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Abstract: A local processing bias, often considered a cognitive style unique to autism spectrum
disorder (ASD), may influence the types of semantic features acquired by children with ASD and
could contribute to weaknesses in word learning. Children with developmental language disorder
(DLD) also struggle to learn semantic aspects of words, but this cognitive style has not been ascribed
to children with DLD. The purpose of this study was to explore whether global–local processing
differences influence the type of semantic features children with ASD, DLD, and their neurotypical
peers learn to produce when learning new words. Novel word definitions produced by 36 school-aged
children (12 with ASD, 12 with DLD, and 12 with typical language) who participated in an extended
word-learning paradigm were used to extract newly learned semantic features. These semantic
features were then coded for global and local attributes and analyzed to detect whether there were
differences between groups. Results indicated that the children with ASD and DLD produced more
global, rather than local, semantic features in their definitions than the children with typical language.
An over-reliance on global, rather than local, features in children with ASD and DLD may reflect
deficits in depth of word knowledge.

Keywords: autism spectrum disorder; developmental language disorder; semantic features; word
learning; central coherence

1. Introduction

Currently, there are ongoing conversations over whether autism spectrum disorder (ASD) and
developmental language disorder (DLD) are different ends on a continuum of the same disorder [1–3].
Shared traits and similar performance on language tasks perpetuate this discussion. For instance,
children with ASD perform poorly on the nonword repetition task [4], a hallmark weakness for
children with DLD [5]. Although DLD is primarily characterized by deficits in morphosyntax, tense
marking is also impacted in children with ASD [4,6]. Pragmatic deficits are a clinical marker for ASD,
but children with DLD can display social communication weaknesses as well [7]. This overlap leads
practicing clinicians to report that ASD and DLD can make for a “difficult differential diagnosis” [8].
This challenge is exacerbated when children with DLD also meet the clinical standards for a diagnosis
of ASD on the social or communication domains of the Autism Diagnostic Interview, Revised (ADI-R)
or the Autism Diagnostic Observation Schedule (ADOS [9]) or both [10].

Efforts to uncover distinct patterns of errors on these language tasks have made some headway
in identifying key differences between ASD and DLD. For example, specific patterns of error have
been found between groups of children with ASD and DLD on the nonword repetition task [11].
Even though morphosyntactic deficits have been reported in children with ASD, these errors may not
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include the morphological omission errors that are characteristic of DLD [12]. In a comprehensive
review by Williams, Botting, and Boucher [13], further distinctions are described in great detail, such as
the widespread phonological deficits in DLD but not in ASD (however, phonological short-term
memory deficits have been found in both disorders [14]). These efforts to distinguish between ASD
and DLD are essential to elucidate unique language profiles that could aid in earlier and more accurate
differential diagnosis.

These challenges in distinguishing between ASD and DLD persist even after the Diagnostic
and Statistical Manual of Mental Disorders (DSM-5) revisions were designed to improve accuracy
of diagnoses. For a diagnosis of ASD, deficits in social communication and restricted or repetitive
behaviors must be present [15]; however, neither of these deficits is necessary for a diagnosis of DLD.
Furthermore, ASD must be ruled out to meet the criteria for DLD. As defined by Leonard [16], DLD s a
“significant deficit in language ability” for one’s chronological age not caused by hearing loss, nonverbal
intelligence, or other neurological deficits (p. 3). Moreover, both groups often perform similarly on
tasks outside of the language domain, such as on tasks of motor skill [17]. Because commonalities
between ASD and DLD exist, clinicians are often forced to rely on areas known not to overlap, such as
restricted or repetitive behaviors, to make a differential diagnosis.

With this high degree of symptom overlap, it is possible that global–local processing differences
may be used to help differentiate these two disorders. Individuals with ASD are described as having
a cognitive style that lends itself to local processing more than gestalt, or global processing [18–20].
This cognitive style is labeled as weak central coherence, or the reduced ability to pull information
“together for higher-level meaning” [19,21,22]. This local processing bias is a tendency to focus on
small details rather than larger, or more global contexts [19]. In the linguistic domain, this difficulty, i.e.,
“seeing the forest for the trees”, impacts one’s ability to engage in everyday tasks, such as following
along with a story [23–25] or applying a shape cue when learning words [26–29]. Although global–local
processing has been widely measured in individuals with ASD, it has been less frequently, or at least
more indirectly [30–33], assessed in children with DLD. When it has been explored, children with DLD
have not consistently shown a global or local preference [2,30].

Understanding how children with ASD handle global and local information during tasks of word
learning is paramount to developing more effective language interventions. For example, in typical
development, toddlers quickly recognize that objects with the same global shape have the same word
label [34]. By 24 months of age, these children apply this global shape cue to extend word labels
more readily than local cues, such as texture or color [35]. However, this facilitative “shape bias” cue
based on global processing has not been found in young children with ASD [26–28] or in school-aged
children with ASD who have been described as low-functioning [29], showing how the prioritization
of local over global processing may contribute to the deficits in word-learning often reported in
children with ASD [8,36,37]. Differences in global and local processing also may impact which relevant
semantic features of words children with ASD acquire as they form abstract mental representations, or
prototypes, of words in their memory. Typically developing infants utilize these abstract prototypes
for early categorization [38], and these prototypes are often based on the global shape cue because
shape is the most pertinent cue for early object categorization. Perhaps, then, it is unsurprising that
children with ASD do not apply abstract prototypes on word categorization tasks [39] or word fluency
tasks [40] if they do not attend to pertinent global semantic cues.

Although global shape cues are valuable for early word learning, acquiring the local, detail-specific
semantic features of words as children build semantic representations in their mental lexicon is also a
fundamental step in developing more complex aspects of language, such as recognizing the salient
aspects of words, understanding multi-meaning words, forming sentences, using figurative language
and humor, and producing narratives, all areas of difficulty for children with ASD [23–25,39–42].
As children establish semantic representations of words, global semantic features could reflect word
referents as a whole, such as describing a cow (basic level) as an animal (superordinate level) or as a
heifer (subordinate level). Local semantic features may pertain to a part or detail of the word referent,
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as in describing a zebra as having stripes. Distinctive semantic features have been shown to aid
successful word retrieval in typical learners [43]. However, children with ASD have been reported to
acquire fewer semantic features on word-learning tasks than their typical peers [44] and, for those
with concomitant syntactic deficits, show sparser word knowledge [8], which may further hinder their
ability to successfully produce words. Discovering facilitative ways to teach children with ASD new
words seems especially impactful for improving their quality of life, considering that nearly 20% of
children with ASD produce fewer than five words on a given day [45]. For clinicians, knowing how
children with ASD and DLD acquire global and local semantic features would inform how best to teach
new words in intervention, which could have diffuse benefits in their overall language comprehension
and use. However, to date, no study has explored how children with ASD and DLD learn to produce
global and local aspects of words.

1.1. Global–Local Processing in ASD

Performance consistent with the weak central coherence hypothesis has been observed in
individuals with ASD on verbal [18,24,25,46–48], as well as non-verbal [49–54] tasks. In fact, some have
suggested that this local bias is a core component of the ASD phenotype [55,56]. Because the weak
central coherence hypothesis proposes this cognitive style impacts those with ASD, regardless of
age, intelligence, and language ability [19,46,57], global–local processing differences may serve as a
potential way to bypass the language commonalities often observed across ASD and DLD to help
successfully differentiate between these two disorders.

Local biases influence language productions in ASD. Although this global–local difference has
primarily been observed at the level of processing, it is important to determine whether there is any
impact on the language productions of individuals with ASD. In a study by Fitch, Fein, and Eigsti [18],
adolescents with and without ASD were asked to describe oil paintings by famous artists under a
cognitive load (tapping with an index finger). The group with ASD produced as many global details
as the other groups; however, the adolescents with ASD still made more local observations than
those with typical development, as well as adolescents who had overcome an earlier ASD diagnosis
(i.e., optimal outcome; for more information on optimal outcome in children with ASD, see [58,59]).
The local bias was apparent in individuals with ASD during this language production task as well.

Booth and Happé [57] utilized a sentence completion task to compare local biases in children
and young adults with ASD, typical language development (TLD), and attention deficit hyperactivity
disorder (ADHD). On this task, individuals were asked to finish a sentence prompt (e.g., In a cave
lived a bat and...), and then their responses were coded as either showing global integration of the
over-arching sentence meaning (i.e., a response such as bear or spiders) or local biases (i.e., a response
such as ball). Using this language production task, the individuals with ASD were more likely to
produce a response with a local bias than their age- and IQ-matched typical peers, as well as their peers
with ADHD (to rule out executive function/inhibitory skills as a contributing factor to locally-biased
responses). Language production tasks may be used to uncover the local processing bias proposed to
reflect weak central coherence in individuals with ASD.

1.2. Global–Local Processing in DLD

Although global–local processing in children with ASD has been extensively studied, less is
known about global–local processing in children with DLD. To determine if children with DLD
have visuo-spatial processing deficits specific to local and global processing, Akshoomoff, Stiles,
and Wulfeck [30] compared the performance of children with DLD and typically developing children
on the Hierarchical Forms memory task and the Rey–Osterrieth Complex Figure (ROCF) task. The
Hierarchical Forms task required the participants to examine visual stimuli constructed in such a way
that a larger symbolic image is made up of many smaller symbols that differed from the larger symbol.
On this task, the children with DLD were less accurate than the typically developing group overall,
but the groups did not differ in accuracy with respect to global and local levels. The authors concluded
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that the children with DLD, “may adopt simpler or more immature processing strategies . . . but global
or local processing would not be selectively affected” [30].

The results for the ROCF task were similar to the Hierarchical Forms task. The ROCF task required
the groups to reproduce a drawing from memory, and performance on this task is known to correlate
with visuospatial processing abilities. The children in the DLD group drew fewer details, less accurate
figures, and more incorrect cluster placement than the control group on the ROCF task. The authors
concluded that the children with DLD relied on a less accurate, immature strategy when copying the
figure. Even though these findings exemplify a different pattern of visuo–spatial processing in children
with DLD, their performance did not directly reveal differences in global–local processing from their
typical peers [30]. If individuals with DLD process global and local information typically (albeit more
immaturely), global–local processing tasks may be a viable way to clinically differentiate between ASD
and DLD.

1.3. Comparing Global–Local Processing in Children with ASD to those with DLD

Global–local processing on linguistic tasks in children with ASD compared to those with DLD
has led to mixed findings. In one study, Norbury [31] administered a lexical ambiguity task. In this
task, words with ambiguous meanings (e.g., bank) were embedded in sentences given to children with
ASD and typical language, ASD and language impairment, DLD, and TLD who had to use context
clues to determine which meaning was appropriate (e.g., John stole from the bank). Participants were
then shown a picture that was either congruent or incongruent with the meaning best reflected in the
sentence and asked to respond “yes” or “no” if the picture matched. According to the weak central
coherence hypothesis, individuals with ASD, regardless of language abilities, should show difficulty
extracting meaning from broader contexts [19,46]. However, language ability, rather than autism
spectrum status, was a better indicator of performance on this task. This well-designed study provides
some evidence that the challenges observed in individuals with ASD often attributed to weak central
coherence may be better explained by deficits in lexical and semantic knowledge [31].

More recently, Riches and colleagues [32] explored whether autism status or language ability
better reflected weak central coherence using a similar forced-choice syntactic ambiguity task with
adolescents with ASD and typical language, ASD and language impairment, DLD, and TLD. Unlike the
Norbury [31] findings, neither autism status nor language ability led to any significant differences
in performance on this linguistic processing task. However, because both studies administered a
forced choice task, it is possible that the use of a more open-ended approach would have led to
different outcomes.

Although not intended to be a comparison between subgroups of children with ASD with and
without language impairments, the open-ended Sentence Completion Task utilized by Booth and
Happé [57] included children with autism and children with Asperger syndrome based on the DSM-IV
diagnostic criteria, which included a history of spoken language delay for a diagnosis of Autistic
Disorder but required an absence of developmental language delay for a diagnosis of Asperger’s
Disorder. In this study, both groups of children showed local biases compared to their age- and
IQ-matched peers, providing some evidence that autism-status, rather than language or IQ, plays a
more influential role in whether or not a child will demonstrate a local-bias on an open-ended, linguistic
production task.

In summary, weak central coherence might be a differentiating characteristic between children
with ASD and those with DLD. To capture these global–local processing differences, previous studies
have primarily employed standardized assessments [30,49,53], magnetic resonance imaging [51,60],
switching tasks [54], and scripted sentences or stories followed by a forced choice set of answers [31,32],
none of which use the open-ended approach recommended by Happé [22] to best evoke differences in
global–local processing. Unlike a labeling, forced choice, or recognition task, open-ended production
tasks require the participant to formulate his or her own answers. If global–local processing differences
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exist between children with ASD and those with DLD, an open-ended task would likely best elicit
these differences.

1.4. Research Question

In the current study, we embarked on a more open-ended approach. This investigation aimed
to explore whether differences in the production of global and local semantic features in a definition
task of newly learned, novel words could be used to differentiate children with ASD from those
with DLD and TLD. Additionally, knowing how these intrinsic-to-the-learner processing differences
impact how children acquire new words is a vital component in better facilitating language learning in
these populations. Because children with ASD show a bias toward local details when processing new
information, we predicted that they would produce more local semantic features than their peers with
DLD and TLD during a novel word definition task; the children with DLD and TLD were expected to
produce similar amounts of local and global semantic features.

2. Materials and Methods

To explore how children produce global and local semantic features of newly learned words,
data collected during previously conducted novel word-learning studies in children with DLD and
TLD [61] and with ASD [62] were used for the current study. These original word-learning studies
investigated the influence of enriched semantic input on the ability of children with ASD, DLD,
and TLD to learn novel words over time. This same data set has also been used to compare how
children with ASD, DLD, and TLD acquire visually and verbally presented semantic features during
tasks of novel word-learning [63]. In the current study, these novel word definitions were used to
determine if the production of global and local features differed by group, potentially shedding light
on how local-processing biases influence word-learning in ASD. All of the original recruitment and
experimental procedures implemented in the novel word-learning investigations, as well as the analytic
procedures and data management for the current study, adhered to the ethical standards approved by
each university’s ethical review committee.

2.1. Participants

To determine the appropriate sample size for the current study, G*Power statistical software [64,65]
was used to conduct a power analysis. For this power analysis, an alpha level of 0.05, power of
0.80, and a moderate effect size of 0.25 were entered as the set parameters for a repeated measures
ANOVA with the within (three processing levels) by between (three groups) interaction designated as
the planned statistical test. This analysis indicated that a minimum total sample size of 36 would be
sufficient. Thus, data from 36 children, 12 children with ASD, 12 children with DLD, and 12 children
with TLD, from the original word-learning studies were used for this follow-up study exploring
global–local feature productions. All children were recruited from Tippecanoe County, Indiana, USA,
and its surrounding counties. For inclusion in the original studies, all participants must have passed
an oral-mechanism examination, showed hearing within normal limits on a bilateral pure tone hearing
screening, achieved a standard score of 85 or higher on a nonverbal IQ test, and were monolingual
English speakers.

Because the previous and current investigators were primarily interested in the production, rather
than the comprehension, of newly learned semantic features, and because expressive vocabulary is
more reliably measured than receptive vocabulary in children with ASD [66], the expressive vocabulary
of each group was compared using raw scores from the Expressive Vocabulary Test-II [67] to ensure the
groups did not significantly differ on this key measure (see Table 1). Consistent with previous work
indicating that expressive vocabulary is an area of weakness in children with ASD [37] and DLD [68],
this matching procedure led to a group with TLD who was significantly younger than the groups with
ASD (p < 0.01) and DLD (p = 0.04). Because the number of locally-biased responses on open-ended
production tasks of central coherence has not been shown to differ based on age [57], the data from this
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original TLD group were still included for comparison. The two clinical groups (ASD and DLD) did not
significantly differ in age from each other (p = 0.17). Also, because children with ASD show relatively
greater impairment in comprehension than production [69], a paired samples t-test was conducted to
check for differences between expressive and receptive vocabulary in these children. A paired samples
t-test comparing standardized scores on the Expressive Vocabulary Test—2nd Edition (EVT-2) and the
Peabody Picture Vocabulary Test-4 [70] did not reveal any significant differences between receptive
(M = 98.42, SD = 18.96) and expressive vocabulary (M = 95.75, SD = 7.57) in the children with ASD,
t(11) = −0.56, p = 0.59. Table 1 depicts a summary of the participant characteristics in all three groups.

Table 1. Summary of the participant characteristics.

ASD (n = 12)
M (Range)

DLD (n = 12)
M (Range)

TLD (n = 12)
M (Range) F Value p

Value

Age (years; months) 7; 9 (4; 6–11; 3) 7; 1 (5; 9–8; 4) 5; 10 (4; 3–7; 3) 6.39 0.01
Sex 3 F, 9 M 3 F, 9 M 6 F, 6 M 1.10 0.34

EVT-2 Raw Score 88.67 (53–120) 82.00 (67–97) 94.5 (68–128) 1.41 0.26
EVT-2 Standard Score 95.75 (79–112) 94.17 (78–106) 114.83 (91–135) 15.66 <0.01

Nonverbal IQ Standard Score 96.6 (85–106) * 104.08
(91–125) 121.50 (96–149) 12.88 <0.01

Language Standard Score 86.18 (58–111) * 73.67 (42–87) 112.09 (90–125) 21.63 <0.01

EVT-2 = Expressive Vocabulary Test—2nd Edition; F = female, M = male; ASD = autism spectrum disorder; DLD =
developmental language disorder; TLD = typical language development; Nonverbal IQ Standard Scores were from the
Primary Test of Nonverbal Intelligence, the Columbia Mental Maturity Scale, or the Test of Nonverbal Intelligence;
Language Standard Scores were from the Structured Photographic Expressive Language Test- Preschool–2nd
edition, Structured Photographic Expressive Language Test–3rd edition, or the Clinical Evaluation of Language
Fundamentals–4th edition; *, only includes scores from 11 participants with ASD. One-way ANOVA with equal
variance assumed for statistical comparisons.

The children with ASD were initially recruited for a study exploring the role of semantic richness
in word-learning in these children [62]. For inclusion in this original study, the participants with ASD
must have a reported independent medical diagnosis of ASD. Then, as part of the inclusionary testing,
a trained clinician administered the Autism Diagnostic Observation Schedule—2nd edition [71] to each
participant with ASD to confirm that they met the cut off scores for either autism or the autism spectrum.
All of the children with ASD included in the original studies were verbal communicators who did not
use any form of augmentative or alternative communication as a primary means of communication.
Following these inclusionary testing procedures, 12 children (three females) with a mean age of 7;
9 (years; months, range 4; 6–11; 3) were included with ASD. One participant (ASD1) was unable to
complete the nonverbal IQ test due to a behavioral rigidity that led to the consistent selection of items
in the same location from the array of choices. Because ASD1 was able to successfully participate in
the experimental word-learning tasks, her expressive vocabulary score was similar to participants
with DLD and TLD, weak central coherence is not hypothesized to depend on intelligence [19], and
intelligence has not been shown to be a significant factor on open-ended tasks exploring central
coherence [57], her data were still included in the current study. After meeting all inclusionary criteria,
the Structured Photographic Expressive Language Test—Third Edition [72] or the core battery of the
Clinical Evaluation of Language Fundamentals—4th Edition [73], whichever was age appropriate, was
administered to eleven of the children with ASD to capture their broader expressive language skills.
Due to time constraints, one participant with ASD was not given either expressive language test.

The children with DLD and TLD were originally recruited to participate in a multi-year,
longitudinal study exploring the relationships between motor and language skills [61,74–77]. As such,
the inclusionary testing procedures for these children were implemented one or two years before
the collection of their novel word definitions that were used for comparison in the current study.
Inclusion criteria outlined by Leonard [16] were used when qualifying participants for the group
with DLD. Specifically, these participants obtained scores at or above 85 on a standardized nonverbal
IQ test, demonstrated hearing and oral-mechanism functioning within normal limits, and had no
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history of a neurological disorder. Additionally, during their initial year in the longitudinal motor and
language investigation, each participant achieved a standard score at or below 87 on the Structured
Photographic Expressive Language Test–Preschool—2nd edition [78], which has good sensitivity and
specificity when diagnosing DLD [79] using the criteria outlined by Greenslade, Plante, and Vance [80].
Finally, to rule out ASD, all children with DLD were assessed with the Childhood Autism Rating
Scale—2nd Edition [81] and secured scores within the “Minimal-to-No symptoms” range. Based on
these inclusionary criteria, 12 children (three females) with a mean age of 7; 1 (range 5; 9–8; 4) were
included with DLD in the current study.

To be included in the group with TLD in the original longitudinal study, parental reporting was
used to confirm that the children had no history of language delays. Also, the children had to have
achieved a standard score of 85 or higher on either the Structured Photographic Expressive Language
Test–3rd edition [72] or the core battery of the Clinical Evaluation of Language Fundamentals–4th
edition [73], depending on which was age appropriate at the time of their initial inclusion in the
longitudinal study. Finally, all children with TLD received scores within the “Minimal-to-No symptoms”
range on the Childhood Autism Rating Scale—2nd edition [81]. Based on these inclusionary procedures,
12 children (six females) with a mean age of 5; 10 (range 4; 3–7; 3) with TLD were included in the
current study.

2.2. Auditory Stimuli

Six novel words (/f
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ə m/) were presented
auditorily to the children in the original word-learning studies [61,62]. These two-syllable phonetic
strings were controlled for phonotactic probability and neighborhood density, factors known to affect a
word’s learnability [82,83]. All words were recorded by a female native-English speaker and loaded
into Praat [84] to equate for intensity at 70 dB Hearing Level. The novel words were presented through
a set of external speakers located in front of the participants. Depending on the original semantic cue
condition (no semantic cues, sparse semantic cues, or rich semantic cues [62]), recordings of four of
these novel words were presented in synchrony with a matched visual referent (i.e., paired word form
with meaning) either in isolation (sparse semantic cues condition) or embedded in a children’s story
(rich semantic cues condition). Two novel words were never paired with visual-referents (no semantic
cues condition) to compare how children produce words given semantic cues to those taught without
any semantic information. Only the novel words taught with visual referents (i.e., sparse and rich
semantic cues conditions) were included in the current study. All three pairs of novel words were
randomized and counterbalanced across participants and groups.

2.3. Visual Stimuli

In the original word-learning studies, four child-friendly drawings by a professional illustrator
(Figure 1) were used as the visual referents for the novel words [61,62]. Each visual referent came from a
distinct superordinate semantic category; a tool, an instrument, an animal, and a vehicle. In the original
studies, the tool and instrument referents were taught in the sparse semantic cue condition. In this
sparse semantic cue condition, the children were auditorily presented a novel word in synchrony with
the visual referent. For the animal and vehicle referents, the novel words were embedded in a children’s
story in the rich semantic cue condition. Prior to teaching these visual referents in the semantically
enriched condition in the original word-learning studies [61,62], all four visual stimuli were tested
in the semantically sparse condition to assess whether any image was inherently more learnable.
Based on this testing, no referent was significantly more learnable in any of the original word-learning
measures (e.g., referent identification, confrontation naming, phonetic accuracy, or kinematic stability).
All visual images were displayed on a 76.2 cm Dell monitor screen placed in front of the children
that was connected to a laptop with Microsoft PowerPoint. The children’s story script with all of
the corresponding visual images is available in Gladfelter and Goffman [62] and is provided in the
Supplementary Materials for this article.
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Figure 1. Visual referents used in the original word-learning paradigm [62]. 
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2.4. Collection of Word Definitions

The definitions used to extract local and global semantic features were collected following their
presentation in either the sparse semantic cues condition (i.e., picture–word pair in isolation) or the
rich semantic cues condition (i.e., embedded in a children’s story) in the original word learning
studies [61,62]. To control for any primacy or recency effects, the presentation order for the three
semantic learning conditions (no semantic cues, sparse semantic cues, rich semantic cues) was
counterbalanced across children. These original studies focused on whether the semantic richness
of the learning context influenced a child’s ability to acquire new words, whereas the current study
expands upon this earlier work by exploring the differences in the types of semantic features the
children produced, specifically at the global or local processing level.

In these prior studies, participants were presented novel words seven times on three separate days
approximately one week apart (or 21 total exposures per novel word across all sessions). After being
presented with the meanings of the novel words in each semantic cue condition, participants were
asked to define the novel words using the open-ended examiner prompt, “What does ____ mean?”.
After their initial response, all participants received one follow-up prompt, “What else can you tell me
about _____?” [85]. These open-ended prompts are unlike some past studies targeting global–local
processing (e.g., [31]), which limited their participants to two choices (e.g., “yes” or “no”). Although
the original word learning studies were not explicitly designed to target central coherence, open-ended
tasks are recommended for assessing the impact of global–local processing in children with ASD [22],
making the use of these novel word definitions an ideal method for comparing global and local
productions in children with ASD, DLD, and TLD. All definitions were recorded and transcribed
for later coding. A total of 432 definitions (36 participants × 4 definitions × 3 sessions) from these
word-learning studies provided the data for the current study.

2.5. Extraction of the Semantic Features from the Definitions

In the original word-learning studies, the semantic features were extracted from the definitions
to score the number of accurate units of information (i.e., the number of semantic features) drawing
from the method described in McGregor, Sheng, and Ball [85]. As an example, one child defined the
vehicle as follows: “In the story, Big Brother said his /p
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ə m/ makes donuts 1. He said it’s shiny
2, and it looks like a motorcycle 3 and it goes faster 4 and faster!”. This definition contained four
accurate units of information about the meaning of the target word. In the original investigation,
a second coder was trained to calculate the reliability of the number of accurate units of information
produced. For reliability training, the definitions from three randomly selected participants (one from
each diagnostic group) were scored separately by both coders for the number of accurate semantic
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features. Then, within the context of training, disagreements were thoroughly discussed, and consensus
building took place. For the reliability scoring, a new set of definitions distributed equally across
groups from 25% of all sessions was selected using the same random number generator (random.org)
to select the participant numbers. The total number of semantic features identified by the original
primary author (Gladfelter) was 270 and by the second coder was 284, with an overlap of 269 semantic
features. Reliability was then judged to be between 94.7% (269/284) and 99.6% (269/270). For the
current study, the semantic features from all 432 definitions were analyzed based on whether the
semantic information was a global or local attribute.

2.6. Global and Local Coding of Semantic Features in the Current Study

The semantic features extracted in the original word-learning studies were used in the current
study. To prevent bias during coding, the second author was blinded to the diagnostic category of each
participant using a de-identifying alphanumeric coding system devised by the first author. A coding
manual was designed to promote consistency across coders and to explain the coding process to an
undergraduate research assistant for later reliability coding. The second author used a Microsoft Excel
worksheet to code the participants’ definitions following manualized rules developed by the authors.

The semantic features were analyzed to see if they reflected a local detail or the global object.
Although previous word-learning and categorization studies have used the global shape cue to
explore how children apply this category relevant cue to category irrelevant cues (e.g., size, color,
or texture) when learning new words, the purpose of the current study was to focus on which semantic
features produced by children required processing of the novel referent as a whole or only required the
processing of local details, or smaller parts, of the novel referent as they formed semantic representations
of the newly-learned words. This use of semantic features produced during a novel word-learning
definition task is a new approach to investigating global–local processing. The weak central coherence
hypothesis [19,21] proposes that children with ASD show a processing bias for local details at the
expense of holistic meaning. This hypothesis has classically been assessed using the Navon Hierarchical
Figures Task [86], which presents alphabetic letters composed of smaller alphabetic letters and then
determines whether the individual preferentially processes the local parts (smaller letters) or the global
whole (bigger letters) of a visual image. Using hierarchical figure tasks, individuals with ASD have
been shown to demonstrate a preference for local, rather than global processing, the opposite pattern
of those with more typical development [87,88]. To more closely align with this classic global–local
task, rather than a word categorization task, we chose to code semantic features that either captured
the novel word-referent as a global whole object or as a local part.

To analyze the processing level, the coders determined if each semantic feature was (1) Global
(whole object), (2) Local (details or parts), or (3) N/A, indicating coding was not applicable at the global
or local level. If the participant provided a semantic feature that described the target referent as a
whole, the coders scored it as Global (whole object), or, if the participant produced a semantic feature
that described a part or detail of the target referent, the coders scored it under the Local (details or
parts) category. For example, if the child said “antennas” for the animal target referent, it was coded
under Local because this pertained to a specific attribute of the animal and not the whole. If the
child produced a semantic feature such as “pet,” it was marked as Global because it referred to the
whole referent. It is worth noting that the global–local coding implemented in the current study was
conducted on each of the originally extracted semantic features individually and not on all features
provided within a definition collectively. In other words, if a child’s definition provided several
detail-specific features that, together, would provide a more holistic description of the referent, these
individual features were still coded as Local.

Not every semantic feature was marked for local or global processing because not all semantic
features were able to be coded as a global or local attribute (e.g., the semantic feature was an action,
emotion, or descriptive word). In this case, the coder scored the semantic feature as N/A for not
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applicable. For example, the coder marked “N/A” if the child said “gives kisses” to define the animal
referent because it could not be separated into global or local parts.

2.7. Reliability and Training

To assess the inter-rater reliability of the global/local semantic feature coding, one undergraduate
research assistant majoring in Communicative Disorders coded 25% of the definitions (i.e., data from
nine participants). These were chosen using a random number generator (www.random.org) to select
the participant numbers, with an equal distribution across the three diagnostic groups. The selection
of 25% of the total data collected fits within the criteria outlined by Schlosser [89], which recommends
inter-rater reliability be conducted between 20%–30% of the total data. The randomly selected set of
participants used for the final reliability coding did not include any data used during reliability training
and was also de-identified using the same alphanumeric system to blind the undergraduate coder
and the second author of each participants’ diagnostic category. To determine inter-rater reliability,
Cohen’s kappa was derived before consensus building occurred. Following the ratings described
by Hallgren [90], the kappa statistic for the processing-level coding was almost perfect agreement
(k = 0.932 with a 95% confidence interval of 0.881–0.983). Disagreements were discussed, and then
consensus building took place.

2.8. Statistical Analyses

A mixed-model ANOVA was conducted with diagnostic group (ASD, DLD, and TLD) as the
between-subjects variable, and processing level (global vs. local vs. not applicable) served as the
within-subjects variables. From the original 432 definitions, a total of 817 semantic features, with 257
from the children with ASD, 335 from the children with DLD, and 225 from the children with TLD,
were coded. The sum of semantic features within each global, local or N/A coding category was
calculated individually for each participant and collapsed across sessions. For the mixed-model
ANOVA, these summed totals of responses served as the within-subjects data. An alpha level of less
than 0.05 was considered significant.

3. Results

This study aimed to determine whether the global or local semantic features produced during
a definition task could be used to differentiate children with ASD from those with DLD and TLD.
A summary of the results for diagnostic group and processing level effects is presented in Table 2.

Table 2. Summary of ANOVA for Group, Processing Level, and Session Effects.

Effect F-Value df p-Value Partial Eta Squared

Group 1.27 2, 33 0.295 0.07
Processing Level 26.21 2, 32 <0.001 * 0.62

Processing Level by Group 2.86 4, 66 0.030 * 0.15

df = degrees of freedom. * indicates significance at the 0.05 alpha level.

3.1. Global–Local Processing Level Effects

The mixed-model ANOVA revealed a significant effect based on the global–local processing level
(p < 0.001). Follow-up least significant difference (LSD) pairwise comparisons indicated that more
global than local (p < 0.001) semantic features were produced during the novel word definitions.
Also, more features were categorized as N/A than as global (p < 0.001) or local (p < 0.001). Because the
primary goal of this study was to assess the influence of global and local processing on the production
of semantic features, this significant finding is not further discussed here.

www.random.org
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3.2. Group and Global–Local Processing Interaction Effects

Although the mixed-model ANOVA did not reveal a significant group effect (p = 0.295), it did
reveal a significant interaction between diagnostic group and processing level (p = 0.030). Follow-up
pairwise comparisons (LSD) indicated that the children with DLD produced significantly more global
semantic features than their peers with TLD (p = 0.012), and the children with ASD approached
significance (p = 0.054) towards producing more global semantic features than their peers with TLD.
The groups with DLD and ASD did not differ from each other (p = 0.522) in their production of global
semantic features. There were no other significant interactions between groups and local semantic
features or features coded as N/A (all p values >0.05).

Within each group, the children with ASD (p = 0.008) and DLD (p < 0.001) produced significantly
more global features than local features within their novel word definitions. The children with TLD did
not differ in their production of global and local semantic features (p = 0.877). All groups of children
produced more N/A features than global and local semantic features (all p values < 0.05), except for
the children with ASD who did not differ in their production of global and N/A features (p = 0.224).
Because the study aimed to focus on global and local semantic features, these significant N/A findings
are not further discussed here. All group means and standard deviations for each processing level are
summarized in Table 3, and each participant’s mean number of features is presented in Table 4.

Table 3. Group semantic feature descriptive statistics by processing level.

Processing Level Group Mean SD Min Max

Global
ASD 7.50 4.78 0 15
DLD 8.50 3.94 1 17
TLD 4.42 2.15 0 8

Local
ASD 3.00 3.25 0 9
DLD 2.33 3.92 0 14
TLD 4.17 5.44 0 17

NA
ASD 10.92 8.77 0 28
DLD 17.08 12.80 0 40
TLD 10.17 8.16 0 24

SD = standard deviation.

Table 4. Mean number of semantic features for each participant for each processing level.

Participant Global Local NA Participant Global Local NA Participant Global Local NA

ASD01 4.00 0.00 0.00 DLD01 4.00 0.00 12.67 TLD02 1.67 4.00 7.67
ASD02 3.33 1.00 3.67 DLD04 1.33 0.00 5.67 TLD03 1.33 2.33 4.67
ASD03 1.00 3.00 2.67 DLD05 2.33 0.00 4.33 TLD04 2.67 0.33 0.33
ASD04 3.33 2.67 9.33 DLD06 2.67 4.67 13.33 TLD06 2.00 1.00 2.33
ASD05 0.00 0.00 0.00 DLD07 2.67 1.00 6.67 TLD07 0.00 0.00 0.00
ASD06 5.00 1.67 7.33 DLD09 11.00 1.00 4.00 TLD08 1.67 1.33 5.33
ASD07 2.67 1.67 7.00 DLD14 3.00 0.67 9.00 TLD09 1.33 5.67 4.00
ASD09 4.00 1.33 4.33 DLD17 5.67 0.67 6.00 TLD11 1.33 1.67 8.00
ASD10 1.00 0.00 1.33 DLD18 3.00 0.67 5.00 TLD12 1.00 0.33 2.67
ASD11 0.33 0.00 3.00 DLD19 2.67 0.00 3.33 TLD13 2.33 0.00 2.00
ASD12 3.00 0.67 3.00 DLD20 2.67 0.00 0.00 TLD14 1.67 0.00 3.67
ASD16 2.33 0.00 2.00 DLD21 0.33 1.33 1.00 TLD99 0.67 0.00 0.00

3.3. Post-hoc Results Based on Age and Expressive Vocabulary

Because the use of global, over local, descriptive terms during definition tasks has been shown to
increase developmentally [91], and the ASD and DLD groups were significantly older than the group
with TLD, a follow-up ANCOVA was conducted with age as a covariate. In this post-hoc analysis,
there was no significant interaction between level of processing and age, F(2, 31) = 1.08, p = 0.352.
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Furthermore, because some previous studies have reported that language, rather than autism
status, is a better predictor of performance on tasks assessing weak central coherence [31], an additional
follow-up ANCOVA was conducted with EVT-2 standard scores as a covariate. As with the age results,
this post-hoc analysis revealed no significant interaction between level of processing and language
performance on an expressive vocabulary test, F(2, 31) = 0.60, p = 0.553.

4. Discussion

Global–local processing differences influenced the type of semantic features produced by children
with ASD and with DLD compared to their typical peers on a word learning task, but not in the ways
expected. It was predicted that the group with ASD would provide more local features than the group
with TLD, and the group with DLD would be similar to the group with TLD in its use of global and
local features. However, the groups with DLD and ASD (albeit only approaching significance) both
produced more global features than the TLD group. Although these findings were unexpected within
the framework of the weak central coherence hypothesis, these outcomes are consistent with a growing
body of semantic learning literature [8,44,68,92–96] in children with ASD and DLD, indicating that these
children show difficulty acquiring more detail-specific information. These results also align with robust
literature on the whole object assumption in early word-learning [97–99] in which children assume
that object labels refer to an object as a whole rather than individual parts. Furthermore, the results
are consistent with some [32], but not all [31], previous work focusing exclusively on weak central
coherence in the linguistic domain.

Before interpreting these results more fully, four methodological limitations must be considered.
First, because the data were extracted from already completed novel word-learning studies, and
because the initial power analysis indicated that the sample size was sufficient, additional participants
were not recruited for this study. Although the sample size was large enough to reject the null
hypothesis, additional studies beyond this initial exploratory study are needed to replicate and more
thoroughly investigate global and local processing’s influence on language production tasks in children
with ASD and DLD. Second, because of the original decision to match groups on expressive vocabulary,
the groups with ASD and DLD were significantly older than the group with TLD. Although previous
work investigating central coherence in individuals with ASD did not find any effects based on
age [57] and our post-hoc analysis did not uncover any age-related effects, future research should
include a chronological age-matched group with typical language to more directly determine whether
developmental maturity is a contributing factor. Third, nearly half of the children with ASD also
showed signs of a concomitant language disorder based on standardized language assessments.
Perhaps, then, it is unsurprising that no differences were found between the children with ASD and
DLD on this language production task. In one previous study, language ability, rather than autism
status, was found to impact performance in comprehension tasks comparing global–local processing in
children with ASD and DLD [31], suggesting that this may be a contributing factor in this production
task as well. However, this finding has not been consistently replicated in later studies employing
similar language comprehension tasks of global–local processing [32]. In the current exploratory
study, a post-hoc analysis did not reveal any language-related effects based on expressive vocabulary
scores, but clearly additional research is needed to fully assess the relationship between receptive and
expressive language abilities and global–local processing in children with ASD and DLD beyond this
study. Finally, because the current study analyzed already collected data, no measures of non-verbal
global–local processing were implemented during the original word-learning studies for comparison
to the verbal measures explored in this study. Future research that directly assesses both verbal and
nonverbal global–local processing in children with DLD and ASD is necessary to fully determine the
influence of verbal semantic weaknesses on tasks of weak central coherence.
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4.1. The Local Biases in ASD Revisited

We anticipated that the children with ASD would produce an over-abundance of local descriptor
words because of their local perceptual biases; however, they unexpectedly produced a similar amount
of local semantic features and a trend toward more global features than their typical peers. In hindsight,
this should not have been surprising. Traditionally, evidence in support of the weak central coherence
hypothesis has focused on visuo-spatial tasks [49–51,54], whereas evidence in the linguistic domain
has been varied [31,32]. Previous researchers have shown that verbal children with ASD can establish
semantic categories for words at the basic and superordinate levels as well as their typical peers [96],
recognize typical members of familiar word–object categories [92], and can extend word label categories
broadly [95], all tasks that would require them to process word referents at the global level. It is worth
noting that, although children with ASD can overcome local biases to acquire globally descriptive
terms when learning new words, not all children with ASD do [26–29].

One reason for this discrepancy in findings could be due to the conceptualization of central
coherence. As discussed by Riches and colleagues [32], there are two differing emphases within this
hypothesis; either a reduced ability to integrate information or an enhanced ability to focus on local
information (p. 156). Linguistic studies more often focus on the integration side of this hypothesis, such
as employing tasks that, at the local level, may be ambiguous, but when the information is integrated
across the global and local levels, there is a correct interpretation and response. For example, previous
work used homographs [46,47], multi-meaning words [31], or sentence fragments [57] that required
the listener to pull together contextual information to select the more appropriate pronunciation,
word meaning, or phrase. In contrast, studies outside of the linguistic domain focused more heavily
on the enhanced processing of local details, such as through the use of the embedded figures task [49]
or motion perception tasks [51]. In the current study, the children’s story provided both verbal
(linguistic) and visual information, allowing the children to freely rely on whichever learning strategy
they naturally would to acquire the semantic features of new words. Interestingly, in a previous
study using this same data set [63], these same children with ASD and DLD produced more semantic
features that were originally taught in the visual images rather than through the verbal modality
alone or in the visual and verbal modalities in combination. Even though both clinical groups of
children relied heavily on the visual modality, which would align more closely with the enhanced local
processing observed on visual-perception tasks in children with ASD, these same children instead
produced more global than local semantic features, which does not provide support for the weak
central coherence hypothesis.

Additional methodological differences between the current study and previous weak central
coherence investigations may further explain the difference in outcomes. First, the use of child-friendly
cartoons, rather than the more visually complex oil paintings used by Fitch and colleagues [18],
may have facilitated global–local processing in the children with ASD. Also, the painting descriptions
were collected under an increased cognitive load (finger tapping). These differences could explain
how the children with ASD in the current study were able to describe the novel words in terms that
demonstrated an ability to integrate the local details of the target referent into a whole.

Another key difference could be within the degree of autism symptom severity. Fitch and
colleagues [18] found that the current symptoms of their participants with ASD did not relate to global
and local focus, but the relative severity of autism symptoms over the lifespan did. Others have
found similar symptom severity associations with weaker central coherence on non-linguistic tasks
in individuals with ASD [50]. Also, in minimally verbal children with ASD, a lack of a shape bias
could also reflect support for weaker central coherence in children with more severe autism-related
symptoms. Perhaps the children in the current study, who were all verbal and had nonverbal IQs in
the typical range, did not display as severe symptoms and therefore did not present a local bias.

Also, exposure time is a likely factor. Others have posited that individuals with ASD show global
perceptual deficits due to differences in visual processing speed and require longer amounts of time to
recognize objects as a whole. With additional time to analyze images, individuals with ASD accurately
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integrate local signals into a global whole [50,51]. In the current study, the word-referent pairs were
presented 21 times over the course of three different days roughly a week apart—possibly providing
ample time for the children with ASD to process the referents at the global level.

However, an ability to overcome local biases fails to capture why the children with ASD produced
more global than local features. Previously, McGregor and Bean [95] sought to determine whether local
perceptual biases would lead children with ASD to extend object labels too narrowly during word
extension tasks. Instead, the children with ASD who also had concomitant semantic and syntactic
language difficulties had established broader word categories when a narrower, more specific category
boundary would have been more appropriate. Because nearly half of the children with ASD in the
current study showed signs of language weaknesses, perhaps they too acquired more broad labels for
the novel words. As Norbury posited in 2005, language ability, rather than autism status, may be a
better indicator of one’s ability to synthesize semantically relevant, higher order information.

4.2. An Abundance of Global Features in Children with DLD Likely Reflects Semantic Deficits

Surprisingly, the children with DLD produced significantly more global semantic features than
the group with TLD in their novel word definitions. These global features only captured the novel
objects at the most basic level of detail. As an example, one participant with DLD provided the
following definition for the “tool” referent (with coded features in italics): “Bucket 1 (global). Blue 2

(not applicable), shiny 3 (not applicable). Blue. It’s a tool 4 (global)”. In comparison, a participant with
TLD responded: “Pubtum means like it looks like a bucket 1 (global) and it has gears 2 (local) in it,
and like all these wires 3 (local) and it had a spinny thing in the middle 4 (local).” Both participants
provided four semantic features, but the participant with TLD provided features with a more specific
level of detail, giving the semantic representation more depth, whereas the participant with DLD only
gave semantic features that described the referent at a more global level.

This reliance on global terms (indicative of knowledge of breadth) over local details (indicative
of knowledge of depth) in children with DLD may be that they are compensating for their sparse,
less in-depth, semantic representations [68]. This interpretation was illustrated in McGregor and
Appel’s [94] study, in which a child with DLD produced fewer detailed, local features and instead
substituted for a semantically related word at the same, whole-object hierarchical level (e.g., describing
a helmet as a “hat”). Even when defining commonly used nouns, children with DLD define these
concepts without much depth [93]. McGregor and her colleagues proposed that these shallower
semantic representations in children with language impairments could be because they possess fewer
words in their vocabularies compared to their typical peers [68,95]. With fewer words in their mental
lexicons, the number of mappings between newly acquired words and words already established
would be limited. If children with DLD possess fewer local, detail-level terms within their lexicon, they
will continue to be limited in their ability to acquire and integrate the local features of newly learned
words. These weaker, less robust semantic representations may also explain why children with DLD
show difficulties extracting relevant information from broader linguistic contexts [31].

It is possible that children with DLD do not acquire these more detailed, in-depth semantic
representations because of a global, rather than local, processing bias. However, children with DLD
have not been shown to prioritize processing global over local information in levels of processing
tasks previously [30]. Furthermore, children with DLD, much like those with ASD, show a weaker
shape bias during novel object naming tasks than their typical peers [33], making this explanation of a
preference for global, over local, processing unlikely.

4.3. The Use of Global Features during Word Definition Tasks Changes Developmentally

Alternatively, the children with ASD and DLD, due to their older ages, may be providing a more
developmentally advanced definitional form than their younger peers with TLD. The use of global
terms demonstrates an ability to consolidate multiple semantic features representing the target referent
and therefore is arguably a more mature form to use during a definition task. In contrast, using
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multiple local details to describe one referent is more immature developmentally [91]. Skwarchuk and
Anglin [91] state that superordinates indicate a mature definitional form that improves as children
grow older. Because of the methodological decision for matching based on expressive vocabulary,
the children with ASD and DLD in the current study were significantly older than the group with
TLD, which may be why they included more global descriptor terms; it was developmentally more
appropriate. Furthermore, Skwarchuk and Anglin [91] found that nouns elicited more superordinate
terms in the children’s definitions than verbs or adjectives. The target referents in the current study were
all nouns, which also supports the use of superordinate terms. Rather than reflect a linguistic weakness,
the use of global features to describe a noun on a definition task may have been more developmentally
appropriate for the older children with ASD and DLD. However, the follow-up ANCOVA exploring a
potential interaction between age and processing level of the coded semantic features in the current
study was not found to be significant, which makes this developmental explanation for the over-use of
global terms in the children with ASD and DLD less likely. However, to more directly address this
possibility, future research should include a chronological-age matched sample of participants with
typical language.

4.4. Clinical Implications

This study contributes to a growing body of literature exploring the qualitative differences in
the vocabulary knowledge of children with language impairments. Consistent with the findings of
a massive undertaking by McGregor, Oleson, Bahnsen, and Duff [68] analyzing 25,681 definitions
produced by school-aged children, the current results found that the children in both of our clinical
groups (ASD and DLD) showed signs of limited depth of vocabulary knowledge, as shown by an
overuse of global, rather than detailed terms, when defining new words. Further, based on the findings
of the study by McGregor and colleagues [68], the older ages of the participants in our study, and work
including young adults with specific learning disabilities [100], these semantic deficits persist over
time. Even though clinicians often focus on pragmatic language skills in children with ASD and
morphosyntactic skills in children with DLD, semantic deficits must also be addressed.

5. Conclusions

This study explored whether local processing biases in a word definition task in children with ASD
could differentiate them from children with DLD and TLD. When acquiring local and global information,
the children with ASD and DLD produced more global semantic features in their definitions compared
to children with TLD. This finding does not support the idea that a local processing bias prevents
children with ASD from successfully acquiring global semantic information as they learn new words.
Because the children with DLD were not expected to show differences from their typical peers in
global–local processing, it is unclear whether these global semantic feature production differences are
due to global–local processing challenges or simply reflect weaker semantic (depth of word knowledge)
skills. Future work is needed to investigate the relative contributions of global–local processing and
semantic language skills in the formation of semantic representations during tasks of word-learning in
children with ASD and DLD.
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