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AN ANALOGUE OF CONTINUED FRACTIONS
IN NUMBER THEORY FOR NEVANLINNA THEORY

ZHUAN YE

Abstract. We show an analogue of continued fractions in approximation to
irrational numbers by rationals for Nevanlinna theory. The analogue is a se-
quence of points in the complex plane which approaches a given finite set of
points and at a given rate in the sense of Nevanlinna theory.

0. Introduction

Since P. Vojta [17] created a dictionary between Nevanlinna theory and Dio-
phantine approximation theory, researchers (e.g. [7], [15], [20], [4] and [22]) from
both fields have started to look for more analogues between these two theories. It is
known that a famous theorem of Roth in number theory is analogous to a weak form
of the second main theorem in Nevanlinna theory, and the Artin-Whaples product
formula in number theory can be viewed as an analogue of the first main theorem
in Nevanlinna theory. Theoretically speaking, we should be able to find an ana-
logue of any theorem related to the Roth theorem in Diophantine approximation for
Nevanlinna theory, and vice versa. An up-to-date account of these matters appears
in [2], [18] and [14]. The author [23] has found an analogue of Khinchin’s theorem
for Nevanlinna theory, which has given an answer to one of S. Lang’s questions in
[9]. S. Lang also suggested (in a personal conversation) finding an analogue of the
continued fractions for Nevanlinna theory. This is an interesting question that has
been around for a while. In this paper, we find an analogue of continued fractions
in approximation to irrational numbers by rationals for Nevanlinna theory. The
analogue is a sequence of points in the complex plane which approaches a given
finite set of points and at a given rate in the sense of Nevanlinna theory.

1. Notation and preliminaries

For the convenience of the general readers, we briefly give some definitions and
notation in Nevanlinna theory and continued fractions. Standard references are [3]
and [12] for Nevanlinna theory, and [5] and [8] for continued fractions.

Let f be a meromorphic function on the whole plane and Dr = {|z| < r}.
Denote the number of poles of f in Dr by n(f, ∞, r), and define n(f, a, r) =
n(1/(f − a), ∞, r) if a ∈ C. We also let

N(f, a, r) =
∫ r

0

n(f, a, t)− n(f, a, 0)
t

dt+ n(f, a, 0) log r.
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We usually call N(f, a, r) a counting function and simply write N(f, ∞, r) as
N(f, r). This integrated function N(f, a, r) occurs naturally in the main theorems
of Nevanlinna theory. It measures the number of a-values in Dr.

The proximity function in Nevanlinna theory is defined by

m(f, r) =
1

2π

∫ 2π

0

log+ |f(reiθ)| dθ,

where log+ x = max{0, log x}, x ≥ 0; and m(f, a, r) = m(1/(f −a), r) for a ∈ C.
This function measures how close f(z) is to the value a in the sense of the average
mean-value on |z| = r.

The characteristic function of f in Nevanlinna theory is

T (f, a, r) = N(f, a, r) +m(f, a, r).

However, by the first main theorem [3], we know that T (f, a, r) is independent of
a up to a bounded constant, i.e.

T (f, ∞, r) = T (f, a, r) +O(1).

In the sequel, we always write T (f, r) = T (f, ∞, r).
Let a1, a2, · · · , aq in C∪ {∞} be q (1 ≤ q <∞) distinct points. We define the

error term of f with respect to {an} as

S(f, {an}q1, r) = (q − 2)T (f, r) −
q∑
j=1

N(f, an, r) +NRam(f, r),

where NRam(f, r) = N(f ′, 0, r) + 2N(f, ∞, r)−N(f ′, ∞, r). By the first main
theorem, the error term can be written as

(1) S(f, {an}q1, r) =
q∑
j=1

m(f, an, r) +NRam(f, r)− 2T (f, r) +O(1).

According to Vojta’s dictionary, the analogue of
∑q
j=1 m(f, an, r) + NRam(f, r)

for Diophantine approximation theory is α − p/q, where α is an irrational num-
ber and p/q is a rational number. Therefore, broadly speaking, the error term
S(f, {an}q1, r) measures how close f(reiθ) is to the points {aj} in the average
mean-value on |z| = r with a consideration of its ramification term.

In short, we say S(f, {an}q1, r) measures the closeness of f to {an}q1 in the sense
of Nevanlinna theory. The coefficient 2 in (1), as P. Vojta and C. F. Osgood pointed
out in [17] and [13], is the same as the power 2 in Roth’s theorem. In general, the
bigger S(f, {an}q1, r) is, the better the approximation of f(reiθ) to the points {an}
is in the sense of Nevanlinna theory.

Let υ be a positive, increasing and continuous function with
∫∞

1 dt/(tυ(t)) <∞.
It is known (e.g. [1] and [2]) that, for any meromorphic function f and any finite
set of points {aj}q1 in the extended complex plane,

(2) S(f, {aj}q1, r) ≤ log (T (f, r)υ(T (f, r))) +O(1)

holds for all large r outside a set of finite Lebesgue measure. This is the second
main theorem in Nevanlinna theory with emphasis on the error term. Amazingly,
S. Lang [6] conjectured the formation of the above inequality, which is a better
inequality than the analogue of a well-known Roth theorem in number theory for
Nevanlinna theory. In fact, the analogue of the above inequality for number theory
is still an open question, which was raised by S. Lang in the 1960’s.
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An expression of the form

a0 +
1

a1 +
1

a2 + · · ·
is called a continued fraction. In general, the letters a0, a1, · · · could be any in-
dependent variables. However, for the purposes of our paper, we always assume
a1, a2, · · · to be positive integers and a0 to be an arbitrary real number. For sim-
plicity, we write the above infinite continued fraction in the form

[a0; a1, a2, · · · ];
and the finite continued fraction in the form

[a0; a1, a2, · · · , an].

For any real number α, we denote by a0 the largest integer not exceeding α0. If
α is not an integer, then there is a real number r1 > 1 such that α = a0 + 1/r1.
Clearly, α = [a0; r1]. If r1 is not an integer, we denote by a1 the largest integer not
exceeding r1 and define the number r2 > 1 by the equation r1 = a1 + 1/r2. Note
that α = [a0; a1, r2]. The procedure can be continued as long as rn > 1 is not an
integer. This method also gives us an algorithm for computing an.

If α is rational, the above process will stop after a finite number of steps. There-
fore, there corresponds a unique finite continued fraction such that

[a0; a1, a2, · · · , an] = α.

Recall we always assume aj is a positive integer when j ≥ 1 and the last element
of every finite continued fraction must be different from unity.

If α is irrational, then there corresponds a unique infinite continued fraction
[a0; a1, a2, · · · ] with value equal to α; i.e. set

pn
qn

= [a0; a1, a2, · · · , an],

where the fraction pn/qn is irreducible and qn > 0; then pn/qn → α as n → ∞.
The degree of accuracy of this approximation is, for all n ≥ 0,

(3)
1

qn(qn + qn+1)
< |α− pn

qn
| ≤ 1

qnqn+1
.

The inequality also implies that |α− pn/qn| ≤ 1/q2
n. The power 2 in this continued

fraction approximation also corresponds to the coefficient 2 in (1), which is called
by Khinchin the order of the approximation.

2. Statement of results

The theory of continued fractions tells us that, for any irrational number α,
there is a sequence of rational numbers pn/qn such that limn→∞ pn/qn = α. There
are two advantages to the use of continued fractions in number theory. One is the
control of its accuracy by using the inequalities (3), and the other is the existence
of its algorithm, by which we can find aj ’s, and then rational numbers pn/qn as we
see from the previous section.

On the other hand, Nevanlinna theory tells us that the error term of the second
main theorem S(f, {aj}, r) in Nevanlinna theory reveals the degree of approxima-
tion of a meromorphic function f to the finite set {aj} in the sense of the average
mean-value on |z| = r.
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To help the reader understand the analogue of continued fractions for Nevan-
linna theory, which is presented in the following Theorem, we would like to give a
geometric interpretation of the analogue.

For any finite set of points {an}q1 in the extended complex plane, there is an infi-
nite set of points {zj,p}∞,pjj=1,p=0 in the complex plane, which is placed on a sequence
of circles {|z| = rj}∞j=1 in a very special way so that the accuracy of approximation
in the sense of Nevanlinna theory can be controlled at a given rate φ(r). The al-
gorithm for finding the locations of those points {zj,p}∞,pjj=1,p=0, which only depends
on the function φ(r), can be seen in the proof of the Theorem. To verify the ap-
proximation of points {zj,p}∞,pjj=1,p=0 to points {an}q1 at a given rate in the sense of
Nevanlinna theory, we need a meromorphic function f such that S(f, {an}, r) is
equal to the given rate.

To pursue the best possible theorem on the analogue of continued fractions for
Nevanlinna theory, we have the following:

Theorem. Let a1, a2, · · · , aq in C ∪ {∞} be q (1 ≤ q <∞) distinct points. Let
p and φ be positive increasing differentiable functions with

∫∞
1 dt/p(t) = ∞ and∫∞

1
dt/tφ(t) =∞, and define ψ(r) = rφ(r),

P (r) =
∫ r

1

dt

p(t)
and Ψ(r) =

∫ r

1

dt

tφ(t)
.

Let a1, · · · , aq (1 ≤ q <∞) be any distinct points in the extended plane. If

(4) lim sup
r→∞

p′(r)
ψ∗(r)

= A <∞,

where ψ∗(r) = inft≥r ψ′(t), and there is a constant C > 1 such that φ(3r) ≤ Cφ(r)
for r ≥ 1, then, for any τ ′ > τ > A, there exists a meromorphic function F such
that

(i)
1
3

Ψ−1 (τP (r)) +O(1) ≤ T (F, r) ≤ Ψ−1(τ ′P (r)) +O(1)

holds for all sufficiently large r, where Ψ−1 is the inverse of Ψ; and
(ii)

S(F, {aj}, r) = log
T (F, r)φ(T (F, r))

p(r)
+O(1)

holds for r outside a set of finite Lebesgue measure.

Remark 1. In a conversation with S. Lang in the 90’s, he told me that he had an
idea about an analogue of continued fractions for function theory in the 60’s. It
will be great if this is the same as he had at that time.

Remark 2. The Theorem complements some results in [11], [4], [1], [19] and [21].
The Theorem also gives a solution to the inverse problem of the error term.

Remark 3. The function p is introduced in order to adjust the growth of the func-
tion f and the growth of the error term S(f, {aj}, r). Moreover, the condition∫
dr/ψ(r) =∞ is necessary if p(r) = 1, as we can see from (2).

Remark 4. Statement (i) of the Theorem is about the control of the growth of the
function f . Statement (ii) is about the accuracy of f ’s approximation to points
{an}q1 on |z| = r in the sense of Nevanlinna theory, which is a counterpart of the
inequalities (3).
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Remark 5. The proof of the Theorem also gives an algorithm for finding the function
F which is a product of {z− zj,p}∞,pjj=1,p=0. Broadly speaking, the partial product is
a counterpart of pn/qn in continued fractions.

Remark 6. If one of the an’s, say a1, is infinity, then the function F in the Theorem
is an entire function. Moreover, the function F is independent of {an}qn=2, i.e., when
r is outside a set of finite Lebesgue measure,

S(F, {∞} ∪ {an}qn=2, r) = log
T (F, r)φ(T (F, r))

p(r)
+O(1)

holds for any distinct complex numbers a2, · · · , aq in C.

Remark 7. If one fixes the approximation data p(r) and φ(r), all functions pro-
duced in the Theorem are related to each other by linear fractional transformations
depending on {aj}. So, the sharpness of the estimate is from the ramification term
NRam which has no known counterpart in number theory. It would be interesting
if one can construct a function having NRam(r) = 0 as well as the estimates in our
Theorem.

3. Proof of the Theorem

Proof of the Theorem. Let τ ′ > τ > A. Define

Ω(r) = Ψ−1(τP (r)) and ω(r) = rΩ′(r).

Equation (4) implies that, for any δ > 0,

P (r) ≥ Ψ(r)
A+ δ

,

for all sufficiently large r. Let 1 < α < τ/A; noting the fact that Ψ−1(sr) ≥
(Ψ−1(r))s (s ≥ 1 and r > 0), we have, for sufficiently large r,

(5) Ω(r) ≥ Ψ−1

(
τΨ(r)
A+ δ

)
≥ rτ/(A+δ) ≥ rα,

where δ is a small positive number such that α < τ/(A + δ) < τ/A. Equation (4)
and the fact ψ(r)→∞ show that

ψ(r)
p(r)

≥ 1
A+ δ

,

for all sufficiently large r. Consequently, by a computation of Ω′(r) and (5),

(6) ω(r) = τr
ψ(Ω(r))
p(r)

≥ τrrα φ(rα)
p(r)

≥ τrαψ(r)
p(r)

≥ τ

A+ δ
rα ≥ rα,

for sufficiently large r. Moreover, we have

ω′(r) =
τ2rψ(Ω(r))

p(r)2

(
p(r)
τr

+ ψ′(Ω(r)) − p′(r)
τ

)
.

It follows from (5) and (4) that

lim sup
r→∞

p′(r)
ψ′(Ω(r))

≤ lim sup
r→∞

p′(r)
ψ′(r)

≤ lim sup
r→∞

p′(r)
ψ∗(r)

= A.

Thus, ω′(r) > 0 for sufficiently large r, since τ > A. Therefore ω is strictly
increasing when r is sufficiently large.
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Let {rj} be the sequence defined by

ω(rj) = 2j+1, for j = 1, 2, 3, · · · .

There exists an integer j0 such that the sequence {rj}∞j0 is uniquely determined,
strictly increasing and unbounded, since ω(r) increases to infinity. Without loss of
generality, we assume that rj0 ≥ 1. Furthermore, inequality (6) gives, for all large
j, say, j ≥ j0,

(7) rj ≤ 2(j+1)/α and 2j(1−1/α) ≥ 4j3.

Define

(8) f(z) =
∞∏
j=j0

(
1−

(
z

rj

)2j
)
.

It turns out that

(9)
1
2
ω(r) − 2j0 ≤ n(f, 0, r) ≤ ω(r) − 2j0 , r ≥ rj0 .

For j ≥ j0, define

sj = rj −
1
j2
, Sj = rj +

1
j2
, and E =

⋃
j≥j0

[sj , Sj ].

Obviously, E is of finite Lebesgue measure. For a point z such that |z| = r 6∈ E
and |z| > r0 = rj0 , let k be the unique integer such that Sk < |z| < sk+1. Then we
obtain from (7) that

(10) 2j log | z
rj
| ≥ 2j log(1 +

1
j2rj

) ≥ 2j−1

j2rj
≥ j, j0 ≤ j ≤ k,

and

(11) 2j log | z
rj
| ≤ 2j log(1− 1

j2rj
) ≤ −2j

j2rj
≤ −j, j > k.

It follows from (10) and (11) that f is entire and that, for the above z and k,

log |f(z)| ≥
k∑

j=j0

log(| z
rj
|2j − 1) +

∞∑
j=k+1

log(1− | z
rj
|2j )

≥
k∑

j=j0

log(2−1| z
rj
|2j )−

∞∑
j=k+1

| z
rj
|2j

≥ −(k − j0 + 1) log 2 +
k∑

j=j0

j −
∞∑

j=k+1

e−j

= Bk.

As |z| = r goes to infinity, k goes to infinity and, thus, Bk tends to infinity.
Therefore, f(z)→∞ when z →∞ and |z| = r 6∈ E; consequently,

m(f, 0, r) = 0,
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for sufficiently large r 6∈ E. Thus, we have from (9) and the fact f(0) = 1 that, for
sufficiently large r 6∈ E,

T (f, r) = T (f, 0, r) + log |f(0)| = N(f, 0, r) =
∫ r

r0

n(f, 0, t)
t

dt ≤
∫ r

r0

ω(t)
t
dt

=
∫ r

r0

Ω′(t)dt ≤ Ω(r) = Ψ−1(τP (r)).(12)

Let λ = (τ ′/τ)1/2 > 1. Since E has a finite linear measure, for any sufficiently
large r (r may be in the set E), there is an r′ such that r ≤ r′ ≤ λr and r′ 6∈ E.
So, by (12) and the fact that P (λr) ≤ λP (r) + P (λ) for r > 1,

T (f, r) ≤ T (f, r′) ≤ Ψ−1(τP (r′)) ≤ Ψ−1(τP (λr))
≤ Ψ−1(τ(λP (r) + P (λ))) ≤ Ψ−1(τ ′P (r)).(13)

On the other hand, using (9), for all r ≥ r0 without exception, we have

(14) T (f, r) ≥ N(f, 0, r) ≥ 1
2

(Ω(r) − Ω(r0))− 2j0 log r >
1
3

Ψ−1(τP (r)) =
1
3

Ω(r).

For sufficiently large r 6∈ E, by (12), we obtain

ψ(Ω(r)) = Ω(r)φ(Ω(r)) ≥ T (f, r)φ(T (f, r));

and by (14), noting φ(3r) ≤ Cφ(r), we get

ψ(Ω(r)) ≤ 3T (f, r)φ(3T (f, r)) ≤ 3CT (f, r)φ(T (f, r)).

It follows that, for sufficiently large r 6∈ E,

(15) log
ω(r)
r

= log
τψ(Ω(r))
p(r)

= log
T (f, r)φ(T (f, r))

p(r)
+O(1).

For a point z such that |z| = r 6∈ E and |z| ≥ r0,

z
f ′(z)
f(z)

=
k∑

j=j0

2j +
k∑

j=j0

2j

(z/rj)2j − 1
+

∞∑
j=k+1

2j(z/rj)2j

(z/rj)2j − 1
,

where k is defined as above. By (10) and (11), we obtain∣∣∣∣∣∣
∞∑

j=k+1

2j(z/rj)2j

(z/rj)2j − 1

∣∣∣∣∣∣ ≤
∞∑

j=k+1

2j+1e−j = o(1),

∣∣∣∣∣∣
k∑

j=j0

2j

(z/rj)2j − 1

∣∣∣∣∣∣ ≤
k∑

j=j0

2j+1e−j = O(1).

Hence, noting that
∑k
j=j0

2j = n(f, 0, r) for r ≥ r0 and r 6∈ E, we have∣∣∣∣f ′f (reiθ)
∣∣∣∣ =

n(f, 0, r)
r

(1 + o(1)),

for r 6∈ E. Consequently, (9) implies that

1
2π

∫ 2π

0

log
∣∣∣∣f ′f (reiθ)

∣∣∣∣ dθ = log
n(f, 0, r)

r
+O(1) = log

ω(r)
r

+O(1)

holds for r 6∈ E.
Now we consider two cases.
Case 1: If ∞ ∈ {an}qj , without loss of generality, we assume that a1 =∞.
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Let F (z) = f(z), where f is defined as in (8). It follows from (13) and (14) that
(i) is proved. Let ||a, b|| be the spherical distance, and

ΓF = γF

q∏
j=1

1
‖F, aj‖2

=
|F ′|2

(1 + |F |2)

q∏
j=2

1
‖F, aj‖2

,

where γF = (F#)2 = (|F |/(1 + |F |2))2. It follows that

log ΓF (reiθ) = 2 log |F
′

F
(reiθ)|+O(1) = 2 log |f

′

f
(reiθ)|+O(1)

as r → ∞ outside E, since F (z) = f(z) → ∞ as z → ∞ and |z| = r 6∈ E. Using
the Green-Jensen formula [2, Theorem 1.10.3 (pg. 34)] and (15), we get

S(F, {aj}, r) =
1

4π

∫ 2π

0

log ΓF (reiθ) dθ +O(1)

=
1

2π

∫ 2π

0

log
∣∣∣∣f ′f (reiθ)

∣∣∣∣ dθ +O(1) = log
ω(r)
r

+O(1)

= log
T (F, r)φ(T (F, r))

p(r)
+O(1).

Case 2: If ∞ /∈ {an}qj , we take F (z) = a1 + 1/f(z), where again f is defined as
in (8). By the first main theorem, T (F, r) = T (f, r) +O(1). So (i) is proved in this
case by using (13) and (14). Moreover,

ΓF = γF

q∏
j=1

1
‖F, aj‖2

=
(
|f ′|
|f |

)2 1 + |a1|2
(1 + |F |2)

q∏
j=2

1
‖F, aj‖2

.

Noting, for sufficiently large r →∞ outside E, that f(z)→∞, we have

log ΓF (reiθ) = 2 log |f
′

f
(reiθ)|+O(1).

By following the steps used in Case 1, we obtain the Theorem. �

4. Examples

As S. Lang and H. Trotter in [10] and [8] have given some computational infor-
mation for the behavior of certain algebraic numbers with respect to approximation
by their continued fractions, we would like to give two examples to illustrate the
accuracy and the algorithm of our approximation in the sense of Nevanlinna theory.
Example 1 shows a “good” algorithm and “bad” accuracy, while Example 2 shows
a “bad” algorithm and “good” accuracy. The reader can find other examples about
the error terms of classical functions in [16] and [2].

Example 1. Let p(r) = r and φ(r) = 1, and let a1 =∞ and a2, a3, · · · , aq be any
distinct complex numbers in C. Thus we have

P (r) = ln r, Ψ(r) = ln r, and A = 1.

By taking τ = 2 > A, we obtain from the proof of our Theorem that

Ω(r) = r2 and ω(r) = 2r2.
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Thus the sequence of circles, on which the sequence of points {zj,p} are placed, is
{|z| = 2j/2}∞j=1. Recall the rj is defined by the equation ω(rj) = 2j+1. In order to
compare this example with the next example, we list the first twenty rj ’s:

r1 = 1.414213562 r2 = 2.000000000 r3 = 2.828427125 r4 = 4.000000000
r5 = 5.656854249 r6 = 8.000000000 r7 = 11.31370850 r8 = 16.00000000
r9 = 22.62741700 r10 = 32.00000000 r11 = 45.25483400 r12 = 64.00000000
r13 = 90.50966799 r14 = 128.0000000 r15 = 181.0193360 r16 = 256.0000000
r17 = 362.0386720 r18 = 512.0000000 r19 = 724.0773439 r20 = 1024.000000

Furthermore, for any fixed positive integer j,

zj,p = 2j/2ωpj , p = 0, 1, 2, · · · , 2j − 1,

where ωj = ei(2π/2
j) is a 2j-th root of unity. The entire function determined by the

sequence {zj,p}∞,2
j−1

j=1,p=0 is

F (z) =
∞∏
j=1

(
1− (

z

2j/2
)2j
)
,

which has the property, for all large r outside a set of finite Lebesgue measure,

S(F, {an}q1, r) = logT (F, r) +O(1).

Theoretically speaking, the smaller p and bigger φ are, the better the approxi-
mation is since the error term S(f, {an}q1, r) gets bigger.

Example 2. Let p(r) = 1 and φ(r) = log(10r), and let a1 =∞ and a2, a3, · · · , aq
be any distinct complex numbers in C. Thus we have

P (r) = r − 1, Ψ(r) = log log(10r), and A = 0.

By taking τ = 1 > A, we obtain from the proof of our Theorem that

Ω(r) = 1010r−1−1 and ω(r) = (ln 10)2r10r−11010r−1−1.

As we know, the sequence of circles {|z| = rj} is determined by the equation
ω(rj) = 2j+1. We could compute these rj ’s by using computers. Here we list the
first twenty rj ’s:

r1 = .966545620 r2 = 1.04635090 r3 = 1.11823735 r4 = 1.18313965
r5 = 1.24196365 r6 = 1.29552487 r7 = 1.34453111 r8 = 1.38958558
r9 = 1.43119816 r10 = 1.46979874 r11 = 1.50575017 r12 = 1.53935954
r13 = 1.57088784 r14 = 1.60055791 r15 = 1.62856093 r16 = 1.65506180
r17 = 1.68020341 r18 = 1.70411022 r19 = 1.72689115 r20 = 1.74864191

Again, the entire function F is defined as in (8) and the zeros of the function F are
zj,p = rjω

p
j , where ωj is defined as in Example 1, and the function F satisfies, for

all large r outside a set of finite Lebesgue measure,

S(F, {an}q1, r) = logT (F, r) log log(10T (F, r)) + O(1).
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