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AN ANALOGUE OF CONTINUED FRACTIONS
IN NUMBER THEORY FOR NEVANLINNA THEORY

ZHUAN YE

ABSTRACT. We show an analogue of continued fractions in approximation to
irrational numbers by rationals for Nevanlinna theory. The analogue is a se-
quence of points in the complex plane which approaches a given finite set of
points and at a given rate in the sense of Nevanlinna theory.

0. INTRODUCTION

Since P. Vojta [17] created a dictionary between Nevanlinna theory and Dio-
phantine approximation theory, researchers (e.g. [7], [15], [20], [4] and [22]) from
both fields have started to look for more analogues between these two theories. It is
known that a famous theorem of Roth in number theory is analogous to a weak form
of the second main theorem in Nevanlinna theory, and the Artin-Whaples product
formula in number theory can be viewed as an analogue of the first main theorem
in Nevanlinna theory. Theoretically speaking, we should be able to find an ana-
logue of any theorem related to the Roth theorem in Diophantine approximation for
Nevanlinna theory, and vice versa. An up-to-date account of these matters appears
in [2], [I8] and [14]. The author [23] has found an analogue of Khinchin’s theorem
for Nevanlinna theory, which has given an answer to one of S. Lang’s questions in
[9). S. Lang also suggested (in a personal conversation) finding an analogue of the
continued fractions for Nevanlinna theory. This is an interesting question that has
been around for a while. In this paper, we find an analogue of continued fractions
in approximation to irrational numbers by rationals for Nevanlinna theory. The
analogue is a sequence of points in the complex plane which approaches a given
finite set of points and at a given rate in the sense of Nevanlinna theory.

1. NOTATION AND PRELIMINARIES

For the convenience of the general readers, we briefly give some definitions and
notation in Nevanlinna theory and continued fractions. Standard references are [3]
and [12] for Nevanlinna theory, and [5] and [8] for continued fractions.

Let f be a meromorphic function on the whole plane and D, = {|z] < r}.
Denote the number of poles of f in D, by n(f, oo, r), and define n(f, a, r) =
n(1/(f —a), oo, r) if a € C. We also let

N(f, a, r)_/or n(f,a, lf)zn(f’a7 0)

dt +n(f,a, 0)logr.
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We usually call N(f, a, r) a counting function and simply write N(f, oo, r) as
N(f, r). This integrated function N(f, a, r) occurs naturally in the main theorems
of Nevanlinna theory. It measures the number of a-values in D,..

The proximity function in Nevanlinna theory is defined by

2
mif, 1) =5 [ logt (e b,
2m /o
where log™ z = max{0, logz}, > 0; and m(f, a, r) = m(1/(f —a), r) for a € C.
This function measures how close f(z) is to the value a in the sense of the average
mean-value on |z| = 7.
The characteristic function of f in Nevanlinna theory is

T(f7 a’? T) :N(f7 a7 T‘)—’_m(f? a’? T‘)'

However, by the first main theorem [3], we know that T'(f, a, r) is independent of
a up to a bounded constant, i.e.

T(f, oo, ) =T(f, a, r)+ O(1).

In the sequel, we always write T'(f, r) = T(f, oo, 7).
Let a1, ag, -+, ag in CU{oo} be ¢ (1 < ¢ < o0) distinct points. We define the
error term of f with respect to {a,} as

S(f, {an}l, ) = (q=2)T(f, v) = > _N(f. an, 7) + Niam(f, ),
j=1
where Ngam(f, r) = N(f’, 0, ) +2N(f, oo, ) — N(f’, oo, r). By the first main
theorem, the error term can be written as

q
(1) S {and], v) =D m(f,an,7) + Nram(f, 7) = 2T(f, ) + O(1).

j=1
According to Vojta’s dictionary, the analogue of Zg.:l m(f,an,r) + Nram(f, T)
for Diophantine approximation theory is o — p/q, where « is an irrational num-
ber and p/q is a rational number. Therefore, broadly speaking, the error term
S(f, {an}{, r) measures how close f(re®) is to the points {a;} in the average
mean-value on |z| = r with a consideration of its ramification term.

In short, we say S(f, {a,}{, r) measures the closeness of f to {a,}{ in the sense
of Nevanlinna theory. The coefficient 2 in (), as P. Vojta and C. F. Osgood pointed
out in [I7] and [13], is the same as the power 2 in Roth’s theorem. In general, the
bigger S(f, {a,}!, r) is, the better the approximation of f(re'?) to the points {a,}
is in the sense of Nevanlinna theory.

Let v be a positive, increasing and continuous function with [ dt/(tv(t)) < oc.
It is known (e.g. [1] and [2]) that, for any meromorphic function f and any finite
set of points {a;}{ in the extended complex plane,

(2) S(f; {az}i, r) <log (T(f, r)u(T(f, 1)) +0O(1)

holds for all large r outside a set of finite Lebesgue measure. This is the second
main theorem in Nevanlinna theory with emphasis on the error term. Amazingly,
S. Lang [6] conjectured the formation of the above inequality, which is a better
inequality than the analogue of a well-known Roth theorem in number theory for
Nevanlinna theory. In fact, the analogue of the above inequality for number theory
is still an open question, which was raised by S. Lang in the 1960’s.
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An expression of the form

ao +

a; + ———
a2+...

is called a continued fraction. In general, the letters ag, a1, -+ could be any in-
dependent variables. However, for the purposes of our paper, we always assume
ai,as, -+ to be positive integers and ag to be an arbitrary real number. For sim-
plicity, we write the above infinite continued fraction in the form

[ao; a1, az, - - ;
and the finite continued fraction in the form
[ao; a1, az, -, an].

For any real number «, we denote by ag the largest integer not exceeding «g. If
« is not an integer, then there is a real number r1 > 1 such that a = ag + 1/7;.
Clearly, a = [ag; r1]. If 71 is not an integer, we denote by a; the largest integer not
exceeding r1 and define the number ro > 1 by the equation 1 = a; + 1/r3. Note
that a = [ag;a1,72]. The procedure can be continued as long as r, > 1 is not an
integer. This method also gives us an algorithm for computing a,,.

If « is rational, the above process will stop after a finite number of steps. There-
fore, there corresponds a unique finite continued fraction such that

lao; a1,az,- -+ ,an] = .

Recall we always assume a; is a positive integer when j > 1 and the last element
of every finite continued fraction must be different from unity.
If « is irrational, then there corresponds a unique infinite continued fraction

[ap; a1, az, - -] with value equal to «; i.e. set
Pn .
- = [a07a1;a25 e aan]7
an

where the fraction p, /¢, is irreducible and ¢, > 0; then p, /g, — « as n — oo.
The degree of accuracy of this approximation is, for all n > 0,

1 1
3) S ST Y
4n(dn + qn+1) In' " Gndns1
The inequality also implies that |o — p,/gn| < 1/¢2. The power 2 in this continued

fraction approximation also corresponds to the coefficient 2 in (), which is called
by Khinchin the order of the approximation.

2. STATEMENT OF RESULTS

The theory of continued fractions tells us that, for any irrational number c«,
there is a sequence of rational numbers p,, /¢, such that lim, o pn/gn = . There
are two advantages to the use of continued fractions in number theory. One is the
control of its accuracy by using the inequalities (B)), and the other is the existence
of its algorithm, by which we can find a;’s, and then rational numbers p,, /g, as we
see from the previous section.

On the other hand, Nevanlinna theory tells us that the error term of the second
main theorem S(f,{a;},r) in Nevanlinna theory reveals the degree of approxima-
tion of a meromorphic function f to the finite set {a;} in the sense of the average
mean-value on |z| = 7.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4832 ZHUAN YE

To help the reader understand the analogue of continued fractions for Nevan-
linna theory, which is presented in the following Theorem, we would like to give a
geometric interpretation of the analogue.

For any finite set of points {a,}7 in the extended complex plane, there is an infi-
nite set of points {Zjﬁp};ii)fp:o in the complex plane, which is placed on a sequence
of circles {[z| = 7;}52, in a very special way so that the accuracy of approximation
in the sense of Nevanlinna theory can be controlled at a given rate ¢(r). The al-
gorithm for finding the locations of those points {ij};ifszm which only depends
on the function ¢(r), can be seen in the proof of the Theorem. To verify the ap-
proximation of points {zjm}?i’f;ZO to points {a,}? at a given rate in the sense of
Nevanlinna theory, we need a meromorphic function f such that S(f,{a,},r) is
equal to the given rate.

To pursue the best possible theorem on the analogue of continued fractions for

Nevanlinna theory, we have the following:

Theorem. Let a1, ag, ---, aq in CU{oo} be ¢ (1 < ¢ < o0) distinct points. Let
p and ¢ be positive increasing differentiable functions with floo dt/p(t) = oo and

floo dt/tp(t) = oo, and define (1) = ro(r),
"odt Todt
P(r) = /1 o and ¥(r)= /1 o)

Let a1, -+ ,aq (1 < g < 00) be any distinct points in the extended plane. If
. p'(r)

4 lim su =A< 0,

) r—>oop Y*(r)

where ¥*(r) = inf;>, ' (¢), and there is a constant C > 1 such that ¢(3r) < Co(r)
for r > 1, then, for any T > 7 > A, there exists a meromorphic function F such
that

(i)

LU (P() +0(1) < T(E,r) < U7 (7 P(r)) +O(1)

holds for all sufficiently large v, where =1 is the inverse of ¥; and
(i)

T(F,r)¢(T(F,r))

p(r)
holds for r outside a set of finite Lebesque measure.

S(F,{a;},r) =log +0(1)

Remark 1. In a conversation with S. Lang in the 90’s, he told me that he had an
idea about an analogue of continued fractions for function theory in the 60’s. It
will be great if this is the same as he had at that time.

Remark 2. The Theorem complements some results in [11], [4], [, [19] and [21].
The Theorem also gives a solution to the inverse problem of the error term.

Remark 3. The function p is introduced in order to adjust the growth of the func-
tion f and the growth of the error term S(f,{a;},7). Moreover, the condition
Jdr/i(r) = oo is necessary if p(r) = 1, as we can see from (2.

Remark 4. Statement (i) of the Theorem is about the control of the growth of the
function f. Statement (ii) is about the accuracy of f’s approximation to points
{an}! on |z| = r in the sense of Nevanlinna theory, which is a counterpart of the
inequalities (3.
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Remark 5. The proof of the Theorem also gives an algorithm for finding the function
F which is a product of {z — zj7p};-i’ffp:0. Broadly speaking, the partial product is
a counterpart of p,, /g, in continued fractions.

Remark 6. If one of the a,’s, say a1, is infinity, then the function F in the Theorem
is an entire function. Moreover, the function F is independent of {a, }Z_,, i.e., when
r is outside a set of finite Lebesgue measure,

T(F,r)o(T(F,r))
p(r)
holds for any distinct complex numbers as, - - ,a4 in C.

S(Fa {OO} U {an}ZL:QvT) = log + 0(1)

Remark 7. If one fixes the approximation data p(r) and ¢(r), all functions pro-
duced in the Theorem are related to each other by linear fractional transformations
depending on {a;}. So, the sharpness of the estimate is from the ramification term
NRam which has no known counterpart in number theory. It would be interesting
if one can construct a function having Ngam(r) = 0 as well as the estimates in our
Theorem.

3. PROOF OF THE THEOREM
Proof of the Theorem. Let 7 > 7 > A. Define
Q(r) = U HrP(r)) and w(r) =rQ'(r).
Equation (#) implies that, for any § > 0,
v(r)
A+46’

for all sufficiently large r. Let 1 < a < 7/A; noting the fact that U=1(sr) >
(U=L(r))* (s > 1 and r > 0), we have, for sufficiently large r,

_ U(r)
> 1 (=) > pT/(A+8) 5 o
(5) Qr) > T <A+5>_r >re,

where ¢ is a small positive number such that o < 7/(A 4 0) < 7/A. Equation (@)
and the fact ¢ (r) — oo show that

o) 1
p(r) — A+94
for all sufficiently large r. Consequently, by a computation of '(r) and (),
Q «
PR L) B 20 U (S S
p(r) p(r) p(r) — A+9
for sufficiently large . Moreover, we have
2 /
/ Trp(Q(r) (plr) p(r)
=———2 == Q - .
o) = S (B 4w - 2
It follows from (B) and (@) that
. P(r) : pr) _ . p'(r)
limsup ———— < limsu < limsu
ot PUN) T e W) T s (1)
Thus, w'(r) > 0 for sufficiently large r, since 7 > A. Therefore w is strictly
increasing when r is sufficiently large.

P(r) =
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Let {r;} be the sequence defined by
w(r;) =271 for j=1,2,3,---.

There exists an integer jo such that the sequence {r; }‘;;’ is uniquely determined,
strictly increasing and unbounded, since w(r) increases to infinity. Without loss of
generality, we assume that rj, > 1. Furthermore, inequality (B)) gives, for all large

J» say, J 2 jo,
(7) ry < 2UFD/a ang 21(=1/0) > 443,
Define

0o P 27
(8) =11 <1— <—> )

e Ty

J=Jo
It turns out that

1 ; j
9) 3@(r) =20 <n(£,0,r) Sw(r) = 2%, r =7y
For j > jg, define
1 1
5 =TT Sj ="t and B = | [s;, 5]

J=Jjo
Obviously, E is of finite Lebesgue measure. For a point z such that |z| = r € E

and |z| > ro = rj,, let k be the unique integer such that S < |z| < sg+1. Then we
obtain from () that

» z » 1 27—1
(10) 2log|Z| > 27 log(1 + —) > 2— > j, jo<j<h,
Tj 17Ty 17Ty
and
(11) 2jlog|i|<2ilog(1—i)<__2j<_j ji>k
T T g2ry’ = gy T 7 '

It follows from (I0) and () that f is entire and that, for the above z and k,

k et .
log|[£(2)] = 3 tog(I = = 1)+ 37 log(1 |7

j=jo J j=k+1
k 5 ) ) 5 )
— J J
> Y log27 =)= Y =P
— T £ T
J=jo J=k+1
k o0
> —(k—jo+1)log2+ > j— > e’
J=jo  j=k+1

= B

As |z| = r goes to infinity, k£ goes to infinity and, thus, Bj tends to infinity.
Therefore, f(z) — oo when z — oo and |z| = r € E; consequently,

m(f,0,7) =0,
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for sufficiently large » ¢ E. Thus, we have from (@) and the fact f(0) = 1 that, for
sufficiently large r € F,

T(f,r) = T(f,0,r)+1log |f(0)] = N(f,0,) = /rwdtg /r@dt

(12) = / Q' (t)dt < Q(r) = V(7 P(r)).

Let A = (7//7)"/? > 1. Since F has a finite linear measure, for any sufficiently
large r (r may be in the set E), there is an 7’ such that » <+’ < Ar and v’ ¢ E.
So, by (I2) and the fact that P(Ar) < AP(r) + P(X) for r > 1,

T(f,r) < T(f.r') SUHTP(")) < Y (TP(Ar))
(13) < UTHT(AP(r) + P(N)) < U7 P(r)).
On the other hand, using (@), for all r > ry without exception, we have
(14) T(f,r) 2 N(£,0,7) 2 3(O) = Qrp)) — 20 logr > 207} (P(r) = 20(r).
For sufficiently large r ¢ E, by ([I2)), we obtain
P(Q(r)) = Qr)o(Q2(r)) = T(f,r)o(T(f,7));
and by (I4), noting ¢(3r) < Cé(r), we get

Y(Q(r)) < 3T(f,r)¢BT(f, 7)) < 3CT(f,r)p(T(f,r)).
It follows that, for sufficiently large r ¢ E,
W) YO TG 1)
;o sy ey oW

For a point z such that |z| =r ¢ FE and |z| > ro,

(15) log

J

27( )2
oy ey e s 2

J=Jjo J=Jo j= k+1
where k is defined as above. By (I0) and (1)), we obtain

[e%e] j ) 27 [e'e] ] ]
Z 2 (Z/;”Jj) : < Z 9i+1,—j = o(1),
j=k+1 (2/r)* = j=k+1
- 2/ ity o
— < 2 1 =0(1).
2 GmEoT| < LT mom
J=Jo J=Jo
Hence, noting that Z?:jo 27 = n(f,0,r) for r > rg and r ¢ E, we have
/
e | = M0 14 oy,
T

for r ¢ E. Consequently, (@) implies that

27 ’
L rei®)

log 7 df = log w +0(1) = log @ +0(1)

2 Jy
holds for r ¢ E.

Now we consider two cases.
Case 1: If 0o € {an}?, without loss of generality, we assume that a; = oo.
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Let F(z) = f(z), where f is defined as in (B)). It follows from (I3]) and (I4]) that
(i) is proved. Let ||a,b|| be the spherical distance, and

|F/|2 q
VFHHF%H?* (1 +|FP) HHF%IIQ’

where vp = (F#)2 = (|F|/(1 + |F|?))2. Tt follows that

. F’ . ! .
log Tp(re') = 210g|F(r619)| +0(1) = 210g|7(r619)| +0(1)

as r — oo outside E, since F(z) = f(z) — o0 as z — oo and |z| = r € E. Using
the Green-Jensen formula [2, Theorem 1.10.3 (pg. 34)] and (3], we get

27
S(F,{a;},7) = e log T'r(re'?) df 4+ O(1)
2w /
= 5 ; log J;( )d0+0(1):10g@+0(1)

T(F,r)¢(T(F,r))
p(r)

Case 2: If 0o ¢ {a,}], we take F(z) = a1 + 1/ f(2), where again f is defined as
in [B). By the first main theorem, T'(F,r) = T'(f,r) + O(1). So (i) is proved in this
case by using (13) and (14). Moreover,

q 2 q
1 PN 1+ a2
I'r = I L |
r=w]l X2E (Ifl (1 +[FP) HHF%IIQ

Noting, for sufficiently large r — oo outside E, that f(z) — oo, we have

= log +0(1).

!/

log D (re'?) = 2log |7(7"ei9)| +0(1).

By following the steps used in Case 1, we obtain the Theorem. O

4. EXAMPLES

As S. Lang and H. Trotter in [10] and [8] have given some computational infor-
mation for the behavior of certain algebraic numbers with respect to approximation
by their continued fractions, we would like to give two examples to illustrate the
accuracy and the algorithm of our approximation in the sense of Nevanlinna theory.
Example 1 shows a “good” algorithm and “bad” accuracy, while Example 2 shows
a “bad” algorithm and “good” accuracy. The reader can find other examples about
the error terms of classical functions in [16] and [2].

Example 1. Let p(r) = r and ¢(r) =1, and let a1 = oo and ag, as, - -, aq be any
distinct complex numbers in C. Thus we have

P(r)=Inr, ¥(r)=Inr, and A=1L1
By taking 7 =2 > A, we obtain from the proof of our Theorem that
Qr)y=7r? and w(r)=2r%

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



AN ANALOGUE OF CONTINUED FRACTIONS 4837

Thus the sequence of circles, on which the sequence of points {z;,} are placed, is
{|2| = 29/2 }521- Recall the 7; is defined by the equation w(r;) = 27*'. In order to
compare this example with the next example, we list the first twenty r;’s:

1 = 1.414213562 79 = 2.000000000 73 = 2.828427125 r4 = 4.000000000
r5 = 5.656854249  r¢ = 8.000000000 77 = 11.31370850 rg = 16.00000000
r9 = 22.62741700 710 = 32.00000000 717 = 45.25483400 712 = 64.00000000
r13 = 90.50966799 1714 = 128.0000000 715 = 181.0193360 716 = 256.0000000
r17 = 362.0386720 718 = 512.0000000 719 = 724.0773439 120 = 1024.000000

Furthermore, for any fixed positive integer j,
ijp:2j/2w§‘)a p:Oa172a"' a2j_]—7

where w; = ¢i(27/2%) ig 3 29_th root of unity. The entire function determined by the
00,27 -1 .
j:

sequence {zjp} .27 o is

F(z) = ﬁ (1-G»7)-

which has the property, for all large r outside a set of finite Lebesgue measure,
S(F,{an}l,r) =logT(F,r) + O(1).

Theoretically speaking, the smaller p and bigger ¢ are, the better the approxi-
mation is since the error term S(f, {a,}%,7) gets bigger.

Example 2. Let p(r) =1 and ¢(r) = log(107), and let a; = co and ag, a3, - ,aq
be any distinct complex numbers in C. Thus we have

P(ry=r—-1, ¥(r)=loglog(10r), and A=0.
By taking 7 =1 > A, we obtain from the proof of our Theorem that
Qr)=10"""1 and w(r) = (In10)%r10" 110" 1,

As we know, the sequence of circles {|z| = r;} is determined by the equation
w(r;) = 271 We could compute these r;’s by using computers. Here we list the
first twenty r;’s:

r1 = .966545620 ro = 1.04635090 r3 =1.11823735 r4 = 1.18313965
rs = 1.24196365 rg = 1.29552487 ry = 1.34453111 rg = 1.38958558
rg = 1.43119816  r19 = 1.46979874 1y = 1.50575017 112 = 1.53935954
ri3 = 1.57088784 114 = 1.60055791 115 = 1.62856093 116 = 1.65506180
ri7 = 1.68020341 713 = 1.70411022 119 = 1.72689115 199 = 1.74864191

Again, the entire function F' is defined as in (B)) and the zeros of the function F are

zjp = rjw5, where w; is defined as in Example 1, and the function F satisfies, for

all large r outside a set of finite Lebesgue measure,

S(F,{an}{,r) =logT(F,r)loglog(10T(F,r)) + O(1).
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