial literature on Bayesian computational methods for nonparametric models, however, in

non-conjugate complex models, they can be difficult or computationally expensive to implement.

Approximate Bayesian Computation (ABC) provides a computational framework for inference in

difficult and intractable Bayesian models. The idea behind ABC is to provide an approximate pos-

terior inference without evaluating the likelihood function based on samples drawn from the sam-

pling distribution. We develop a methodology for statistical inference in nonparametric Bayesian

models based on ABC. We utilize the conditionally independent model structure to address the

difficult problem of summary statistic choice in ABC. The developed method is generalized to

complex nonlinear Bayesian nonparametric models, including generalized linear mixed models

and survival models for recurrent data. We further generalize this approach to Bayesian nonpara-

metric models involving the Pitman-Yor process. The approach is further extended to Bayesian

nonparametric models involving the stable distributions which are often intractable due to lack



of closed-form expressions. Throughout this dissertation, we illustrate the proposed methods in

simulated and real datasets and we compare their performances with preexisting methods.
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CHAPTER 1

INTRODUCTION

Probability approaches are classified into two groups, objective and subjective interpretation.

The objective interpretation leads to classical inference whereas the subjective one focuses on

Bayesian inference which is based on the personal belief. According to Bayesian perspective,

the unknown parameters, θ and the n-dimensional data, y = (y1,y2, . . . ,yn) have a probability dis-

tribution. The distribution of θ comes from the model that arises from the past experiences in

handling similar data. So in a Bayesian setup, our purpose is to draw inference on θ from the data

at hand. Then we are interested in exploring what are the possible values of θ and the extent of

uncertainty associated with θ. Let L(θ|y) be the likelihood function and π(θ) be the prior proba-

bility distribution of θ. The inference on θ depends on the calculation of the posterior distribution

π(θ|y) = π(θ)L(θ|y)
p(y) , where p(y) is the marginal distribution of y and can be defined as

p(y) =
∫

π(θ)L(θ|y)dθ. (1.1)

The computation of the marginal distribution (1.1) and the estimators from the posterior distribu-

tion may be difficult except for conjugate structure between the likelihood and the prior. It may

also happen that the posterior distribution is known but the dimension of θ and y are large. In

this situation, the computation is expensive and time-consuming. There are various methods (see

Robert (2007), for example) that can expedite the computation of the posterior mean of h(θ),

E(h(θ)|y) =
∫

h(θ)π(θ|y)dθ =
∫

m(θ|y)dθ, (1.2)
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where m(θ|y) = h(θ)π(θ|y).

1.1 Bayesian Computation

Here, we discuss the various methods used in the context of Bayesian computation. The main

purpose of the following methods is to approximate the posterior distribution when it is computa-

tionally difficult to handle.

• Numerical Integration. This method allows approximating the integral when no closed

form expression is available. One way to approximate m(θ|y) in (1.2) is the Simpson’s

method (Stigler (1986)). Another approach is the polynomial quadrature (Naylor & Smith

(1982)) which approximates the posterior means by weighted sums of orthogonal polynomi-

als and the posterior may be close to normal distribution. There are various methods which

are based on orthogonal bases. If the dimension is low, this method can produce accurate

approximations to the integral. However, increase in the dimension of θ may affect the

accuracy of the numerical integration approach.

• Monte Carlo Methods. The idea behind the Monte Carlo method (Metropolis & Ulam

(1949), Von Neumann (1951)) is to draw samples from the posterior distribution π(θ|y) and

then to estimate the integral using the samples, that is, if θ(1), . . . ,θ(B) are independent and

identically distributed samples from π(θ|y),

1
B

B

∑
b=1

h(θ(b))

converges almost surely to (1.2) as B→ ∞ by the Strong Law of Large Numbers under the

appropriate regularity conditions. Another representation of Monte Carlo method through

the importance function can be found in Robert & Casella (2004). Sometimes it is difficult
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to draw samples from π(θ|y) and it can be approximated by g(θ), where g(·) is a density

from which we can easily generate θ, that is, if θ(1), . . . ,θ(B) are independent and identically

distributed samples from g(·), under appropriate regularity conditions of the Strong Law of

Large Numbers,
∑

B
b=1 h(θ(b))w(θ(b))

∑
B
b=1 w(θ(b))

,

where w(θ(b)) = π(θ(b))L(θ(b)|y)
g(θ(b))

, converges almost surely to (1.2) as B→ ∞. The choice of an

efficient importance function g(·) can be difficult in complex problems.

• Laplace Approximation. An alternative to Monte Carlo method is the Laplace approx-

imation, see Tierney & Kadane (1986). Let T (θ) = logπ(θ) + logL(θ|y) and T ∗(θ) =

logh(θ)+T (θ). Here, we can approximate the posterior mean of h(θ) by expanding T (θ)

and T ∗(θ) in the Taylor series about θ̂ and θ̂∗, the posterior mode of T (θ) and T ∗(θ), respec-

tively. Hence, the approximation of T (θ) is

T (θ)≈ T (θ̂)− (θ− θ̂)2

2σ2 ,

where σ2 =−[T ′′(θ)]−1. Similarly, we can get the approximation of T ∗(θ) and the posterior

mean of h(θ) in (1.2) is approximated by the normal density as

E(h(θ)|y) =
∫

exp(T ∗(θ))dθ∫
exp(T (θ))dθ

≈ σ∗exp(T ∗(θ̂∗))
σexp(T (θ̂))

,

where σ∗2 = −[T ∗′′(θ̂∗)]−1. Hence, the idea of this method is to (1) locate the modes for

the integrands of E(h(θ)|y), (2) find out the second derivative at these new modes, and (3)

approximate these integrals by a second application of Laplace’s method. The extension of

this method to saddle point approximation is discussed in Kass & Raftery (1995).
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• Markov Chain Sampling. In Bayesian set up, Markov chain sampling is one of the popular

methods for posterior calculation. The concept of Markov chain with the Monte Carlo inte-

gration resolves difficult problems in Bayesian context. The idea behind this technique is to

construct a Markov Chain which converges to the required probability distribution. Hence,

this method allows to draw posterior inference on functions of θ based on the generated

samples along the Markov Chain. In this setting, the distribution of the posterior does not

need to be known exactly. It is good enough to know the target distribution up to certain pro-

portionality constants. Metropolis-Hastings is one of the popular procedures in the Markov

Chain setup. The idea of the Metropolis-Hastings algorithm was first proposed by Metropo-

lis et al. (1953) and was later generalized by Hastings (1970). The Gibbs sampler is a widely

used method, especially, with the Metropolis-Hastings algorithm. This was first used in Ge-

man & Geman (1984) and was popularized in the statistics literature by the seminal work of

Gelfand & Smith (1990). A generalization of the Gibbs sampler, denoted as, slice sampler,

is discussed in Wakefield et al. (1991), Besag & Green (1993), Damien et al. (1999). To

compute or approximate complex models, Markov chain sampling methods perform well in

Bayesian computation. But it can be difficult in many stochastic models where the likelihood

is unknown or there are convergence issues.

1.2 Motivation

In the context of complex models, the likelihood function L(θ|y) can be analytically unavailable

or computationally intractable. In those situations, we can not apply the previous methods. Ap-

proximate Bayesian Computation (ABC) provides a computational frame for such models. ABC

methods generate samples from a distribution which approximates the posterior distribution of in-

terest. The motivation of this method comes from the levels of intractability in the model. The lev-
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els of intractability in Bayesian paradigm (Panek (2015)) https://approximatebayesiancomputational.

wordpress.com/) arise in the following situations.

• Partial intractability: The likelihood has the form

L(θ|y) = f (y|θ)
C

,

where f (·) is the known part of the probability density (or, mass) function and C, the un-

known part of the likelihood, is independent of θ. Since, L(θ|y) is proportional to f (y|θ), the

posterior inference can be handled by MCMC.

• Full intractability: If the unknown part of the likelihood depends on the parameter θ, we

need to compute or approximate it by using high-dimensional integrals that are hard to com-

pute. So we may not consider MCMC methods in this setup due to the parameter dependent

proportionality constant. ABC methods can sample from the posterior distribution to deal

with these type of situations. These methods sample from the posterior distribution when

the likelihood is unknown or intractable and the calculation of the likelihood function does

not require to sample from the posterior.

In Chapter 2, we review the existing ABC methods and illustrate their performance in different

examples. Since the models in Bayesian nonparametric setup are complex, ABC method can

be proposed in this situation. So, we describe the concept of nonparametric Bayesian models,

for example, Dirichlet process and Pitman-Yor process in this chapter. Chapter 3 proposes the

Bayesian nonparametric (BNP) models using ABC. Chapter 4 considers the BNP binary generalize

linear mixed models and various BNP survival models including recurrent data models are explored

in Chapter 5. Chapter 6 deals with the Pitman-Yor process while Chapter 7 focuses on intractable

likelihoods, for example, stable distributions using nonparametric Bayesian ABC method. Finally,

Chapter 8 provides ideas for future work and conclusion in this general theme.



CHAPTER 2

BACKGROUND

2.1 Introduction

In this chapter, we review approximate Bayesian computation and extend the idea to non-

parametric Bayesian inference. The discussion mainly focuses on different methods of ABC in-

cluding the choices of inputs and the Dirichlet Process (DP) models with a generalization of DP,

namely, Pitman-Yor process (PYP). The adaptation of ABC methods in the Dirichlet process mix-

ture (DPM) and Pitman-Yor mixture (PYM) will be discussed in subsequent chapters.

2.2 Approximate Bayesian Computation

Approximate Bayesian Computation method is used to compute the posterior distribution when

the likelihood function is intractable or unavailable due to the inaccessibility of the closed form

of θ or too expensive to compute. If the likelihood is unavailable, it is assumed that there exists

a simulator that returns samples which can be drawn from the sampling distribution. Hence, the

underlying idea behind ABC is to provide an approximate posterior distribution without evaluating

the likelihood function.

The first ABC-related idea was mentioned by Rubin et al. (1984) in the context of sampling

from the posterior distribution. An ABC method was then proposed in population genetics by

Tavaré et al. (1997) to discuss the posterior inference. Followed by Pritchard et al. (1999) who

produced a generalization of this method, the term Approximate Bayesian Computation was intro-
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duced in Beaumont et al. (2002). In the past fifteen years, ABC has been successfully applied in

different branches of bioscience and human science, for example, genetics (Beaumont et al. (2002),

Tanaka et al. (2006), Lopes & Boessenkool (2010), Lombaert et al. (2011), Estoup et al. (2012),

Silk et al. (2013), Foll et al. (2008)), HIV contact tracing (Blum & Tran (2010)), protein networks

evolution (Ratmann et al. (2007), Ratmann et al. (2009)), archeology (Wilkinson & Tavaré (2009)),

ecology (Jabot & Chave (2009)), molecular biology (Joyce & Marjoram (2008)), and coalescent

models (Tavaré et al. (1997)). This method is also applied in other fields, such as operational risk

(G. Peters & Sisson (2006)), and engineering (Nevat et al. (2008)).

2.2.1 ABC and Its Extensions

There are different versions of ABC methods that are used to generate observations from the

posterior distribution. In this section, we review ABC and some of its extensions and illustrate

their performances. We also discuss the choices of the inputs in ABC.

2.2.1.1 Simple ABC

According to Tavaré et al. (1997), the simple method of ABC is based on the rejection method.

In this approach, the parameter of interest θ is generated from the prior distribution, π(θ). Then the

acceptance of θ is based on the corresponding simulated values being identical with the observed

values, y, that is, we have to generate an observation from the sampling distribution given the

generated parameter value and if the generated observation is same as the observed one, we accept

the generated θ at that step and repeat the process. Hence, for each iteration, the method proceeds

as follows

1.i. Generate θ∗ from the prior π(θ).



8

1.ii. Generate z∗ from the density f (z|θ∗).

1.iii. Accept θ∗ if z∗ = y; return to 1.i.

Here, the accepted values of θ are from π(θ|(z∗−y) = 0), i.e., this method gives samples from the

exact posterior distribution, π(θ|y) (Marin et al. (2012)) since

f (θ) ∝ ∑
z∗∈D

π(θ) f (z∗|θ)Iy(z∗) = π(θ) f (y|θ) ∝ π(θ|y),

where D is a finite or countable set of y and Iy denotes the indicator function on y. However, the

acceptance rate of observing z∗ = y is zero for continuous case and in such situation, the simple

ABC method is extremely inefficient. This motivates the following method.

2.2.1.2 ABC-Rejection

The ABC-Rejection method (Pritchard et al. (1999)) handles the data with a set of summary

statistics (S ), distance metric (ρ), and tolerance level (ε). Instead of matching the exact observa-

tions from the observed and simulated data, this method allows summarizing the data using statis-

tics to reduce the dimensionality. Here, the comparison can be done by the lower-dimensional

summaries of the data. Additionally, the simple rejection method does not account the continuous

distribution, because the probability of exact match between y and z∗ is zero. To relax the idea

from the simple ABC method, we consider a metric, ρ > 0 on the space of summary statistics S(·)

to measure how close the simulated data, z∗ is from the observed data, y. Then we might accept

the generated parameter value θ with a predefined tolerance level, ε. Thus, each iteration of the

previous ABC method can be modified as follows

2.i. Generate θ∗ from the prior π(θ).

2.ii. Generate z∗ from the density f (z|θ∗).
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2.iii. Calculate the distance, ρ(S(y),S(z∗)).

2.iv. Accept θ∗ if ρ≤ ε, where ε > 0, a tolerance level; return to 2.(i).

This method does not sample from the exact posterior distribution, π(θ|y) but samples data from

the marginal of z∗, π∗(θ|y) =
∫

π∗(θ,z∗|y)dz∗ (Marin et al. (2012)), where the integrand is defined

as follows

π
∗(θ,z∗|y) =

π(θ) f (z∗|θ)IAyε(z∗)∫
Ayε

π(θ) f (z∗|θ)dz∗dθ
,

with Ayε = {z∗ ∈ D|ρ(S(y),S(z∗)) ≤ ε}, D is a finite or countable set of z∗, and IA denotes the

indicator function on A.

A particular case of the ABC-Rejection method is equivalent to the simple ABC when the

summary statistic is sufficient and the tolerance level is zero.

2.2.1.3 ABC-MCMC

For the high dimensional data, the samples from the prior are rejected with high probability in

the ABC rejection method because of the proposals from the prior is in the regions of low posterior

probability. A feasible way to overcome this complexity is to combine ABC with the Markov

chain Monte Carlo methodology (Marjoram et al. (2003), Turner & Van Zandt (2012), Marin et al.

(2012)).

MCMC has been a widely used methods for sampling from the complex models. The Metropolis-

Hastings algorithm is the most popular in MCMC setup. It can be used to sample from the pos-

terior distribution without considering p(y) in (1.1). First, we choose an initial value θ, denoted

by θ(0). We then sample a candidate value, θ∗ from the proposal distribution, q(θ|θ(0)) which is

the probability of θ∗ given the previous value, θ(0). Now, the acceptance probability of θ depends

on the ratio of π(θ∗|y)
q(θ∗|θ(0)) for the candidate state with the corresponding ratio for the previous state,
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π(θ(0)|y)
q(θ(0)|θ∗) . This form of the acceptance probability ensures that the stationary distribution is the

target posterior distribution. Hence the acceptance probability, α is given by

α = min

{
1,

π(θ∗|y)q(θ(0)|θ∗)
π(θ(0)|y)q(θ∗|θ(0))

}
= min

{
1,

π(θ∗)L(θ∗|y)q(θ(0)|θ∗)
π(θ(0))L(θ(0)|y)q(θ∗|θ(0))

}
.

Since we are only interested in the posterior distributions, the marginal distribution cancels out

in the calculation of α. Now, we set θ(1) = θ∗ with probability α, otherwise, θ(1) = θ(0). Then,

we continue this process until we get a chain of θ, {θ(0),θ(1), . . . ,θ(B)} to estimate the posterior

distribution.

MCMC algorithm can be incorporated in ABC method for the target distribution, π∗(θ,z∗|y).

The ABC method within the MCMC framework (Marjoram et al. (2003)) proceeds as follows:

3.i. Initialize θ(0),b = 0.

3.ii. Generate a candidate value θ∗ ∼ q(θ|θ(b−1)), where q(·) is some proposal density.

3.iii. Generate z∗ from the density f (z|θ∗).

3.iv. Set θ(b) = θ∗ with probability

α(θ∗,θ(b−1)) = min

{
1,

π(θ∗)q(θ(b−1)|θ∗)
π(θ(b−1))q(θ∗|θ(b−1))

I(ρ(S(z∗),S(y))≤ ε)

}

otherwise set θ(b) = θ(b−1).

3.iv. Repeat until b≤ B.
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Here, π∗(θ,z∗|y) is a stationary distribution (Marin et al. (2012)), because

π∗(θ∗,z∗|y)
π∗(θ(b−1),z∗|y) ×

q(θ(b−1)|θ∗) f (z∗|θ(b−1))

q(θ∗|θ(b−1)) f (z∗|θ∗)

= π(θ∗) f (z∗|θ∗)I(ρ(S(z∗),S(y))≤ε)

π(θ(b−1)) f (z∗|θ(b−1))I(ρ(S(z∗),S(y))≤ε)
× q(θ(b−1)|θ∗) f (z∗|θ(b−1))

q(θ∗|θ(b−1)) f (z∗|θ∗)

= π(θ∗)q(θ(b−1)|θ∗)
π(θ(b−1))q(θ∗|θ(b−1))

I(ρ(S(z∗),S(y))≤ ε),

where θ(b) is the generated value of θ at the bth iteration. This method also samples from the

approximate posterior distribution and depends on the choices of the proposal density, the initial

value of θ, the tolerance level, the summary statistics, and the distance metric.

Other ABC methods include the ABC-partial rejection control (ABC-PRC, Sisson et al. (2007))

has been developed based on sequential Monte Carlo, ABC-PMC (Population Monte Carlo) which

is discussed in Beaumont et al. (2009). All the methods in ABC are mainly structured based on the

inputs used in the models. In the next section, we discuss the brief idea of the inputs for ABC.

2.2.2 ABC Inputs

The inference from ABC mainly depends on choice of i) the tolerance level (ε), ii) the distance

metric (ρ), and iii) the summary statistics (S ).

Tolerance Level

The choice of tolerance level ε may affect the acceptance procedure. Smaller values of the

tolerance level imply lower acceptance rate of the parameter whereas the higher values of the

tolerance are associated with the acceptance of all the parameters from the prior distribution. Also,

the tolerance level depends on the choice of the prior as well as different choices of summary
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statistics. In particular, if the dimension of the summary statistics is increased, the choice of

tolerance level has to be more specific. So the zero tolerance level ensures the required outcome

but makes the computations impossible. However, the values larger than zero used in the literature

may result in biased results.

Distance Metric

The choice of distance metric measures the closeness of the simulated values with the observed

ones. The Euclidean distance is widely used metric in ABC setup. But this choice may not be the

best in terms of the error to estimate the posterior. This measure is scale dependent, so changing

the scale of measurement implies the change of the results. Since this scale is determined by

the summary statistics, the choice of summary statistics plays an important role in choosing the

metric. Thus, the choice of summary statistics targets at reducing the dimensions as well as to

extract the important information about the parameters of interest. In the most situations, it is quite

difficult and impossible to get a suitable set of summary statistics in ABC setup. However, for

the categorical variables, we can not use the Euclidean metric. In such situation, we may consider

different similarity measures based on categorical variables, for example, Jaccard coefficient.

Summary Statistics

The choice of summary statistics is a crucial step in ABC as it should reflect the reduction

of dimensions along while maintaining sufficient information of the parameters of interest. Since

the likelihoods are intractable in ABC approach, summary statistics are often not sufficient and

hence, the choice of the statistic involves loss of information and reduction of dimensionality.

Due to the curse of dimensionality, the rate of convergence of the posterior means with respect
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to π(θ|S(y)) decreases as the dimension of summary statistic increases. However, except for the

sufficient statistics, the choice of summary statistics depends on the data set as the information of

summary statistics may vary within the parameter space. There are different approaches available

and Blum et al. (2013) discussed various methods and gave a comparative study based on those

methods. Here, we discuss three popular approaches, reviewed in Blum et al. (2013), to choose the

best subset, denoted as s = (s1, . . . ,sp), of summary statistics.

Regression Adjustment. To avoid the effect of the discrepancy between the observed sum-

mary statistic and the summary statistic from the generated observations, Beaumont et al. (2002)

proposed two transformations:

• weighting the θ(b) according to the value of ρ(S(y),S(z(b))),

• adjusting the θ(b) using local linear regression.

Let the regression model be

θ
(b) = m(S(z(b)))+ e(b),

where m(S(z(b))) = E(θ|S(y) = S(z(b))) = α+βT S(z(b)) is the mean function and e(b) is the bth

random error with mean 0 and common variance. In the neighborhood of S(y), Beaumont et al.

(2002) proposed to approximate the conditional expectation of θ given S(y) by m̂(S(z(b))) where

m̂(S(z(b))) = α̂+(S(z(b))−S(y))T
β̂.

An estimate of the conditional expectation can be obtained by minimizing ∑
B
b=1 w(b)‖m(S(z(b)))−

θ(b)‖2 with w(b) = Ke(‖S(z(b))− S(y)‖), Ke(·) is generally taken to be Epanechnikov kernel.

Hence, the adjustment for the weighted sample is as follows:

θ
(b)∗ = m̂(S(y))+(θ(b)− m̂(S(z(b))),b = 1, . . . ,B.
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Blum & François (2010) improved the local linear model by estimating the conditional mean

and variance of the nonlinear heteroscedastic regression model. This model is defined as follows:

θ
(b) = α+(S(z(b))−S(y))β+σ(S(z(b)))e(b).

Here, an estimate of the conditional expectation can be obtained by fitting a nonlinear regression

model and the variance term is estimated by using log(θ(b)− m̂(S(z(b))))2 = logσ2(S(z(b)))+ξ(b),

ξ(b) is the bth random error.

Neural Network. In the neural network setup, the hidden layers help to decrease the dimension

of the summary statistics. Suppose there are H < p hidden units, x1, . . . ,xH in the neural network.

For j = 1, . . . ,H,x j can be defined as

x j = h(
p

∑
k=1

w(1) jksk +w(1) j0),

where w(1) jk are the weights in the initial layer of the neural network and h(·) is a non-linear

function. In the second layer, x j are combined with the regression function m(·) which can be

defined as

g(
H

∑
j=1

w(2) jz j +w(2)0),

where w(2) j are the weights in the next layer of the neural network and g(·) is a link function. Blum

& François (2010) fixed the number of hidden units, H to the dimension of θ and the corresponding

weights can be obtained by minimizing the following criterion

B

∑
b=1

w(b)‖m(S(z(b)))−θ
(b)‖2 +λ‖ω‖2,
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where w(b) =Ke(‖S(z(b))−S(y)‖) is the weight of the sample (θ(b)∗,S(z(b))), λ> 0 is the adjusted

parameter which is used to reduce the weights towards zero to get instructive summary statistics,

and ω is vector of all weights in the neural network. Hence the weighted sample from the posterior

distribution is obtained by the adjustment

θ
(b)∗ = m̂(S(y))+(θ(b)− m̂(S(z(b))))

σ̂(S(y))
σ̂(S(z(b)))

,b = 1, . . . ,B.

Semi-automatic Method. Fearnhead & Prangle (2012) proposed to choose summary statistics

that are equal to the posterior mean. They used simulation method to estimate appropriate summary

statistic. The idea of this method is to run ABC to determine a region of non-negligible posterior

mass and then simulate sets of parameter values and data to estimate the summary statistics. Let

f (·) be a vector-valued function. The simplest choice of f (y) is y. It can also be vector valued.

The explanatory variables in the model are defined as the transformation of the simulated data,

( f (y1), f (y2), . . . , f (yk)), where k is the dimension of parameter vector. The responses at the bth

step are defined as θ(b)1, . . . ,θ(b)k. Then the fitted model is

θ
(b) = E(θ(b)|y)+ e(b) = β

(b)
0 +β

(b) f (y)+ e(b),

where e(b) is a zero-mean noise. Hence, the estimate of E(θ(b)|y) is β̂
(b)
0 + β̂(b) f (y). In ABC,

we use the difference in summary statistics, so the constant terms cancel out and hence, the bth

summary statistic for ABC is β̂(b) f (y). This method is known as Semi-Automatic ABC.

There are also different methods to reduce the dimension of the summary statistics, such as,

sufficiency criterion (Joyce & Marjoram (2008)), partial least square regression (Wegmann et al.

(2009)), entropy criterion (Nunes & Balding (2010)), AIC-BIC criteria (Blum et al. (2013)), and

regularization approach using ridge regression (Blum et al. (2013)).
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2.2.3 Examples

Before moving to the next section, let us consider few examples to illustrate different ABC

methods discussed above. Here, our main purpose is to compare the ABC methods with the actual

posterior distribution or the true mean of the parameters. So we consider one simulation study and

one real data examples based on ABC-Rejection and ABC-MCMC, respectively.

Simulation Study

Let Y be a set of independent and identically distributed random variable of size n from the

normal distribution with mean θ and variance σ2. Here, we are interested in the estimation of the

mean parameter µ. We assume a normal prior for θ with mean θ0 and variance σ2
0. In this example,

n = 10,σ2 = 1,θ0 = 3, and σ2
0 = 1. In each iteration of the ABC-rejection method, θ∗ is generated

from the prior, Normal(3,1). Then using the value of θ = θ∗, generate z∗ from Normal(θ∗,1).

Here, we consider the summary statistic, S as the sample mean, ȳ = 3.07 and the distance metric

as Euclidean distance. In the next step of ABC, we calculate the absolute distance between the

mean of observed and generated values, that is, y and z∗. Finally, we check if the distance is less

than a certain tolerance level. In our case, we consider the tolerance level, ε as 0.01 and we accept

θ∗ if the distance is less than 0.01. We run the simulation B = 25000 times with 5000 burn-in

period to get the approximate posterior distribution. In Fig. 2.1, the actual posterior density is

compared with the approximate posterior density from the ABC-Rejection. The horizontal axis

represents the accepted values of θ from the simulation. Hence, the rejection method performs

almost same as the actual posterior for the normal distribution with known variance.
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Figure 2.1: Comparison of actual posterior with ABC-Rejection method

Logistic Regression

Now, we illustrate the idea of ABC-MCMC for the logistic regression model using a real life

example. We consider the nodal data (taken from boot package in R). The data consists of 53

patients who are diagnosed with prostate cancer and 6 predictor variables which are measured

before surgery. Here, the goal is determine the relationship between nodal involvement and the

predictor variables. The response variable, r, is an indicator of nodal involvement. The predictor

variables are m (a column of ones), aged (patients age, less than 60 (0) and 60 or over (1)), stage

(size and position of the tumor, 1 indicates a more serious), grade (seriousness of the tumor, 1

indicates a more serious case), xray (X-ray examination, 1 indicates a more serious case), and acid

(level of serum acid phosphatase). So, we can use the logistic regression model in this setup. So,

the model can be defined as

logit(p j) = log(
p j

1− p j
) = XT

j β, p j = P(y j = 1|X j = x j), j = 1,2, . . . ,53,
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where X j is the jth vector of the design matrix X = (m, aged, stage, grade, xray, acid) and

β = (β0,β1, . . . ,β5) is the corresponding regression parameter vector. Here, we are interested

in estimating the regression parameter β. We consider a normal prior for β with mean µ0 and

variance Σ0. Let β(b) denote the bth iteration in the simulation. In ABC-MCMC setup, first we

have to initialize β(0) = (0,0,0,0,0,0). We then generate β∗ from a proposal density q(β|β(b−1))

and generate z∗ from the density f (z|β∗). Here, we consider a normal proposal distribution with

variance Σq. Now, we accept β(b) = β∗ with probability,

α(β∗,β(b−1)) = min

{
1,

π(β∗)q(β(b−1)|β∗)
π(β(b−1))q(β∗|β(b−1))

I(ρ(S(z∗),S(y))≤ ε)

}

and run until we get B vectors of β. In this example, n = 53, B = 100000, µ0 = (-3, 0, 1.4, 0.8,

1.8, 1.7), Σ0 = diag(1,1, . . . ,1), β(0) = (0,0,0,0,0,0), and Σq = 0.2 Σ0. Here, we consider the

tolerance level as 0.2 and distance metric as Euclidean distance with the summary statistic for the

observed data is yT X . Since we run the MCMC sampler, we consider 50000 burn-in to estimate the

parameters. In Table 2.1, we compare the estimates of the posterior mean of the parameter using

ABC-MCMC with the general MCMC for generalized linear model (using OpenBUGS software).

Here, we can see that the estimates from the ABC-MCMC are slightly different from the actual

estimate. This may happen due to the choice of the summary statistics as well as the tolerance

level.

In this section, we have discussed different methods in ABC to sample from the true or ap-

proximate posterior distribution. However, ABC methods require a perfect choice of the summary

statistics, the tolerance level, and the distance metric. The tolerance level and the distance metric

do not cause any huge problem in the simulation, but the choice of summary statistic creates the

difficulty in the ABC methods. It happens because we are not using the full information of the data

due to the complex models or intractable likelihood functions and hence the sufficient statistics.
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Table 2.1: Comparison of the estimates of β using ABC-MCMC and MCMC

Parameter ABC-MCMC MCMC
β̂0 -3.195 -3.186
β̂1 -0.225 -0.267
β̂2 1.682 1.422
β̂3 0.586 0.878
β̂4 1.531 1.800
β̂5 1.611 1.728

In case of the nonparametric Bayesian inference, we have to deal with different complex mod-

els. The next section reviews the nonparametric inference under Bayesian setup. The section is

divided in to two parts, first part consists of the idea and posterior simulation method depending

upon Dirichlet process and the last part is dealing with the Pitman-Yor process.

2.3 Nonparametric Bayesian Models

Bayesian nonparametric approach provides a flexible and at the same time practically feasible

approach in which a prior is assigned over the space of all distributions. The Dirichlet process and

a generalization, that is, Pitman-Yor process are the popular approaches in the Bayesian nonpara-

metric models. These two stochastic processes are defined as probability measures on the space

of probability measures. In next two sections, we review the concepts and properties of both the

models.



20

2.3.1 Dirichlet Process

The Dirichlet process (DP) is a stochastic process. Draws from the DP can be explained as

random because it is a distribution over probability measures to allow certain functions to be inter-

preted as distributions over specific probability space. According to Ferguson (1973), the DP can

be defined as follows.

Definition 1 Let X be a space and A a σ−field of subsets. Let G0 be a distribution on (X ,

A) and α be a non-null finite, non-negative real number. Then G is a Dirichlet process on (X ,

A), denoted as DP(α,G0), with base distribution G0 and concentration parameter α if for every

positive integers n and measurable partition (A1, . . . ,An) of X , i.e., if A j ∈ A for all j, A j ∩Al =

/0 for j 6= l, and ∪n
j=1A j = X , then the distribution of (G(A1), . . . ,G(An)) has a k-dimensional

Dirichlet distribution with parameter (αG0(A1), . . . ,αG0(An)).

The DP can be represented in different form. The next section describes the Pólya urn scheme

and extend the idea to DP mixture models and predictive distributions.

Pólya Urn Scheme and Dirichlet Process Mixture Models

Let θ1, . . . ,θn be a sequence of independent samples from G and θ j’s take values in X since G

is a distribution over X . Now, we are interested in the posterior distribution of G given observed

values of θ1, . . . ,θn. Let (A1, . . . ,Ak) be a finite measurable partition of X , and let nr = #{ j : θ j ∈

Ar} be the number of observed values in Ar. By the conjugacy property of the Dirichlet and the

multinomial distributions, we have:

G(A1), . . . ,G(Ak)|θ1, . . . ,θn ∼D(αG0(A1)+n1, . . . ,αG0(Ak)+nk).
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Since the above is true for all finite measurable partitions, the posterior distribution over G must

be a DP as well. The Pólya urn representation of the DP is defined as follows:

Y1, . . . ,Yn
iid∼ G

G ∼ DP(α,G0),

where DP(α,G0) denotes a DP with concentration parameter α and base distribution G0.

Figure 2.2: Structure of the Dirichlet process

Hence, the marginal distribution of (Y1, . . . ,Yn) are

Y1 ∼ G0(Y1)

Y2|Y1 ∼
α

α+1
G0(Y2)+

1
α+1

δ{Y1}(Y2)

Y3|Y1,Y2 ∼
α

α+2
G0(Y3)+

1
α+2

δ{Y1}(Y3)+
1

α+2
δ{Y2}(Y3)

...

Yn|Y1, . . . ,Yn−1 ∼
α

α+n−1
G0(Yn)+

1
α+n−1

n−1

∑
j=1

δ{Y j}(Yn).
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Under the Dirichlet process mixture (DPM), we have another layer in the model and the model

can be defined as follows:

Yj|θ j ∼ f (y j|θ j)

θ j|G ∼ G

G ∼ DP(α,G0).

Figure 2.3: Structure of the Dirichlet process mixture

Dirichlet process mixture (DPM) models are discussed in Ferguson (1983), Escobar & West

(1995), and MacEachern & Müller (1998). The model is defined on a set of conditionally inde-

pendent observations, y = (y1, . . . ,yn). These observations may be multivariate. Now, the y j’s are

drawn from a mixture of distribution, f (y j|θ) with the mixing distribution over θ being G. Here,

we assume the prior for G is modeled by a DP with concentration parameter α and base distribution

G0. Since the random distribution G is discrete with probability one, these model can be treated as
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countably infinite mixture distributions. It is also evident from (2.1) that the representation of θ j

in terms of the successive conditionals is as follows

θ j|θ1, . . . ,θ j−1 ∼
α

j−1+α
G0(θ j)+

1
j−1+α

j−1

∑
l=1

δ(θl), (2.1)

where δ(θl) is the degenerate distribution at the point θl and the full prior conditional distribution

of θ j is as follows:

θ j|θ− j ∼
α

α+n−1
G0(θ j)+

1
α+n−1 ∑

k 6= j
δ{θk}(θ j),

where θ− j is the vector of θ except the jth element. The DP provides a conjugate family of priors

over distributions that is closed under posterior updates given observations. Rewriting the posterior

DP, we have:

G|θ1, . . . ,θn ∼ DP
(

α+n,
α

α+n
G0 +

n
α+n

∑ j δθ j

n

)
.

The posterior base distribution is a weighted average between the prior base distribution G0 and the

empirical distribution
∑ j δθ j

n . The weight associated with the prior base distribution is proportional

to α, while the empirical distribution has weight proportional to the number of observations n.

Thus we can interpret α as the strength or mass associated with the prior. Hence, the full posterior

conditional distribution of θ j|θ− j,y1, . . . ,yn can be written as

π(θ j|θ− j,y1, . . . ,yn) ∝
α

α+n−1
G0(θ j) f (y j|θ j)+

1
α+n−1 ∑

k 6= j
δ{θk}(θ j) f (yk|θk)

=
α

α+n−1
G0(θ j)m(y j)H(θ j|y j)+

1
α+n−1 ∑

k 6= j
δ{θk}(θ j) f (yk|θk),
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where m(y j) =
∫

G0(θ j) f (y j|θ j)dθ j is the marginal distribution of Yj and H(θ j|y j) =
G0(θ j) f (y j|θ j)

m(y j)

is the posterior distribution of θ j|y j.

The predictive distribution of θn+1 can be generated using the Pólya urn scheme. In this tech-

nique, we assume that an urn contains colored balls and we have to draw balls at random. First

we draw a ball and observe its color, we return it back to the urn. Then we add another ball of the

same color into the urn. A similar scheme is used by Blackwell & MacQueen (1973) to construct

a DP. Suppose each value in X is a unique color and θn+1 ∼ G0, the color of a ball which is put

into the urn. Also, we have an urn containing preselected balls. At first, we have to choose a color

drawn from G0, i.e. draw θ1 ∼ G0, add a ball with the same color into the urn and repeat the

process. In the (n+1)th step, we will choose a new color with probability α

α+n and add a ball with

the same color into the urn, or, with probability n
α+n , we draw a ball at random, then choose a new

ball with the same color and return both balls into the urn. This produces a sequence of {θ j}∞
j=1

with conditional probabilities

θn+1|θ1, . . . ,θn ∼
α

α+n
G0(θn+1)+

∑
n
j=1 δ(θn+1=θ j)

α+n
. (2.2)

Since the values of draws {θk} are repeated, let η1, . . . ,ηm be the unique values among θ1, . . . ,θn,

and nk be the number of repeats of ηk. Then the predictive distribution in Eq. (2.2) can be written

as:

θn+1|θ1, . . . ,θn ∼
α

α+n
G0(θn+1)+

∑
m
k=1 nkδηk

α+n
.

Hence, the Pólya urn model proceeds as follows:

Generate colors θ1, . . . ,θn from Pólya urn scheme

Given the ball colors, we generate each data point y j ∼ f (y j|θ j).
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Under the DPM models, we can also calculate the predictive distribution of a new observation

Yn+1. The corresponding model can be defined as:

Yn+1|θn+1 ∼ f (yn+1|θn+1)

θn+1|G ∼ G

G ∼ DP(α,G0).

Hence, the predictive distribution of Yn+1 is

f (Yn+1) ∝
α

α+n

∫
G0(θn+1) f (yn+1|θn+1)dθn+1 +

1
α+n

n

∑
j=1

f (yn+1|θ j)

=
α

α+n
m(yn+1)H(θn+1|yn+1)+

1
α+n

n

∑
j=1

f (yn+1|θ j).

Integration over θn+1 can be done analytically if f (·) and G0(·) are conjugate.

An alternative way to represent the DPM model is based on ‘latent class’. If the jth and j′th

observations belong to the same cluster, θ j = θ j′ . Here, a set of random variables c j corresponds

to unique component parameters Kc with the data points θ j = Kc j . The model in this setup (Neal

(2000)) can be defined as follows

Y j|c j,K ∼ f (y j|Kc j)

c j|p ∼ Discrete(p1, . . . , ps)

Kc j ∼ G0

p ∼ D(α/s, . . . ,α/s), (2.3)
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where p = (p1, . . . , ps), are given a symmetric Dirichlet prior with concentration parameter α/s

which tends to zero as s→ ∞. This model is used when a cluster with high probability are associ-

ated with the parameter θ.

An important generalization of the DPM model, mixtures of DP, arises when the base measure

of the DP prior includes unknown hyperparameters η. In this setup, the model has an unknown

parameter α and base measure Gη. It can be defined as follows:

Yj|θ j ∼ f (y j|θ j)

θ j|G ∼ G

G|α,η ∼ DP(α,Gη)

(α,η) ∼ m(α,η),

where m(α,η) is the joint distribution of (α,η) (Antoniak (1974)). There is another way to repre-

sent the DPM by constructing stick-breaking process.

Stick-breaking Construction

The stick-breaking construction is an alternative way to represent a DP which was introduced

by Sethuraman (1994). The Pólya urn scheme by Blackwell & MacQueen (1973) generates θ∼G,

not G itself. Stick-breaking is a constructive way to form the measure, G = ∑
∞
k=1 πkδθk . In this

representation, we assume that we have a stick of length 1. We generate a random variable β1 from

the Beta distribution with parameters, (1,α) and break it at position β1 and we assign π1 equal

to the length of the part of the stick that we broke. Now take the stick to the right, and generate

β2 ∼ Beta(1,α). Break off the stick β2 into the stick. Again, π2 is the length of the stick to the

left, that is, π2 = (1− β1)β2. We repeat the same process to obtain π3,π4, . . . and in this way,
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we get an explicit construction of G. Then, πk can be modeled as πk = βk ∏
k−1
l=1 (1− βl), where

βk ∼ Beta(1,α). In the previous schemes, θ are sampled directly by the base distribution θk
iid∼ G0.

Consequently, the distribution of G can be written as a sum of delta functions weighted with the

probabilities, πk as G = ∑
∞
k=1 πkδθk . Thus the stick-breaking construction gives us a simple and

intuitive way to construct a DP.

βk ∼ Beta(1,α)

π1 = β1

πk = βk

k−1

∏
l=1

(1−βl),k = 2,3, . . .

θk
iid∼ G0

G =
∞

∑
k=1

πkδθk .

Then G∼DP(α,G0). Hence, according to the Stick-breaking construction, the generation process

proceeds as follows:

Generate the probabilities π1, . . . ,π∞ from a Stick-breaking process

Generate the parameters η1, . . . ,η∞ ∼ G0,

where ηk is the parameter corresponding to the kth distinct group

For each individual, generate the set of groups

g1, . . . ,gn ∼ Multinomial(π1, . . . ,π∞)

Given the groups and parameters, gen-

erate each item y j ∼ f (y j|θg j).

In Bayesian context, we are mainly interested in the posterior inference of the model and if

we consider the Bayesian nonparametric models, the computation is challenging. In last 20 years,
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there has been notable works on that area and the most popular methods are discussed in Neal

(2000).

Posterior Simulations for DPM

In this section, we provide a review of many inference algorithms (Neal (2000)) for DPM

models. There are different simulation-based methods for conjugate and non-conjugate priors to

get inference on posterior distribution. These methods are mainly based on the Markov chain

with few modifications. For conjugate prior models, we can apply Gibbs sampling. But for non-

conjugate priors, it is difficult to perform the numerical integration. MacEachern & Müller (1998)

and West & Escobar (1993) developed Monte Carlo based approach to handle the non-conjugate

priors. Depending upon the representation (2.1) or (2.3) used, algorithms will either sample θ j

directly, or sample the indicators c j. These algorithms are briefly discussed in Neal (2000).

Conjugate Prior. The first algorithm is introduced for DPM models in Escobar (1994) and

has been used in Escobar & West (1995). It directly samples θ j from the distribution in (2.1).

Using (2.1), parameters are sampled one at a time from the following distribution:

θ j|θ− j,y j,α,G0 ∼ nc
1

α+n−1 ∑
l 6= j

f (y j|θl)δ(θl)+nc
α

α+n−1
r jH j, (2.4)

where nc is a normalizing constant, f (y j|θl) is the density of y j, r j =
∫

f (y j|θ)dG0(θ), and H j is

the posterior distribution for θ based on G0 and f (y j|θ). Here, the probability of a new component

is proportional to the posterior of the parameter provided the present observation weighted by the

marginal density of the observation. Hence, the algorithm can be summarized as

Algorithm 1 (Neal (2000)) Let θ = (θ1, . . . ,θn).

• Initialize θ.
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• Generate θ j from (2.4), for j = 1, . . . ,n.

This algorithm may be inefficient due to the slow convergence rate. It happens because sometimes

a group of observations is associated with the same parameter value. Since this algorithm can

change only one observation at a time, the chance of occurrence is very low for the change of θ in

such a group. For a parameter vector to change when more than one observation is attached to it,

the low probability transition is required.

This difficulty can be handled by using Gibbs sampling to the model (2.3). The next algorithm

was first used by Bush & MacEachern (1996). For the finite K, the Gibbs sampling consists of

choosing a new value for each unique component c j from its conditional distribution. When K

tends to infinity, we choose the Kc that is associated with certain observations and perform the

Gibbs sampling. Hence, the posterior distribution over c j is as follows:

P(c j = c|c− j,y j,K) =

 nc
n− j,c

n−1+α
f (y j|Kc) if c = cl for some l 6= j;

nc
α

n−1+α

∫
f (y j|Kc)dG0(K) if c 6= cl∀l 6= j

(2.5)

where c− j is the vector of c without the jth term, nc is a normalizing constant, n− j,c is the number

of cl for l 6= j, and K is a set of Kc. Hence, the algorithm can be written as:

Algorithm 2 (Neal (2000)) Let c = (c1, . . . ,cn) and K = (Kc : c ∈ {c1, . . . ,cn}).

• Initialize (c1, . . . ,cn) and K.

• Remove j from Kc j and generate a new sample from (2.5). If c j is not same as any other

values, draw a value from the posterior H j.

• Generate a new value of Kc|y j,∀ j for which c j = c.

In conjugate setup, instead of using Kc, we may use the Markov chain that consists of c j. This algo-

rithm is discussed in MacEachern (1994) and Neal (1992) in the context of normal and categorical
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models, respectively. Here, all parameter vectors are integrated out of the state of the Markov

chain, without c j and other hyper-parameters. Hence, the posterior probability corresponding to c j

is

P(c j = c|c− j,y j) =

 nc
n− j,c

n−1+α

∫
f (y j|K)dH− j,c(K) if c = cl for some l 6= j;

nc
α

n−1+α

∫
f (y j|K)dG0(K) if c 6= cl∀l 6= j

(2.6)

where nc is a normalizing constant, n− j,c is the number of cl for l 6= j, and H− j,c is the poste-

rior distribution of K based on G0 and for all y j for which c j = c. Hence, the algorithm can be

summarized as follows:

Algorithm 3 (Neal (2000)) Let c = (c1, . . . ,cn).

• Initialize c1, . . . ,cn.

• Generate c j from (2.6), for j = 1, . . . ,n.

This algorithm is a very efficient sampling algorithm for the conjugate case because it removes the

noise from the random parameters and gives a precise estimate of the likelihood.

Non-conjugate Prior. If G0 is not conjugate, simulations from the previous algorithms can

not be preformed. Because, the integrals associated with each algorithm are usually analytically

intractable. West & Escobar (1993) proposed a Monte Carlo based approximation to deal with

the integrals. But, this method is not accurate. MacEachern & Müller (1998) proposed another

algorithm, no gap algorithm, based on a valid Markov chain sampler.

In the no gap algorithm, c1 . . . ,cn consists of k distinct elements and the idea of this algorithm

is to extend the Algorithm 2. MacEachern & Müller (1998) modified the method as follows:

Algorithm 4 (Neal (2000)) Let c = (c1, . . . ,cn) , K = (Kc : c ∈ {c1, . . . ,cn}) = (K1, . . . ,Kk).

• Initialize (c1, . . . ,cn) , (K1, . . . ,Kk).



31

• If c j 6= cl for all l 6= j, then with probability q/(q+1), c j would be unchanged. Otherwise,

label c j as q+ 1, or draw a value for Kq+l from G0 if c j = cl for some l 6= j. Then draw a

new value for c j from {1, . . . ,q+1} using the following probabilities

P(c j = c|c− j,y j,K1, . . . ,Kq+1) =

 ncn− j,c f (y j|Kc) if 1≤ c≤ q;

nc
α

q+1 f (y j|Kc) if c = q+1

where q is the number of distinct cl for l 6= j with the values of cl consist of {1, . . . ,q}.

• Generate a new value of Kc|y j,∀ j for which c j = c.

This algorithm does not require an evaluation of the integral that featured in the MCMC algo-

rithm for conjugate DPM models. The algorithm can be implemented to any model irrespective

of non-conjugate G0. Neal (2000) described another approach based on the Metropolis-Hastings

algorithms to update c j using the conditional prior as the proposal distribution. This algorithm can-

cels the factors and it does not contain c j when computing the following acceptance probability,

a(c∗j ,c j) = min

[
1,

f (Kc∗j |y j)

f (Kc j |y j)

]
. (2.7)

Hence, the algorithm can be written as follows:

Algorithm 5 (Neal (2000)) Let c = (c1, . . . ,cn) and K = (Kc : c ∈ {c1, . . . ,cn}).

• Initialize (c1, . . . ,cn) and K.

• Repeat the following R times

1. Generate a candidate Kc∗j from the following conditional prior distribution

P(c j = c|c− j) =


n− j,c

n−1+α
if c = cl for some l;

α

n−1+α
if c 6= cl for all l
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2. If c∗j is not in {c1, . . . ,cn}, generate value from G0 and set the new value of c j as c∗j

with probability (2.7). Otherwise, set the new value of c j as the previous value.

• Generate a new value of Kc|y j,∀ j for which c j = c.

If the updates of the Kc in the Algorithm 5 is excluded, the algorithm can be written in terms of θ j

instead of Kc j .

Algorithm 6 (Neal (2000)) Let θ = (θ1, . . . ,θn).

• Initialize θ.

• For j = 1, . . . ,n, repeat the following R times

1. Generate a candidate θ∗j from the following distribution

1
n−1+α

∑
l 6= j

δ(θl)+
α

n−1+α
G0.

2. Compute the acceptance probability,

a(θ∗j ,θ j) = min
[

1,
f (θ∗j |y j)

f (θ j|y j)

]
. (2.8)

3. Set the new value of θ j as θ∗j with probability in (2.8). Otherwise, set the new value of

θ j as the previous value.

A modification to Algorithm 6 improves mixing by proposing new clusters for non-singletons, that

is, more than one components are associated with the data vector and proposing non-singletons for

singletons. This modification can be done using the combination of the Metropolis-Hasting with

the partial Gibbs sampling. The algorithm proceeds as follows:

Algorithm 7 (Neal (2000)) Let c = (c1, . . . ,cn) and K = (Kc : c ∈ {c1, . . . ,cn}).



33

• Initialize (c1, . . . ,cn) and K.

• For j = 1, . . . ,n, if c j is not singleton,

1. Generate a candidate Kc∗j from G0.

2. Set the new value of c j as c∗j with probability

a(c∗j ,c j) = min

[
1,

α

n−1

f (Kc∗j |y j)

f (Kc j |y j)

]
.

Otherwise, draw c∗j from c− j choosing c∗j = c with probability n− j,c/(n− 1). Set the

new value of c j as c∗j with probability

a(c∗j ,c j) = min

[
1,

n−1
α

f (Kc∗j |y j)

f (Kc j |y j)

]
.

Otherwise, set the new value of c j as the previous value.

• For j = 1, . . . ,n, if c j is singleton,

1. Keep the same c j.

2. Otherwise, choose the new value of c j from (c1, . . . ,cn) with probability

nc
n− j,c

n−1
f (y j|Kc).

• Generate a new value of Kc|y j,∀ j for which c j = c.

Neal (2000) proposed an algorithm based on the Gibbs sampler with auxiliary variables for gen-

erating new clusters in the algorithm. This sampler is a simple and efficient way to deal with the

non-conjugate priors. In this algorithm, there are m auxiliary components. As m→ ∞, this algo-
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rithm tends to the Algorithm 2 because it uses m samples to estimate the marginal density. Here,

the probability distribution corresponding to c j is as follows:

P(c j = c|c− j,y j,K1, . . . ,Kq+m) =

 nc
n− j,c

n−1+α
f (y j|Kc) if 1≤ c≤ q;

nc
α/m

n−1+α
f (y j|Kc) if q < c≤ q+m

(2.9)

Hence, the algorithm proceeds as follows:

Algorithm 8 (Neal (2000)) Let c = (c1, . . . ,cn) and K = (Kc : c ∈ {c1, . . . ,cn}).

• Initialize (c1, . . . ,cn) and (K1, . . . ,Kk).

• Let q be the number of distinct cl for l 6= j with the values of cl consist of {1, . . . ,q}. Then

we have to choose one of the followings:

1. Draw the values for Kc from G0 for which q < c≤ q+m if c j = cl for some l 6= j.

2. If c j 6= cl for all l 6= j with label c j as q+1, draw the values for Kc from G0 for which

q+1 < c≤ q+m.

• Draw a new value for c j from {1, . . . ,q+m} using (2.9).

• Generate a new value of Kc|y j,∀ j for which c j = c.

There are some other algorithms available for both conjugate and non-conjugate model distri-

butions. Jain et al. (2007) and Jain & Neal (2012) have proposed split-merge algorithms to focus

on splitting a cluster into two or merging two clusters into one with the others remain same. The

main idea of these algorithms is to draw a conclusion about the better formation of one or more

clusters based on the proposed clusters. There are also different methods based on slice sampling

(Walker et al. (1999), Walker (2007)), particle filtering (Fearnhead (2004)), variational methods

(Blei & Jordan (2004), Kurihara et al. (2007)), and expectation propagation (Minka & Ghahra-

mani (2003)).
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2.3.2 Pitman-Yor Process

An extension to the DP is the Pitman-Yor process. Two parameter Poisson-Dirichlet process

defined by Pitman & Yor (1997), also referred as the Pitman-Yor process, P Y (d,α,G0) is a related

probability measure on the space of probability measures. The parameters of this process are: (1)

discount parameter d, 0 ≤ d < 1; (2) concentration parameter α, α > −d; (3) a base distribution,

G0. Let V1,V2, . . . be the set of independent random variables which are drawn from Beta(1−

d,α+ jd) and p j be the corresponding probabilities. Under the stick-breaking construction, p j are

defined as follows:

p1 = V1

p2 = V2(1−V1)

...

p j = Vj

j−1

∏
l=1

(1−Vj)

... (2.10)

Hence, the PYP can be written as follows:

Vj ∼ Beta(1−d,α+ jd)

(θ1, . . . ,θn)
iid∼ G0

p1 = V1

p j = Vj

j−1

∏
l=1

(1−Vj), j = 2,3, . . . ,

P Y (d,α,G0)
D
=

∞

∑
j=1

p jδθ j .
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If d = 0, the PYP reduces to the DP. This process can also be defined in terms of the unique values

of θ1, . . . ,θn, denoted as, η1, . . . ,ηm. Other than stick braking construction, PYP can be redefined

in terms of Pólya urn scheme.

2.3.2.1 Pólya urn scheme

The Pólya urn scheme is another representation of the PYP. Let d, (0≤ d < 1) be the discount

parameter, α, (α >−d) denote the concentration parameter, and G0 be the base distribution. Sup-

pose (θ1, . . . ,θn) be the sequence of parameters. In this setup, the predictive distribution of the

model can be defined as

θn+1|θ1, . . . ,θn ∼
α+dm
α+n

G0(θn+1)+
1

α+n

m

∑
k=1

(nk−d)δηk(θn+1),

where {η1, . . . ,ηm} are the unique values of {θ1, . . . ,θn} with corresponding frequency nk. For the

DP, the previous process is reduced to the following form

θn+1|θ1, . . . ,θn ∼
α

α+n
G0(θn+1)+

1
α+n

n−1

∑
k=1

δθk(θn+1).

Let θ1, . . . ,θn|G ∼ G with E(G) = G0. According to Fall & Barat (2014), the posterior distri-

bution of PYP can be expressed as follows:

G|θ1, . . . ,θn
D
=

m

∑
l=1

p jδη j + rmGm, (2.11)

where η1, . . . ,ηm are the unique values of θ1, . . . ,θn with corresponding frequencies are n1, . . . ,nm,

p1, . . . , pm,rm ∼ Dirichlet(n1−d, . . . ,nm−d,α+dm)

Gm ∼ P Y (d,α+dm,G0)
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with E(Gm) = G0 and Gm is independent of p1, . . . , pm,rm.

2.3.2.2 Pitman-Yor mixture models

Now, the extension of the DPM is the Pitman-Yor mixture (PYM) models and it can be defined

as follows:

Yj|θ j ∼ f (y j|θ j)

θ j|G ∼ G

G ∼ P Y (d,α,G0).

For the PYM, it is difficult to calculate the posterior distributions. There are different approx-

imate techniques are available. Fall & Barat (2014) reviewed some of the methods. Also, the

techniques from Neal (2000) can be extended in this context. In the next chapter, we propose an

approximate Bayesian computation method based on DP and PYP nonparametric models.



CHAPTER 3

APPROXIMATE BAYESIAN COMPUTATION FOR BAYESIAN

NONPARAMETRIC MODELS (ABC-BNP)

3.1 Introduction

In recent years, a large literature has developed on Bayesian nonparametric models due to

the versatility and availability of simple and efficient way to compute the posterior distribution.

Most of the literature discuss about the DPM models and a substantial amount of study has been

done on MCMC for posterior calculation. ABC provides a fast and flexible method for posterior

computation and intractable and the intractable likelihoods are easily handled by this computation

method. In addition, it is also applicable to PYP. In this chapter, we propose a general method for

Bayesian nonparametric models using ABC, denoted as ABC-BNP.

3.2 Method

We consider a Bayesian nonparametric model of the form

Yj|θ j ∼ f (y j|θ j)

θ j|G ∼ G

G ∼ BNP(ζ,G0), (3.1)
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where BNP stands for Bayesian nonparametric models, G is the random mixing measure with

base distribution G0, f (y j|θ j) denotes a parametric distribution, and ζ is the parameter vector

corresponding to G. For DPM models, ζ=α and for PYM models, ζ becomes (d,α), where d is the

discount parameter and α represents the concentration parameter. Here, for each observation, j =

1, . . . ,n, θ j can be obtained by using the Pólya urn scheme and the corresponding prior distribution

is defined by the full conditionals:

π(θ j|θ− j) =
αk

α+n−1
G0(θ j)+

1
α+n−1 ∑

k 6= j
lk, (3.2)

where θ− j = {θ1, . . . ,θ j−1,θ j+1, . . . ,θn}, αk is the constant based on the different nonparamet-

ric Bayesian models, lk is a coefficient depending upon the condition on δ(·) corresponding to

Bayesian nonparametric models and jth observation, and δ(x) is the degenerate distribution at the

point x. So, the full conditional posterior distribution can be expressed as

θ j|θ− j,y j ∼ ncαkPj

∫
f (y j|θ)dG0(θ)+nc ∑

k 6= j
f (y j|θ j)lk,

where Pj is the posterior density based on the base measure. For the non-conjugate case, the

posterior may not be in the closed form. So we combine the idea of Bayesian nonparametric

models with ABC-MCMC method which can be applied to both the conjugate and non-conjugate

cases. For jth step of Bayesian nonparametric models for ABC (ABC-BNP), we sample a candidate

value, θ∗j from the prior in (3.2) and using the value of θ j, generate a new sample z∗j from the

sampling distribution f (z j|θ∗j). Now, the acceptance probability of the Metropolis-Hastings step

in the ABC-MCMC (see Sec. 2.2.1.3) procedure is defined as

α(θ j,θ
∗
j) = min

{
1,

q(θ j|θ∗j)π(θ∗j)
q(θ∗j |θ j)π(θ j)

I(ρ(S(y),S(z∗))≤ ε)

}
, (3.3)
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where ρ represents the distance metric, S indicates the summary statistic, I denotes the indicator

function, q(·) is the proposal density and π(·) is the prior distribution. We assign Euclidean distance

throughout the study. The fully intractable models imply unavailability of the sufficient statistics

and hence, it is difficult to use any ABC type methods that are discussed in Section 2.2 to estimate

the posterior. Thus we update the parameter one at a time and do not need to use the summary

statistic in the model. So, the last part of the acceptance probability in (3.3) reduces to I(A j)

which is a model dependent condition based on y j and z∗j . For example, if the response is binary,

the choice of A j would be (y j − z∗j) = 0, that is, in the binary case, I(A j) = 1 if and only if

y j∗ = z j∗ and I(A j) = 0 if otherwise. For the DPM models under the ABC-BNP setup, if we use

the DP or PYP prior as the proposal density, that is, q(θ j|θ∗j) = π(θ j|θ− j), q(θ∗j |θ j) = π(θ∗j |θ− j),

π(θ j) = π(θ j|θ− j), and π(θ∗j) = π(θ∗j |θ− j), the factors cancel out in the probability and (3.3)

becomes

α(θ j,θ
∗
j) = min

{
1,

π(θ j|θ− j)π(θ
∗
j |θ− j)

π(θ∗j |θ− j)π(θ j|θ− j)
I(A j)

}
= I(A j),

Therefore, we set θ j = θ∗j with probability

α(θ j,θ
∗
j) = I(A j). (3.4)

Accordingly, the transition kernel T of θ can be written as

T (θ(b)|θ(b−1)) =
n

∏
j=1

s(θ(b)j |θ
(b−1)
− j ),

where θ
(b−1)
− j = (θ

(b)
1 , . . . ,θ

(b)
j−1,θ

(b−1)
j+1 , . . . ,θ

(b−1)
n ) and s(·) can be defined in terms of (3.2) and

(3.4). Hence, for the computational purpose, the method can be implemented as follows:

I. Initialize θ(0), b = 0.
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II. Updating the parameters vector based on the transition kernel, T , which can be defined as

T (θ(b)|θ(b−1)) =
n

∏
j=1

s(θ(b)j |θ
(b−1)
− j ),

where for j = 1, . . . ,n, repeat the following steps.

1. Generate a candidate value,

θ
∗
j |θ

(b)
1 , . . . ,θ

(b)
j−1,θ

(b−1)
j+1 , . . . ,θ

(b−1)
n ∼ π(θ∗j |θ

(b−1)
− j )

as described in (3.2).

2. Generate a dataset

z∗j ∼ f(z j|θ∗j).

3. Set

θ
(b)
j =

 θ∗j if I(A j);

θ
(b−1)
j otherwise

where I(C) = 1 if C holds, and 0 otherwise.

III. Repeat the procedure for b = 1, . . . ,B.

Based on the ABC-MCMC (Marjoram et al. (2003)), the conditional posterior distribution con-

verges to the parameter vector (θ1, . . . ,θn). Since the ABC-BNP is based on MCMC, the parame-

ters of interest also converge to the target posterior distribution.
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3.3 An Example

This section deals with an real data example based on ABC-BNP for a DP conjugate model.

Suppose y = (y1, . . . ,yn) represents continuous response variable on n observations. We assume

that each y j, j = 1, . . . ,n, are normal distribution with unknown mean µ and unknown variance σ2.

While working with the nonparametric Bayesian models, we introduce θ j = (µ j,σ
2
j) and assume

that θ j are sampled independently and identically from a distribution G. Here, G is DP prior with

concentration parameter α and base distribution G0. Under the conjugacy of the DPM models,

we can specify a conjugate base measure for µ j and σ2
j . Now, the simplest choice for G0 is the

normal-inverse-gamma distribution where the normal distribution has the mean µ0, variance σ2
0 and

the inverse-gamma distribution has the shape a0 and scale b0. Hence the conjugate DPM model

for ABC-BNP is defined as follows:

Yj|θ j ∼ Normal(y j|µ j,σ
2
j)

θ j|G ∼ G

G ∼ DP(α,G0)

G0 ≡ Normal(µ j|µ0,σ
2
0) · I G(σ2

j |a0,b0).

Here, we have used the galaxy data which consists of velocities of 82 galaxies from 6 well-

separated conic sections of an unfilled survey of the Corona Borealis region. This data is used

in Escobar & West (1995) and we scaled the data by dividing the speed by 10000. In this example,

n = 82,µ0 = 2,σ2
0 = 1,α = 10,a0 = 2, and b0 = 5. For ABC-BNP, we choose the jth condition as

A j = |y j− z∗j | ≤ ε, where the tolerance level, ε is 0.001. We run the simulation B = 100000 times

with 20000 burn-in period to get the approximate posterior distribution.
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Figure 3.1: Comparison of predictive distribution based on Gibbs and ABC-BNP sampler

For ABC-BNP, the average acceptance rate is 2.3%. Now, we want to compare the result of

ABC-BNP with the Gibbs sampler using the predictive distribution. In Fig. 3.1, the ABC-BNP

and Gibbs sampling provide almost same predictive distribution of a new observation Y83. Since

ABC-BNP method is more simpler, it took less time for computation compared to Gibbs method

(Table 3.1).

Table 3.1: Time comparison of ABC-BNP and Gibbs method for normal model

Method Time
(in minutes)

ABC-BNP 3.71
Gibbs 30.02



CHAPTER 4

ABC-BNP AND GENERALIZED LINEAR MIXED MODELS FOR

BINARY RESPONSES

4.1 Introduction

Generalized Linear Models (GLM) are most commonly used in statistical inference for the

fixed effects. GLM consists of three components: random component, linear predictor, and a

link function. Let Y = (Y1, . . . ,Yn) be a set of independent data. The random component is the

probability distribution of Yj, the linear predictor of GLM, denoted as γ j, is a linear function

of predictor variables, γ j = XT
j β, where X j is the vector of predictors for jth subject with fixed

effects β, and the link function g(·) transforms the expectation of the response variable to the

linear predictor γ j, that is, g(·) = γ j. These models are derived and explained in McCullagh &

Nelder (1989). An extension to the GLM is the Generalized Linear Mixed Models (GLMM, see,

for example, McCulloch & Searle (2001)) which represent an important class of regression models.

Here the random effects are combined with the fixed effects in GLM to account for the correlation

effect. These models include different types of responses, such as continuous, categorical, and

counts. For the binary categorical case, logistic and probit regression models are most commonly

used in GLMM.

Let Y = (Y1, . . . ,Yn) denote binary random variable of n subjects, X = (X1, . . . ,Xp), X j be the

vector of p covariates corresponding to the jth observation, β = (β1, . . . ,βp) be the regression

coefficient vector of dimension p, Ψ=(ψ1, . . . ,ψn) be the vector of random effects, where ψ j is the

random effect corresponding to jth subject, and γ = (γ1, . . . ,γn) be the vector of linear predictors.
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In GLMM, for j = 1, . . . ,n, we assume that Yj|ψ are conditionally independent and drawn from

the exponential family of distribution. For each j, the GLMM model under binary setup can be

defined as

Yj ∼ Bernoulli(p j)

g(p j) = γ j

γ j = f (X j,β,ψ j).

where f (·) can be additive or multiplicative models. For the Bayesian DPM model, Kyung et al.

(2011) assumed that

ψ j ∼ G

G ∼ DP(α,G0). (4.1)

where α is the concentration parameter and G0 is the base distribution. Hence, the full conditional

of ψ j given ψ1, . . . ,ψ j−1,ψ j+1, . . . ,ψn can be defined as

ψ j|ψ1, . . . ,ψ j−1,ψ j+1, . . . ,ψn ∼
α

α+n−1
G0(ψ j)+

1
α+n−1 ∑

k 6= j
δ{ψk}(ψ j), (4.2)

where δ{ψk}(ψ j) is the degenerate distribution at the point ψ j and the sampling distribution for

y = (y1, . . . ,yn) is as follows:

f (y) =
∫ n

∏
j=1

[g−1( f (X j,β,ψ j))]
y j [1−g−1( f (X j,β,ψ j))]

1−y jdG0(Ψ),

where g−1(·) is the inverse of g(·). Now, suppose there are k distinct groups, {S1, . . . ,Sk}, for n

samples of the random effect Ψ. So, if j ∈ Sl , ψ j = ηl and hence Ψ = Aη, where A is a matrix of

order n× k with each row vector al represents the vector of all zeros except for a 1 in the position
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indicating which group the observation belongs to. Hence, η = (η1, . . . ,ηk) with ηl
iid∼ G0 for

l = 1, . . . ,k. Hence, the sampling distribution for y given A for distinct values of Ψ becomes:

f (y|A) =
∫ n

∏
j=1

[g−1( f (X j,β,(Aη) j))]
y j [1−g−1( f (X j,β,(Aη) j))]

1−y jdG0(η).

Now, the choice of f (·) depends on the link function of the models. For example, if the model

is related to the logit link, the corresponding model could be the random intercept and for the probit

link, we can think of scale mixture model.

In Bayesian framework, when the random effects appeared in the model due to the DP, MCMC

methods play an important role to simulate observations from the posterior. In the case of the

conjugate prior, Gibbs sampling in the Pólya urn set up are commonly used. On the other hand,

for the non-conjugate priors, the algorithms that are described in Neal (2000) are widely applied

for the posterior calculations. The complexity of Markov chain sampling and Bayesian inference

in GLMM have been extensively studied in the recent literature. In this chapter, we apply our

proposed method to handle the binary GLMM and compare with the existing MCMC procedures.

4.2 Random Intercept Model

In the binary setting, the logit link function is represented as the random intercept model and

the model can be defined as

g(p j) = log
(

p j

1− p j

)
= γ j

=⇒ g−1(γ j) =
exp(γ j)

1+ exp(γ j)
= p j

γ j = f (X j,β,ψ j) = XT
j β+ψ j.
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Now, under the DPM models in (4.1), suppose G0 is a normal distribution with mean 0 and

variance σ2 and the concentration parameter is fixed, for example, log(n). Also, we can assume

a prior on the concentration parameter, for example, gamma distribution. The prior for σ2 is an

inverse-gamma distribution with shape parameter a0, the scale parameter b0 with fixed (a0,b0) and

the prior for β is assigned to be Normal(µ0,σ
2
0I). Hence, the model can be represented as follows:

P(Yj = 1|X j,β,ψ j) =
exp(XT

j β+ψ j)

1+ exp(XT
j β+ψ j)

, j = 1, . . . ,n

ψ j|G ∼ G

G ∼ DP(α,G0)

G0 ≡ Normal(ψ j|0,σ2)

σ
2 ∼ I G(a0,b0)

β ∼ Normal(µ0,σ
2
0I). (4.3)

In most cases, it is not possible to sample from the complex models. MCMC methods play an

important role to sample from such models. There are different methods are available based on

this structure.

4.2.1 Sampling Methods

4.2.1.1 Slice Sampler

For the random intercept models, Kyung et al. (2011) proposed the slice sampler to update

the model parameters. In this case, the MCMC procedure overcomes the problem of small steps

for random walk and high steps for high rejection rates in the Metropolis-Hastings algorithm are
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adjusted by the number of steps. This sampling method has been discussed in Damien et al. (1999),

Neal (2003), Dittmar (2013) for improving the efficiency of the MCMC methods.

The idea of the slice sampling is based on Damien et al. (1999) which implies that if it is hard

to generate sample from f (θ) ∝ L(θ)π(θ), where L(θ) is the likelihood function and π(θ) is the

prior distribution, we can introduce a latent variable U , defined on (0,L(θ)) and define the joint

distribution with θ as f (θ,u) ∝ I{u < L(θ)}π(θ). Hence a Markov chain is performed to sample

from f (θ,u) that will converge to the uniform distribution. An easier way to handle this situation

is to use the Gibbs sampling which samples from θ and u, given the value of other variables. In the

slice sampling, u can de drawn from Uniform distribution with range (0,L(θ)) and θ is sampled

uniformly from the points given by {θ : L(θ)> u}.

Kyung et al. (2011) used the idea of the slice sampling and implemented to DP generalized

linear mixed model. They proposed normal base distribution in (4.1) with mean 0 and variance

σ2. They have considered two latent variables, U = (U1, . . . ,Un) and V = (V1, . . . ,Vn). The prior

for σ2 is taken to be an inverse gamma (I G) distribution with shape parameter a0 and the scale

parameter is b0 and the prior for β is a normal distribution with mean 0 and variance d∗σ2
0, that is,

β|σ2
0 ∼ Normal(0,d∗σ2

0I),σ2 ∼ I G(a0,b0),d∗ > 1 and (a0,b0) are fixed. Then for fixed α and A,

the Gibbs sampler for (β,σ2,η,U,V ) is as follows:

• for d = 1, . . . , p,

βd|β−d,σ
2,η,U,V,A,y∼



N
(
0,d∗σ2

0
)

if βd ∈[
max

{(
maxX jd>0

(
α jd
X jd

))
,
(

maxX jd≤0

(
γ jd
X jd

))}
,

min
{(

minX jd≤0

(
α jd
X jd

))
,
(

minX jd>0

(
γ jd
X jd

))}]
0,otherwise.
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where

α jd =− log(u
− 1

y j
j −1)−∑

l 6=d
X jlβl− (Aη) j for j ∈ S

γ jd =− log(v
− 1

y j−1

j −1)−∑
l 6=d

X jlβl− (Aη) j for j ∈ F

where S = { j : y j = 1} and F = { j : y j = 0}.

•

σ
2|β,η,U,V,A,y∼ I G

(
k
2
+a0,

1
2
‖η‖2 +b0

)

• for l = 1, . . . ,k,

ηl|β,σ2,U,V,A,y∼


Normal

(
0,σ2) if ηl ∈

(
max j∈Sl{α∗j},min j∈Sl{γ∗j}

)
0 otherwise.

where

α
∗
j =− log(u−1

j −1)−X jβ for j ∈ S

γ
∗
j = log(v−1

j −1)−X jβ for j ∈ F

• for j = 1, . . . ,n,

πk(U j|β,σ2,η,V,A,y) ∝ I

[
u j <

{
1

1+ exp(−XT
j β− (Aη) j)

}y j
]

for j ∈ S

πk(Vj|β,σ2,η,U,A,y) ∝ I

v j <

{
1

1+ exp(XT
j β+(Aη) j)

}1−y j
 for j ∈ F
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The formulation of the slice sampler in the DPM generalized linear mixed model as described

by Kyung et al. (2011) is very complicated. So, we propose an alternative approach for GLMM

using ABC to generate the parameters.

4.2.1.2 Proposed Method for Random Intercept Model

In this setup, we use the ABC-BNP which is more easier to compute than other nonparametric

methods. Here, the ABC-BNP for GLMM is used to get the probability distribution of the random

effect Ψ. The transition kernel for this model is

T (σ2(b),Ψ(b),β(b)|σ2(b−1),Ψ(b−1),β(b−1)) = s1(σ
2(b)|σ2(b−1),Ψ(b−1),β(b−1))

×
n

∏
j=1

s2(ψ
(b)
j |σ

2(b),ψ
(b−1)
− j ,β(b−1))

× s3(β
(b)|σ2(b),Ψ(b),β(b−1)). (4.4)

Here s1(·) indicates the distribution of σ2(b)|σ2(b−1),Ψ(b−1),β(b−1), that is, given the values of

(σ2(b−1),Ψ(b−1),β(b−1)), σ2(b) is sampled from the following inverse-gamma distribution,

I G
(

K
2
+a0,

1
2
‖η(b−1)‖2 +b0

)
,

where ‖ ·‖ represents the Euclidean norm and η(b−1) defines the vector of unique values of Ψ(b−1)

with length K.



51

s2(·) is defined based on (4.2) and (3.4) for Ψ(b) conditional on ψ
(b−1)
− j = (ψ

(b)
1 , . . ., ψ

(b)
j−1,

ψ
(b−1)
j+1 , . . ., ψ

(b−1)
n ), β(b−1) and σ2(b). It is derived from the ABC-BNP method as discussed in

Chapter 3.3. Here, for each j = 1, . . . ,n, we set

ψ
(b)
j =

 ψ∗j if I(A j);

ψ
(b−1)
j otherwise,

(4.5)

where I(C) = 1 if C holds, ψ∗j is sampled from (3.2), that is,

ψ
∗
j |ψ

(b−1)
− j ,σ2(b),β(b−1) ∼ αk

α+n−1
G0(ψ

∗
j)+

1
α+n−1 ∑

k 6= j
lk,

where αk = α and lk = δψk(ψ
∗
j). Then using the value of ψ∗j , the probability,

p(b)j =
exp(XT

j β(b−1)+ψ∗j)

1+ exp(XT
j β(b−1)+ψ∗j)

is calculated based on the logit link and generate a new sample z∗j from the Bernoulli distribution

with probability p(b)j . For the binary responses, the condition A j in (4.5) can be defined as y j = z∗j .

Finally, the distribution of β(b) conditional on σ2(b),Ψ(b),β(b−1) is denoted as s3(·). This dis-

tribution is updated using the Metropolis-Hastings algorithm. Let q(·) be the proposal distribution.

So, we can generate β∗ from the proposal density and set

β
(b) =

 β∗ with probability min
{

1, π(β∗|Ψ(b),σ2(b))q(β(b−1))

π(β(b−1)|Ψ(b),σ2(b))q(β∗)

}
;

β(b−1) otherwise,

where π(β|Ψ,σ2) is the full conditional distribution of β and the corresponding prior is Normal(0,d∗σ2
0I),

d∗ > 1 as defined by Kyung et al. (2011).
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Another way to define the binary model is to use the scale mixture model and we can develop

ABC-BNP method for this. In the next section, we provide a detailed structure of the model and

method in terms of probit regression.

4.3 Scale Mixture Model

The scale mixture model under DPM structure is discussed in Basu & Chib (2003). Here, the

link function is defined as follows:

g(p j) = Φ
−1(p j) = γ j

=⇒ g−1(γ j) = Φ(γ j) = p j

γ j = f (X j,β,ψ j) = XT
j β
√

ψ j.

where Φ−1(·) is the inverse of the cumulative distribution function of the standard normal dis-

tribution. Now, under the DPM models, we assume the random effects Ψ sample from the DP

with base measure G0 and the concentration parameter α. Here, we consider a gamma prior for

G0 with shape parameter a0, scale parameter b0 and a fixed value of the concentration parame-

ter α. For the regression coefficient β, we assume multivariate normal with mean vector µ and

variance-covariance matrix Σ. Hence the model can be written as

P(Y j = 1|X j,β,ψ j) = Φ(XT
j β
√

ψ j), j = 1, . . . ,n

ψ j|G ∼ G

G ∼ DP(α,G0)

G0 ≡ Gamma(ψ j|a0,b0)

β ∼ Normal(µ0,Σ0). (4.6)



53

In both the cases, we can define the models in terms of the vector of unique values (η) of the

random effects(Ψ) to consider the effect of clustering in DPM models. The next section proposes

ABC-BNP method for binary scale mixture models.

4.3.1 Proposed Method for Scale Mixture Model

In this setup, we use the ABC-BNP within Gibbs sampler. Here, the ABC-BNP for GLMM

is used to obtain the distribution of random effect Ψ. The transition kernel for the scale mixture

model is

T (Ψ(b),β(b)|Ψ(b−1),β(b−1)) =

[
n

∏
j=1

s1(ψ
(b)
j |ψ

(b−1)
− j ,β(b−1))

]
× s2(β

(b)|Ψ(b),β(b−1)), (4.7)

where ψ
(b−1)
− j = (ψ

(b)
1 , . . . ,ψ

(b)
j−1,ψ

(b−1)
j+1 , . . . ,ψ

(b−1)
n ) and s1(·) is derived from (4.2) and (3.4). Ac-

cording to the ABC-BNP method, for each j = 1, . . . ,n, the parameter ψ
(b)
j can be defined as

ψ
(b)
j =

 ψ∗j if I(y j = z∗j);

ψ
(b−1)
j otherwise,

(4.8)

where I(C) = 1 if C holds and since the response is binary, the condition can be constructed as

y j = z∗j . We sample the candidate value, ψ∗j given ψ
(b−1)
− j , β(b−1) from (3.2) with base distribution

G0 as Gamma(shape = a0, scale = b0). So, in the expression (3.2), αk =α, θ j =ψ∗j . and lk = δ(ψk),

that is,

ψ
∗
j |ψ

(b−1)
− j ,β(b−1) ∼ α

α+n−1
G0 +

1
α+n−1 ∑

k 6= j
δψk(ψ

∗
j).

Then using the value of ψ∗j , we calculate the probability,

p(b)j = Φ(X jβ
(b−1)

√
ψ∗j)
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based on the probit link and generate a new sample z∗j from the Bernoulli distribution with proba-

bility p(b)j to check the condition in (4.8).

s2(·) represents the distribution of the regression coefficient β(b) conditional on Ψ(b). This

parameter is updated using the random walk within Metropolis-Hastings framework. Given the

values of Ψ(b) and β(b−1), we generate δ∗ from the proposal density q(·) and calculate β∗, that is,

δ
∗ ∼ Normal(µ,cΣ

−1)

β
∗ = β

(b−1)+δ
∗.

where c is a randomly chosen constant and Σ−1 = XT X . Now, we set

β
(b) =

 β∗ with probability min{1, π(β∗|Ψ(b))q(β(b−1))

π(β(b−1)|Ψ(b))q(β∗)
};

β(b−1) otherwise.

where π(β|Ψ) is the full conditional distribution of β with Normal(µ0,Σ0) prior density.

In the next section, we illustrate two examples for binary DP generalized linear mixed models

and compare the performance of ABC-BNP with the existing methods.

4.4 Examples

For the random intercept model, we consider the data based on the voting responses of social

attitudes in Scotland and the prostate cancer data, known as ‘nodal’ data is used for scale mixture

regression model.



55

4.4.1 Scottish Social Attitude Study

In the light of the recent political turmoil in Europe centering “BREXIT”, it is an interesting

study to analyze the response of Scotland to compare the Dirichlet process generalized linear mixed

models using slice sampler (as described in Kyung et al. (2011)) and the ABC-BNP. This example

is taken from a social science research on voting behavior study of social attitudes in Scotland. The

data is available in the Scottish Social Attitudes Survey, 2006 (UK Data Archive Study Number

5840). We used the dataset, ssas, from the glmdm package in R. In the actual study, 1594 Scottish

females, between the age group 18 and 25 had face to face interview based on 669 computer and

paper-based questionnaire. However, in our example, we use 13 covariates from the glmdm package

and randomly choose 200 observations for less computing time.

Here, the response variable is a binary variable which explains if the voters are supported full

freedom for Scotland with or without enrollment in the European Union (EU) versus remaining

in the UK under changing circumstances. In 2006, approximately 30% respondents voted for full

freedom without a part of EU and the rest of voters wanted to ba a part of UK with or without their

own elected parliament. The independent variables consist of nominal, binary, ordinal, and count

variables. There are one nominal variable,

• unionsa union membership at work;

five binary variables:

• relgsums identification with the Church of Scotland versus another or no religion,

• idlosem the voter agreed with the statement that increased numbers of Muslims in Scotland

would erode the national identity,

• marrmus the voter would be unhappy or very unhappy if a family member married a Muslim,
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• nhssat satisfaction or dissatisfaction with the National Health Service,

• whrbrn born in Scotland or not;

six ordinal variables:

• ptyallgs party allegiance with the ordering of parties given from more conservative to more

liberal,

• ukintnat agreement that the UK government works in Scotland’s long-term interests,

• natinnat agreement that the Scottish Executive works in Scotland’s long-term interests,

• voiceuk3 the voter believes that the Scottish Parliament gives Scotland a greater voice in

the UK,

• hincdif2 the degree to which the voter is living comfortably on current income or not (better

in the positive direction),

• hedqual2 the voter’s education level;

and one count variable,

• household the number of people living in the voter’s household.

In this example, we ran two methods, MCMC for DP-GLMM for 50000 iterations with 25000

burn-in periods and ABC-BNP for GLMM for 100000 iterations after 25000 burn-in periods. For

both methods, we set the parameters: α = 10,µ = 0,σ2
0 = 1,d∗ = 5,a0 = 3 and b0 = 2. Acceptance

rate for ABC-BNP method is 13.3%. Table 4.1 shows the parameter estimates for both methods.

Also, note that ABC-BNP for GLMM took less computing time than MCMC for DP-GLMM

(Table 4.2). For a subsample of 200 observations, ABC-BNP method takes around 10 minutes

whereas, without ABC method, the simulation takes around 40 minutes. We have also reported
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Table 4.1: Comparison of the parameter estimates of β using ABC-BNP and slice sampler based
on 200 observations for random intercept model

Coefficient
ABC-BNP Slice

Mean (SD) 95% C.I Mean (SD) 95% C.I
Intercept -2.233 (0.865) (-3.885, -0.850) -1.582 (0.473) (-2.519, -0.656)
househld 0.266 ( 0.199) (-0.150, 0.634) 0.181 (0.106) (-0.023, 0.394)
relgsums -0.273 (0.536) (-1.420, 0.759) -0.069 (0.256) (-0.579, 0.433)
ptyallgs 0.074 (0.062) (-0.057, 0.197) 0.053 (0.027) (0.001, 0.107)
idlosem 1.112 (0.693) (-0.239, 2.505) 0.574 (0.330) (-0.073, 1.221)
marrmus 0.078 (0.582) (-1.094, 1.171) 0.043 (0.278) (-0.511, 0.577)
ukintnat -1.220 (0.491) (-2.497, -0.445) -0.584 (0.190) (-0.959, -0.218)
natinnat 0.745 (0.332) (0.090, 1.402) 0.463 (0.171) (0.135, 0.807)
voiceuk3 0.310 (0.281) (-0.214, 0.894) 0.133 (0.129) (-0.118, 0.389)

nhssat 1.114 (0.510) (0.173, 2.189) 0.571 (0.236) (0.112, 1.029)
hincdif2 -0.269 (0.295) (-0.899, 0.283) -0.125 (0.128) (-0.376, 0.127)
unionsa 0.028 (0.531) (-1.050, 1.038) 0.018 (0.256) (-0.495, 0.513)
whrbrn -0.868 (0.785) (-2.554, 0.546) -0.415 (0.364) (-1.151, 0.291)

hedqual2 -0.294 (0.122) (-0.521, -0.017) -0.132 (0.059) (-0.247, -0.018)

the maximum of log likelihood over MCMC for both sampling procedures in Table 4.3. To know

whether this sample is sufficiently close to the posterior, we use Gelman-Rubin plot to see if there

is a significant difference between the variance within several chains and we can see from Fig. 4.1

and Fig. 4.2 with 25000 simulation after 25000 burn-in period, the chains are converged after a

certain period of time. So, in GLMM setup, ABC-BNP method performs better than Markov chain

simulation.

Table 4.2: Computing time for ABC-BNP and slice sampler for random intercept model

Number of samples ABC-BNP Slice
Subsample of n= 200 9.3 minutes 40.2 minutes

Full sample of n=1594 3.5 hours > 10 hours
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Table 4.3: Comparison of the maximum log likelihood over the MCMC for random intercept model

Method Max log likelihood
ABC-BNP -378.157

Slice -379.064
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Figure 4.1: Gelman-Rubin plot using slice sampler for 200 observations with 25000 simulations
after 25000 burn-in period for random intercept model
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Figure 4.2: Gelman-Rubin plot using ABC-BNP sampler for 200 observations with 25000 simula-
tions after 25000 burn-in period for random intercept model
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4.4.2 Nodal Data

Now, we illustrate the idea of generalized linear mixed effects model for the scale mixture

regression using a real life example. We consider the nodal data (taken from DPpackage in R).

The data consists of 53 patients who are diagnosed with prostate cancer and 5 predictor variables

which are measured before surgery. Here, the goal is to determine the relationship between nodal

involvement and the predictor variables. The response variable, ssln, is an indicator of nodal in-

volvement (1 if cancer had spread to the surrounding lymph nodes and 0 otherwise). The predictor

variables are

• m intercept term for the design matrix X ,

• acid level of serum acid phosphatase,

• xray X-ray reading, 0 if negative and 1 if positive,

• size size and position of the tumor, 0 if small and 1 if large,

• grade seriousness of tumor, 1 indicates a more serious case, and

• age log of patients age in years at diagnosis.

Here, X j is the jth vector of the design matrix, X = (m, acid, x-ray, size, grade, age) and β =

(β0,β1, . . . ,β5) is the corresponding regression parameter vector. Here, we are interested in esti-

mating the regression parameter β. In this example, n= 53, a0 = 5,b0 = 1/2,α= 10,µ=(0, . . . ,0),

and c is randomly chosen from {0.2,0.02,0.002}. In our case, we consider the tolerance level, ε

as 0.1 and run the simulation B = 200000 times with 20000 burn-in periods to get the approx-

imate posterior distribution. In Table 4.4, we compare the estimate of the posterior mean using

ABC-BNP with the estimates of β using stick breaking Gibbs sampler (RJAGS software). Here,

we can see that the estimates from the ABC-BNP are slightly different from the estimates from the
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MCMC. To know whether this sample is sufficiently close to the posterior, we use Gelman-Rubin

plot to see if there is a significant difference between the variance within several chains and we

can see from Fig. 4.3 and Fig. 4.4 with 45000 simulation after 10000 burn-in period, the chains

are converged after a certain period of time. The maximum of log likelihood over MCMC for both

sampling procedures are stated in Table 4.5 and for ABC-BNP, posterior reached the maximum

point.

Table 4.4: Comparison of the estimates of β for scale mixture model

Coefficient
ABC-BNP Stick breaking Gibbs

Mean (SD) 95% C.I Mean (SD) 95% C.I
Intercept 7.916 (0.706) (6.544, 9.178) 7.880 (0.686) (6.562, 9.232)

Acid 1.631 (0.904) (-0.121, 3.976) 1.618 (0.474) (0.713, 2.580)
X-ray 1.222 (1.001) (-0.761, 3.194) 1.374 (0.338) (0.744, 2.043)
Size 0.987 (0.991) (-0.812, 2.924) 1.078 (0.325) (0.459, 1.741)

Grade 0.472 (0.920) (-1.244, 2.401) 0.494 (0.323) (-0.122, 1.140)
Age -2.579 (0.978) (-4.451, -0.593) -2.599 (0.207) (-3.012, -2.196)

Table 4.5: Comparison of maximum log likelihood over MCMC for scale mixture model

Method Max log likelihood
ABC-BNP -20.28

Stick breaking Gibbs -21.03
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Figure 4.3: Gelman-Rubin plot for scale mixture model using stick breaking Gibbs with 35000
simulation after 10000 burn-in period
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Figure 4.4: Gelman-Rubin plot for scale mixture model using ABC-BNP with 35000 simulation
after 10000 burn-in period



CHAPTER 5

ABC-BNP AND SURVIVAL MODELS

5.1 Introduction

Survival data analysis is one of the most extensively used statistical method in Biostatistics

and epidemiology. This analysis includes the time to an event, for example, time to death, spread

or recurrence of a disease. First, we introduce the basic structure of the survival function and the

form used in modeling Bayesian survival data and then, extend the idea to ABC-BNP for different

nonparametric survival models.

According to Klein & Moeschberger (2005), suppose T denotes a nonnegative random variable

of survival time from a homogeneous population. In the survival models, the probability density (or

mass) function f (t) represents the probability of occurrence of an event at time t. Now, the survival

function is the probability of an individual surviving after time t and this function is defined as

S(t) = 1−F(t),

where F(t) the distribution function.

Censoring is a common characteristics in survival data. It occurs when the events are known to

have happened within certain period of time. Right censored and interval censored are two most

common feature of the survival data. For the right censored data, an individual followed until the

event has occurred, but then leaves the study. In case of interval censored data, the occurrence of

the exact time of the event is not known but an interval time is noticed. However, left censored

data occurs when an event has already occurred for an individual before that subject is observed in
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the study at a certain time. The Likelihood corresponding to various types of censored data can be

written as

H ∝ ∏
i∈Obs

f (ti)∏
i∈R

S(Ri)∏
i∈L

(1−S(Li))∏
i∈I

(S(ILi)−S(IRi)),

where R corresponds to the right censored observation, L refers to the left censored data, and

(IL, IR) indicates the interval censored data.

The study of censored survival data analysis is not straightforward in the frequentist approach.

Bayesian procedures are flexible and can easily handle these type of data by using the MCMC

methods. Also, in Bayesian context, the prior information can be easily implemented that improves

the estimates of the model parameters. In the nonparametric setup, Susarla & Van Ryzin (1976)

Ferguson & Phadia (1979). and Kuo et al. (1992) provide the posterior analysis for censored data,

especially based on DP prior using the Gibbs sampler. Different survival models under Bayesian

setup are discussed in Ibrahim et al. (2005). Since the model structure is complicated, an alternative

to the MCMC approach is ABC. In this chapter, we introduce two survival models in Bayesian

point of view and implement the ABC-BNP for these models.

5.2 Bayesian Nonparametric Survival Models

Suppose T is a random variable denoting the event times of the subjects defined on R+. Let

S(t) = P(T > t) denote the survival function denoting the probability of a subject surviving un-

til time t. Let t1, . . . , tn be n independent and identically distributed survival times, where t j

is the interval censored data for jth subject in the interval (a j,b j]. The model is discussed in

De Iorio et al. (2009). They have used log transformation on T , that is, y j = log(t j) with y j

are sampled from normal distribution. Here, X = (X1, . . . ,Xp) and X j is the vector of covariate

corresponding to jth observation. They have considered DPM prior on G for θ j with base mea-
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sure G0 and concentration parameter α. Here, θ j = (β j,σ
2
j). The base measure corresponding

to β j is normal with mean vector µg, variance-covariance matrix sg and for σ2
j , it is inverse-

gamma distribution with shape parameter τ1/2 and rate parameter τ2/2. A gamma prior on α

is taken with shape parameter a0 and scale parameter b0. Also, the hyper-priors are assumed

for µg(Normal(µ0,s0)),sg(Inverse-Wishart(ν,ψ)), and τ2(Gamma(shape = τs1/2, rate = τs2/2)).

Hence the model can be formalized as follows:

Tj ∈ (a j,b j]

Yj = log(Tj)

Yj|X j,β j,σ
2
j ∼ Normal(y j|X jβ j,σ

2
j)

(β j,σ
2
j)|G ∼ G

G ∼ DP(α,G0)

G0 ≡ Normal(β j|µg,sg) · I G(σ2
j |τ1/2,τ2/2)

α ∼ Gamma(a0,b0)

µg ∼ Normal(µ0,s0)

sg ∼ Inverse-Wishart(ν,ψ)

τ2 ∼ Gamma(τs1/2,τs2/2). (5.1)

This section develops the ABC-BNP method for nonparametric survival models.

5.2.1 Proposed Method for Bayesian Nonparametric Survival Models

In the Bayesian nonparametric survival models, the random effects are β = (β1, . . . ,βn) and

σ2 = (σ2
1, . . . ,σ

2
n) where β is the functions of mean and σ2 the variance term of the model. Under

nonparametric Bayesian models, θ = (θ1, . . . ,θn) with θ j = (β j,σ
2
j), j = 1, . . . ,n, is assumed to
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follow the probability measure G with concentration parameter α and base distribution G0. For the

model in (5.1), the transition kernel can be expressed as

T (θ(b),α(b),µ(b)g ,s(b)g ,τ
(b)
2 |θ

(b−1),α(b−1),µ(b−1)
g ,s(b−1)

g ,τ
(b−1)
2 )

=

[
n

∏
j=1

s1(θ
(b)
j |θ

(b−1)
− j ,α(b−1),µ(b−1)

g ,s(b−1)
g ,τ

(b−1)
2 )

]
× s2(α

(b)|θ(b),α(b−1),µ(b−1)
g ,s(b−1)

g ,τ
(b−1)
2 )

× s3(µ
(b)
g |θ(b),α(b),µ(b−1)

g ,s(b−1)
g ,τ

(b−1)
2 )× s4(s

(b)
g |θ(b),α(b),µ(b)g ,s(b−1)

g ,τ
(b−1)
2 )

× s5(τ
(b)
2 |θ

(b),α(b),µ(b)g ,s(b)g ,τ
(b−1)
2 ),

(5.2)

where θ
(b−1)
− j = (θ

(b)
1 , . . . ,θ

(b)
j−1,θ

(b−1)
j+1 , . . . ,θ

(b−1)
n ) and s1(·) is derived from (3.2) and (3.4) based

on (α(b−1),µ(b−1)
g ,s(b−1)

g ,τ
(b−1)
2 ). Here, for each j = 1, . . . ,n, θ

(b)
j can be expressed as follows

θ
(b)
j =

 θ∗j if I(A j);

θ
(b−1)
j otherwise,

(5.3)

where I(C)= 1 if C holds and we sample a candidate value, θ∗j from the DP prior with base measure

as normal-inverse-gamma distribution. So, in (3.2), αk = α and lk = δθk(θ
∗
j), that is,

θ
∗
j |θ

(b−1)
− j ,α(b−1),µ(b−1)

g ,s(b−1)
g ,τ

(b−1)
2 ∼ α

α+n−1
G0(θ

∗
j)+

1
α+n−1 ∑

k 6= j
δθk(θ

∗
j).

The choice of A j in (5.3) is based on jth observation of the data. If the response is observed and

continuous, the condition is defined as

|y j− z∗j |< ε,
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where ε is a predefined threshold value and

z∗j ∼ f (z j|θ∗j).

For the censored term, the condition I(A j) in (3.4) is constructed depending upon the choices of

censored survival observation. Let Ly j ,Ry j , and (ILy j
, IRy j

) be the left, right, and interval censored

data corresponding to observed observations. Lz∗j ,Rz∗j , and (ILz∗j
, IRz∗j

) denote the respective gener-

ated observations. Hence the choices of A j for the censored survival data are as follows:

Right censored: Ry j < Rz∗j

Left censored: Ly j > Lz∗j

Interval censored: ILy j
> ILz∗j

and IRy j
< IRz∗j

. (5.4)

Hence for the censored data,

z∗j ∼ S(z j|θ∗j),

where S(·) is the survival sampling distribution of the censored terms and the condition is taken

from (5.4). In (5.2), s2(·), s3(·), s4(·), and s5(·) denote the full conditional distributions of (α(b)|θ(b),

α(b−1),µ(b−1)
g ,s(b−1)

g ,τ
(b−1)
2 ), (µ(b)g |θ(b),α(b),µ(b−1)

g ,s(b−1)
g ,τ

(b−1)
2 ), (s(b)g |θ(b),α(b),µ(b)g ,s(b−1)

g ,τ
(b−1)
2 ),

and (τ
(b)
2 |θ(b),α(b),µ(b)g ,s(b)g ,τ

(b−1)
2 ), respectively. In this step, α,µg,sg,τ2 are updated using the

Metropolis-Hastings algorithm. Let φ = (α,µg,sg,τ2) and q(·) be the proposal density. So, φ(b)

can be defined as

φ
(b) =

 φ∗ with probability min
{

1, π(φ∗|θ(b))q(φ(b−1))

π(φ(b−1)|θ(b))q(φ∗)

}
;

φ(b−1) otherwise,
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where π(φ|θ) is the full conditional posterior distribution of φ.

Another popular model under survival setting is the recurrent data models which introduce the

random effects through frailty term to represent association and unobserved heterogeneity in the

model.

5.3 Bayesian Nonparametric Survival Models for Recurrent Data

One of the popular models is the recurrent survival model with gap time between two con-

secutive events. This type of models include recurrent occurrence of events. Cook & Lawless

(2007) explore the idea of gap time models of recurrent data and analyze these models under dif-

ferent circumstances. Let Wjk,k = 1, . . . ,m j, j = 1, . . . ,n be the kth gap time of jth subject and we

are considering log-normal models as described in Cook & Lawless (2007). So, we can define

Yjk = log(Wjk) with Y j = (Y j1, . . . ,Yjn j) is the vector of log of gap time events of jth subject. The

length of Yj, j = 1, . . . ,n may be different for each subject. So the likelihood of the kth gap time of

jth subject is normal distribution with variance σ2
e . In this step, we introduce a random effect u j to

the model. Hence, Y jk = µy +u j + ε jk and the mean becomes µy +u j, where µy is the intercept of

the model and ε jk is the independent and identically distributed random error with Normal(0, σ2
e).

In this model, u j is defined as a frailty term. The frailty, an unobserved random effect, illustrates

the hazard function of a cluster or group of clusters having multiplicative frailty factor. The concept

of random effect in the survival model was introduced by Beard (1959) to get better model of

mortality. In their model, they have attached a frailty term for each subject. Vaupel et al. (1979)

mentioned the term frailty for the first time to explain the mortality data more accurately and

proposed a model based on univariate frailty for each individuals. In practice, two classifications

of frailty models are used in survival analysis. One is the univariate frailty models which deal

with univariate survival times and another one is the multivariate frailty models which consider
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multivariate survival times. In both cases, the models account for the unobserved heterogeneity in

the population. Duchateau & Janssen (2007) discusses different choices of frailty models and few

techniques to calculate estimators.

Now, in this study, we suggest DPM models for the frailty terms. Alternatively, PYP structure

can be used for this model. So, for each subject, the frailty term can be modeled as

u j ∼ G

G ∼ DP(M,G0),

where M represents the concentration parameter and G0 is the base measure. In this case, the

conditional distribution of u j given u1, . . . ,u j−1,u j+1, . . . ,un can be defined as

u j|u1, . . . ,u j−1,u j+1, . . . ,un ∼
α

α+n−1
G0(u j)+

1
α+n−1 ∑

k 6= j
δ{uk}(u j), (5.5)

where δ{uk}(u j) refers to the degenerate distribution at the point u j. In this step, we have also

assigned prior for the models parameters. The prior for µ is Normal(µ0,σ
2
0) and inverse-gamma

distributions are attached to the scale parameters. Hence, the DPM frailty model for recurrent data

can be expressed as follows:
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Yjk = log(Wjk), j = 1, . . . ,n;k = 1, . . . ,m j

Yjk = µy +u j + ε jk

ε jk
iid∼ Normal(0,σ2

e)

u j|G ∼ G

G ∼ DP(M,G0)

G0 ≡ Normal(u j|µ,σ2)

µy ∼ Normal(µ0,σ
2
0)

σ
2 ∼ I G(au,bu)

σ
2
e ∼ I G(ae,be). (5.6)

5.3.1 Proposed Method for Recurrent Data Model

For this model, the ABC-BNP is used to estimate the posterior analysis of the frailty term

u j, j = 1, . . . ,n. For this model, the transition kernel can be stated as

T (u(b),µ(b)y ,σ
2(b)
e ,σ2(b)|θ(b−1),µ(b−1)

y ,σ
2(b−1)
e ,σ2(b−1)) =

[
n

∏
j=1

s1(u
(b)
j |u

(b−1)
− j ,µ(b−1)

y ,σ
2(b−1)
e ,σ2(b−1))

]

× s2(µ
(b)
y |u(b),µ(b−1)

y ,σ
2(b−1)
e ,σ2(b−1))× s3(σ

2(b)
e |u(b),µ(b)y ,σ

2(b−1)
e ,σ2(b−1))

× s4(σ
2(b)|u(b),µ(b)y ,σ

2(b)
e ,σ2(b−1)).

(5.7)

where u(b−1)
− j =(u(b)1 , . . . ,u(b)j−1,u

(b−1)
j+1 , . . . ,u(b−1)

n ) and s1(·) is derived from (5.5) and (3.4). For each

j, the recurrent model consists of m j observed values and corresponding censored observation,
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denoted by cy j . For j = 1, . . . ,n, given the values of u(b−1),µ(b−1)
y ,σ

2(b−1)
e , and σ2(b−1), the frailty

term can be defined as

u(b)j =

 u∗j if I(A j);

u(b−1)
j otherwise,

(5.8)

where I(C) = 1 if C holds and we sample the candidate value, u∗j from the DP prior with concen-

tration parameter M and base distribution G0 as the normal density. So, in the expression (3.2),

αk = M, θ j = u∗j , and lk = δ(uk), that is,

u∗j |u
(b−1)
− j ,µ(b−1)

y ,σ
2(b−1)
e ,σ2(b−1) ∼ M

M+n−1
G0(u∗j)+

1
M+n−1 ∑

k 6= j
δuk(u

∗
j).

Let z∗j and cz∗j be the vector of the generated values and corresponding censored observation,

respectively. These observations are drawn from the following function:

( f (z∗j))
(δ j=1)(S(cz∗j ))

(δ j=0), (5.9)

where δ j = 1 if the jth observation is observed, otherwise δ j = 0 for the censored data with sam-

pling distribution S(·). The condition in (5.8) is based on y j,z∗j ,cy j ,cz∗j and

z∗j ∼ f (z j|u∗j ,φ∗j), if observed

cz∗j ∼ S(cz j |u∗j ,φ∗j), if censored.

We update the frailty term u j in ABC step conditioning on the fact that the absolute value of the

observed and the generated observations must be less than a predefined threshold value ε, that is,

if the response is observed and continuous, the condition is defined as

|y j− z∗j |< ε,



75

where ε is a predefined threshold value for ABC-BNP and for the censored term, the condition in

(5.4) is applied based on the data.

In (5.7), s2(·) represents the full conditional of (µ(b)y |u(b),µ(b−1)
y ,σ

2(b−1)
e ,σ2(b−1)), s3(·) defines

the full conditional of (σ2(b)
e |u(b),µ(b)y ,σ

2(b−1)
e ,σ2(b−1)), and s4(·) is the full conditional distribution

of (σ2(b)|u(b),µ(b)y ,σ
2(b)
e ,σ2(b−1)). Here, φ = (µy,σ

2,σ2
e) is updated using the Metropolis-Hastings

algorithm with acceptance probability

min
{

1,
π(φ∗)L(φ∗|y)q(φ∗|φ)
π(φ)L(φ|y)q(φ|φ∗)

}
,

where

π(·) ≡ Normal(µ0,σ
2
0)Inverse-Gamma(au,bu)Inverse-Gamma(a0,b0),

L(·|y) =
n

∏
j=1

[{
m j

∏
k=1

Normal(µy +uk,σ
2)} ·Normal(µy +u j,σ

2)],

q(·) ≡ Normal(µ0q,σ
2
0q)Inverse-Gamma(auq,buq)Inverse-Gamma(a0q,b0q),

and φ∗ is generated from the proposal density q(·). Given the values of u(b), µ(b−1)
y ,σ

2(b−1)
e , and

σ2(b−1), the distribution of φ can be stated as

φ
(b) =

 φ∗ with probability min{1, π(φ∗|u(b))q(φ(b−1))

π(φ(b−1)|u(b))q(φ∗)};

φ(b−1) otherwise.

where π(φ|u) is the full conditional posterior distribution of φ = (µy,σ
2
e ,σ

2). This method also

converges to the target posterior distribution.
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5.4 Examples

5.4.1 Deterioration Data

The ‘deterioration’ data in DPpackage in R examines the time to cosmetic deterioration of the

breast for women with early stage of breast cancer. The patients had experienced a lumpectomy,

for two treatments, radiation and radiation with chemotherapy as both of these treatments are

considered powerful in preventing recurrence of the early stage of cancer. The data is taken from a

retrospective study with 46 patients who experienced radiation only and 48 who received radiation

with chemotherapy. Then the patients went to a clinic to determine the occurrence of retraction. If

the result is positive, the time of interval of the present and last visits are taken to be the time of

retraction. The data set consists of three variables,

• left left limit of the interval

• right right limit of the interval

• trt treatment (0 = radiation only, 1 = radiation with chemotherapy)

Here, the unknown limits are coded as -999. In this example, we assume a0 = 10,b0 = 1,τ1 =

6.01,τs1 = 6.01,τs2 = 2.01,µ0 = (3,−.5),s0 = diag(1,1),ν = 4, and ψ−1 = diag(1,1). For ABC-

BNP, we run the simulation B = 100000 times with 20000 burn-in period to get the approximate

posterior density. The estimates and the distribution of the parameters are given in Table 5.1 and

Fig. 5.1. Here, the estimates of ABC-BNP are compared with the stick braking Gibbs sampler

(RJAGS software). The estimates are very close to each other and 95% credible intervals are

slightly smaller for ABC-BNP. Gelman Rubin diagnostic is used to check for lack of convergence.

It calculates both the between and within chain variance and assesses whether they are different
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from each other. We can see from Fig. 5.2 and Fig. 5.3 for 20000 simulation with 10000 burn-in

period, the chains are converged after a certain period of time.

Table 5.1: Comparison of the estimates of the parameters for nonparametric Bayesian survival
model

Coefficient
ABC-BNP Stick braking Gibbs

Mean (SD) 95% C.I Mean (SD) 95% C.I
α 10.04 (3.23) (4.86, 17.58) 9.99 (3.18) (4.83, 17.10)

µg[1] 3.11 (1.00) (1.22, 5.06) 2.99 (1.01) (1.01, 4.98)
µg[2] -0.39 (0.99) (-2.34, 1.58) -0.50 (0.99) (-2.44, 1.43)

sg[1,1] 2.01 (1.56) (0.63, 5.89) 1.97 (1.98) (0.04, 7.41)
sg[1,2] 0.01 (1.09) (-2.06, 2.04) 0.01 (1.39) (-2.96, 2.93)
sg[2,2] 2.06 (1.86) (0.61, 6.34) 1.98 (1.97) (0.05, 7.36)

τ2 3.01 (1.73) (0.65, 7.24) 3.01 (1.73) (0.62, 7.25)

Figure 5.1: Comparison of the distributions of the parameters for the nonparametric Bayesian
survival model
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Figure 5.2: Gelman-Rubin plot for nonparametric Bayesian survival model using ABC-BNP with
10000 simulation after 10000 burn-in period
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Figure 5.3: Gelman-Rubin plot for nonparametric Bayesian survival model using stick breaking
Gibbs with 10000 simulation after 10000 burn-in period
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5.4.2 Bowel Motility Cycles

Here, we have used the bowel motility data which is discussed in Cook & Lawless (2007) for

the recurrent data model. 19 healthy individuals were given a standard meal at 6:00 pm to induce a

“fed state” and then intraluminal pressure was observed for each individual overnight for 13 hours

and 40 minutes. The migrating motor complex (MMC) which is the time between two successive

fasting cycles were observed for each individual and then calculated the time gaps between two

consecutive cycles. The gaps are defined as Wjk, j = 1, . . . ,19;k = 1, . . . ,n j. In the data, the last

MMC differences are censored. The data set consists of the following variables

• time duration of a cycle,

• status Censored or not,

• enum number of cycles for an individual.

In this example, we choose µ = 0,µ0 = 0,σ2
0 = 1,au = 1,bu = 1/10,a0 = 1,b0 = 1/10,µ0q =

mean(Y ),σ2
0q = 3,auq = 4,buq = 1/10,a0q = 4,b0q = 1/10, and ε = 0.005. The simulation for

ABC-BNP is iterating B = 100000 times with 20000 burn-in period to get the estimates of the

parameters. It is observed that the acceptance rate 11.7% and the computing time is 1.4 minutes

for ABC-BNP. Table 5.2 shows the comparison of estimated parameter values. Table 5.3 and

Fig. 5.4 provide the comparison and distribution of log likelihoods over MCMC. It is noted that

maximum of log likelihood reached for ABC-BNP.
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Table 5.2: Comparison of the parameters for recurrent data model

ABC-BNP Stick braking Gibbs
µ̂y 4.11 4.26
σ̂u 0.19 0.16
σ̂ 0.80 0.79

Table 5.3: Comparison of maximum log likelihood over MCMC for recurrent data model

Method Max log likelihood
ABC-BNP -113.9

Stick braking Gibbs -114.9

Figure 5.4: Trace plot and the distribution of log likelihood for ABC-BNP recurrent data model



CHAPTER 6

ABC-BNP FOR PITMAN-YOR PROCESS

6.1 Introduction

Pitman-Yor process (PYP) is a generalization of the Dirichlet process prior. As we discussed

in Section 2.3.2, P Y (d,α,G0) is a probability measure in the space of probability measures as DP.

Here, the discount parameter d, 0 ≤ d < 1 and the concentration parameter α tune the variability

of generated measures around the base measure G0.

DP provides a flexible model for modeling data with clusters. But, DP models are not ap-

propriate if the number of clusters follow a power-law. PYP is useful tool to cluster data that

captures power law behavior. The PYP is an extension to the DP that allows heavier-tailed distri-

butions over partitions. Let m be the number of unique values in the process. The probabilities

associated with each cluster decrease almost exponentially for DP and the expected value can be

expressed as E(m) = O(α logn). Instead, in PYP, the probabilities do not drop down exponentially

and E(m) = O(αnd) which follows the power law that has a heavier tail than DP.

Suppose Y = (Y1, . . . ,Yn) represents continuous response variable on n observations. We as-

sume that each Yj, j = 1, . . . ,n, are generated from the distribution f (·) with parameter θ j. We

assume that θ′js are sampled independently and identically from a random distribution G. Here,
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G is PYP prior with discount parameter d, concentration parameter α, and base distribution G0.

Hence the PYM model is defined as follows:

Yj|θ j ∼ f(y j|θ j)

θ j|G ∼ G

G ∼ P Y (d,α,G0).

6.2 ABC-BNP for Pitman-Yor Process

For the posterior inference, we also combine the idea of ABC-BNP method with PYM which

can be applied in both conjugate and non-conjugate cases. So, for each observation, j = 1, . . . ,n,

θ j can be obtained by using the Pólya urn scheme and the corresponding prior distributions can be

defined by the full conditionals:

π(θ j|θ− j) =
α+dm

α+n−1
G0(θ j)+

1
α+n−1 ∑

k 6= j
(nk−d)δηk(θ j), (6.1)

where θ− j = {θ1, . . . ,θ j−1,θ j+1, . . . ,θn}, δ(θl) is the degenerate distribution at the point θl and

{η1, . . . ,ηm} are the unique values of {θ1, . . . ,θn} with corresponding frequency nk. So, the con-

ditional posterior distribution can be expressed as

θ j|θ− j,y j ∼ nc(α+dm)Pj

∫
f (y j|θ)dG0(θ)+nc ∑

k 6= j
(nk−d) f (yk|ηk)δηk(θ j),
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where Pj is the posterior density based on the base measure. For jth step of ABC-BNP, we sample

a candidate value, θ∗j from the prior in (6.1) and using the value of θ j, generate a new sample from

the sampling distribution f (z j|θ j). Finally, set θ
(b)
j = θ∗j with probability

α(θ
(b)
j ,θ j) = I(A j), (6.2)

where I(·) is an indicator function and A j is a model dependent condition based on y j and z∗j , for

example, if the data is binary, A j can be defined as y j = z∗j . So, for this model, the transition kernel

of θ can be written as

T (θ(b)|θ(b−1)) =
n

∏
j=1

s(θ(b)j |θ
(b−1)
− j ), (6.3)

where θ
(b−1)
− j = (θ

(b)
1 , . . . ,θ

(b)
j−1,θ

(b−1)
j+1 , . . . ,θ

(b−1)
n ) and s(·) can be defined in terms of (6.1) and

(6.2). Since the method is based on ABC-MCMC, the posterior converges to θ1, . . . ,θn (as de-

scribed in Marjoram et al. (2003)).

6.3 Simulation Study

In this section, we consider three simulation studies for PYM models.

6.3.1 Data Generation: Normal

For this data, we simulate the data from the normal distribution with mean 0 and variance 2.

Suppose Y = (Y1, . . . ,Yn) represents continuous response variable on n observations. We assume

that each Y j are normal distribution with unknown mean θ j and known variance σ2. We assume

that θ j are sampled independently and identically from a distribution G. Here, G is PYP prior with
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discount parameter d, concentration parameter α, and base distribution G0. For the normal model,

we can specify a conjugate base measure for θ j. Now, the simplest choice is the normal distribution

with mean µ0 and variance σ2
0. The prior for µ0 is assigned to be normal(µp,σ

2
p). Hence the models

is defined as follows:

Yj|θ j ∼ Normal(y j|θ j,σ
2)

θ j|G ∼ G

G ∼ P Y (d,α,G0)

G0 ≡ Normal(θ j|µ0,σ
2
0)

µ0 ∼ Normal(µ0|µp,σ
2
p).

In this example, n= 100,σ2 = 1,σ2
0 = 1,µp = 0,σ2

p = 1,d = 0.5, and α= 1. For ABC-BNP, we

choose the tolerance level, ε as 0.05 and run the simulation B = 100000 times with 10000 burn-in

period to get the approximate posterior distribution. The predictive density is displayed in Fig. 6.1

and Fig. 6.2 compares the distribution of µ based on PYM and DPM. This shows that PYM has the

longer tail than DPM. Fig. 6.3, 6.4, and Table 6.1 provide the summaries of the cluster distribution.

Table 6.1: Summary of the number of clusters for normal data

Minimum Median Mean Maximum
PYM 1.00 20.00 20.65 59.00
DPM 1.00 2.00 2.11 8.00

6.3.2 Data Generation: Student’s t

In this example, we sample the data from the Student’s t distribution with 2 degrees of free-

dom. Suppose Y = (Y1, . . . ,Yn) represents continuous response variable on n observations and the
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Figure 6.1: Comparison of the predictive distribution using PYM for the data generated from
normal distribution

Figure 6.2: Comparison of the distributions of µ using PYM and DPM for the data generated from
normal distribution
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Figure 6.3: Distribution of cluster size using PYM for normal data

Figure 6.4: Distribution of cluster size using DP for normal data
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sampling distribution of Yj are normal with known mean 0 and unknown precession θ. We as-

sume that θ j are sampled independently and identically from a random distribution G. Here, G is

PYP process prior with discount parameter d, concentration parameter α and base distribution G0.

For this model, we can specify a conjugate base measure for θ j. One choice of G0 is the gamma

distribution with shape parameter a0 and scale parameter b0. Hence the model can be written as

Yj|θ j ∼ Normal(y j|0,θ j)

θ j|G ∼ G

G ∼ P Y (d,α,G0)

G0 ≡ Gamma(θ j|a0,b0).

In this example, n = 100,a0 = 1,b0 = 2,d = 0.5, and α = 1. For ABC-BNP, we choose the

tolerance level ε as 0.05, the condition of A j is taken to be |y j− z∗j | < ε, and run the simulation

B = 100000 times with 20000 burn-in period to get the approximate posterior distribution. The

predictive distribution of θ is presented in Fig. 6.5 which shows almost same pattern as the data.

Fig. 6.6 shows the comparison of PYM and DPM based on the distribution of θ and PYM has the

longer tail than DPM. Also, we compared the mixing distribution plot of PYM with the Gamma

mixing distribution for the Student’s t. Fig. 6.7 shows that PYM can recover the mixing distribution

for θ much better than DPM. The summaries of the clusters are reported in Fig. 6.8, Fig. 6.9, and

Table 6.2. Gelman-Rubin plot in Fig. 6.10 for 50000 simulation with 10000 burn-in shows that

the sample is sufficiently close to the posterior and we can see that the chains are converged very

quickly.

Table 6.2: Summary of the number of clusters for Student’s t data

Minimum Median Mean Maximum
PYM 1.00 20.00 20.64 52.00
DPM 1.00 2.00 2.12 8.00
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Figure 6.5: Comparison of the predictive distribution for the data generated from t-distribution

Figure 6.6: Comparison of the distributions for θ using PYM and DPM for the data generated from
Student’s t distribution
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Figure 6.7: Comparison of the mixing distributions of θ for the data generated from Student’s t
distribution

Figure 6.8: Distribution of cluster size using PYM for Student’s t data
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Figure 6.9: Distribution of cluster size using DP for Student’s t data
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Figure 6.10: Gelman-Rubin plot using ABC-BNP with 50000 simulations after 10000 burn-in
period for PYM model of the Student’s t data



92

6.3.3 Data Generation: PYP

First, we generate the mean parameters µ from the PYP with discount parameter 0.5, concen-

tration parameter 1, and base distribution Normal(0,1). Then, the data is sampled from the normal

distribution with mean µ and variance 0.1. Now, the sampling distribution of Yj, j = 1, . . . ,n, are

normal distribution with unknown mean θ j and known variance 1. We assume that θ j are sampled

independently and identically from a random measure G. Here, G is PYP prior with discount pa-

rameter d = 0.5, concentration parameter α = 1, and base distribution G0. For the normal model,

we can specify a conjugate base measure for θ j. Now, in this case, the simplest choice of G0 is

normal distribution with mean µ0, variance σ2
0. Hence the model can be defined as follows:

Yj|θ j ∼ Normal(y j|θ j,1)

θ j|G ∼ G

G ∼ P Y (d,α,G0)

G0 ≡ Normal(θ j|µ0,σ
2
0).

In this example, n = 100,µ0 = 0,σ2
0 = 1, and the parameters of the PYM are same as the

values in the data generation step. For ABC-BNP, we choose the tolerance level, ε as 0.05 and

run the simulation B = 50000 times with 10000 burn-in period to get the approximate posterior

distribution. We can compare the predictive density with the data. In Fig. 6.11, the data and

the predictive distribution using PYM provide almost same densities. The distribution and the

summaries of the clusters are reported in Fig. 6.12 and Table 6.3, respectively.

Table 6.3: Summary of the number of clusters for PYM data

Minimum Median Mean Maximum
6.00 20.00 20.24 48.00
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Figure 6.11: Comparison of the predictive distribution for the data generated from PYM

Figure 6.12: Distribution of cluster size for PYM data
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6.4 Analysis of Galaxy Data

This data is used in Chapter 3 for DP prior. Now, for the PYM model, the discount parameter

assigned to be 0.5. For ABC-BNP, we consider the jth condition as A j = |y j− z∗j | ≤ ε, where the

tolerance level, ε is 0.05. We run the simulation B = 100000 times with 20000 burn-in period to

get the approximate posterior distribution. The predictive distribution of a new observation Y83 is

displayed in Fig. 6.13 and the data shows almost same pattern as the predictive distribution. The

distribution and the summary of the clusters are reported in Fig. 6.14 and Table 6.4, respectively.

To know whether this sample is sufficiently close to the posterior, we use Gelman-Rubin plot to

see if there is a significant difference between the variance within several chains and we can see

from Fig. 6.15 for 50000 simulations with 10000 burn-in period, the chains are converged after a

certain period of time.

Figure 6.13: The predictive distribution for the galaxy data
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Figure 6.14: Distribution of cluster size for galaxy data

Table 6.4: Summary of the number of clusters for galaxy data

Minimum Median Mean Maximum
10.00 27.00 26.67 44.00
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Figure 6.15: Gelman-Rubin plot using ABC-BNP with 50000 simulations after 10000 burn-in
period for PYM model of the Galaxy data



CHAPTER 7

ABC-BNP AND STABLE DISTRIBUTION

7.1 Introduction

Stable distributions are the class of probability distributions that provide a rich class of tail be-

haviors. Lévy (1924) studied the stable family of distribution in the context of sums of independent

identically distributed variables. The rich properties of this class of distributions are discussed in

books by Samoradnitsky & Taqqu (1994), Nolan (1997), and Feldman & Taqqu (1998). These dis-

tributions do not provide any general analytic expression for the probability density but are defined

in terms of domain of attraction and characteristic function. The following definition of the stable

distribution is based on the domain of attraction as described in Samoradnitsky & Taqqu (1994).

Definition 2 A random variable X is said to follow stable distribution if it has a domain of at-

traction, that is, if there is a sequence of independent and identically distributed random variables

Y1,Y2, . . . and a sequence of positive numbers {dn} and real numbers {an}, such that

Y1 + . . .+Yn

dn
+an

d
=⇒ X , (7.1)

where d
=⇒ denotes the convergence of distribution.

Precisely, the stable distribution can be obtained as limits of normalized sum of independent

and identically distributed random variables. Another equivalent definition of the stable distribu-

tion is in terms of characteristic function. In this setup, a stable distribution has four parameters:

i) an index of stability α ∈ (0,2], denotes as characteristic exponent, which determines the rate at
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which the tails of the distribution gradually decrease, ii) a location parameter µ∈R which shifts the

distribution to the left or right, iii) a scale parameter σ ≥ 0 which disperses the distribution about

µ, and iv) an asymmetry parameter β ∈ [−1,1] which determines the skewness of the distribution,

that is, if β is positive, the distribution is skewed to the right and if β is negative, the distribution

is skewed to the left, and it is symmetric if β = 0. Now, the stable distribution can be defined as

follows:

Definition 3 (Samoradnitsky & Taqqu (1994), Nolan (1997)) A random variable X is said to follow

stable distribution if there are parameters α ∈ (0,2], µ ∈ R, σ ≥ 0, and β ∈ [−1,1] such that the

characteristic function is defined as

E exp iθX =

 exp{−σα|θ|α(1− iβ(sign θ) tan πα

2 )+ iµθ} if α 6= 1

exp{−σ|θ|(1− iβ 2
π
(sign θ) ln |θ|)+ iµθ} if α = 1

(7.2)

where

sign θ =


1 if θ > 0

0 if θ = 0

−1 if θ < 0

. (7.3)

The parameters σ,β,µ are unique, except when α = 2,β is arbitrary. Here, we denote the stable

distribution as S(α,σ,β,µ).

Non-degenerate stable distributions are unimodal and the probability density function have

infinitely differentiable property. Normal (α = 2,β = 0) and Cauchy (α = 1,β = 0) distributions

provide the only analytically tractable distribution of this family. The lack of closed form for

densities and distribution functions has been a major technical difficulty for handling of stable

distributions. In Bayesian context, it is hard to estimate the parameters based on MCMC since we

need to know the likelihood up to a proportionality constant. In this situation, ABC is an easier
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way to handle the situation and it can be managed if we are able to generate from the distribution

although the form of the distribution is intractable. The next section will focus on the stable

distribution as base measure for BNP priors and extend the idea to recurrent data models.

7.2 Stable Model

Suppose we have a set of n heavy tailed random variables Y = (Y1, . . . ,Yn) with corresponding

parameters θ1, . . . ,θn and we can assume that θ1, . . . ,θn are drawn from independent and identi-

cally distributed random mixing measure G which follows DP or PYP prior with base distribution

G0. Let ζ be the part of the parameter vector corresponding to G. For DPM models, ζ = M and in

case of PYP models, ζ becomes (d,M), where d is the discount parameter and M refers to the con-

centration parameter. To incorporate heavy tail in the model, we can assume stable distribution as

the base measure and the corresponding parameters are i) characteristic component α, ii) location

parameter µ, iii) scale parameter σ, and iv) asymmetry parameter β. Here θ j is the model parameter

of the jth step. Different priors can be assigned for the parameter vector of the stable distribution.

In this study, we have fixed the values of β = 0 and σ = 1. In comparison with the normal model,

the prior for the characteristic component α can be assigned as uniform distributions with different

choices of intervals, (a0,b0). The normal prior is attached to the location parameter µ with the

mean µp and variance σ2
p. Under the nonparametric Bayesian models structure, the model can be

formalized as follows:
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Yj|θ j ∼ f (y j|θ j), j = 1, . . . ,n

θ j|G ∼ G

G ∼ BNP(ζ,G0)

G0 ≡ Stable(θ j|α,σ,β,µ)

α ∼ Uniform(a0,b0)

µ ∼ Normal(µ j|µp,σ
2
p). (7.4)

In general, the absence of a closed-form density of stable distribution is prevented from evalu-

ating the likelihood function and thus constructing posterior inference. Conditionally on an auxil-

iary variable, it is possible to express the density function in a closed form (Buckle (1995)) and the

Gibbs sampling can be used for estimating the stable distribution. Lombardi (2007) proposed an-

other MCMC approach to draw from the posterior distribution. Also, there are different likelihood

free methods are available to analyze the posterior distribution and to estimate the parameters

of the stable distribution. G. W. Peters et al. (2012) proposed an approach based on ABC-PRC

method. We developed Bayesian inferential methods to fit the models depending upon ABC-BNP

method. Here, the ABC method allows approximate posterior simulation for Bayesian models

without knowing the form of the likelihood function. The next segment will emphasize on the

proposed methodology for two models which have been discussed in previous section.
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7.2.1 Proposed Method for Stable Models

In this case, we can use the basic method mentioned in Chapter 3. Here, the ABC-BNP is

applied to get the probability distribution of the parameter θ j. The transition kernel for stable

models is defined as

T (θ(b),α(b),µ(b)|θ(b−1),α(b−1),µ(b−1)) =
n

∏
j=1

s1(θ
(b)
j |θ

(b−1)
− j ,α(b−1),µ(b−1))

×s2(α
(b)|θ(b),α(b−1),µ(b−1))× s3(µ(b)|θ(b),α(b),µ(b−1)), (7.5)

where θ
(b−1)
− j = (θ

(b)
1 , . . . ,θ

(b)
j−1,θ

(b−1)
j+1 , . . . ,θ

(b−1)
n ) and s1(·) is derived from (3.2) and (3.4). As

stated in the ABC-BNP method, for each j = 1, . . . ,n, θ
(b)
j can be constructed as

θ
(b)
j =

 θ∗j if I(A j);

θ
(b−1)
j otherwise,

(7.6)

where I(C) = 1 if C holds and if we assume continuous response, the condition in (7.6) can be

constructed as

|y j− z∗j |< ε,

where ε is a predefined threshold value and z∗j is sampled from the sampling distribution f (z j|θ∗j).

Now, we sample a candidate value θ∗j from the DP or PYP prior with base measure G0 as stable

distribution, that is,

θ
∗
j |θ

(b−1)
− j ,α(b−1),µ(b−1) ∼ π(θ∗j |θ− j),

where π(θ∗j |θ− j) is defined in (3.2).



102

Finally, s2(·), and s3(·) indicate the full conditionals of (α(b)|θ(b),α(b−1),µ(b−1)), and (µ(b)|θ(b),

α(b),µ(b−1)), respectively. we update the parameters α(b),µ(b) conditional on θ(b). In this case, α(b)

is updated using slice sampler. The Metropolis-Hastings method is performed to obtain the condi-

tional posterior of µ(b). First, we generate the candidate values µ∗ from the proposal density q(·)

and

µ(b) =

 µ∗ with probability min{1, π(µ∗|θ(b),α(b))q(µ(b−1))

π(µ(b−1)|θ(b),α(b))q(µ∗)
};

µ(b−1) otherwise.

where π(µ|θ,α) is the full conditional posterior distribution of µ.

7.2.2 Simulation Study

Suppose Y = (Y1, . . . ,Yn) represents continuous response variable on n observations. We as-

sume that each Yj follows normal distribution with unknown mean θ j and known variance σ2
y .

We assume that θ j are sampled independently and identically from a distribution G. Here, G is

PYP prior with discount parameter d, concentration parameter M and base distribution G0. For

this model, we can specify a base measure for θ j as stable distribution with index of stability α,

asymmetric parameter β = 0, location parameter µ, and scale parameter σ = 1.

Here, we have simulated the data from Normal(0,σ2
y). We consider two choices of the index of

stability, for example, α = 2 and α = (1.5,2). In this example, n = 100,σ2
y = 1,µp = 0,σ2

p = 1,d =

0.5, and M = 1. For ABC-BNP, we choose the tolerance level, ε as 0.005 and run the simulation

B = 100000 times with 25000 burn-in period to get the approximate posterior density. Here the α

is updated using the slice sampler. Fig. 7.1 shows the distribution of µ for α = 2 and α = (1.5,2)

for PYP process and for α = (1.5,2), the distribution of µ captures the tail probabilities. The

corresponding acceptance rates are 3.93% and 6.7%. The summaries of the clusters are reported

in Fig. 7.2 and Table 7.1.
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Figure 7.1: Distributions of µ for stable model

Figure 7.2: Distribution of cluster size for stable(2) model
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Figure 7.3: Distribution of cluster size for stable(1.5, 2) model

Table 7.1: Summaries of the number of clusters for stable model

Model Minimum Median Mean Maximum
Stable(2) 1.0 20.0 20.6 63.00

Stable(1.5, 2) 1.0 20.0 20.7 56.00
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7.3 Stable Recurrent Data Model

Now, the idea of the previous model has been extended to the recurrent data models. One

extension of such models is the recurrent survival model with gap time between two consecutive

events. We have discussed this model in Chapter 5. For the heavy tailed data, stable distribution is

one of the choices for base measure. In this step, we have also assigned prior for the models pa-

rameters. The prior for µ is the normal distribution with mean µ0 and variance σ2
0, uniform (a0,b0)

distribution is assigned for the index of stability, and inverse-gamma distributions are attached to

the scale parameters. Hence, the DPM frailty model for recurrent data can be expressed as follows:

Yjk = log(Wjk), j = 1, . . . ,n;k = 1, . . . ,m j

Yjk = µy +u j + ε jk

ε jk
iid∼ Normal(0,σ2

e)

u j|G ∼ G

G ∼ DP(M,G0)

G0 ≡ Stable(u j|α,σ,β,µ)

µy ∼ Normal(µ0,σ
2
0)

α ∼ Uniform(a0,b0)

σ
2 ∼ I G(au,bu)

σ
2
e ∼ I G(ae,be). (7.7)

ABC-BNP method has been applied to recurrent data model as described in Chapter 5 and we

implement the idea of stable distribution to this model.
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7.3.1 Proposed method for Stable Recurrent Data Models

For this model, the ABC-BNP is used to update the frailty term u j and the other parameters,

α,µy,σ
2
e , σ2, are updated using Metropolis-Hastings algorithm. The transition kernel for this model

can be expressed as

T (u(b),α(b),µ(b)y ,σ
2(b)
e ,σ2(b)|θ(b−1),α(b−1),µ(b−1)

y ,σ
2(b−1)
e ,σ2(b−1)) =

n

∏
j=1

s1(u
(b)
j |u

(b−1)
− j ,α(b−1),

µ(b−1)
y ,σ

2(b−1)
e ,σ2(b−1))× s2(α

(b)|u(b),α(b−1),µ(b−1)
y ,σ

2(b−1)
e ,σ2(b−1))

×s3(µ
(b)
y |u(b),α(b),µ(b−1)

y ,σ
2(b−1)
e ,σ2(b−1))× s4(σ

2(b)
e |u(b),α(b),µ(b)y ,σ

2(b−1)
e ,σ2(b−1))

×s5(σ
2(b)|u(b),α(b),µ(b)y ,σ

2(b)
e ,σ2(b−1)).

(7.8)

Here, the method is almost same as we described in Chapter 5. Instead of normal base distribution,

stable distribution is implemented in this model and we assign a prior on α. The distribution of α is

updated using the slice sampler and the Metropolis-Hastings algorithm is applied to φ=(µy,σ
2,σ2

e)

with acceptance probability

min
{

1,
π(φ∗)L(φ∗|y)q(φ∗|φ)
π(φ)L(φ|y)q(φ|φ∗)

}
,

where π(·), L(·|y), and q(·) are same as indicated in (5.10). φ∗ is generated from the proposal

density q(·). Given the values of u(b), α(b),µ(b−1)
y ,σ

2(b−1)
e , and σ2(b−1), the distribution of φ(b) is

as follows

φ
(b) =

 φ∗ with probability min{1, π(φ∗|u(b),α(b))q(φ(b−1))

π(φ(b−1)|u(b),α(b))q(φ∗)
};

φ(b−1) otherwise.

where π(φ|u,α) is the full conditional of φ = (µy,σ
2
e ,σ

2). Since the method is based on the ABC-

MCMC, the conditional posterior converges to the parameter of interests.
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7.3.2 Analysis of Bowel Motility Cycles

We have discussed this data in Sec. 5.4.2. In this example, the values of the hyper-parameters

are same as before. But we consider a prior for α for the stable model. The simulation has been

iterated B = 100000 times with 50000 burn-in period to get the estimates of the parameters. Here,

the acceptance rate 11.2% and the computing time is 4.3 minutes. We use the slice sampler to

update the stable parameter α and the Metropolis-Hastings algorithm is used to approximate other

parameters. Table 7.2 shows the comparison of estimated parameters using ABC-BNP and stick

breaking Gibbs (RJAGS software). Table 7.3 and Fig. 7.4 provide the comparison and distribution

of log likelihoods over MCMC.

Table 7.2: Comparison of the parameters for stable recurrent data model

ABC-BNP(Stable α = (1,2)) ABC-BNP (Normal) Stick breaking Gibbs
µ̂y 4.22 4.11 4.26
σ̂ 0.82 0.80 0.79
σ̂u 0.20 0.19 0.16

Table 7.3: Comparison of maximum log likelihood over MCMC for recurrent data model

Method Max log likelihood
ABC-BNP(stable(1, 2)) -113.5
ABC-BNP(stable(2)) -113.9
Stick breaking Gibbs -114.9
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Figure 7.4: Trace plot and the distribution of log likelihood for stable(1, 2) recurrent data model



CHAPTER 8

FUTURE EXTENSIONS AND CONCLUSION

We conclude by discussing some possible extensions of the different models suggested by our

proposed method.

8.1 Future Extensions

8.1.1 GLMM for Count Data

Let Y = (Y1, . . . ,Yn) denote count random variable of n subjects, X = (X1, . . . ,Xp), X j be the

vector of p covariates corresponding to the jth observation, β = (β1, . . . ,βp) be the regression

coefficient vector of dimension p, Ψ=(ψ1, . . . ,ψn) be the vector of random effects, where ψ j is the

random effect corresponding to jth subject, and γ = (γ1, . . . ,γn) be the vector of linear predictors.

For each j, the GLMM model under count data can be defined as

Yj|λ j ∼ Poisson(y j|λ j)

g(λ j) = log
(
λ j
)
= γ j

=⇒ g−1(γ j) = exp(γ j) = λ j

γ j = XT
j β+ψ j.
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Kyung et al. (2011) used this model under DP. We can apply this model under PYP. Hence, the

model can be defined as follows:

P(Yj = 1|X j,β,ψ j) = exp(XT
j β+ψ j), j = 1, . . . ,n

ψ j|G ∼ G

G ∼ BNP(ζ,G0).

8.1.2 Joint Modeling

One extension to the survival model is the joint modeling. In clinical research, it is very com-

mon to notice both longitudinal and time to event data. If there is no correlation between these

two, one can easily analyze the data separately. But if the longitudinal variable is correlated with

the survival point, it is not appropriate to use two independent studies. As a remedy, we can use

the joint modeling for longitudinal and time to event data. The detailed idea of this type of models

is given by Guo & Carlin (2004) and Rizopoulos (2012).

Let y jk be the longitudinal response at time t jk and t∗j be the time to event data for jth subject

with k = 1, . . . ,m j and j = 1, . . . ,n. Now, the basic structure of joint model (Henderson et al.

(2000)) is defined as

y jk = x1 jβ1 +W1 j(t jk)+ ε jk

λ j(t∗j ) = λ0(t∗j )exp(x2 jβ2 +W2 j(t∗j )),

where ε jk ∼Normal(0,σ2
ε) is the random error for the first model and λ0(t∗j ) represents the baseline

hazard function. x1,x2 denote the design matrices and β1,β2 represent the corresponding regression

coefficients for longitudinal and survival models. W1 and W2 indicate the functions of shared terms
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between two models. One simple choice of W1 and W2 at the time point t is defined as (Guo &

Carlin (2004))

W1 j(t) = U1 j +U2 j(t)

W2 j(t) = U1 j +U2 j(t)+ γ(U1 j +U2 j(t)),

where U j = (U1 j,U2 j) is the vector of frailty terms or random effects and γ denotes the measure of

association between the two models. In this model, we can proceed by assigning the nonparametric

Bayesian models for the frailty term and use the ABC-BNP method to update it.

We would also like to investigate other nonparametric models based on ABC. In last twenty

years, DP have become extremely popular and useful for nonparametric models in the Bayesian

studies due to the efficient computation methods. Here, the model is used as a prior for the un-

known distribution. An area of research is extending this to a wider class of models where the un-

known distribution depends on different objectives. Extension of the DP provides a class of models

that are not only computationally feasible, it also allows many basic modeling designs. The popu-

lar extensions of the DP include dependent DP (MacEachern (1999), MacEachern (2000), De Iorio

et al. (2004), De Iorio et al. (2009)), hierarchical DP (Teh et al. (2006)) and nested DP (Rodriguez

et al. (2008)).

8.1.3 Dependent Dirichlet Process

MacEachern (1999) generalizes the idea of DP to dependent DP (DDP). In DDP, the stick-

breaking process of DP can be generalized by taking θk instead of distinct θ∗k . Now, the DDP prior
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for the collection of random distributions, G = {Gs : s ∈ S}, where S is a covariate space, can be

defined as follows:

βk(s) ∼ Beta(1,α(s))

π1(s) = β1(s)

πk(s) = βk(s)
k−1

∏
l=1

(1−βl(s)), k = 2,3, . . . ,

θkx(s)
iid∼ G0,S

Gs =
∞

∑
k=1

πk(s)δθ(kx)(s).

where G0,S is a stochastic process defined on S. Hence, for any fixed s, the DDP construction yields

a DP prior distribution for Gs. An application of the DDP is the ANOVA type dependent model,

denoted as ANOVA-DDP (De Iorio et al. (2004), De Iorio et al. (2009)). Let yi, i = 1, . . . ,n be ith

data point and xi be the corresponding covariate vector. In this setup, θkx(s) is modeled as

θkx(s) = ms +Avs +Bws,

where ms
iid∼ p0

m(ms), Avs
iid∼ p0

Av(Avs), and Bws
iid∼ p0

Bw(Aws) and independent across s,v, and w.

Hence, the ANOVA-DDP model with concentration parameter M and base measure p0 =(p0
m, p0

Av, p0
Bw),

can be written as

yi|xi = x∼ Hx(yi)

Hx(yi) =
∫

N (yi|µ,σ2)dGs(µ)

Gs,s ∈ S ∼ ANOVA DDP(M, p0). (8.1)
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Let αs = [ms,A2s, . . . ,AV s,B2s, . . . ,BWs] and di be the design vector corresponding to xi, that is,

θxk(s) = αsdi for x = xi. Then the model (8.1) can be written as

yi|xi = x∼ Hx(yi)

Hx(yi) =
∫

N (yi|αdi,σ
2)dG(α)

G ∼ DP(M, p0).

8.1.4 Hierarchical Dirichlet Process

If we wish to model a grouped data, in which each group is associated with a mixture model,

an extension to DPM model, denoted as hierarchical DP (HDP), is appropriate in this situation.

Teh et al. (2006) proposed this model to use as the prior over the factors for grouped data. Let

y j = (y j1,y j2, . . .) be the observations in jth group, θ ji be a factor corresponding to the observation

y ji, f (y ji|θ ji) be the distribution of y ji|θ ji, G j be the random probability measure for jth group, and

G0 be the global random probability measure. G0 and G j are distributed as DP with concentration

parameters γ and α0, respectively and the base measures as H and G0, respectively. Hence, the

HDP can be defined as

G0 ∼ DP(γ,H)

G j ∼ DP(α0,G0)

θ ji|G j ∼ G j

y ji|θ ji ∼ f (y ji|θ ji).

This model can be extended to more than two levels. Hence, in general, we can extend the HDP

mixture model as a tree with each node associated with DPM models.
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8.1.5 Nested Dirichlet Process

The nested DP (NDP) (Rodriguez et al. (2008)) is mainly used for clustering probability distri-

butions and simultaneous multilevel clustering in nested settings. Let yi j be the ith observation of

the jth group, for i= 1, . . . ,n j, j = 1, . . . ,J and yi j
i.i.d∼ f j for j = 1, . . . ,J. Now, consider a collection

of distribution {G1, . . . ,GJ} with G j ∼ Q and Q = DP(αDP(βH)) with f j(·|φ) =
∫

p(·|θ,φ)G jdθ,

where p(·|θ,φ) is a distribution for given θ,φ. Hence, { f1, . . . , fJ} is said to follow NDP with

β
∗
k ∼ Beta(1,α)

u∗lk ∼ Beta(1,β)

π
∗
k = β

∗
k

l−1

∏
s=1

(1−β
∗
s )

w∗lk = u∗lk
l−1

∏
s=1

(1−u∗sl)

θ
∗
lk ∼ H

G j ∼ Q =
∞

∑
k=1

π
∗
kδG∗k

G∗k =
∞

∑
k=1

w∗lkδθ∗lk

y ji ∼ f j.

NDP can be characterized as DDP models. There is a difference between the HDP and the NDP

models (see Figure. 8.1, taken from Rodriguez et al. (2008)). In HDP, the collection of distribution

{G1, . . . ,GJ} has the same structure with different weights, whereas, for NDP models, the different

distributions have either the same structure with the same weight or completely different.
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Figure 8.1: Comparing NDP and HDP models
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8.2 Conclusion

This dissertation proposed a nonparametric Bayesian computation method that takes into ac-

count an easier way to estimate the posterior distribution when the likelihood is intractable or

computationally intensive. First, we reviewed the existing ABC methods and the nonparametric

Bayesian models. After that, the basic structure of our proposed ABC-BNP method has been

discussed and developed some new methods based on that.

Different Bayesian models have been explored in this study. In practice, we implement the

MCMC method to estimate the posterior summaries. However, ABC-BNP provides a straightfor-

ward way to handle the situation. Chapter 4 presented ABC-BNP for binary GLMM models. For

the random intercept and scale mixture models, the form of the posterior is non-conjugate and it is

easier to implement our proposed method. The results show that the posterior means of ABC-BNP

are almost same as for both the binary models. As well as, the random intercept model provided the

less computing time than the preexisting technique. We have constructed on the already developed

method for Bayesian nonparametric survival and recurrent data models in Chapter 5. The modi-

fication was incorporated by defining the random effect in the model and the ABC-BNP method

was used to update the parameters. This method showed a significant improvement based on the

log likelihood over MCMC of the model. We further proposed ABC-BNP method under the PYP

in Chapter 6 and used one real data and three simulated data to establish the method. Chapter 7

suggested dealing with an intractable likelihood, the stable distribution. We considered a stable

model and the survival recurrent data model to compare the ABC-BNP with the existing MCMC

method.

It is observed that our proposed method performed better based on the maximum of log like-

lihood estimates over the MCMC because the maximum values reached in ABC-BNP. Also, this

method can be easily implemented in the model and it is fast. In most of the cases, the computing
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time is very less than the other existing method. Most of the situations, it is notable that the re-

sulted posterior estimates are almost similar and the 95% credible intervals became wider for the

regression parameters of the ABC-BNP method relative to MCMC methods. Also, the predictive

distributions are nearly same as the data.
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