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ABSTRACT 

 

ANALYSIS AND EXTENSION OF A FLEXIBLE STOCHASTIC DIFFERENTIAL 

EQUATION MODEL TO ESTIMATE THE AMOUNT OF NANOCONJUGATES  

REQUIRED TO INITIATE REMISSION OF CANCER 

 

Nicholas Skradski, M.S. 

Division of Statistics 

Northern Illinois University, 2016 

Nader Ebrahimi, Director 

 

 This thesis examines a definition of reliability that can be applied to targeted 

nanoconjugate chemotherapy in cancer and also simulates a stochastic differential equation 

model to attempt to predict the estimated time until remission when using targeted 

nanoconjugate chemotherapy utilizing a recursive algorithm to attempt to find the dose of 

nanoconjugates that will result in remission by an expected time t. Areas of research that can be 

used to obtain model parameter values are cited and values for the dose of nanoconjugates, given 

as number of nanoconjugates, are predicted for several different model parameters.  The model is 

then extended to include a probabilistic framework that allows for a prior distribution to be 

placed on parameters where the exact value is not known but a distribution of the parameters 

may be known.  Following that, examples of the extended model are given assuming that all of 

the model parameters are random.  It is then suggested that the model undergoes evaluation with 

empirical data in order to examine the predictions of the model under certain parameters and 

some examples of further model extension are given that may allow for better predictions by 

relaxing some assumptions.  Lastly the code for the program, written in R, is given in the 

appendix. 

   



NORTHERN ILLINOIS UNIVERSITY 

DE KALB, ILLINOIS 

 

 

 

 

DECEMBER 2016 

 

 

 

 

 

 

 

ANALYSIS AND EXTENSION OF A FLEXIBLE STOCHASTIC 

DIFFERENTIAL EQUATION MODEL TO ESTIMATE THE  

AMOUNT OF NANOCONJUGATES REQUIRED TO  

INITIATE REMISSION OF CANCER 

 

BY 

 

NICHOLAS JOSEPH SKRADSKI 

© 2016 Nicholas Skradski 

 

A THESIS SUBMITTED TO THE GRADUATE SCHOOL  

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  

FOR THE DEGREE 

MASTER OF SCIENCE 

 

 

DIVISION OF STATISTICS 

 

 

 

 

Thesis Director: 

 Nader Ebrahimi  



 
 

 

TABLE OF CONTENTS 

 

Page 

LIST OF TABLES ……………………………………………………………..……………..iii 

LIST OF FIGURES ………………………………………….……………………..…………iv 

CHAPTER 1:  INTRODUCTION .……………………………………………….….……….1 

1.1   Background ...……………..…………………………………………….……..1 

1.2   Description of the Problem ………………..…………………………………..3 

CHAPTER 2: PROPOSED PHARMACODYNAMIC MODEL …………………………….6 

     2.1   Introduction to the Model ……………………………………………………..6 

 2.2   Proposed Pharmacodynamic Model …………...………………………...……8 

 2.3   Examples of the Pharmacodynamic Model …………………………..………17 

CHAPTER 3: EXTENSION OF THE PHARMACODYNAMIC MODEL …..….……...…..21 

 3.1 Introduction and Explanation of the Extension Model …………………….…21 

 3.2 Example of the Extension Model ………….………………………….………22 

CHAPTER 4: CONCLUSION AND FUTURE RESEARCH ….…………………….……....26 

REFERENCES …………...…………………………………………………………………...29 

APPENDIX: R CODE USED FOR EXAMPLES IN CHAPTER 2 AND CHAPTER 3 …….34  



 
 

 

LIST OF TABLES 

Table Page 

2.1   Notation Used in the Pharmacodynamic Model .………………………………………..7 

 

 

2.2   Expected number of nanoconjugates in millions for example 1 at expected time until all 

cancer cells are killed for E(t) = 1 and E(t) = .5 according to the algorithm ..………………..18 

 

 

2.3   Expected number of nanoconjugates in millions for example 2 at expected time until all 

cancer cells are killed for E(t) = 1 and E(t) = 0.5 according to the algorithm ..………………20 

 

 

2.4   Expected number of nanoconjugates in millions for example 3 at expected time until all 

cancer cells are killed for E(t) = 1 and E(t) = 0.5 according to the algorithm .……….………20 

 

 

3.1   Expected time until all cancer cells are killed based on example 1 using the averaging 

method with v12=5 …………………………………….……………….………………….….23 

 

 

3.2   Expected time until all cancer cells are killed based on Chapter 2, example 3, using the 

averaging method with v12=5……………………………………………………………...….25  



 
 

 

LIST OF FIGURES 

Figure                Page 

3.1 Graph of the estimated time until all cancer cells are killed at differing values of C based on 

parameter values from Chapter 2, example 1 ………………..……………………………….24 

 

 

3.2 Graph of the estimated time required to kill all cancer cells for differing values of C based on 

parameter values from Chapter 2, example 3…….………………..………………………….25  



CHAPTER 1 

INTRODUCTION 

1.1 - Background 

In the past several decades there has been a significant increase in the research into 

nanoparticles and their possible applications.  These applications are numerous, ranging from use 

in electronics, biological experiments (De, Ghosh, & Rotello, 2008; Miranda, Creran, & Rotello, 

2010), medicine (Biju, Mundayoor, Omkumar, Anas & Ishikawa, 2010; Lu, Doane, Zhu, & 

Burda, 2012), and many other fields.  One specifically interesting area of study is the use of 

nanotechnology in biomedical applications.  Nanomedicine, the approach of science and 

engineering at the nanometer scale toward biomedical applications, is the area of study in which 

biomedical applications and medicine intersect (Lee, Solanki, Kim, & Jung, 2009).  The 

biomedical applications are also numerous, ranging from medical imaging (Jain, Huang, El-

Sayed, & El-Sayed, 2008; Saha, Agasti, Kim, Li, & Rotello, 2012), photodynamic therapy (Celli 

et al., 2010; Mansoori, Brandenburg, & Shakeri-Zadeh, 2010), targeted drug delivery (Cai et al., 

2016; Kalomiraki, Thermos, & Chaniotakis, 2016; Keyhanian, Mansoori & Rahimpour, 2010), 

bone grafting and regeneration (Murgan & Ramakrishna, 2007; Yang et al., 2016), gene therapy 

(Majidi et al., 2016), and multifunctional therapies (Lim et al., 2014).  Nanoparticles, through 

their novel properties, can produce and improve therapeutics in a variety of different ways 

(Doane & Burda., 2012).  These ways include improved bioavailability (Aditya et al., 2013) and 

improved toxicity to cancer cells, and, as mentioned above, nanoparticles can be used to provide 

medicine that can target specific areas of the body.  The use of nanoparticles to target specific 
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areas of the body is achieved through several methods; these methods include taking 

advantage of pH differences in targeted tissues, upregulation or downregulation of receptors in 

the cell membranes in targeted tissues, differences in temperature in targeted tissues, and 

hydrophobicity changes in targeted tissues (Calixto, Bernegossi, Fonseca-Santos, & Chorilli, 

2014; Doane & Burda, 2012).  Nanoparticles give the opportunity to utilize more than one of 

these methods of targeting at the same time, possibly resulting in much more efficient and 

efficacious treatments.  The next several paragraphs will provide examples of research that have 

utilized nanomedicine targeted treatment methods. 

One method of targeted drug delivery utilizes the targeting methods of pH differences 

and targeting of upregulated folic receptors in cancer cells, demonstrating that nanomedicine is 

not limited to only one method of targeting tissue.  For instance, Long et al. (2016) synthesized a 

micelle-based targeted treatment by loading cross-linked micelles with doxorubicin and 

conjugating folic acid to the fused polymers which would be reactive in lower pH solutions.  The 

particles were then tested in vitro on mouse fibroblast cells and human cervical carcinoma cells.  

It was found that there was significantly more doxorubicin release at a pH of 5.8 (less than 20% 

released after 160 hours of incubation) than at a pH of 7.4 (over 50% release at an incubation 

time of 160 hours), where a pH of 5.8 is closer to what is exhibited in lysosomes and endosomes 

and a pH of 7.4 is what is exhibited in healthy human tissue generally.  This suggests that 

doxorubicin release by this micelle would be lower when in non-tumor tissue, as tumor tissue 

often exhibits lower pH levels than healthy tissue.  It was also found that the conjugation of folic 

acid to the polymer assisted in the uptake of the micelles into the cells, further demonstrating that 

this targeting mechanism showed benefits from both the pH targeting, as there would be less 

healthy tissue killed, and from folic acid conjugation, as there was more uptake when the micelle 
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was conjugated with folic acid.  Overall, there is potential for this particular method of targeted 

treatment to deliver chemotherapies to cancer cells. 

Another targeted treatment involved conjugating folic acid to PEGylated nanoparticles 

with quercetin and testing them on mice in vivo with HeLa cells and with IGROV-1 cells; both 

are types of ovarian cancer found in humans (El-Gogary et al., 2014). Both cell lines were also 

tested in vitro.  It was found, through luminescence in vivo and testing with free folic acid and no 

free folic acid in vitro, that folic acid improved uptake of the nanoparticles.  Furthermore, the 

conjugated quercetin showed as much cytotoxicity in the cancer cells as free quercetin, and 

release of quercetin was low in serum, which suggests that much of the quercetin would not be 

released until entering a cell or entering cancerous tissue.  More research on the use of 

PEGylated folic acid nanoconjugates is needed to determine whether they are an effective carrier 

of chemotherapeutic agents, yet this study demonstrates potential for another effective targeted 

therapy. 

These examples, though not anywhere close to exhaustive, serve as a foundation for one 

of the current problems that exists in nanotechnology research.  That problem is the lack of any 

models to demonstrate the reliability of nanotechnology drug delivery systems.  Currently it is 

not possible to tell, in an empirical manner, which nanoparticles should be pursued beyond the 

early stages of testing and which ones are superior drug delivery mechanisms.  The next section 

will describe this problem in further detail and describe one suggested attempt to solve the 

problem.  Chapter 2 will describe the method proposed in greater detail. 

1.2 – Description of the Problem 

There is a lack of consensus on what a reliable nanoparticle-based cancer treatment 

system is.  This lack of consensus results in problems with designing, assessing, and 
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implementing nanoparticle-based cancer treatments. Recently, attempts to define reliability and 

establish ways to model it have been implemented (Ebrahimi & Mansoori, 2014; Ebrahimi, 

Mansoori, & Skradski, 2016).  Specifically, Ebrahimi et al. (2016) suggest that a definition of 

reliability for cancer targeting nanoconjugate drugs over time should be a probability function 

interpreted as the probability of killing all cancer cells in a targeted tissue at some time t, where 

the higher the value of the function at time t, the more reliable the therapy is at time t.  This 

definition of reliability has yet to be applied by researchers, but it does suggest that the faster a 

drug kills all of the cancer cells, the more reliable the drug is.  Intuitively, this definition makes 

sense; however, there may be confusion because it differs from the definition of reliability 

generally used in survival analysis. 

Barring possible semantic complaints about the definition of reliability in this context, 

modeling the probability of successfully treating cancer at certain points in time is a beneficial 

endeavor. To model the time taken to achieve death of all cancer cells, Ebrahimi et al. (2016) 

also proposed a stochastic differential equation model for the probability of killing all cancer 

cells in a certain amount of time.  This model has many parameters and may benefit from a 

probabilistic framework.   

In this thesis, the model proposed by Ebrahimi et al. (2016) will be examined at different 

values.  There is no data to use to test this model’s parameters, so examples will need to be used.  

It should be noted that the model proposed by Ebrahimi et al. (2016) is a time-dependent 

extension of the model proposed by Ebrahimi and Mansoori (2014).   

Since it is possible to not know what one or more parameters is, a probabilistic 

framework will be incorporated into the model.  Specifically, in situations where the parameters 

are unknown, it will be assumed that each of the unknown parameters will be a random quantity. 
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The outline of the thesis is as follows: In Chapter 2, the model proposed by Ebrahimi et 

al. (2016) is going to be introduced in detail.  Assumptions, postulates, and examples of the 

model will be shown.  The goal of Chapter 2 will be to test the model under different parameters 

in order to determine how the model should function under certain conditions.  This will provide 

an estimate on how the nanoparticles should behave if the model is able to successfully make 

predictions.  In Chapter 3, the model will be extended by making the assumption that the 

unknown parameters each follow certain distributions.  This will then be tested in order to 

determine how the distributions affect the probability of killing cancer cells by some time t.  

Furthermore, examples will also be given in order to demonstrate how the model is expected to 

work under these conditions.

 

  



 
 

CHAPTER 2 

PROPOSED PHARMACODYNAMIC MODEL 

 

2.1 – Introduction to the Model 

Table (2.1) lists the notation used, also given in by Ebrahimi et al. (2016), throughout this 

thesis.  In table (2.1) nanoconjugate is defined as a molecule tailored from nanoparticles that has 

at least one biologically active module.  A nanoparticle is simply defined as a particle with 

diameter between 1nm and 100nm. 

The notation in table (2.1) and the criteria postulated by Ebrahimi et al (2016) results in 

the following definition of reliability in drug delivery utilizing nanomedicine: 

Let 1{ : ( ) ( ) 0},T Inf t I t kN t   ( ) ( ).P t P T t   

This suggests that T is the time at which all cancer cells will be killed, a description of the 

functions mentioned and the parameter k is in the next section.  A higher value of ( )P t implies 

that a drug delivery system is more reliable.  Specifically, a drug delivery system A is more 

reliable than a drug delivery system B if ( ) ( ),A BP t P t where ( )AP t  and ( )BP t  are the reliability 

functions for system A and system B respectively.  In general this definition does not necessitate 

that a particular drug delivery system is more reliable at some particular time t, or even for all t; 

it does, however, necessitate that the faster the drug delivery system kills all of the cancer cells, 

the more reliable it is.  This should be sufficient for a basic model of the reliability of a drug 

delivery system. 
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Table 2.1.  Notation Used in the Pharmacodynamic Model. 

C   The number of nanoconjugates injected into the bloodstream containing the drug to be 

delivered 

 S t   The number of nanoconjugates that are at the site of administration at time t 

1( )S t   The number of nanoconjugates that are in non-targeted tissue at time t 

1( )I t   The number of nanoconjugates that are in cancerous cells at time t 

2( )I t   The number of nanoconjugates that are in healthy cells at time t 

( )R t   The number of nanoconjugates that are removed from the body at time t 

1d   The average number of nanoconjugates that penetrate targeted tissues per unit time 

2d   The average number of nanoconjugates that penetrate healthy cells in the targeted 

tissue per unit time 

3d   The average number of nanoconjugates that penetrate non-targeted tissue per unit time 

4d   The average number of nanoconjugates that are eliminated from non-targeted tissues 

per unit time 
*d   1 2 3d d d     

1   The average number of nanoconjugates that are eliminated from cancerous cells in the 

targeted tissue per unit time 

2   The average number of nanoconjugates that are eliminated from healthy cells in the 

targeted tissue per unit time 

   The average number of cancerous cells that are killed per unit time 

1   The average number of cancerous cells proliferation per unit time 

*

1d   The average number of cancerous cells being eliminated per unit time ( 1  ) 

k   Number of nanoconjugates carrying the drug needed to destroy a single cancerous cell 

in the targeted tissue 

( )N t   The number of cancerous cells in the targeted tissue at time t 

n   The number of cancerous cells in the tissue at time 0 

T   The first time at which all cancerous cells are killed 

( )P t   The reliability of the nanodrug system ( )( )P T t   

( )E T   The expected time required to kill all cancer cells 

( )jB t   Standard Brownian motion, 1,2,3,4,5j   

( )j t   Diffusion coefficient, 1,2,3,4,5j   

ja   Intensity parameter, 1,2,3,4,5j   
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2.2 – Proposed Pharmacodynamic Model 

The model proposed by Ebrahimi et al. (2016) suggests that a pharmacodynamic model 

can be used to predict the reliability of the nanotechnology drug delivery system.  This model is 

based on the number of nanoconjugates that are injected, the behavior of the nanoconjugates in 

the body, and the number of nanoconjugates, on average, required to kill a cancerous cell.   

 The model is a single compartment model, which is to say that the model proposes an 

all-encompassing model in which all tissues are treated as a single system.  There is, however, a 

parameter to describe the rate at which nanoparticles enter targeted tissues and a parameter to 

describe the rate at which the nanoparticles enter non-targeted tissue.   

The model, based on a first rate elimination process, is mathematically complex due to 

the use of a series of stochastic differential equations.  Much of the derivation of the equations 

can be seen by reading Ebrahimi et al. (2016).   

The model begins by assuming that the following four differential equations are used to 

model the elimination of nanoconjugates from the body, as given by Ebrahimi et al. (2016): 

 1 2 3( ) ( ) ( )( ,( )) S t d SdS t d t d S t dt      (2.1) 

 1 3 4 1( ) ( ( ) ( )) ,t d S t d SS t td d    (2.2) 

 ( ) ( ( ) ( )) , 1,2,i i i it d S t I t dtd iI      (2.3) 

 1 1 2 2 4 1( ) ( ) ( .( )) )( I t I t d S t dtdR t       (2.4) 

Utilizing basic differential equations concepts, and then setting (0)S C  the following 

solutions can be found for Eqs. (2.1)-(2.4): 

 
*( ) (0)exp( ),S t S d t    (2.5) 
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 *3
1 4*

4

( ) (exp( ) ( )),
Cd

t d t exp d t
d d

S    


  (2.6) 

 *

*
( ) (exp( ) ( )),i

i i

i

Cd
t t expI d t

d



   


  (2.7) 

 

31 2
1 2 4* * *

1 2 4

*31 2

* * *

1 2 4

) e( ) [1 ex xp( )p( )

(1 )

exp(

)x ].e p(

dd
t t d

d
R t C t

d

dd d
d

d

d d d

t
dd d

 
 

 

   
  



  

 




 


  (2.8) 

Since variation is always observed in effectiveness of medical treatments, in order to 

model the rates of the nanoconjugates being removed from the body, stochastic perturbation 

terms were introduced into Eqs. (2.1), (2.2), and (2.3).  The resulting equations are as follows: 

 *

1 1( )) ( ) ( ),( ) ( S t dt t dBd t tS d    (2.9) 

 1 3 4 1 2 2( ) ( ( ) ( )) ( ),t d S t d S t dt B tdS      (2.10) 

 2 2( ) ( ( ) ( )) ( ) ( ), 1,2.i i i i i it d S t I t dt t dB td iI          (2.11)  

The solutions to Eqs. (2.9), (2.10), and (2.11) are as follows: 

 
* *

1
0

( ) exp( exp( )) (() )
t

S t dd dtC t           (2.12) 

 

*3
1 4*

4

*3
4 1 1* 0

4

4 2 2
0

( ) ) ( ))(exp(

exp(

[ ( ( ) exp( ( )) ( ) ( )]

( )) ( ) ( ),

t

t

t t exp d t
d

d
exp d t d t dB

d d

t d

S

d B

Cd
d

d

    

   

   


    












  (2.13) 
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*

*

*

1 1* 0

2 2
0

( ) ) ( ))

[ ( ( ( )) ( ( )) ( ) ( )]

( ( )

(exp(

) ( ) ( ) 1,2.

i
i i

i

t
i

i

i

t

i i i

t t exp d t

d
exp t exp d t dB

d

exp t dB i

Cd
I

d




     


     

   


     


  





  (2.14) 

Since 1 1 2( ) ( )) ( (( ) ),tC R t S I t It S t    it is unnecessary to model R(t), as it can be found by 

modeling the other parameters.  Also, the amount of nanoconjugates in non-targeted tissue is not 

important for this model, so S1(t) and I2(t) do not need to be modeled.  Ebrahimi et al. (2016) 

described the following stochastic differential equation for ( )N t as: 

 1 5 5( ) (( ) ) ( ) ( ).N t N t t dB tdN t        (2.15) 

The solution for ( )N t derived utilizing stochastic calculus concepts is: 

 
* *

1 1 5
0

( ) exp( ex) ( ) ,( ) ( )p
t

tN d t d dt n           (2.16) 

 
* 2 *

1 5 1
0

( ( ), ( )) ex ) ( ) ( 2 ( )) .p(
t

Cov N t N t s d s exp d t d          (2.17) 

If 1,i  then the equation for ( )iI t  becomes: 

 

*1
1 *

*

1 1* 0

1

1

1
1

1

3 3
0

1

) exp( ))

[ (ex

( ) (exp(

)) exp(p( ( ( ) ( (

(exp( ( (

) ) )]

)) ) ( ).

t

t

I t d t
Cd

t
d

d d
d

t t
d

B

t dB




     


    

 


  

 

 






 





  (2.18) 

Throughout this chapter, for simplicity, it is assumed that ( ) ( ,)j j jt exp a t    1,2,3,4,5.j   

This results in the following covariance for 1( ) :I t    
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2

3
1 1 3

3 1

*
2 *1 1 1

*

1 1

1

*

1

1
1

1 1

*
* 1

1

1

1

( ( ), ( ) exp(
2( )

exp( 2 ) exp( 2 )
) [ exp( )

2( )

exp( 2 ) exp( 2 )
exp( )

2

( )) )(exp( 2 ) exp( 2 )

(

(e

)

(

)

exp( ( ) )
xp( ) e

( 2
( )xp )

Cov I t I
a

d t a t
d s

d a d

t a t
s

t s s t

a

a t

d

d t exp a
sd s


 















 

  
 

 

 

    


 


 






 
*

1 1

].
2 ( )

)

d

t

a  

  (2.19) 

The assumption 5 5 5( ) ( )t exp a t   reduces Eq. (2.9) to the following: 

 
*

2 *1 5
5 1*

5 1

exp( 2
( ( ), ( )) exp

) ( 2 )
).

2( )
(

td
Cov

exp a t
s

d
N t N t s d

a










    (2.20) 

 These functions taken together suggest that 1( ) ( )I t kN t is a Gaussian process with mean 

 * *1
1 1*

1

) exp( )) exp( ),( ) (exp( t d t kn
Cd

A d
d

tt 


    


  (2.21) 

and covariance 

 2

1 1( ), ( )) ( ( ), ( )).( , ) ( t I t sB t t s Cov I k Cov N t N t s      (2.22) 

The estimated probability density function is then: 

 1/2
2 ( )

( ) ( )(2 exp( ),
2 ( , )

( , ))
A

B t
t

p t g t
B t

t
t

    (2.23) 
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where ( )g t is the following: 
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For further details regarding proofs, see Ebrahimi et al. (2016) and the sources referenced.  With 

this, the probability that all of the cancer cells are killed at a certain time t can be obtained by 

integrating the probability density function: 
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The expected value of the function follows intuitively by integrating [0, )( ) ( ) ,x f x I x dx



 where 

I(x) is an indictor function, to obtain: 
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The integral is very complex and has no closed form.  Thus, numerical integration techniques 

will have to be used.   
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With these equations it is possible to determine an algorithm to compute the expected 

number of nanoconjugates (C) needed to kill all cancer cells by some time t.  Ebrahimi et al. 

(2016) suggest a simple iterative algorithm that adds or subtracts from C until it finds a C that 

has the closest expected value ( )E t   where α is chosen by the experimenter.  Here an 

algorithm is presented that converges on the same number but obtains the required number 

faster, especially if the value of C required to kill cancer cells by time alpha is very far from the 

starting point.  More specifically, the algorithm proposed adds some number v to the number of 

nanoconjugates if ( )E T  and subtracts some number, v, of nanoconjugates if ( ) ,E T    

where v is assumed to be a power of 10.  After a number is found such that C-v and C satisfy 

( )E T   and ( )E T   v is then divided by 10 and then the algorithm is run repeatedly until the 

algorithm produces ( )E T  and 1.v    Finally, the value for C is given when this is finished.  

The main idea is that this algorithm will be useful in predicting the estimated number of 

nanoconjugates, C, required to kill all cancer cells by time t by testing different values for C.  

The implementation of this algorithm in R is given in the appendix. 

 Due to of a lack of explicit research focusing on some of the parameters, there may 

currently be no justification for specific values of the parameters.  However, some research does 

exist that may give some information about the parameters.  For instance, there are studies on 

rats that found the relative amount of nanoconjugates distributed to different organs in vivo and 

ex vivo (El-Gogary et al., 2014; Patra et al., 2008, Tang et al., 2013).  These studies are usually 

limited to testing postmortem, testing using fluorescence, or testing using ex vivo methods, but 

they may give some insight into the rates at which nanoconjugates are entering untargeted and 

targeted tissues.  Furthermore, cancer proliferation and growth has been studied extensively 
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(Hanahan & Weinberg, 2000; Hannhan & Weinberg, 2011; Jennings, Winer-Muram, Tann, 

Ying, & Dowdeswell, 2006; Stein et al., 2010).  The next few paragraphs will argue whether or 

not values for the parameters can be justified with the current research that is available. 

 The first parameter that may be justifiable with current research is the number of cancer 

cells.  According to DeVita et al. (1975), the number of cancer cells in a 1-cm3 tumor is about 

one billion cells.  This number has been accepted by most medical researchers but has been 

questioned in editorials (Del Monte, 2009; Narod, 2012).  Overall, since it is known that the 

number of cancer cells scales with tumor size, given the ability to measure average sizes of 

cancer cells, this parameter would be able to be found by estimating the size of the tumor with 

traditional imaging techniques and either accepting the statement by DeVita et al. (1975) as 1 

billion cells per cubic centimeter or by analyzing average sizes of different cancers and using 

those sizes to predict the number of cells in cancerous tissue. 

 The second parameter value that may be able to be justified with current research is 

growth rate of the cancer being treated.  There are studies that attempt to determine growth rates 

of different cancers.  For instance, Stein et al. (2010) determined an average growth rate of 

pancreatic cancers of 0.6cm/year.  Also Tseng et al. (2005) determined different growth rates of 

prostate cancers prior to treatment and during treatment.  Utilizing similar studies to Stein et al. 

(2010) and Tseng et al. (2005), it is possible to calculate the growth rates to use in the model. 

One objection to the constant growth rate assumption is different models of cancer 

growth result in different parameters, and these growth rates are likely not constant 

(Ulmschneider & Searson, 2015).   For example, Norton (1988) utilizes a Gompertzian model to 

model the growth rates of breast cancer, which suggests that the rate of growth is not constant 
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over time.  This problem can be alleviated in the model proposed by Ebrahimi et al. (2016) by 

using the fastest growth rate predicted by the models for the growth rate parameter. 

 The next parameter to examine is the rate at which cancer cells are killed.  In vitro tests 

of nanoconjugates suggest that the rate of cancer cell elimination from targeted drug delivery 

systems that rely on chemotherapy conjugated with the nanoparticles can be slightly lower than 

from free chemotherapy (Long et al., 2016).  However, there are some problems with modeling 

chemotherapy nanoconjugates that do not exist when modeling traditional chemotherapy 

treatments, such as the time of administration differing significantly from the time when the 

therapeutic effect of the nanoconjugate is realized.  One solution to this problem is a model that 

was proposed by Eliaz et al. (2004) that explained the rate of cell elimination when doxorubicin 

was encapsulated in liposomes, and the model was tested in vitro on mouse melanoma cells that 

were known to overexpress CD44 receptors.  Utilizing this model would give the necessary 

information to derive the cancer cell elimination rate for at least some nanoconjugates. 

 Though little research has been done which would allow for a direct computation of the 

rate parameters regarding entry into targeted tissues and non-targeted tissues, it may be possible 

to estimate it from fluorescence imaging done in vivo or in vitro.  For example, El-Gogary et al. 

(2014) prepared a targeted drug delivery system with nanoconjugates allowing for fluorescence 

which targeted folate-expressing cancer cells.  The results, if fluorescence is taken to represent 

the amount of nanoconjugates that are inside of the cells of certain body areas, suggest that 

targeting the tumor is rather difficult, with much of the drug entering the lungs and the tumor and 

to a lesser extent the spleen, kidneys, liver, and heart.  There also have been other formulations 

of nanoconjugates which enter the targeted tissues far more often, but still less often than other 

organs.  For example, Comenge et al. (2012) conjugated cisplatin with gold nanoparticles.  
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Accumulation was found in the liver, spleen, tumor, and to a much lesser extent, other organs.  

This would suggest that in some cases nanoparticles can target other tissues more often than 

cancer cells, thus resulting in d3 > d1.  Nanoconjugate formulations that result in a higher uptake 

by cancer cells than by healthy cells exist as well.  For example, Saltan et al. (2011) created a 

nanoparticle conjugated with methacrylamido-folic acid that was absorbed by cancer cells at a 

higher rate than by healthy cells according to flow cytometic analysis and observations with 

transmission electron microscopy.  These taken together suggest that there are situations in 

which cancer cells uptake nanoparticles at higher rates and at lower rates than healthy cells and 

that there are methods to determine the rate of nanoconjugate uptake by healthy and cancerous 

tissues. 

 What follows from the previous paragraph would be an examination of the rate at which 

nanoconjugates are removed from cancerous tissue.  There is research that suggests that some 

nanoconjugates may not clear from the body very well in vivo (Longmire, Choyke, & 

Kobayashi, 2008).  Furthermore, the enhanced permeability and retention effect, which can be 

taken advantage of with nanomedicine, would increase the amount of time nanoconjugates 

remain in targeted tissue (Lyer, Khaled, Fang, & Maeda, 2006).  Since the enhanced retention 

and permeability effect does not present itself in healthy tissue very often, it would follow that 

nanoconjugates would filter from healthy tissue faster than cancerous tissue.  An example of a 

study examining the pharmacokinetic properties of cisplatin and a pectin-cisplatin nanoconjugate 

system showed a striking difference between cisplatin and the conjugated cisplatin (Verma & 

Sachin, 2008).  Specifically, the pectin-cisplatin conjugate had an elimination rate constant of 

0.0042 and a half-life of 165 minutes, as opposed to cisplatin alone, which had an elimination 

rate constant of 0.0172 with a half-life of 40 minutes, though these numbers were obtained 
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without a tumor in the in vivo test.  Taken together, this information suggests that the expected 

parameter for elimination from cancer cells will be very small, as will the parameter for the 

elimination rate from healthy tissue, though the enhanced permeability and retention effect 

existing in cancerous tissue more often than healthy tissue would imply that the rate of 

elimination from cancerous tissue would be lower than that of healthy tissue.  

 Another parameter included in the model, the average number of nanoconjugates required 

to kill a cancerous cell, is not known for sure, but it is known to scale with the size of the cancer 

cell in some cases (Hashemian, & Mansoori, 2013; Keyhanian, Mansoori, & Rahimpour, 2010; 

Mansoori, Brandenburg, & Shakeri-Zadeh, 2010; Zharov, Lutfullin, & Galitovskaya, 2005).  

This would suggest, though not definitively, that the nanoparticle amount required to kill a 

cancer cell should be a function of the cancer cell size.  

 Overall, it appears to be the case that there is research to draw from which would 

determine possible values for the model parameters.  Without explicit research to estimate these 

parameters, however, it will be difficult to obtain precise values for the parameters. 

2.3 – Examples of the Pharmacodynamic Model 

The first example here will be a simple example focusing on a very small number of 

cancerous cells.  Assume that some treatment has already been conducted with traditional 

chemotherapy and radiation for some unspecified type of cancer.  Assume that there are 210 

million cancer cells remaining in the tissue.  For numerical stability, the number of cancer cells 

and nanoconjugate parameters will be in millions of cells and millions of nanoconjugates.  

Further suppose that the targeted drug delivery system has been perfected to such an extent that 

nanoconjugates enter the cancerous cells in the targeted tissue with a rate parameter of 1.2 

million nanoconjugates per unit time, nanoconjugates enter healthy cells in the targeted tissue 
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with a rate parameter of .1 million nanoconjugates per unit time, and nanoconjugates enter non-

targeted tissue with a rate parameter of 0.1 million nanoconjugates per unit time.  Furthermore, 

the amount of nanoconjugates that are eliminated from cancerous cells per unit time is equal to 

the amount that enter, and the amount of nanoconjugates that are removed from healthy cells per 

unit time equals the number of nanoconjugates that enter healthy cells per unit time.  Assume 

that the average number of cancerous cells that are killed per unit time is equal to the rate at 

which nanoconjugates enter cancer cells per unit time minus .39.  Also, assume a cancer growth 

rate parameter of .2 and diffusion coefficient parameters of 1 3 5.5, .61, .44      with 

intensity parameters 31 50.142, 0.0144, 0.177.a a a    Assume that the cancer cells are fairly 

large and only require 15 million nanoconjugates to kill.  Using this algorithm it was found that 

5223 million nanoconjugates would be required to eliminate the rest of the cancer cells within a 

single time unit.  The expected nanoconjugates would be required to eliminate the rest of the 

cancer cells within half of a time unit would be 7408 million nanoconjugates.  Table (2.2) shows 

the amount of nanoconjugates required to kill all cancer cells by an expected time t at t=1 and 

t=0.5 at different values of k obtained by using the algorithm. 

Table 2.2 Expected number of nanoconjugates in millions for example 1 at expected time 

until all cancer cells are killed for E(t) = 1 and E(t) = .5 according to the algorithm. 

Value of K 
Expected number of 

nanoconjugates for E(t)=1 
Expected number of 

nanoconjugates for E(t)=.5 

5 1743 2468 
10 3482 4941 
15 5223 7408 
20 6965 9878 
25 8707 12348 

30 10451 14821 
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Again, it is very unlikely that the parameters in this example are accurate or realistic in 

vivo.  Generally, if cancer is detectable, there would be at least one cubic centimeter of 

cancerous tissue, and with the assumption that the cancers are 10μm in diameter there would be 

about one billion cancer cells in the cancerous tissue.  Since in this example there were only 210 

million cancer cells, unless the cells were larger, this cancer would likely be undetectable.  

Furthermore, the diffusion and rate parameters in this example are not necessarily accurate; in 

practice it is assumed that these parameters are simply 1 and 0.1 respectively.  These problems 

could be responded to by suggesting that this treatment is given after traditional chemotherapy 

and radiation. 

The next example will be far more likely than the previous, at least given the current 

information regarding nanomedicine.  Assume that a tumor was discovered early and contains 

one billion cancerous cells.  This would suggest the minimum size is one cubic centimeter.  

Furthermore, assume that 1 3 5 1 3 5 1 2.12, .11, .2, .7, .7, .8, 1.2, 1.1,a aa              

1 2 30.9, .1, 0.9.d d d    This would suggest that targeted tissues are entered as often as non-

targeted tissue.  Assume 1.81, .2.    This example is a pessimistic scenario since the rates of 

targeted and untargeted tissue being entered by nanoconjugates are the same.  There are still 

problems, however, as the rate at which nanoconjugates are removed from the tissues is very 

high.  Table (2.3) provides information regarding how many nanoconjugates would be expected 

to kill cancerous cells by t=1 and t=0.5, which were obtained using the algorithm. 
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Table 2.3. Expected number of nanoconjugates in millions for example 2 at expected time 

until all cancer cells are killed for E(t) = 1 and E(t) = 0.5 according to the algorithm. 

 Value of K 
Expected number of nanoconjugates for 

E(t)=1 
Expected number of 

nanoconjugates for E(t)=.5 

5 11747 16321 

10 23493 32644 

15 35235 48966 

20 46981 65289 

25 58726 81612 

30 70472 97934 

 

The final example will use the same parameters as the previous example; however, the 

rate at which nanoconjugates are removed from cancerous and healthy tissues will be much 

lower.  Assume that 1 20.1, 0.2.    This appears to be a more realistic representation of 

nanoconjugates behavior in vivo since nanoparticles clear from the body slowly and the EPR 

effect should reduce the rate at which nanoparticles are removed from cancerous tissue (Lyer et 

al., 2006).  If this model was realistic, there would be an improvement from a decrease in 

estimated time until all cancer cells are destroyed because of the increase in treatment efficacy 

due to the EPR effect.  This behavior is seen with these examples.  Table (2.4) shows this to be 

the case.  The drop in the rate parameters of nanoconjugate removal from tissues appears to have 

a very large effect on the rate of cancer treatment. 

Table 2.4. Expected number of nanoconjugates in millions for example 3 at expected time 

until all cancer cells are killed for E(t) = 1 and E(t) = 0.5 according to the algorithm. 

 

Value of K 
Expected number of nanoconjugates 

for E(t)=1 
Expected number of nanoconjugates 

for E(t)=0.5 

5 7193 13057 

10 14387 26115 

15 21581 39173 

20 28775 52232 

25 35969 65290 

30 43163 78348 



 
 

 

CHAPTER 3 

EXTENSION OF THE PHARMACODYNAMIC MODEL 

 

3.1 – Introduction and Explanation of the Extension Model 

 In the previous chapter the model parameters were assumed to be fixed.  There may be 

benefits to treating the parameters as random since many of them are not known specifically and 

current research into nanotechnology is often insufficient to estimate these parameters precisely.  

Thus, an estimate based on averaging the parameters over the distribution will be used.  If the 

parameters of the model are treated as random, they will each follow a distribution which must 

be provided in order to model P(t).  Under the assumption of independence of every parameter, if 

every parameter is treated as random, the joint distribution becomes the following: 
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where ...d


  represents integrating all parameters of the integral iteratively as well as the 

summation of any variables assumed to be discrete.  In practice, it may be the case that some of 

the parameters are known, in which case there is no need to assign them a distribution, which 

would be obtained from experts in the field or derived from studies into the model parameters. 

For the following examples, it is assumed that all of the parameters are unknown and that all of 

the continuous parameters 1 2 3 1 3 5 1 3 5, , , , ,( , , ),d ad ad a   follow an exponential distribution with 
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parameters 1 2 3 4 5 6 7 8 9( , , , , , , , , )v v v v v v v vv  respectively.  All of the discrete parameters ( , )k n  follow 

a Poisson distribution with parameters 11 12( , )v v respectively.  Since *

1d  is the difference between 

two exponential random variables, it will follow a Laplace distribution truncated at 0 with 

parameters 
10,1 10,2( , ).v v  This satisfies the assumption that the rate of cancer cells being killed is 

greater than or equal to the rate that cancer cells are proliferating.  The following distribution is 

then given when these assumptions are combined with Eq. (3.1): 
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 This function is 12 dimensions prior to integrating over t, and thus it is extremely 

computationally intensive to estimate.  In order to compute the integrals, as estimations of the 

integral are extremely difficult, Monte Carlo simulation was employed.  Fifty thousand randomly 

selected values from the prior of each variable were obtained and integration over t was 

attempted with them.  If integration failed, resampling was done.  The variables were resampled 

until the assumptions of the model were met, that is, * * *

1 1 20, , .d d d    This was done 

because the integral would not converge if these assumptions were not met. 

3.2 – Examples of the Extension Model 

 The first model that was tested was example 1 as seen in Chapter 2.  It was assumed that 

the parameters followed exponential distributions, the Laplace distribution, and Poisson 

distributions with parameters equal to the fixed parameters in example l in Chapter 2.  The 

specific values for the parameters above are  1 2 3 4 51.2, 0.1, 0.1, 0.5, 0.61,v v v v v    
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6 7 8 9 10,1 10,2 110.44, 0.142, 0.0144, 0.177, 0.81, 0.2, 5,v v v v v v v      and 12 210.v  The 

number of nanoconjugates for E(T) = 1 in example 1 with k = 5 was 1743 million 

nanoconjugates.  With the new added uncertainty E(T) = 1.1013. This suggests that there will be 

an increase in the estimated amount of nanoconjugates required in order to kill all cancer cells 

within a single time unit.  Table (3.1) shows the expected amount of nanoconjugates in 

increments of 50 starting near 1750.  Figure (3.1) shows a graph of the expected time to kill all 

cancer cells for values of C between 1743 and 2050.  What can be seen is that there is an 

increase in the expected time until all cancer cells are eliminated at C=1743; as in example 1, 

Chapter 2, C=1743 resulted in an expected time of elimination of all cancer cells of E(T)=1.  In 

the extended model, C=1743 results in an expected time to kill all cancer cells of 

E(T)=1.1012596 time units.   At C=2050, the expected time to kill all cancer cells was 

E(T)=0.7639282 time units. 

Table 3.1.  Expected time until all cancer cells are killed based on example 1 using the 

averaging method with v12=5.  

Number of nanoconjugates in millions 

(Value of C) 

E(T) 

1743 1.1012596 

1800 1.0285896 

1850 0.9602398 

1900 0.8915131 

1950 0.8395372 

2000 0.8028654 

2050 0.7639282 
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Figure 3.1. Graph of the estimated time until all cancer cells are killed at differing values of C 

based on parameter values from Chapter 2, example 1. 

 

 A second example of the extended model will be shown applying the parameters used 

previously in Chapter 2, example 3 with 5.k   A similar pattern to example 1 was seen in the 

expected time for nanoconjugates to kill all cancer cells.  The expected number of 

nanoconjugates required for ( ) 1E T  in Chapter 2, example 3 was C=7193. The expected time at 

C=7193 nanoconjugates in the extended model, however, was E(T)=1.698633 time units.  This 

increase suggests that larger uncertainty results in a larger expected minimum number of 

nanoconjugates to kill all of the cancer cells by some time t.  Table (3.2) shows the expected time 

until all cancer cells are killed computed using Monte Carlo integration of the unknown 



25 
 

 

parameters.  Figure (3.2) shows a graph of the estimated time to kill all of the cancer cells given 

a certain value for C. 

Table 3.2.  Expected time until all cancer cells are killed based on Chapter 2, example 3, 

using the averaging method with v12=5. 

Number of nanoconjugates in millions 

(Value of C) 

E(T) 

7000 1.698633 

8000 1.578399 

9000 1.461240 

10000 1.372515 

11000 1.275146 

12000 1.204018 

13000 

14000 

1.169193 

1.117799 

 

 

Figure 3.2.   Graph of the estimated time required to kill all cancer cells for differing values of 

C based on parameter values from Chapter 2, example 3.



 
 

 

CHAPTER 4 

CONCLUSION AND FUTURE RESEARCH 

 

 The model does make some predictions that are in line with the empirical data available.  

For instance, the decrease in E(T) when 1  that occurs would be expected due to the EPR effect.  

Furthermore, it is easily shown that E(T) decreases in C, which should be the case as an 

increased dose of anti-cancer drugs results in higher elimination of cancer cells.  Also, there is 

research that can be used in order to determine ranges for the parameter values of the model.   

Though there are ways to estimate the parameters, currently conclusions are difficult to 

draw.  Since there is no empirical data to draw upon, it cannot be determined whether or not 

these models are useful, or how the models even behave in practice.  Further research is required 

in order to determine whether or not these models make useful predictions.  If predictions are 

able to be made, these models will suffice until better models can be derived that provide better 

predictions.  If the models fail to provide successful predictions, they ought to be discarded and 

new models must be formulated in order to make predictions that better match reality.  Also, the 

model itself is based on several assumptions that may not hold and there may be ways to 

improve the model. 

First, it is unlikely that the growth rate for cancer is constant.  Some research shows that 

cancer growth rates follow a Gompertz model in practice (Norton, 1988; Ulmschneider & 

Searson, 2015).  This problem could be alleviated with the current model by taking the fastest 

possible growth rate established by the Gompertz model, but it would result in overestimation of 

the rate of cancer growth overall and may cause a useful drug to be deemed not useful under 
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certain circumstances, such as a drug that could be used to induce remission prior to a cancer 

reaching a certain growth rate.  Thus another extension of this model could be done which takes 

a non-constant growth rate into consideration. 

Second, the model assumes that the nanodrug will kill all of the cancer cells.  If all of the 

cancer cells are not killed, E(T) will be infinity.  This may not be practical because it could be 

the case that, at least at the current moment in time, nanodrugs will provide life extension by 

slowing the growth rate of the cancer, as is the case with current chemotherapy treatments in 

some cases.  Thus it appears that this model will only suffice for cases where the treatment of the 

cancer may result in remission.  It may, however, be the case that nanoparticles can increase the 

number of cancers that are able to be put into remission, and as such this model may be useful 

when testing nanoconjugates in particular.  More research on the applications of nanotechnology 

in cancer therapies must be carried out in order to know which future medications this model will 

be applicable to. 

Third, the model assumes that a single-compartment pharmacokinetic model is sufficient.  

Depending on how nanoconjugates behave, this may not be the case.  There appears to be a 

saturation level (i.e. a level where areas of the body will not uptake any more nanoparticles) and 

this saturation level may result in a multi-compartmental model being necessary because it 

would likely cause more nanoparticles to remain in the bloodstream.  Evidence of this can be 

seen in Thurn et al. (2011), where the rate of uptake of the nanoconjugate used followed a 

logarithmic pattern. 

The current proposed model also uses an approximation for the density (Durbin, 1985).  

This approximation may need to be changed because of what appears to be tail behavior 

exhibited in this analysis of the model proposed by Ebrahimi et al. (2016).  In order to 
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circumvent this, the distribution was often truncated and full integration of the distribution may 

have resulted in a probability of less than or greater than 1.  Generally, unless very high values of 

C were used, P(T) was very close to 1.   In order to correct for P(T) being unequal to 1, the 

expected time until all nanoconjugates were killed was divided by the integral of the density over 

the truncated interval.  It is unknown whether or not this method would be acceptable when 

using this model in practice. Further study of the model is warranted as it appears to be the case 

that the approximation from Durbin (1985) may fail in some specific cases.  

Last, the stochastic differential equations are assumed to be taken in respect to a standard 

Brownian motion.  Relaxing this assumption may offer an extension of this model that could 

allow for better prediction and estimation.  A jump process might be the next step for extension 

of this model in terms of stochastic calculus. 

Overall, the only way to validate this model is to test it empirically:  Treat the model as a 

collection of hypotheses, and if the model makes accurate predictions, some of the hypotheses 

are correct.  Even if the predictions are accurate, there may exist better methods for deriving 

models for nanotechnology reliability that have not yet been explored.  As such, this model 

needs to be first tested against empirical data.  If the model is shown to be useful to make 

predictions about the reliability of targeted drug delivery, then some of the model’s assumptions 

should be relaxed in order to see if better predictions are made, or a better model needs to be 

derived using the newly available data.  It appears that what must be done regardless of the 

performance of the model is further research into reliability of targeted drug delivery utilizing 

nanotechnology. 
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APPENDIX 

R CODE USED FOR EXAMPLES IN CHAPTER 2 AND CHAPTER 3
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#Chapter 2 

#Covariance function for N(t) Cov(N(t),N(t+s)) 

CovN = function(t, s=0,sigma,a,d1star) 

{ 

  sigma[5]^2*((exp(-2*d1star*t)-exp(-2*a[5]*t))*(2*a[5]-2*d1star)^-1)*exp(-d1star*s) 

} 

 

#Covariance function for I(t) function Cov(I(t),I(t+s)) 

CovI = function(t, s=0, sigma, gamma, a, d, dstar, i=1) 

{ 

  sigma[i+2]^2*(2*(a[i+2]-gamma[i]))^-1*exp(-gamma[i]*s)*(exp(-2*gamma[i]*t)-exp(-

2*a[i+2]*t))+ 

    (d[i]*sigma[1]*(dstar-gamma[i])^-1)^2*((exp(-2*dstar*t)-exp(-2*a[1]*t))*(2*(a[1]-dstar))^-

1*exp(-dstar*s)+ (exp(-2*gamma[i]*t)-exp(-2*a[1]*t))*(2*(a[1]-gamma[i]))^-1*exp(-

gamma[i]*s)- (exp(-dstar*s)+exp(-gamma[i]*s))*(exp(-(dstar+gamma[i])*t)-exp(-

2*a[1]*t))*(2*a[1]-(dstar+gamma[1]))^-1) 

} 

#The mean function for I(t)-kN(t) , A(t) 

GaussianMean = function(t, C, n,k,d,gamma,lambda,dstar,d1star) 

{ 

  ret = (C*d[1]*(dstar-gamma[1])^-1)*(exp(-gamma[1]*t)-exp(-dstar*t))-k*n*exp(-d1star*t) 

} 

 

 

#The covariance function for I(t)-kN(t) , B(t,t)  

GaussianVar = function(t, s=0, k, sigma, a, gamma, d, dstar, d1star) 

{ 

CovI(t=t, s=s, sigma=sigma, gamma=gamma, a=a, d=d, dstar=dstar) + 

k^2*CovN(t=t,s=s,sigma=sigma,a=a,d1star=d1star) 

} 

#the following 6 lines are a line by line writeup of the g(t) function and are not important on their 

own 

#this was done for easier debugging 

nl1 = function(t,k,a,sigma,d1star) 

{ 

  k^2*sigma[5]^2*(2*(a[5]-d1star))^-1*((2*a[5]-d1star)*exp(-2*a[5]*t)-d1star*exp(-

2*d1star*t)) 

} 

nl2 = function(t,a,sigma,gamma) 

{ 

  sigma[3]^2*(2*(a[3]-gamma[1]))^-1*((2*a[3]-gamma[1])*exp(-2*a[3]*t)-gamma[1]*exp(-

2*gamma[1]*t)) 

} 

nl3 = function(t,d,a,sigma,gamma,dstar) 

{ 
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  (d[1]*sigma[1]*(dstar-gamma[1])^-1)^2*(2*(a[1]-dstar))^-1*((2*a[1]-dstar)*exp(-2*a[1]*t)-

dstar*exp(-2*dstar*t)) 

} 

 

nl4 = function(t,d,a,sigma,gamma,dstar) 

{ 

  (d[1]*sigma[1]*(dstar-gamma[1])^-1)^2*(2*(a[1]-gamma[1]))^-1*((2*a[1]-gamma[1])*exp(-

2*a[1]*t)-gamma[1]*exp(-2*gamma[1]*t)) 

} 

 

nl5 = function(t,d,a,sigma,gamma,dstar) 

{ 

  (d[1]*sigma[1]*(dstar-gamma[1])^-1)^2*(2*a[1]-(dstar+gamma[1]))^-1*((2*a[1]-dstar)*exp(-

2*a[1]*t)-gamma[1]*exp(-(dstar+gamma[1])*t)) 

} 

 

nl6 = function(t,d,a,sigma,gamma,dstar) 

{ 

  (d[1]*sigma[1]*(dstar-gamma[1])^-1)^2*(2*a[1]-(dstar+gamma[1]))^-1*((2*a[1]-

gamma[1])*exp(-2*a[1]*t)-dstar*exp(-(dstar+gamma[1])*t)) 

} 

#Derivative of A 

ADeriv = function(t,C,n,k,d,gamma,lambda,dstar,d1star) 

{ 

  C*d[1]*(dstar-gamma[1])^-1*(-gamma[1]*exp(-gamma[1]*t) + dstar*exp(-dstar*t)) + 

k*n*d1star*exp(-d1star*t) 

} 

 

#the g function used in the pdf , g(t) 

gfunction = function(t,C,n,k,d,a,sigma,lambda,gamma,dstar,d1star) 

{ 

    ret = -GaussianMean(t=t,C=C,n=n,k=k,d = d,gamma = gamma,lambda = lambda,dstar = 

dstar,d1star = d1star)* 

    GaussianVar(t = t,s = 0,k = k,sigma = sigma,a = a,gamma = gamma,d = d,dstar = dstar,d1star 

= d1star)^-1* 

    (nl1(t=t,k = k,a=a,sigma=sigma,d1star=d1star)+ 

       nl2(t=t,a=a,sigma=sigma,gamma=gamma)+ 

       nl3(t=t,d=d,a=a,sigma=sigma,gamma=gamma,dstar=dstar)+ 

       nl4(t=t,d=d,a=a,sigma=sigma,gamma=gamma,dstar=dstar)- 

       nl5(t=t,d=d,a=a,sigma=sigma,gamma=gamma,dstar=dstar)- 

       nl6(t=t,d=d,a=a,sigma=sigma,gamma=gamma,dstar=dstar))+ 

    ADeriv(t=t,C = C,n = n,k = k,d = d,gamma = gamma,lambda = lambda,dstar = dstar,d1star = 

d1star) 

ifelse(ret >= 0, ret,0) # fix for tail behavior 

} 
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# The pdf of the model. 

GaussianProbability = function(t,C,n,k,d,a,sigma,lambda,gamma,dstar,d1star) 

{ 

  ret=gfunction(t=t,C=C,n = n,k = k,d = d,a = a,sigma = sigma,lambda = lambda,gamma = 

gamma,dstar = dstar,d1star = d1star)* 

    (2*pi*GaussianVar(t = t,s = 0,k = k,sigma = sigma,a = a,gamma = gamma,d = d,dstar = 

dstar,d1star = d1star))^(-.5)* 

    exp(-.5*GaussianMean(t = t,C = C,n = n,k = k,d = d,gamma = gamma,lambda = lambda,dstar 

= dstar,d1star = d1star)^2* 

          GaussianVar(t = t,s = 0,k = k,sigma = sigma,a = a,gamma = gamma,d = d,dstar = 

dstar,d1star = d1star)^-1) 

} 

#vector version of the integral of the pdf of the model 

pfunc = function(t,lower=1e-100,C,n,k,a,sigma,d,gamma,lambda,dstar,d1star) 

{ 

integrate(GaussianProbability,lower=lower,upper=t,C=C,n=n,k=k,a=a,sigma=sigma,d=d,gamma

=gamma,lambda=lambda,dstar=dstar,d1star=d1star)$value 

} 

pfunc.v = Vectorize(pfunc,"t") 

# The expected value of t given the parameters under the assumptions of the model 

GaussianExpectedValue = function(t,C,n,k,d,aval,sigma,lambda,gamma,dstar,d1star) 

{ 

  ret = t*gfunction(t=t,C=C,n = n,k = k,d = d,a = aval,sigma = sigma,lambda = lambda,gamma = 

gamma,dstar = dstar,d1star = d1star)* 

  (2*pi*GaussianVar(t = t,s = 0,k = k,sigma = sigma,a = aval,gamma = gamma,d = d,dstar = 

dstar,d1star = d1star))^(-.5)* 

  exp(-.5*GaussianMean(t = t,C = C,n = n,k = k,d = d,gamma = gamma,lambda = lambda,dstar = 

dstar,d1star = d1star)^2* 

        GaussianVar(t = t,s = 0,k = k,sigma = sigma,a = aval,gamma = gamma,d = d,dstar = 

dstar,d1star = d1star)^-1) 

} 

#Badfunction basically finds the end points of the distribution and truncates them because 

strange things happen at the tails 

#It is called bad function because it is slow and bad. 

Badfunction = function(C,n,k,d,a,sigma,lambda,gamma,dstar,d1star,tolerance=1e-

3,byincrease=.01,start.at=0,max_iterations=10000) 

{ 

  #initialize variables.  I don't know if we have to do this in R but in C++ we do so there.  Also 

nick, remember not to put ; 

  CurNumber = 0 

  firstFound = FALSE 

  Iternumber = start.at #start here.  Hopefully we'd start somewhere around the expectation we 

want - some epsilon. 



38 
 

 

  #starting at 0 in some cases can make this take a very long time. 

  lower = 0 

  upper = 0 

  iteration = 0 

  #while we haven't hit the max number of iterations we want and we have a finite CurNumber 

  while((is.nan(CurNumber) | CurNumber<Inf) & iteration < max_iterations) 

  { 

    CurNumber = 

GaussianExpectedValue(t=Iternumber,C=C,n=n,k=k,d=d,a=a,sigma=sigma,lambda=lambda,gam

ma=gamma,dstar=dstar,d1star=d1star) 

    try(if(is.infinite(CurNumber)) stop("Badfunction - CurNumber is infinite.  This is bad.")) 

    if(!is.nan(CurNumber) & (CurNumber > tolerance & firstFound==FALSE)) 

    { 

      lower=Iternumber 

      firstFound=TRUE 

    } 

    else if(CurNumber <= tolerance & firstFound==TRUE) 

    { 

      upper=Iternumber 

      break; #bad programming practice =) 

    } 

    Iternumber=Iternumber+byincrease #number here to find out where we should go.   

    iteration=iteration+1 

  } 

  try(if(iteration >= max_iterations) stop("Max iterations reached in BadFunction")) 

  list("lower"=lower,"upper"=upper) #return our lower and upper integration sections.  If 

tolerance is chosen well it shouldn't cause a large difference 

} 

#vectorizing the funcions, might be useful for speed increase of algorithm 

#will test this out later 

hfunc = 

function(lint=0,uint=Inf,C,n,k,a,sigma,d,gamma,lambda,dstar,d1star)#,TruncateWindow=c(0,5),t

olerance = 1e-3)  

{  

integrate(GaussianExpectedValue,lower=lint,upper=uint,C=C,n=n,k=k,aval=a,sigma=sigma,d=d

,gamma=gamma,lambda=lambda,dstar=dstar,d1star=d1star)$value 

} 

zfunc = Vectorize(hfunc,"C") 

#this is the test function to integrate within the bounds we set up. 

testfunc = function(C,n,k,a,sigma,d,gamma,lambda,dstar,d1star,tolerance=1e-

3,start.at=0,max_iterations=10000,bounds.increaseby=.01) 

{ 

  bounds = Badfunction(C = C,n = n,k = k,d = d,a = a,sigma = sigma,lambda = lambda,gamma = 

gamma,dstar = dstar,d1star = d1star,tolerance=tolerance,start.at=start.at,max_iterations = 

max_iterations,byincrease = bounds.increaseby) 
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integrate(GaussianExpectedValue,lower=bounds$lower,upper=bounds$upper,C=C,n=n,k=k,aval

=a,sigma=sigma,d=d,gamma=gamma,lambda=lambda,dstar=dstar,d1star=d1star)$value 

} 

testfunc.v = Vectorize(testfunc,"C") 

 

 

#the algorithm proposed by ebrihimi et al based on a frequentist framework with a slight 

modification for increments. 

AlgFrequentist = 

function(alpha,Cstart,n,k,a,sigma,d,gamma,lambda,start.at=0,max_iterations=1e99,max_bounds

_iterations=1e4,tolerance=1e-3,bounds.increaseby=.01,increment = 1) 

{ 

  FD=FALSE #first iteration done 

  LT=FALSE #less than or greater than handler. 

  C = Cstart #what we start at 

  currentT=Inf #no matter what this is going to start somewhere, just use infinity. 

  iteration = 0 

  #Integrated=0 

  dstar=d[1]+d[2]+d[3] 

  d1star=lambda[1]-lambda[2] 

   

  #find where to truncate the pdf because of tail behavior.  We know that p(t) will be increasing 

with C so we only need to find this once  

   

  while(iteration <= max_iterations) 

  { 

    #Previous inetgral 

    PrevIntegrate = currentT 

     

    #Expected Value 

    currentT = testfunc.v(C = C,n = n,k = k,a = a,sigma = sigma,d = d,gamma = gamma,lambda = 

lambda,dstar = dstar,d1star = d1star,tolerance = tolerance,start.at =start.at,max_iterations = 

max_bounds_iterations,bounds.increaseby=bounds.increaseby) 

    #this is the value of the integral 

    #if less than, we're going to be subtracting nanoconjugates 

    if(currentT < alpha) 

    { 

      if(FD==TRUE && LT==FALSE) #we were above alpha, now we're below. 

      { 

        C=C+increment 

        #return our C, our current time, and the integrand stuff 

        break 

      } 

      FD=TRUE 
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      LT=TRUE 

      C=C-increment 

    } 

    #greater than means adding nanoconjugates 

    else if(currentT > alpha) 

    { 

      if(FD==TRUE && LT==TRUE) # we were below alpha now we're above 

      { 

        C=C-increment 

        #return our C, our current time, and the integrand stuff 

        break 

      } 

      FD=TRUE 

      LT=FALSE 

      C=C+increment 

    } 

    #if it's equal, we did it perfectly, this is very unlikely (p(this) = 0) but if it happens we're done 

    else if(currentT==alpha) 

    { 

      FD=TRUE 

      #return our C, our current time, and the integrand stuff 

      break 

    } 

    try(if(C < n*k) stop("Something broke, C < n*k, this is impossible based on this models 

assumptions.  It is likely that alpha is set too high")) 

    iteration=iteration+1 

  } 

  if(increment > 1) 

  { 

    increment = increment/10 

    AlgFrequentist(alpha = alpha,Cstart = C,n = n,k = k,a = a,sigma = sigma,d = d,gamma = 

gamma,lambda = lambda,start.at = start.at,max_iterations = 

max_iterations,max_bounds_iterations = max_bounds_iterations,tolerance = 

tolerance,bounds.increaseby = bounds.increaseby,increment = increment) 

  } 

  else 

    list("Expected Nanoconjugates" = C,"Expected Time Units" = PrevIntegrate,"Current 

Integral" = currentT, "Previous Integral"= PrevIntegrate, iteration=iteration) 

} 

ntest = 210 

atest=c(.142,0,.0144,0,.177) 

sigmatest=c(.5,0,.61,0,.44) 

gammatest=c(1.2,.006) 

dtest=c(1.2,.1,.1) 

lambdatest=c(.81,.2) 
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tolerancetest=1e-15 

start.at.test=0 

increase.by.test=.001 

 

 

ktest=5 

ex1.5.1tu = AlgFrequentist(alpha = 1,Cstart = 1750,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e3,max_bounds_iterations = 1e5,bounds.increaseby = 

increase.by.test,increment = 10) 

ex1.5.halftu = AlgFrequentist(alpha = .5,Cstart = 2050,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment = 10) 

 

ktest=10 

ex1.10.1tu = AlgFrequentist(alpha = 1,Cstart = 4050,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment = 100) 

ex1.10.halftu = AlgFrequentist(alpha = .5,Cstart = 4050,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment = 100) 

 

ktest=15 

ex1.15.1tu = AlgFrequentist(alpha = 1,Cstart = 8000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment = 100) 

ex1.15.halftu = AlgFrequentist(alpha = .5,Cstart = 8000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment = 100) 

 

ktest=20 

ex1.20.1tu = AlgFrequentist(alpha = 1,Cstart = 10000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=100) 

ex1.20.halftu = AlgFrequentist(alpha = .5,Cstart = 10000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=100) 
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ktest=25 

ex1.25.1tu = AlgFrequentist(alpha = 1,Cstart = 10000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=100) 

ex1.25.halftu = AlgFrequentist(alpha = .5,Cstart = 14000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=100) 

 

ktest=30 

ex1.30.1tu = AlgFrequentist(alpha = 1,Cstart = 10000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=100) 

ex1.30.halftu = AlgFrequentist(alpha = .5,Cstart = 14000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=100) 

 

ktest=5 

ex2.5.1tu = AlgFrequentist(alpha = 1,Cstart = 11500,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e50,bounds.increaseby = 

increase.by.test,increment = 100) 

ex2.5.halftu = AlgFrequentist(alpha = .5,Cstart = 16500,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment = 100) 

 

ktest=10 

ex2.10.1tu = AlgFrequentist(alpha = 1,Cstart = 22500,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=100) 

ex2.10.halftu = AlgFrequentist(alpha = .5,Cstart = 32000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment = 1000) 

 

 

ktest=15 

ex2.15.1tu = AlgFrequentist(alpha = 1,Cstart = 33750,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 
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start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=1000) 

ex2.15.halftu = AlgFrequentist(alpha = .5,Cstart = 48000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment = 1000) 

 

ktest=20 

ex2.20.1tu = AlgFrequentist(alpha = 1,Cstart = 45000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=1000) 

ex2.20.halftu = AlgFrequentist(alpha = 0.5,Cstart = 64000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=1000) 

 

ktest=25 

ex2.25.1tu = AlgFrequentist(alpha = 1,Cstart = 56000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=1000) 

ex2.25.halftu = AlgFrequentist(alpha = 0.5,Cstart = 80000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=1000) 

 

ktest=30 

ex2.30.5tu = AlgFrequentist(alpha = 1,Cstart = 66000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=1000) 

ex2.30.1tu = AlgFrequentist(alpha = 0.5,Cstart = 96000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=1000) 

 

ktest=5 

ex3.5.1tu = AlgFrequentist(alpha = 1,Cstart = 6000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e50,bounds.increaseby = 

increase.by.test,increment = 1000) 

ex3.5.halftu = AlgFrequentist(alpha = .5,Cstart = 9000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 
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start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment = 1000) 

 

ktest=10 

ex3.10.1tu = AlgFrequentist(alpha = 1,Cstart = 10000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=1000) 

ex3.10.halftu = AlgFrequentist(alpha = .5,Cstart = 10000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=1000) 

 

ktest=15 

ex3.15.1tu = AlgFrequentist(alpha = 1,Cstart = 15000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=1000) 

ex3.15.halftu = AlgFrequentist(alpha = .5,Cstart = 15000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=1000) 

 

ktest=20 

ex3.20.1tu = AlgFrequentist(alpha = 1,Cstart = 20000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=1000) 

ex3.20.halftu = AlgFrequentist(alpha = .5,Cstart = 20000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=1000) 

 

ktest=25 

ex3.25.1tu = AlgFrequentist(alpha = 1,Cstart = 25000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=1000) 

ex3.25.halftu = AlgFrequentist(alpha = .5,Cstart = 25000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=1000) 

 

 

ktest=30 
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ex3.30.1tu = AlgFrequentist(alpha = 1,Cstart = 30000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=1000) 

ex3.30.halftu = AlgFrequentist(alpha = .5,Cstart = 30000,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test,increment=1000) 

 

 

#Chapter 3 

Nick_Average = 

function(C,n,k,a,sigma,d,gamma,lambda,start.at=0,max_iterations=1e99,max_bounds_iterations

=1e4,tolerance=1e-3,bounds.increaseby=.01,loops=50000) 

{ 

  fails=0 

  n.avg = rpois(loops,n) 

  k.avg = rpois(loops,k) 

  d1star = lambda[1]-lambda[2] 

  a1 = rexp(loops,1/a[1]) 

  a2 = 0 

  a3 = rexp(loops,1/a[3]) 

  a4 = 0 

  a5 = rexp(loops,1/a[5]) 

   

  #a.avg = data.frame(a1,a2,a3,a4,a5) 

   

  sigma1 = rexp(loops,1/sigma[1]) 

  sigma2 = 0 

  sigma3 = rexp(loops,1/sigma[3]) 

  sigma4 = 0 

  sigma5 = rexp(loops,1/sigma[5]) 

   

  #sigma.avg = data.frame(sigma1,sigma2,sigma3,sigma4,sigma5) 

   

  d1 = rexp(loops,1/d[1]) 

  d2 = rexp(loops,1/d[2]) 

  d3 = rexp(loops,1/d[3]) 

   

  #d.avg = data.frame(d1,d2,d3) 

   

  gamma1 = rexp(loops,1/gamma[1]) 

  gamma2 = rexp(loops,1/gamma[2]) 
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  #gamma.avg = data.frame(gamma1,gamma2) 

   

  lambda1 = rexp(loops,1/lambda[1]) 

  lambda2 = rexp(loops,1/lambda[2]) 

   

  #lambda.avg = data.frame(lambda1,lambda2) 

   

  require(smoothmest) 

  #dstar.avg = rgamma(loops,shape=3,rate=d.avg[1]+d.avg[2]+d.avg[3]) 

  d1star.avg = rdoublex(loops,mu=mean(lambda1),lambda=mean(lambda2)) 

   

  integrate.vec = numeric(loops) #need this for large factorials 

  i=1 

  while(i <= loops) 

  { 

    while(d1star.avg[i] < 0) 

    { 

      d1star.avg[i] = rdoublex(1,mu=mean(lambda1),lambda=mean(lambda2)) 

    } 

    while(gamma1[i] > (d1[i]+d2[i]+d3[i]) | gamma2[i] > (d1[i]+d2[i]+d3[i])) 

    { 

      gamma1[i] = rexp(1,1/gamma[1]) 

      gamma2[i] = rexp(1,1/gamma[2]) 

       

      d1[i] = rexp(1,1/d[1]) 

      d2[i] = rexp(1,1/d[2]) 

      d3[i] = rexp(1,1/d[3]) 

       

    } 

     

    integrate.vec[i] = testfuncb(C = C,n = n,k = k,a = c(a1[i],0,a3[i],0,a5[i]), 

              sigma = c(sigma1[i],0,sigma3[i],0,sigma5[i]), 

              d = c(d1[i],d2[i],d3[i]), 

              gamma = c(gamma1[i],gamma2[i]), 

              d1star = d1star.avg[i],tolerance = tolerance,start.at = start.at,max_iterations = 

max_bounds_iterations,bounds.increaseby = bounds.increaseby, 

              

v=c(d[1],d[2],d[3],a[1],a[3],a[5],sigma[1],sigma[3],sigma[5],gamma[1],gamma[2],d1star.avg[i],

n.avg[i],k.avg[i])) 

    if(integrate.vec[i] == 0) #it failed, resample. 

    { 

      fails = fails+1 

      print(i) 

      print(a1[i]) 

      print(a3[i]) 
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      print(a5[i]) 

       

      print(d1[i]) 

      print(d2[i]) 

      print(d3[i]) 

       

      print(sigma1[i]) 

      print(sigma3[i]) 

      print(sigma5[i]) 

       

      print(gamma1[i]) 

      print(gamma2[i]) 

      print(d1star.avg[i]) 

      print(fails) 

      print(fails/i) 

      try(if(integrate.vec[i]==0) stop("Error converging")) 

      a1[i] = rexp(1,1/a[1]) 

      a3[i] = rexp(1,1/a[3]) 

      a5[i] = rexp(1,1/a[5]) 

       

      sigma1[i] = rexp(1,1/sigma[1]) 

      sigma3[i] = rexp(1,1/sigma[3]) 

      sigma5[i] = rexp(1,1/sigma[5]) 

       

      d1[i] = rexp(1,1/d[1]) 

      d2[i] = rexp(1,1/d[2]) 

      d3[i] = rexp(1,1/d[3]) 

       

      gamma1[i] = rexp(1,1/gamma[1]) 

      gamma2[i] = rexp(1,1/gamma[2]) 

       

      d1star.avg[i] = rdoublex(1,mu=mean(lambda1),lambda=mean(lambda2)) 

       

      n.avg[i] = rpois(1,n) 

      k.avg[i] = rpois(1,k) 

       

      i=i-1 

    } 

    i=i+1 

  } 

  ret = mean(integrate.vec) 

   

  ret 

} 
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nl1b = function(t,k,a,sigma,d1star) 

{ 

  k^2*sigma[5]^2*(2*(a[5]-d1star))^-1*((2*a[5]-d1star)*exp(-2*a[5]*t)-d1star*exp(-

2*d1star*t)) 

} 

 

nl2b = function(t,a,sigma,gamma) 

{ 

  sigma[3]^2*(2*(a[3]-gamma[1]))^-1*((2*a[3]-gamma[1])*exp(-2*a[3]*t)-gamma[1]*exp(-

2*gamma[1]*t)) 

} 

 

nl3b = function(t,d,a,sigma,gamma) 

{ 

  (d[1]*sigma[1]*((d[1]+d[2]+d[3])-gamma[1])^-1)^2*(2*(a[1]-(d[1]+d[2]+d[3])))^-1*((2*a[1]-

(d[1]+d[2]+d[3]))*exp(-2*a[1]*t)-(d[1]+d[2]+d[3])*exp(-2*(d[1]+d[2]+d[3])*t)) 

} 

 

nl4b = function(t,d,a,sigma,gamma) 

{ 

  (d[1]*sigma[1]*((d[1]+d[2]+d[3])-gamma[1])^-1)^2*(2*(a[1]-gamma[1]))^-1*((2*a[1]-

gamma[1])*exp(-2*a[1]*t)-gamma[1]*exp(-2*gamma[1]*t)) 

} 

 

nl5b = function(t,d,a,sigma,gamma) 

{ 

  (d[1]*sigma[1]*((d[1]+d[2]+d[3])-gamma[1])^-1)^2*(2*a[1]-((d[1]+d[2]+d[3])+gamma[1]))^-

1*((2*a[1]-(d[1]+d[2]+d[3]))*exp(-2*a[1]*t)-gamma[1]*exp(-((d[1]+d[2]+d[3])+gamma[1])*t)) 

} 

 

nl6b = function(t,d,a,sigma,gamma) 

{ 

  (d[1]*sigma[1]*((d[1]+d[2]+d[3])-gamma[1])^-1)^2*(2*a[1]-((d[1]+d[2]+d[3])+gamma[1]))^-

1*((2*a[1]-gamma[1])*exp(-2*a[1]*t)-(d[1]+d[2]+d[3])*exp(-((d[1]+d[2]+d[3])+gamma[1])*t)) 

} 

 

gfunctionb = function(t,C,n,k,d,a,sigma,gamma,d1star) 

{ 

  ret = -GaussianMeanb(t=t,C=C,n=n,k=k,d = d,gamma = gamma,d1star = d1star)* 

    GaussianVarb(t = t,s = 0,k = k,sigma = sigma,a = a,gamma = gamma,d = d,d1star = d1star)^-

1* 

    (nl1b(t=t,k = k,a=a,sigma=sigma,d1star=d1star)+ 

       nl2b(t=t,a=a,sigma=sigma,gamma=gamma)+ 

       nl3b(t=t,d=d,a=a,sigma=sigma,gamma=gamma)+ 

       nl4b(t=t,d=d,a=a,sigma=sigma,gamma=gamma)- 
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       nl5b(t=t,d=d,a=a,sigma=sigma,gamma=gamma)- 

       nl6b(t=t,d=d,a=a,sigma=sigma,gamma=gamma))+ 

    ADerivb(t=t,C = C,n = n,k = k,d = d,gamma = gamma,d1star = d1star) 

   

  ifelse(ret >= 0, ret,0) # fix for tail behavior 

} 

 

CovIb = function(t, s=0, sigma, gamma, a, d,i=1) 

{ 

  sigma[i+2]^2*(2*(a[i+2]-gamma[i]))^-1*exp(-gamma[i]*s)*(exp(-2*gamma[i]*t)-exp(-

2*a[i+2]*t))+ 

    (d[i]*sigma[1]*((d[1]+d[2]+d[3])-gamma[i])^-1)^2*((exp(-2*(d[1]+d[2]+d[3])*t)-exp(-

2*a[1]*t))*(2*(a[1]-(d[1]+d[2]+d[3])))^-1*exp(-(d[1]+d[2]+d[3])*s)+ 

                                             (exp(-2*gamma[i]*t)-exp(-2*a[1]*t))*(2*(a[1]-gamma[i]))^-1*exp(-

gamma[i]*s)- 

                                             (exp(-(d[1]+d[2]+d[3])*s)+exp(-gamma[i]*s))*(exp(-

((d[1]+d[2]+d[3])+gamma[i])*t)-exp(-2*a[1]*t))*(2*a[1]-((d[1]+d[2]+d[3])+gamma[i]))^-1) 

} 

 

GaussianMeanb = function(t, C, n,k,d,gamma,d1star) 

{ 

  ret = (C*d[1]*((d[1]+d[2]+d[3])-gamma[1])^-1)*(exp(-gamma[1]*t)-exp(-(d[1]+d[2]+d[3])*t))-

k*n*exp(-d1star*t) 

   

} 

 

GaussianVarb = function(t, s=0, k, sigma, a, gamma, d, d1star) 

{ 

  CovIb(t=t, s=s, sigma=sigma, gamma=gamma, a=a, d=d) + 

k^2*CovN(t=t,s=s,sigma=sigma,a=a,d1star=d1star) 

} 

 

ADerivb = function(t,C,n,k,d,gamma,d1star) 

{ 

  C*d[1]*((d[1]+d[2]+d[3])-gamma[1])^-1*(-gamma[1]*exp(-gamma[1]*t) + 

(d[1]+d[2]+d[3])*exp(-(d[1]+d[2]+d[3])*t)) + k*n*d1star*exp(-d1star*t) 

} 

 

#nntest = AlgFrequentist(alpha = .5,Cstart = 6150,n = ntest,k = ktest,a = atest,sigma = 

sigmatest,d = dtest,gamma = gammatest,lambda = lambdatest,tolerance=tolerancetest,start.at = 

start.at.test,max_iterations = 1e6,max_bounds_iterations = 1e4,bounds.increaseby = 

increase.by.test) 

GaussianProbabilityb = function(t,C,n,k,d,a,sigma,gamma,d1star,v) 

{ 

  gfunctionb(t=t,C=C,n = n,k = k,d = d,a = a,sigma = sigma,gamma = gamma,d1star = d1star)* 
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    (2*pi*GaussianVarb(t = t,s = 0,k = k,sigma = sigma,a = a,gamma = gamma,d = d,d1star = 

d1star))^(-.5)* 

    exp(-.5*GaussianMeanb(t = t,C = C,n = n,k = k,d = d,gamma = gamma,d1star = d1star)^2* 

          GaussianVarb(t = t,s = 0,k = k,sigma = sigma,a = a,gamma = gamma,d = d,d1star = 

d1star)^-1) 

} 

 

GaussianExpectedValueb = 

function(t,C,n,k,d,a,sigma,gamma,d1star,v=c(d[1],d[2],d[3],a[1],a[3],a[5],sigma[1],sigma[3],sig

ma[5],gamma[1],gamma[2],d1star)) 

{ 

  t*gfunctionb(t=t,C=C,n = n,k = k,d = d,a = a,sigma = sigma,gamma = gamma,d1star = d1star)* 

    (2*pi*GaussianVarb(t = t,s = 0,k = k,sigma = sigma,a = a,gamma = gamma,d = d,d1star = 

d1star))^(-.5)* 

    exp(-.5*GaussianMeanb(t = t,C = C,n = n,k = k,d = d,gamma = gamma,d1star = d1star)^2* 

          GaussianVarb(t = t,s = 0,k = k,sigma = sigma,a = a,gamma = gamma,d = d,d1star = 

d1star)^-1) 

} 

 

testfuncb = function(C,n,k,a,sigma,d,gamma,d1star,v,tolerance=1e-

3,start.at=0,max_iterations=10000,bounds.increaseby=.01) 

{ 

  ret = 0 

  ret1 = 0 

  ret2 = 0 

  bounds = Badfunctionb(C = C,n = n,k = k,d = d,a = a,sigma = sigma,gamma = gamma,d1star = 

d1star,v=v,tolerance=tolerance,start.at=start.at,max_iterations = max_iterations,byincrease = 

bounds.increaseby) 

  if(bounds$converged == TRUE) 

    ret1 = 

integrate(GaussianExpectedValueb,lower=bounds$lower,upper=bounds$upper,C=C,n=n,k=k,a=

a,sigma=sigma,d=d,gamma=gamma,d1star=d1star,v=v)$value 

 

  if(ret1 != 0) 

  { 

    ret2 = 

integrate(GaussianProbabilityb,lower=bounds$lower,upper=bounds$upper,C=C,n=n,k=k,a=a,sig

ma=sigma,d=d,gamma=gamma,d1star=d1star,v=v)$value 

    ret = ret1/ret2 

  } 

  ret 

} 

testfuncb.v = Vectorize(testfuncb,"C") 
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Badfunctionb = function(C,n,k,d,a,sigma,gamma,d1star,v,tolerance=1e-

3,byincrease=.01,start.at=0,max_iterations=10000) 

{ 

  #initialize variables.  I don't know if we have to do this in R but in C++ we do so there.  Also 

nick, remember not to put ; 

  CurNumber = 0 

  firstFound = FALSE 

  converged = FALSE 

  Iternumber = start.at #start here.  Hopefully we'd start somewhere around the expectation 

  #starting at 0 in some cases can make this take a very long time. 

  lower = 0 

  upper = 0 

  iteration = 0 

  #while we haven't hit the max number of iterations we want and we have a finite CurNumber 

  while((is.nan(CurNumber)| is.na(CurNumber) | CurNumber<Inf) & iteration < max_iterations) 

  { 

    CurNumber = 

GaussianExpectedValueb(t=Iternumber,C=C,n=n,k=k,d=d,a=a,sigma=sigma,gamma=gamma,d1

star=d1star,v=v) 

    try(if(is.infinite(CurNumber)) stop("Badfunction - CurNumber is infinite.  This is bad.")) 

    if(!is.nan(CurNumber) & !is.na(CurNumber) & (CurNumber > tolerance & 

firstFound==FALSE)) 

    { 

      lower=Iternumber 

      firstFound=TRUE 

    } 

    else if(CurNumber <= tolerance & firstFound==TRUE) 

    { 

      upper=Iternumber 

      converged = TRUE 

      break; #bad programming practice =) 

    } 

    Iternumber=Iternumber+byincrease #number here to find out where we should go.   

    iteration=iteration+1 

  } 

  try(if(iteration >= max_iterations) stop("Max iterations reached in BadFunction")) 

  list("lower"=lower,"upper"=upper,"converged"=converged) #return our lower and upper 

integration sections.  If tolerance is chosen well it shouldn't cause a large difference 

} 

 

ex1.50000i.c1743 = Nick_Average(C = 1743,n = 5,k = ktest,a = atest,sigma = sigmatest,d = 

dtest,gamma = gammatest,lambda = lambdatest,start.at = start.at.test,bounds.increaseby = 

.001,loops = 50000,max_bounds_iterations = 1e5,tolerance = 1e-15) 
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ex1.50000i.c1800 = Nick_Average(C = 1800,n = 5,k = ktest,a = atest,sigma = sigmatest,d = 

dtest,gamma = gammatest,lambda = lambdatest,start.at = start.at.test,bounds.increaseby = 

.001,loops = 50000,max_bounds_iterations = 1e5,tolerance = 1e-15) 

ex1.50000i.c1850 = Nick_Average(C = 1850,n = 5,k = ktest,a = atest,sigma = sigmatest,d = 

dtest,gamma = gammatest,lambda = lambdatest,start.at = start.at.test,bounds.increaseby = 

.001,loops = 50000,max_bounds_iterations = 1e5,tolerance = 1e-15) 

ex1.50000i.c1900 = Nick_Average(C = 1900,n = 5,k = ktest,a = atest,sigma = sigmatest,d = 

dtest,gamma = gammatest,lambda = lambdatest,start.at = start.at.test,bounds.increaseby = 

.001,loops = 50000,max_bounds_iterations = 1e5,tolerance = 1e-15) 

ex1.50000i.c1950 = Nick_Average(C = 1950,n = 5,k = ktest,a = atest,sigma = sigmatest,d = 

dtest,gamma = gammatest,lambda = lambdatest,start.at = start.at.test,bounds.increaseby = 

.001,loops = 50000,max_bounds_iterations = 1e5,tolerance = 1e-15) 

ex1.50000i.c2000 = Nick_Average(C = 2000,n = 5,k = ktest,a = atest,sigma = sigmatest,d = 

dtest,gamma = gammatest,lambda = lambdatest,start.at = start.at.test,bounds.increaseby = 

.001,loops = 50000,max_bounds_iterations = 1e5,tolerance = 1e-15) 

ex1.50000i.c2050 = Nick_Average(C = 2050,n = 5,k = ktest,a = atest,sigma = sigmatest,d = 

dtest,gamma = gammatest,lambda = lambdatest,start.at = start.at.test,bounds.increaseby = 

.001,loops = 50000,max_bounds_iterations = 1e5,tolerance = 1e-15) 
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