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ABSTRACT

A TRANSVERSE-WAKEFIELD STREAKING TECHNIQUE FOR
MEASUREMENT OF ULTRA-FAST ELECTRON PULSES

Jinlong Wang, M.S.
Department of Physics

Northern Illinois University, 2018
Philippe Piot, Director

The development of future free electron lasers (FELs) requires reliable time-resolved

measurements of ultra-short (less than ps) electron bunches, especially their temporal distri-

bution. A possible technique is to streak the bunch in the transverse direction by means of

time-dependent external electromagnetic fields. A passive deflector, consisting of a dielectric-

lined waveguide, is used to produce electromagnetic wakefield that imparts a time-dependent

transverse kick to a relativistic electron bunch that propagates off-axis. The present work

explores the possible use of the self-generated electromagnetic fields.



NORTHERN ILLINOIS UNIVERSITY
DE KALB, ILLINOIS

AUGUST 2018

A TRANSVERSE-WAKEFIELD STREAKING TECHNIQUE FOR

MEASUREMENT OF ULTRA-FAST ELECTRON PULSES

BY

JINLONG WANG
c© 2018 Jinlong Wang

A THESIS SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE

MASTER OF SCIENCE

DEPARTMENT OF PHYSICS

Thesis Director:
Philippe Piot



ACKNOWLEDGEMENTS

I first would like to thank my dear Professor Philippe Piot, without whom the thesis

would not be possible. I would like to thank him for his patience and kindness, the support

and guidance. I could not have imagined having a better advisor and mentor for my study

in this university.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Yasuo

Ito and Prof. Dennis E. Brown, for their valued time and encouragement.

My sincere thanks also goes to Greg Fagerberg and Carlos Garcia, who gave access to

the laboratory and research facilities and who helped me through the process. Without their

support it would not have been possible to conduct this research.

This work was supported by the US Department of Energy under contracts No. DE-

SC0011831 with Northern Illinois University. My sincere thanks for the support.



DEDICATION

To all the friends



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 ELECTROMAGNETIC WAKEFIELD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Interaction Between Moving Charged Particles . . . . . . . . . . . . . . . . . . . . . 6

2.2 Wake Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Longitudinal Wake Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Transverse Wake Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Wake Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 WAKEFIELD IN A CYLINDRICAL SYMMETRIC DIELECTRIC-LINED 
14

3.1 Derivation of Wakefield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Longitudinal Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Transverse Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.3 Transverse Force Due to Wakefield . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Implementation in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 WAKEFIELD AS A DIAGNOSTIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Beam Dynamics in the Presence of Time-dependent Transverse Deflecting
Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

WAVEGUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



v

Chapter Page

4.2 Streaking Field as Bunch Length Diagnostics. . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Analysis of the Active Transverse Deflector . . . . . . . . . . . . . . . . . . . 35

4.2.2 Equations for a Passive Deflector . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Algorithm to Reconstruct the Longitudinal Beam Profile . . . . . . . . . . . . . . 37

4.4 Simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 Cold-Beam Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.2 Case of Nonzero-Emittance Beam Reconstruction . . . . . . . . . . . . . . 45

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



LIST OF TABLES

Table Page

3.1 Summary of roots, wave vector and field amplitudes. . . . . . . . . . . . . . . . . . 25

3.2 Summary of roots, wave vector and field amplitudes . . . . . . . . . . . . . . . . . 29



LIST OF FIGURES

Figure Page

2.1 Leading particle 1 and trailing particle 2 traveling in free space with parallel
velocity vvv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Obstacle on vacuum chamber surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Basic structure of a dielectric-lined waveguides . . . . . . . . . . . . . . . . . . . . . 14

3.2 Dispersion equation D0(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Longitudinal wake function computed by the python for different Nmodes 25

3.4 Wakefield wl(z) computed by the python program with different m . . . . . 26

3.5 Wakefield wl(z) computed by the python program and a commercial pro-
gram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Wave modes amplitude vs wave vector . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 Dispersion equation plot when m=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.8 Longitudinal (top) and transverse (bottom) wake functions for m = 1 . . . . . 29

3.9 Transverse wake function compared with a commercial code . . . . . . . . . . . 30

3.10 Longitudinal electric field (orange trace) generated by a Gaussian charge
distribution (blue trace). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.11 Transverse force (orange trace) generated by a Gaussian charge distribution
(blue trace). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Gaussian distribution beam on the side of the axis t and x . . . . . . . . . . . . . 40

4.2 Configuration used for the simulation of the passive-streaking temporal 
41diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



viii

Figure Page

4.3 Wakefield as a transverse streak on the beam of zero emittance along the
longitudinal path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Density of the deflected beam of zero emittance along the transverse direction
x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Comparison of the reconstructed density profile of the zero-emittance beam
in the longitudinal direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6 Evolution of the retrieved distribution functions for the 10 iteration steps . . 44

4.7 Retrieved distribution after 20 iterations compared to initial distribution . . . 44

4.8 Density profile of the nonzero-emittance beam on screen . . . . . . . . . . . . . . 46

4.9 Comparison of the density profile of the reconstructed nonzero-emittance
beam.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



CHAPTER 1

INTRODUCTION

Ultra-short electron bunches (i.e. with duration < 1 ps) have a wide range of scientific

applications. These include the generation of electromagnetic radiation in free electron lasers

(FEL) [1, 2, 3] and the probing of dynamical processes in condensed matter, chemistry, or

biology[4] via ultra-fast electron diffraction [5]. Likewise, short electron bunches are used in

support of high-energy physics, e.g. in e+-e− particle colliders to probe the fundamentals of

matter and forces [6].

As electron bunches with decreasing duration are becoming increasingly available, the

associated formation process along with its optimization is often complex [7] and require

precise diagnostics. Moreover, in many experiments, details of the bunch structure play an

important role in the analysis of the experiment, for example, in time-resolved measurements

performed at X-ray FEL [8].

However, measuring the duration of short electron bunches presents significant challenges.

Usually, to measure a given time event, one would rely on an even shorter event to “probe”

the pulse one needs to measure. Electromagnetic fields associated to a picosecond-duration

electron bunch have a duration at the picosecond level, and no electronic device can directly

register such a short signal (state-of-the-art diodes have a response time > 50 ps). Thus, the

development of alternative diagnostic techniques to measure the ultra-short electron bunch

is necessary.

Diagnostic techniques often employed to measure sub-picosecond electron bunches can

be categorized in two classes: the frequency domain and the time domain; see for example,

Ref. [9] for a comprehensive discussion.
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For the most part, frequency domain techniques are based on detecting some form of co-

herent radiation (CR) emitted by short bunches. The radiated power emitted at a frequency

f ≡ 2πω via a given electromagnetic process by an electron bunch composed of N electron

is given by [9]

P (ω) = Pinc(ω)[N +N(N − 1)f(ω)] (1.1)

where Pinc(ω) is the incoherent single-electron emission spectrum associated to the considered

emission process, and f(ω) is the bunch form factor that describes the coherent enhancement

of the emission. The function f(ω) can be written as the square of the Fourier transform of

the normalized longitudinal distribution function S(t):

f(ω) = |
∫ ∞
−∞

S(t)e2πiω/t|2 (1.2)

Here
∫∞
−∞ S(t)dt = 1, and S(t) is related to the current profile I(t) via I(t) = QS(t) where

Q = N |e−| is the total charge in the bunch. Note that Eq. 1.2 assumes the bunch to be a

line charge distribution.

Thus, at a frequency where the radiation is coherent, i.e. f(ω) ∼ O(1), a measurement of

P (ω) provides indirect information on S(t) from the measurement of f(ω). The dependence

of the power versus frequency can be measured with a spectrometer [10] or via an autocorre-

lation method [11]. In addition, several radiation mechanisms can be used including coherent

synchrotron radiation (CSR), transition radiation (CTR) or diffraction radiation (CDR) [9].

The advantage of the CSR resides in its non-invasive character, but the incoherent spectrum

changes as a function of wavelength, making it more difficult to analyze the measurement

results. Instead, the CTR method has the advantage of relatively high power and a flat
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incoherent emission spectrum. The principal disadvantage associated to CTR comes from

its destructive nature (the bunch has to be intercepted with a thin metallic sheet), thereby

making it unsuitable as a continuous bunch duration monitor [9].

All the frequency-domain methods have a fundamental limitation. The bunch distri-

bution cannot be determined unambiguously, no matter whether it is an auto-correlation

measurement or a spectrum measurement, because the phase information necessary to ob-

tain the Fourier transform of the bunch distribution is lost in the measurement as only the

radiation energy or power (related to the modulus of the electromagnetic field) can be de-

tected.

Time-domain techniques directly measure a quantity that is proportional to the bunch

current profile and rely on either directly measuring the temporal distribution of the Lorentz-

boosted Coulomb field attached to an electron bunch or involve methods that map the time

coordinate into one of the spatial coordinates.

An example of the former technique is the electro-optical imaging [12] where an elec-

tron bunch propagates very close to a birefringent crystal and the associated change in

birefringence is probed with an ultra-short laser pulse. The Coulomb-field temporal dis-

tribution is then encoded on the optical laser spectrum which is measured via standard

laser-characterization techniques [12].

The other type of time-domain methods regards techniques that map the temporal coor-

dinate into a spatial ones. These techniques can be applied directly on the electron bunch or

to the radiation field emitted by the electron bunch. In the latter case a streak camera [13]

can be used to directly measure the duration of optical pulses emitted by the bunch (via

processes similar to the ones discussed in the context of the time-domain method). The

resolution of state-of-the-art streak camera can attain ∼ 100 fs.
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Examples where the time-to-space mapping is directly applied to the electron beam

include the zero-phasing [14] and the deflecting-cavity [15] techniques. In the zero-phasing

measurement [14], a radiofrequency (RF) linear accelerator is phased to the zero crossing of

the accelerating wave so as to introduce a linear time-energy correlation along the bunch.

Sending the beam in a dispersive section (where each electron transverse offset is proportional

to its energy) provides a distribution along the dispersive axis which is representative of the

energy spectrum and therefore of the time distribution (since energy and time are linearly

correlated). The beamline settings and detailed design of the dispersive section can be used

to calibrate the measurement and obtain an absolute current distribution.

The deflecting-cavity measurement had recently become very popular in large FEL-user

facilities. The idea of using an RF deflecting structure to kick the electron beam was first

proposed in 1960s [16]. The RF transverse deflecting structure (TDS) provides a time-varying

transverse deflecting field which induces a linear correlation between time and the transverse

beam distribution. Therefore measuring the beam transverse distribution downstream of

the TDS is representative, under certain assumptions, of the beam’s current distribution.

Unfortunately, the TDS technique is quite expensive (on the order of 1M dollars in 2018)

for high-energy beams with ultra-short (sub-ps) bunch length. The cost is mainly driven by

the auxiliary device (klystrons) needed to power the cavity. So far resolutions on the order

of femtoseconds have been reported [8].

The present work explores a time-domain mapping method which employs self-generated

electromagnetic fields to streak the bunch as recently proposed in Ref. [17]. This “passive

streaking” technique is appealing owing to its simplicity (the beam just needs to be trans-

ported through a small dielectric capillary tube or corrugated waveguide), but its analysis

is complicated as the introduced correlation between the temporal and spatial coordinates

is nonlinear. In this thesis we explore the passive-streaking technique based on a dielectric-

lined waveguide (DLW). We first discuss the transverse force imparted on a bunch as it
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propagates off axis in a DLW and develop a program to compute the electromagnetic field

excited by a bunch propagating in a DLW using the formalism presented in Ref. [18]. The

code is used to simulate and investigate the proposed passive-streaking method. Finally an

iterative algorithm to enable the reconstruction of the bunch temporal profile is presented

and the performances of the streaking method is investigated.



CHAPTER 2

ELECTROMAGNETIC WAKEFIELD

A charged-particle beam with the speed of light interacts electromagnetically with its

surroundings via fields radiated due to change in boundary condition. These fields are

commonly referred to as electromagnetic wakefield or wakefield. In this chapter, we introduce

wakefield along with the concept of wake potential. We derive the associated energy or

transverse kick experienced by an electron-bunch distribution.

2.1 Interaction Between Moving Charged Particles

Charged particles uniformly moving in free space only interact via space-charge effect

(arising from Coulomb repulsion). Interaction via radiative field can occur under various

conditions. One of them is when the particles surrounding boundary changes (this is known

as geometric wakefield). Another possible cause stems from the finite conductivity of the

beam pipe used to enclose the beam to an ultra-high vacuum environment. This effect is

referred to as resistive wakefield. In this section we follow Reference [19] and consider

resistive effect to illustrate the impact of wakefield.

We start by considering a simple two-particle model moving uniformly in the beam pipe.

Take the leading “source” particle of charge q moving with velocity v and a trailing “test”

particle of unit charge moving behind the leading one on a parallel path at a axial distance

s with an transverse offset x in free space as shown in Fig. 2.1.
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Figure 2.1: Leading particle 1 and trailing particle 2 traveling in free space with parallel
velocity vvv (from Ref. [19]).

In order to find the force which the leading particle exerts on the trailing one, we first

remind the electromagnetic field generated by the leading particle:

E =
qR

γ2R3
,

H =
1

c
v× E (2.1)

Here R is the vector from point 1 to point 2, i.e. the distance separating the particle

R2 = s2 + x2/γ2; see Fig. 2.1. The longitudinal force acting on the trailing unit charge is

then given by Fl ≡ 1EEE.ŝ:

Fl = Ez = − qs

γ2(x2 + x2/γ2)3/2
(2.2)
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and the transverse force acting on the trailing unit charge in the direction of x is [19]

Ft = Ex + ~v × ~B = Ex − v/cBy =
qx

γ4(x2 + x2/γ2)3/2
(2.3)

Here

~v = (0, 0, v), ~B = (Bx, By, Bz)

Ex − v/cBy =
qx

γ2(x2 + x2/γ2)3/2
− β2 qx

γ2(x2 + x2/γ2)3/2
=

qx

γ4(x2 + x2/γ2)3/2

The above interaction in free space is a Coulomb-type interaction mediated by the

Lorentz-boosted Coulomb fields. We note that in the limit of ultra-relativistic particles,

the longitudinal and transverse forces vanish as γ →∞. Hence, in the ultra-relativistic limit

of uniformly moving, particles do not interact in free space.

In fact if the particles are traveling along the axis of a perfectly conducting cylindrical

pipe, the same observation applies as the interaction with the perfect conductor can be

modeled via an image-charge approach where all the charges move at the same velocity.

Therefore even in the ultra-relativistic limit, the image charges won’t generate any forces

that would act back on the particles, no matter how close to the wall the particles are.

However, for a resistive wall where the image fields drag significant distances behind the

charge or any sudden variation of the pipe cross section, would produce an electromagnetic

force acting back on the particles. In Fig. 2.2, we can see the sudden change of the cross

section of the pipe. The ultra-relativistic charged particles travel from left to right with

contracted field lines spreading out only within an angle ±1/γ.
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Figure 2.2: Obstacle on uniform vacuum chamber surface[20].

In this case, this resulting force can have the ability to pull or push the charge q or

test particles following that charge, thus the wakefield is created. In the time domain, the

interaction is described by wakefield which acts back on charges[20]. The energy losses of

a single particle or collection of particles resulting from the wakefield can cause important

modifications in the dynamics of particle motion.

2.2 Wake Function

Assume that we’ve already known the electromagnetic fields in a DLW structure by

solving the Maxwell’s equations. If a point charge q traverses this structure with offset
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parallel to the z-axis at the speed of light, wake function [21] can be defined as integrals over

the normalized forces due to the electromagnetic fields excited by the point charge q and

evaluated at a distance s behind it:

w(~ρb, ~ρe, s) =
1

q

∫ ∞
−∞

dz[Ê(~ρb, ~ρe, z, t =
z + s

c
) + cẑ × B̂(~ρb, ~ρe, z, t =

z + s

c
)] (2.4)

where ~ρb is the transverse offset of the test charge, ~ρe is the transverse offset of the exciting

charge, and s is the distance at which the test charge travels behind the exciting charge

along the traveling axis in the structure.

Specifically, we can introduce longitudinal wake function and transverse wake function

according to the direction of the integrated components. If the charged particle travels at

the ultra-relativistic constant velocity v ∼ c, then the wake function ahead of the exciting

particle vanishes when s < 0, where s is the axial distance from the leading particle to the

test particle, since the electromagnetic fields cannot propagate ahead of particles when they

move with the same speed of light. This is often referred to as causality principle [19].

2.2.1 Longitudinal Wake Function

The longitudinal wake function can be defined by integrating over the longitudinal com-

ponent of the electric field Ez normalized by a test charge q which moves along a trajectory

parallel to the axis of the dielectric-lined waveguide structure [21]:

wl(~ρb, ~ρe, s) =
1

q

∫ ∞
−∞

dzEz(~ρb, ~ρe, z, t =
z + s

c
) (2.5)
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where ~ρb is the transverse offset of the test charge, ~ρe is the transverse offset of the exciting

charge, and s is the distance at which the test charge travels behind the exciting charge

along the traveling axis in the structure.

We can decompose the longitudinal wake function as an expansion in azimuthal modes

in structures with axial symmetry . Using cylindrical coordinates, we can get [21]

wl(ρb, ρe, s, θ) =
∞∑
m=0

ρmb ρ
m
e cosmθwml (s) (2.6)

Here θ is the angle between the test charge and the exciting charge, i.e. θ = 6 (~ρb, ~ρe)

2.2.2 Transverse Wake Function

Also, assuming that we know the electromagnetic fields in the structure, the transverse

wake function can be defined as the integral over the transverse electromagnetic forces along

a straight path at a distance s behind an exciting ultra-relativistic charge normalized to the

charge [22]

~wt(~ρb, ~ρe, s) =
1

q

∫ ∞
−∞

dz[ ~E(~ρb, ~ρe, s, t =
z + s

c
) + ~v × ~B(~ρb, ~ρe, s, t =

z + s

c
)]⊥ (2.7)

For a structure with axial symmetry, using the cylindrical coordinates, the transverse wake

function can be written as[22]:

~wt =
∞∑
m=1

ρm−1b ρme (ρ̂ cosmθ − θ̂ sinmθ)wmt (s) (2.8)
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If both particles have the same charge, then a positive transverse wake means that the trailing

particle experiences a transverse kick in the direction along offset of the wakefield-exciting

particle.

2.3 Wake Potential

So far we have defined wake functions which are associated to the force experience by

the a trailing (or test) particle. These functions can be thought of as Green’s function. The

integrated effect on a particle distribution is described by the wake potential, which is defined

as the integral over the electromagnetic forces exerted by wakefield at the position of a test

charge following exciting charge on the same trajectory. The exciting charge is now a bunch

of particles of finite length instead of one particle, and the distance ζ to the test charge is

measured from the bunch center.

The longitudinal wake potential [23] for a bunch of charged particles can be found from

the convolution of the longitudinal wake function with the normalized density Λ(z):

Wl(z) =

∫ z

−∞
dζwl(z − ζ)Λ(ζ) (2.9)

As we can see, if the normalized density Λ(z) is a δ function, the wake potential would

reduce to the wake function itself. We can decompose an arbitrary distribution into an infi-

nite series of orthogonal polynomials to determine longitudinal wake potentials numerically.

The coefficients of polynomials can be obtained using the orthogonality of the expansion

functions. But this method has a problem due to the limited accuracy because we have to

do a truncation of the expansion at a relatively low order.
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Similarly, when one assumes a constant displacement of the bunch from the axis, the

transverse wake potential[23] can be written as

Wt(z) =

∫ z

−∞
dζwt(z − ζ)Λ(ζ) (2.10)

There exists a relation between the transverse wake potential and longitudinal potential.

The relation between the longitudinal derivation of the transverse wake potential and the

transverse gradient of the longitudinal potential is referred to as the Panofsky-Wenzel the-

orem. The gradient in the longitudinal and transverse directions of the wake potential can

be obtained[19]:

wl =
∂W

∂s
, wt = ∇~ρW (2.11)

Note that ∇~ρ = x̂ ∂
∂x

+ ŷ ∂
∂y

is a two-dimensional gradient with respect to coordinates x and

y. From Eq. 2.11, we can also know that

∂wt
∂s

= ∇~ρwl (2.12)

This relation above is usually referred to as the Panofsky-Wenzel theorem.



CHAPTER 3

WAKEFIELD IN A CYLINDRICAL SYMMETRIC

DIELECTRIC-LINED WAVEGUIDE

In this chapter we derive the wakefield excited by a charged particle in a dielectric-lined

waveguide (DLW). We consider a cylindrical metal tube of radius a. The tube is filled

partially with isotropic material with uniform dielectric constant ε between radii b < r < a;

see geometry in Fig. 3.1.

Figure 3.1: Basic structure of a dielectric-lined waveguides [24]. b is the inner radius, a is
outer radius.
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The dielectric-lined waveguides (DLW) consist of normal conducting waveguides with a

thin dielectric liner on the interior surface; see Fig. 3.1. The DLW was initially introduced

as a possible structure for beam-driven wakefield acceleration. In such a scheme the elec-

tromagnetic fields produced by the bunch were tailored to provide a high accelerating field

[O(GeV/m)] to accelerate a following electron bunch. However, the DLW structure has found

other applications in an accelerator, including its possible use to shape an electron-bunch

distribution [25].

Qualitatively the dielectric coating slows down the traveling electromagnetic wave exited

by the beam. If the wave phase velocity is matched to the beam velocity a net energy ex-

change between the beam and wave can occur. DLWs can be shaped to follow any geometry;

however, we will focus on the cylindrically symmetric DLW structure for sake of simplicity.

In a cylindrical symmetric DLW, a hollow dielectric cylinder has its outer surface contacted

to a conductor (typically a high-conductivity metal such as copper); see also Fig. 3.1. Our

derivation closely follows the seminal work by Ng [18] and the derivation provides the basis

for the development of an algorithm used to numerically compute the wakefield and wake

potentials.
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3.1 Derivation of Wakefield

3.1.1 Longitudinal Field

Consider the source particle of charge q travels with velocity of vvv = βcẑzz along the

cylindrical waveguide at an offset r0 from the DLW axis; the Maxwell’s equations written in

CGS units for the longitudinal fields take the form [18]

(∇2 − µε

c2
∂2

∂t2
)Ez =

4π

ε

∂ρ

∂z
+

4πµ

c2
∂Jz
∂t

(3.1)

(∇2 − µε

c2
∂2

∂t2
)Bz = 0 (3.2)

Here the charge density and current density about quantities (r, θ, z, t) are

ρ(r, θ, z, t) = q
δ(r − r0)

r
δ(θ)δ(z − vt), and Jz = vρ (3.3)

We can solve these equations in the Fourier domain by decomposing the field using

Ez(r, θ, z, t) =
∞∑

m=−∞

eimθ
∫ ∞
−∞

dωei(z−vt)ω/vẼzm(r, ω) (3.4)

Considering the Dirac-function Fourier transformation

δ(z − vt) =
1

2πv

∫ ∞
−∞

dωei(z−vt)ω/v (3.5)



17

and azimuthal decomposition

δ(r − r0)
r

δ(θ) =
1

2π

∞∑
m=−∞

eimθ
∫ ∞
0

kdkJm(kr)Jm(kr0) (3.6)

where Jm is the Bessel function of order m; the Eq. 3.1 can be written as

(∇2 +
µεω2

c2
)Ẽzm(r, ω) = φ̃m(r, w) (3.7)

where

φ̃m(r, w) =
i4πω

vε
(ρ̃m −

µεv

c2
J̃m) =

iqω(1− µεβ2)

πv2ε

∫ ∞
0

kdkJm(kr)Jm(kr0) (3.8)

For a particular solution, we can get

Ẽpart
zm = − iqω

πv2γ2

∫ ∞
0

dk
kJm(kr)Jm(kr0)

k2 + (ω/vγ)2
, 0 < r < b (3.9)

The integration over k is [18]

Ẽpart
zm =

−iqω
πv2γ2

 Im(ωr/vγ)Km(ωr0/vγ) 0 ≤ r ≤ b ,

Km(ωr/vγ)Im(ωr0/vγ) b ≤ r ≤ a .
(3.10)

Here Im and Km are modified Bessel function and Hankel function. The relation between

them is [26]

Kα = Jα ± iYα, Iα(x) = i−αJα(ix)
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The general solution can be written as [18]

Ẽgen
zm =

 εmIm(kr0)Im(kr) 0 ≤ r ≤ b ,

Am[Jm(sa)Ym(sr)− Ym(sa)Jm(sr)] b ≤ r ≤ a
(3.11)

where k = ω
v

√
1− β2, s = ω

v

√
µεβ2 − 1, and Ym is the Neumann function of order m. Also,

we can use the same method to get the general solution for B̃gen
zm :

B̃gen
zm =

 BmIm(kr0)Im(kr) 0 ≤ r ≤ b ,

Cm[J ′m(sa)Ym(sr)− Y ′m(sa)Jm(sr)] b ≤ r ≤ a
(3.12)

The four constants εm, Bm, Am, Cm can be determined by the matching condition at the

boundary r = b defining the interface between vacuum and the dielectric liner. At r = b, we

have

Ẽv
zm = ε′mIm + η′mKm, Ẽ

d
zm = Ampm

B̃v
zm = B′mIm, B̃

d
zm = Cmrm

(3.13)

where the abbreviated notations are defined as

Im = Im(kb), Km = Km(kb)

pm = Jm(sa)Ym(sb)− Ym(sa)Jm(sb), rm = J ′m(sa)Ym(sb)− Y ′m(sa)Jm(sb)

η′m = η Im(kr0)
γ2

, η = − iqω
πv2

ε′m = εmIm(kr0), B
′
m = BmIm(kr0)

(3.14)
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3.1.2 Transverse Field

Through the relation between the transverse electric fields Et, magnetic flux density Bt

and longitudinal fields [18]:

(∇2
z −

µε

c2
∂2

∂t2
)Bt = −iωµε

c
∇t × ẑEz +∇t∇zBz, (3.15)

(∇2
z −

µε

c2
∂2

∂t2
)Et =

iω

c
∇t × ẑBz +∇t∇zEz (3.16)

and knowing the Ez and Bz, the transverse electric field can be obtained [18] at the boundary

r = b:

Ẽv
θm = ivβk

ω(1−β2)
B′mI

′
m + mv

ωb(1−β2)
(ε′mIm + η′mKm),

Ẽd
θm = − ivβs

ω(µεβ2−1)Cmr
′
m − mv

ωb(µεβ2−1)Ampm,

Ẽv
rm = mvβ

ωb(1−β2)
B′mIm − ivk

ω(1−β2)
(ε′mI

′
m + η′mK

′
m),

Ẽd
rm = − mvβ

ωb(µεβ2−1)Cmrm + ivs
ω(µεβ2−1)Amp

′
m

(3.17)

where

I ′m = I ′m(kb), K ′m = K ′m(kb),

p′m = Jm(sa)Y ′m(sb)− Ym(sa)J ′m(sb),

r′m = J ′m(sa)Y ′m(sb)− Y ′m(sa)J ′m(sb)

(3.18)

At the boundary r = b, we therefore have four equations:

Ẽd
zm = Ẽv

zm, Ẽ
d
θm = Ẽv

zθm,

εẼd
rm = Ẽv

rm, B̃
d
zm = µB̃v

zm

(3.19)
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which can be solve to yield the parameters εm, Bm, Am, Cm.

For the monopole case m = 0, the longitudinal electric field for the region of interest

r0 ≤ r ≤ b is given by

Ẽz0 = ε′0I0(kr) + η′0K0(kr) (3.20)

where

ε′0 = −η′0
(µεβ2 − 1)kK ′0 + γ−2εsp′0K0/p0
(µεβ2 − 1)kI ′0 + γ−2εsp′0I0/p0

(3.21)

In the limits γ � ωb/c and kr � 1, Ẽz0 in the latter equation reduces to

Ẽz0 = ηI0(kr0)(
(µε− 1)p0

p′0 + (sb/2ε)p0

I0(kr)

εsb
− K0(kr)

γ2
) (3.22)

Using Eq. 3.4 and Eq. 3.22, we can get the monopole-case longitudinal electric field when

γ →∞:

Ez0(r, z, t) = −ie
√
µε− 1

πεbc
×
∫ ∞
−∞

dωeiω(z−ct)/c
p0

p′0 + (sb/2ε)p0
(3.23)

Here s = ω
√
µε− 1/c.

Then integrating Eq. 3.23 by the variable x = sa, for z < ct, we obtain

Ez0(r, z, t) = − 4q

εab

∑
λ

xp0
(d/dx)D0(x)

× cos
x(z − ct)
a
√
µε− 1

|x=xλ (3.24)
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where xλ is the λth positive zero of the analytic function:

D0 = xp′0 +
x2ξ

2ε
p0 (3.25)

Here ξ = b/a is the ratio of the inner radius to the outer radius of the dielectric tube. Thus,

we get the longitudinal electric field for the case of monopole(m=0).

For higher multipole fields, we can also get [18] the electric field for z < ct:

Ezm(r, z, t) =
8q

a2
(
r0
b

)m(
r

b
)m ×

∑
λ

xpmrm
(d/dx)Dm(x)

cos
x(z − ct)
a
√
µε− 1

|x=xλ (3.26)

where

Dm(x) = (
x2ξ2

m+ 1
−m(µε+ 1))pmrm + xξ(εp′mrm + µr′mpm) (3.27)

Thus, for m 6= 0, Ezm does not vanish when γ →∞.

3.1.3 Transverse Force Due to Wakefield

Using the Eq. 2.12 from Panofsky-Wenzel theorem, we can get the transverse forces on

the test charge e traveling with velocity v behind the source :

F̃rm =
ev

iω

∂Ẽzm
∂r

(3.28)

F̃θm =
emv

iωr
Ẽzm (3.29)



22

Then using the Eq. 3.24, we can get the longitudinal force on the test particle of charge e

at a distance z behind the leading source particle:

Fz0(z) = −eq
a2

∑
λ

F̂z0λ(x0λ) cos
x0λz

a
√
ε− 1

(3.30)

where

F̃z0λ =
4

εξ

x0λp0(x0λ)

D′0(x0λ)
(3.31)

Also, the transverse forces for m ≥ 1 can be written as

Frm(r, z; r0) =
eq

a2
(
r0
a

)m(
r

a
)m−1 ×

∑
λ

F̂rmλ(xmλ) sin
xmλz

a
√
ε− 1

(3.32)

Here

F̃rmλ =
8m
√
ε− 1

ξ2m
pm(xmλ)rm(xmλ)

D′m(xmλ)
(3.33)

The xmλ is the λth zero of Dm and the function Dm is already given by Eq. 3.27.

3.2 Implementation in Python

The general wake potential for a relativistic beam passing through a dielectric-lined

waveguide is simply the convolution between the density distribution and the wake function.

The general wake function for a single mode structure is given by

w(z) = A cos(kz) (3.34)
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where k and A are respectively the wave number and field amplitude associated with the

fundamental mode (TM01) of the structure. For these initial calculations, we assume a

Gaussian distribution

Λ(z) =
1√

2πσz
e
− z2

2σ2z (3.35)

Then the wakefield can be written as the convolution of the wake function and the beam

distribution as

W (z) = −
∫ ∞
0

Λ(z − z′)w(z′)dz′ (3.36)

The main challenge resides in the calculation of the wake function. To do so, one first

needs to numerically solve the Eq. 3.24:

Ez0(r, z, t) = − 4q

εab

∑
λ

xp0
(d/dx)D0(x)

× cos
x(z − ct)
a
√
µε− 1

|x=xλ

by solving the dispersion equation Eq. 3.25:

D0(x) = xp′0 +
x2ξ

2ε
p0 = 0

Here ξ = b/a is the ratio of the inner radius to the outer radius of the dielectric tube.

The algorithm used to solve the dispersion equation is described in the pseudo-code 1.

In brief we seek x such as D0(x) = 0 by varying the variable x by increment with step ∆x

until the sign between the values D0(xi) and D0(xi + ∆x) changes. Knowing that D0(x) has

a zero in x ∈ [xi, xi + ∆x], we implement a dichotomic method to find the root. The roots

are labeled as xm where m is an integer.
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Algorithm 1 Solving Dispersion Equation

1: Choose xi and adjust the step ∆x . Vary the x from xi with an increasing step of ∆x
2: Until D(xi) and D(xi + ∆x) sign differs . Determine the root between xi and xi + ∆x
3: Use dichotomic method to find the root . Solve the equation D(x)=0
4: Label this root as xm . the m-th root we find
5: Increase x with ∆x as before . until we find another root
6: Until we find N roots . use a loop

The process is illustrated in Fig. 3.2 where we show the function D0(x) and the roots

found by our algorithm. The red circles indicate the roots computed with our algorithm.

The algorithm was tested over a wide range of parameters and found to be reliable provided

that the step ∆x is properly adjusted.
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Figure 3.2: Dispersion equation D0(x) (blue trace).

Once the roots are obtained we can compute the electric field using Eq. 3.24 for the

case of the monopole (m = 0) modes. Table 3.1 summarizes the roots and associated field

amplitude computed for a DLW with parameters (a, b, εr) =(5 mm,2 mm,3).
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Table 3.1: Summary of roots, wave vector and field amplitudes

n 1 2 3 4
roots xλ 572.39 1460.93 2410.05 3390.97

mode amplitudes (V) 1.47× 10+15 1.85× 10+15 1.28× 10+15 7.27× 10+14

mode wave vectors (m−1) 404.74 1033.04 1704.16 2397.78

The corresponding wakefield computed by summing a different number of modes appear

in Fig. 3.3.
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Figure 3.3: Longitudinal wake function computed by the python for different Nmodes.

In most of our computations we generally find that the wakefield function is well described

by a summation over the first four modes; the contribution from higher modes becomes

negligible as illustrated in Fig. 3.3.

The comparison of the wakefield computed for Nmodes = 4 and 10 appears in Fig. 3.4.
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Figure 3.4: Wakefield wl(z) computed by the python program with different m.

As it can be seen from the Fig. 3.4, the case Nmodes = 4 provides an accurate description

of the wakefield. Summing higher order modes introduces higher frequency features but

does not significantly affect the overall amplitude of the wakefield. Likewise, because of the

convolution integral Eq. 2.9, the high-frequency features tend to generally get smoother on

the wake potential.

In order to gain confidence in our algorithm, we benchmarked it with a trusted commercial

code developed by Euclid TechLab; see Fig. 3.5. We specifically consider the case of a DLW

with parameter (a, b, εr) =(5 mm , 2 mm, 3) and a bunch charge of 100 nC. The results from

our program are found to be in excellent agreement with this commercial software.
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Figure 3.5: Wakefield wl(z) computed by the python program (blue trace) and a commercial

program (orange trace).
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Also, we need to note here that we make the electron bunch travel through the dielectric

lined tube with an offset relative to the center of the axis, so the offset r0 = b/2.

Also, we can get the relation between the wave mode and wave length as in Fig. 3.6. As

we can see, the mode amplitude eventually decays to small values.

An algorithm similar to the one described above was used to find the multipole-mode

(m > 1) wakefield. The dispersion equation Eq. 3.27:

Dm(x) = (
x2ξ2

m+ 1
−m(µε+ 1))pmrm + xξ(εp′mrm + µr′mpm)

can be solved. An example of root findings is shown in Fig. 3.7 where the dipole mode

(m = 1) is considered.
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Figure 3.7: Dispersion equation plot when m=1. The red points are the roots.

The first four roots xλ are [461.36, 859.11, 1434.90, 1755.46]. Table 3.2 summarizes

the roots and associated field amplitudes and wave vectors for the dipole mode (m = 1)
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computed for a DLW with parameters (a, b, εr) =(5 mm , 2 mm,3.0) identical to the ones

used in Table. 3.1.

Table 3.2: Summary of roots, wave vector and field amplitudes

n 1 2 3 4
roots xλ 461.36 859.11 1434.90 1755.46

mode amplitudes (V) 3.43× 10+17 2.42× 10+18 2.53× 10+18 3.68× 10+18

mode wave vectors (m−1) 326.23 607.48 1014.63 1241.30

0 20 40 60 80 100 120 140 160
z (mm)

−2

0

2

w
l(
r,
ζ

)
(V

/m
/C

) ×1015

Simulation

0 20 40 60 80 100 120 140 160

z (mm)

−1

0

1

w
t(
r,
ζ

)
(V

/m
/C

) ×1015

Simulation

Figure 3.8: Longitudinal (top) and transverse (bottom) wake functions for m = 1.

The corresponding longitudinal wakefield is shown in Fig 3.8 (upper plot). For m ≥ 1 the

fields do also have transverse components and an example of transverse wakefield appears

in Fig 3.8 (lower plot). For the results presented in Fig 3.8, the number of modes was taken

to be Nmodes = 4. Also, in order to gain confidence in our algorithm for the transverse

wakefield, we benchmarked it with a trusted commercial code developed by Euclid TechLab;

see Fig. 3.9. The DLW parameters are identical to those used in Table. 3.1.

Finally, using Eq. 3.36 we can compute the wakepotential of a Gaussian distribution

beam. The result is shown in Fig. 3.10 and Fig. 3.11 for respectively the longitudinal electric
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Figure 3.9: Transverse wake function compared with a commercial code.

field and transverse force. The length of the electron bunch traveling path is 160σz, and the

bunch length was taken to σz = 1.0× 10−3 m with charge of 100 nC.

As we can see in Fig. 3.10, the considered Gaussian bunch can generate wakefield on

the order of 0.1 GV/m trailing behind the bunch. In this example an electron located at

z/σz ' 27 would experience the field and get accelerated. This process is often referred

to beam-driven wakefield acceleration. This acceleration mechanism is being investigated

at several facilities, including the Argonne Wakefield Accelerator [27]. Unfortunately, the

transverse force can be quite high and particles within the Gaussian bunch can be deflected

if the beam is not properly aligned. This effect is an important limitation of wakefield

accelerators.
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Figure 3.10: Longitudinal electric field (orange trace) generated by a Gaussian charge dis-

tribution (blue trace). The charge distribution moves toward z < 0.
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Figure 3.11: Transverse force (orange trace) generated by a Gaussian charge distribution
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CHAPTER 4

WAKEFIELD AS A DIAGNOSTIC

In this chapter we explore a method to use the transverse wakefield to passively streak the

beam and infer its temporal (or longitudinal) distribution. Before delving in the wakefield

technique, we recall the working principle of streaking by considering an RF transverse

deflecting cavity.

4.1 Beam Dynamics in the Presence of Time-dependent

Transverse Deflecting Field

We consider a beam which consists of N electrons with the distribution function ρ(z); z

is the distance from the particle along the traveling path. Using the SI unit, the change in

the longitudinal momentum of the particles at location z is given by the integral

∆pz(z) = Ne2
∫ ∞
z

dz′ρ(z′)wl(z
′ − z) (4.1)

In order to quantify the beam dynamics, it is often convenient to introduce ζ(t) ≡

z(t)− c
∫ t
0
β(t′)dt′ , where ζ represents the axial position of an electron with respect to the

bunch center (ζ = 0) at the time t. Since the beam dynamics also involves the momenta, we

introduce pi the conjugate momenta associated to the spatial coordinates i = x, y, ζ and note

that for a bunch pζ � (px, py). For convenience we also introduce the angular divergence as
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x′ ≡ px
pz

and y′ ≡ py
pz

. Finally we introduce the relative momentum spread as δ ≡ p
〈p〉 where

p2 = p2x + p2y + p2z.

In order to describe the dynamics of a bunch in presence of transverse wakefield, it is

often useful to describe the bunch as an ensemble of axial slices. The transverse position of

these slices at a given position z along the beamline is a function of ζ and parameterized as

xxx(ζ, z), where the vector xxx ≡ (x, y). Considering the case of a transverse wakefield giving

rise to the transverse Green’s function w⊥(ζ) along, e.g., the x direction, we can write the

corresponding transverse horizontal force as

Fx(ζ, z) = e2
∫ ∞
ζ

dζ ′ρ(ζ ′)w⊥(ζ − ζ ′)x(ζ ′, z) (4.2)

where e is the electronic charge. Consequently the transverse equation of motion can be

written as [28, 29]

d

dz

[
γ(z)

d

dz
x(ζ, z)

]
+K2γ(z)x(ζ, z) =

r0

∫ ∞
ζ

dζ ′ρ(ζ ′)w⊥(ζ − ζ ′)x(ζ ′, z),

(4.3)

where r0 ≡ e
mc2

is the classical radius of the electron, γ ≡ E
mc2

is the relativistic Lorentz

factor (here E2 ≡ p2c2 +m2c4 is the total energy), and K describes external focusing fields.

In a drift space (K = 0) and assuming the beam energy remains unchanged, γ(s) = γ

and dγ
dz

= 0, the latter equation simplifies to

d2x(ζ, z)

dz2
=
r0
γ

∫ ∞
ζ

dζ ′ρ(ζ ′)w⊥(ζ − ζ ′)x(ζ ′, z) (4.4)

Taking the wakefield to be constantly applied over a length L, the previous equation can

be integrated to yield
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x′(ζ, z) =
dx(ζ, z)

dz

=
Lr0
γ

∫ ∞
ζ

dζ ′ρ(ζ ′)w⊥(ζ − ζ ′)x(ζ ′, z)
(4.5)

The most-left equality is valid under the ultra-relativistic approximation γ � 1. Assum-

ing that the slice position does not change during the interaction but only its divergence is

affected (this is the so-called “impulse approximation”), we can further simplify the previous

equation into

x′(ζ, z) =
dx(ζ, z)

dz

= x(ζ, z)
Lr0
γ

∫ ∞
ζ

dζ ′ρ(ζ ′)w⊥(ζ − ζ ′)
(4.6)

This equation is the basis of transverse wakefield calculation: Knowing the longitudinal

charge distribution ρ(ζ) and the transverse Green’s function describing the electromagnetic

wake, one can infer the transverse displacement of longitudinal slices.

4.2 Streaking Field as Bunch Length Diagnostics

We now consider the possible use of transverse wake to streak the beam aka to what is

commonly done with a transverse deflecting cavity. This possibility was explored in Ref. [17]

where it was pointed out that one could in principle reconstruct the longitudinal distribution

and some preliminary results were presented.
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4.2.1 Analysis of the Active Transverse Deflector

A common time-domain diagnostic method to infer the duration of sub-picoseconds em-

ploys a transverse-deflecting resonant radiofrequency (RF) cavity [29]. The cavity usually

operates on the TM110 mode and therefore sustains a transverse time-dependent magnetic

field B. As the bunch travels through the cavity [30], it results in a transverse kick (e.g. in

the x direction) of the form

x′(ζ, z) ' Lr0E0

γ
sin(kζ + ϕ) (4.7)

where L is now the length of the cavity, E0 the peak electric field provided by the cavity

and ϕ is an arbitrary phase shift we henceforth take to be ϕ = 0, and k = 2π
λrf

is the wave

vector associated to the wave supported by the RF cavity. In practice, the bunch length

σζ is such that σζ � λrf so that the sin() function can be approximated by its first-order

Taylor expansion. In such a case we have

x′(ζ, z) =
Lr0E0

γ
kζ ≡ κζ (4.8)

and the kick is linearly dependent on the bunch longitudinal coordinate. In the previous

equation κ is referred to as the normalized kicking strength. A typical experimental setup for

measuring the longitudinal bunch distribution consists in recoding the transverse distribution

fx(x) downstream of the deflecting cavity. To analyze such a measurement we recall that

the transverse phase-space coordinate xxx ≡ (x, x′) downstream of a beamline with transfer

matrix R is given by xxx = Rxxx0, where x0 is the initial coordinate upstream of the beamline.
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Taking R to be the transfer matrix from the cavity exit to the observation point, we can

write for the position of one electron:

x = R11x0 +R12x
′
0 (4.9)

where x′0 = κζ + x′0,− with x′0,− understood as the electron’s initial angle prior to receiving

the deflecting kick. Under such an assumption the horizontal position of an electron at the

observation point reduces to

x = R11x0 +R12(κζ + x′0,−)

= R11x0 +R12x
′
0,− +R12κζ ≡ xβ +R12κζ (4.10)

where xβ is the change of position due to the betatronic motion. The latter equation can be

rewritten as

x = xβ + xζ (4.11)

which simplifies to x = xζ when the deflector is turned off. Introducing the probability

distribution for xβ and xζ to be respectively fβ(xβ) and fζ(xζ) and further considering the

variables to be independent, the probability distribution associated to x is given by the

convolution

f(x) =

∫ +∞

−∞
fβ(xβ)fζ(x− xβ)dxβ (4.12)

The longitudinal distribution is related to fζ(x) via the charge conservation relation fζ(x)dx =

ρ(ζ)dζ that is ρ(ζ) = |R12κ|fζ(R12κζ). Therefore we need to extract the function fζ(x) from

Eq. (4.12). We note that f(x) and fβ can be directly measured by recording the distribution
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at the observation point respectively with and without powering the deflecting cavity. One

can then perform a deconvolution [31] to retrieve f(x). Another possibility is to ensure the

beta function at the observation point is very small so that fβ(xβ) ' δ(xβ), where δ() is the

Dirac’s function. Consequently Eq. (4.12) can be simplified to f(x) ' fζ(x).

4.2.2 Equations for a Passive Deflector

Given the description of the active deflection scheme, we can now modify the previous

equations to apply them to the passive deflection technique. Equation (4.10) is especially

modified as

x = xβ +R12x
′
0(ζ) (4.13)

where x′0(ζ) ≡ x′(ζ, z = 0) with z = 0 corresponding to the position where the kick is applied

(i.e. the center of the deflecting structure in the impulse approximation); see Eq. (4.6). We

point out that xζ ≡ R12x
′
0(ζ) is now a nonlinear function of ζ.

4.3 Algorithm to Reconstruct the Longitudinal Beam Profile

Using the equation for a passive deflector xζ ≡ R12x
′
0(ζ) in the previous chapter, the

charge conservation relation fζ(x)dx = ρ(ζ)dζ can be written as

ρ(ζ) = |R12
dx′0(ζ)

dζ
|fζ(x) (4.14)
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Here we can get the derivative
dx′0(ζ)

dζ
from Eq. 4.6. The wake function then can be obtained

from Eq. 4.6; here the transverse wake function is the numerical result along ζ when the

beam travels through the waveguide with offside r0 = b/2.

Thus, through substituting the already known wake function in Eq. (4.6), we can obtain

the derivative
dx′0(ζ)

dζ
. After we extract fζ(x) from Eq. (4.12), the rest of the problem is to

solve the self-consistent equation for the probability distribution ρ(ζ) along ζ. Since we can

measure the probability distribution on the monitor, we can directly obtain the values of

f(x) and the probability distribution fβ(x) when the deflecting is turned off in Eq. (4.12).

Then we can use the deconvolution method to extract the longitudinal distribution fζ(x).

Finally, we can get the longitudinal distribution ρ(ζ) through Eq. (4.14).

The algorithm implemented to retrieve the longitudinal bunch distribution ρ(ζ) from

the observed distribution fζ(x) consists of an iterative method summarized in the pseudo-

code 2. The algorithm we selected is a simple adaptive loop commonly used in feedback

control systems. Specifically, we first make a guess of the longitudinal charge density ρ(ζ)

and compute the corresponding projected function fζ(x) from which the incoming charge

density is recovered. The adaptive loop consists in readjusting the initial longitudinal charge

density given as detailed in the pseudo-code 2.

The latter algorithm was implemented as a python script dubbed Streak.py. The

program reads an external particle distribution and simulates the streaking effect due to the

wakefield (by using use the Eq. 3.32) and transports the particle down to the observation

point where the transverse distribution is measured. The script Streak.py finally gives

the distribution and implements the iterative algorithm described in the pseudo-code 2 to

retrieve the initial distribution. The retrieved and initial distributions can then be compared

to verify the effectiveness of the reconstruction algorithm.
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Algorithm 2 Longitudinal Charge Distribution Retrieval

1: define G . gain for the adaptive loop
2: read fmζ (x) . measured beam profile after deconvolution
3: initialize ρ0(ζ) . initial (guessed) charge distribution
4: for i ∈ [0, N ] do
5: x(ζ)=TransWake[Green, ρi(ζ)] . compute deflecting kick for a given Green’s

function
6: fζ(x)=Streak[ρi(ζ), x(ζ)] . evaluate streaked profile
7: ρei (ζ) = fζ(x)× |dx

dζ
| . estimated charge distribution from streaked profile

8: ρi+1(ζ) = ρi + G × (ρei (ζ)− ρi) . successive approximation
9: εi =

∑
x[|(fζ(x)− fmζ (x))|]

10: end for
11: plot ρN(ζ)

4.4 Simulations

A step toward more accurate simulation is to use the beam-dynamics program elegan-

t [32] to perform the tracking and wakefield simulation up to the observation point. The

obtained streak distribution is then passed to the Streak.py to reconstruct the initial

distribution.

4.4.1 Cold-Beam Reconstruction

We first apply the reconstruction algorithm to the case of a cold beam, e.g., a beam where

the distribution has no transverse extent and can be viewed as a line charge. The reason for

testing the case of the cold beam is to focus solely on the longitudinal-to–transverse mapping

provided by the DLW without dealing with smearing effect due to the finite transverse

dimension associated with a real beam (that is, a beam with nonzero transverse emittance).

As a first illustration, we start with a Gaussian distribution shown in Fig. 4.1.
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Figure 4.1: Gaussian distribution on the side of the axis t and x

Here the bunch has a total charge of 1 × 100 nC with a total number of macroparticle

of 100, 000. For the rest of this chapter we take the DLW used to streak the beam to

have the following parameters: an inner radius of b = 4.50 × 10−4 m, an outer radius of

a = 5.50 × 10−4 m and the dielectric constant of the medium is ε = 4.41. We also consider

the observation point where the transverse distribution is finally observed to consist of a 1-m

drift space so to have R12 = 1.0 m; a diagram of the setup appears in Fig. 4.2.
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Figure 4.2: Configuration used for the simulation of the passive-streaking temporal diagnos-

tics.

In the python code, we simulate the streak as the sum of the monopole and dipole

transverse forces, and the effect would be as in Fig. 4.3.
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Figure 4.3: Wakefield as a transverse streak on the beam of zero emittance along the longi-

tudinal path.
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The beam bunch is originally a beamline along the axis of the tube; in Fig. 4.3, it is

traveling along the t axis, here it is the path along the traveling direction. But as it travels

with an offset of r = b/2, the self-generated wakefield then produces a streak on itself as

shown in the Fig. 4.3.

As the Eq. 4.14 indicates, we have to get fζ(x) before we get the longitudinal density

function of the beam bunch ρ(ζ). The question now is to find the density function fζ(x) on

the screen along the transverse direction x. Fortunately, we can measure the density function

fζ(x) of the beam bunch on the screen directly. In this simulation, the streaked beam density

on the screen is shown in Fig 4.4. The horizontal axis here is the x on the screen and the
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Figure 4.4: Density of the deflected beam of zero emittance along the transverse direction x

vertical axis is the density. After we get the fζ(x), then the iterative algorithm can be used.

Finally, after just 20 iterations, the result is pretty good, as shown in Fig. 4.5.



43

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
ζ (mm)

0.0

0.5

1.0

1.5

2.0
ρ

(C
/µ

m
)

reconstructed distribution

original distribution

Figure 4.5: Comparison of the reconstructed density profile of the zero-emittance beam in

the longitudinal direction.

Here the blue dots are the reconstructed density profile of the beam bunch, and the red

line is the original generated beam bunch profile.

We now consider a more intricate distribution taken to be temporally modulated as a

sum of Gaussian distributions. In this case, the initial guess is a single Gaussian curve and

the iteration shows the conversion process ultimately retrieving the modulated distribution;

see Fig. 4.6.
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Figure 4.6: Evolution of the retrieved distribution functions for the 10 iteration steps.

A derailed comparison of the final retrieved distribution is shown in Fig. 4.7. The result

of retrieved distribution after 20 iterations (blue symbol) compared to initial distribution

(red trace) is in good agreement with the input distribution used.
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Figure 4.7: Retrieved distribution after 20 iterations compared to initial distribution.
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4.4.2 Case of Nonzero-Emittance Beam Reconstruction

We now test our algorithm for the case of a non-vanishing transverse emittance. The

transverse emittance is a measure of the spread of particle coordinates in position-and-

momentum phase space and has the dimension of length (e.g. meters) or length times

angle (meters times radians). A statistical definition of the emittance, which is the so-called

normalized rms emittance, is defined as

εn,rms =
1

m0c

√
< x2 >< p2x > − < xpx >2 (4.15)

where <> is defined as

< x2 >=

∑
x2

n
− (

∑
x

n
)2, < p2x >=

∑
p2x
n
− (

∑
px
n

)2, (4.16)

< xpx >=

∑
xpx
n
− (

∑
x
∑
px

n2
) (4.17)

and all sums are performed for the n particles in the distribution, i.e.,
∑
x =

∑n
i=1 xi. It is

proportional to the area of the phase space ellipse without a constant factor π. The parameter

of emittance describing a particle beam in phase space is a powerful tool in beam dynamics,

and it can be proved that the density of particles in phase space does not change along a beam

transport line, where the forces acting on particles can be derived from macroscopic electric

and magnetic fields[33]. Thus, knowing the area occupied by particles in phase space at the

beginning of a beam transport line will allow us to determine the location and distribution

of the beam without having to calculate the trajectory of every individual particle. After

the beam passes through the dielectric-lined tube, it is received on the downstream screen.
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Figure 4.8: Density profile of the nonzero-emittance beam on screen.

We can see the density of the beam fζ(x) in Fig. 4.8. We can see the density profile of

the nonzero-emittance beam on screen in the transverse direction traveling with off axis and

on axis. The red points line is the density that is deflected by the wakefield because the

beam bunch travels through the dielectric-lined tube with an offset of r0 = b/2, which gives

the beam a transverse deflecting effect. And the blue points are the density when the beam

is received on the downstream screen. As we can see, this beam is not deflected because it

travels through the tube without an offset relative to the center axis; thus, no transverse

deflecting force is produced on the beam itself.

Next, we need to deconvolve the Eq. 4.12 to get the fζ(x) for the iterative algorithm.

After 20 iterations, the retrieved beam distribution ρ(ζ) is shown in Fig. 4.9. Here the blue

line is the reconstructed density profile of the beam bunch, and the red line is the original

generated beam bunch profile.
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Figure 4.9: Comparison of the density profile of the reconstructed nonzero-emittance beam.



CHAPTER 5

CONCLUSION

The measurement of ultra-short electron bunch produced in high-energy accelerators is

crucial to many applications. Yet such a measurement is intricate and to date the most

reliable measurement relies on a transverse deflecting cavity which, given its high cost, is

limited to few accelerator facilities.

The present thesis explored a passive technique based on the use of electromagnetic

wakefield produced as an electron bunch propagated off axis in a dielectric-lined waveguide.

The wakefields introduce a time-dependent transverse force which effectively streaks the

bunch. Consequently, the simple measurement of the bunch transverse distribution provides

information on the bunch current profile.

In this thesis we first contributed to the development of an open-source program capable

of computing the electromagnetic field in a dielectric-lined waveguide. We introduced the

Green’s function computed by the program into the popular tracking program elegant and

simulated the proposed passive diagnostics.

We finally developed an iterative method to reconstruct the temporal profile of an electron

bunch and investigated its performances. In summary, the explored technique is promising

and the exploratory work performed under this thesis will serve as a basis for a possible

experimental investigation at the FAST/IOTA facility at Fermilab.
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