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ABSTRACT In this paper, we present a feedback controller that enables contact juggling manipulation of
a disk with a disk-shaped manipulator, called the mobile disk-on-disk. The system consists of two disks in
which the upper disk (object) is free to roll on the lower disk (hand) under the influence of gravity. The hand
moves with a full three degrees of freedom in a vertical plane. The proposed controller drives the object to
follow a desired trajectory through rolling interaction with the hand. Based on the mathematical model of
the system, dynamic feedback linearization is used in the design of the controller. The performance of the
controller is demonstrated through simulations considering disturbances and uncertainties.

INDEX TERMS Dynamic feedback linearization, nonprehensile manipulation, rollingmanipulation, contact
juggling.

I. INTRODUCTION
Manipulation is generally about moving an object from one
place to another. Methods to manipulate objects broadly fall
into two categories: prehensile and nonprehensile. Prehensile
manipulation uses grasp restraint characterized by form or
force closure at all times.While rigorous definitions are given
in [1], roughly speaking the grasp maintains form closure
when the object is not allowed to move even infinitesimally.
Force closure is achieved when the grasp can be maintained
despite any external wrench applied on the restrained object.

For nonprehensile manipulation, the object’s motion is
achieved by a collaboration between the manipulator con-
trols and dynamics [2], [3]. Examples include rolling, sliding,
pushing, throwing, and catching. This type of manipulation
allows the generation of complex object motions by a simple
low-degree-of-freedom robot. In addition, some tasks, such as
throwing and catching, cannot be accomplished by traditional
grasping manipulation.

Among the many types of nonprehensile manipulation,
one type that we are particularly interested in is contact
juggling [4] in which a smooth object, usually a sphere, rolls
on another smooth object, e.g., the human hand, arm, head,
or body. The generalized problem can then be formulated
as follows: Given a parameterization of the surfaces and
the desired trajectory of the object in space, how should
the manipulator be controlled to achieve the desired object
motion by rolling?

In this paper, the problem is simplified to a disk-shaped
object with a disk-shaped manipulator. This paper builds
on our previous work [5] on a rolling manipulation system
called the ‘‘disk-on-disk’’ in which feedback stabilization
is presented to balance a disk (object) on top of another
disk (hand). In addition to balancing, the task of orienta-
tion control, i.e., the hand controls the object to a target
orientation, or angular velocity control, i.e., the hand spins
the object at a target velocity, is achieved simultaneously.
In that study, however, the hand only rotates; it cannot
translate.

In this paper, we consider the disk-on-disk where the hand
moves with a full three degrees of freedom in the plane,
as shown in Fig. 1. This offers the possibility to control
the full planar trajectory of the object, rather than simply
balancing it on top of the hand while achieving orientation
or angular velocity control. Our objective in this study is
to develop a feedback controller to drive the object along a
desired trajectory using rolling manipulation.

We solve this control problem using a similar framework
of feedback linearization proposed in the previous study.
However, as opposed to the previous system, the mobile disk-
on-disk in this work is not statically feedback linearizable.
In other words, the nonlinear dynamic equation can only be
partially linearized, yielding internal dynamics. Therefore we
apply input prolongation. This procedure is called dynamic
feedback linearization, which allows the extended system
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FIGURE 1. Schematic of the mobile disk-on-disk mounted on a two-link
arm. The hand can move in a vertical plane under the influence of gravity.
The angle η2 of the object is measured counter-clockwise from the y-axis
of the frame attached to the hand center. The x-y coordinate frame only
translates with respect to the world X -Y frame.

to become statically feedback linearizable with no internal
dynamics [6].

A. RELATED WORK
In the context of contact juggling tricks, the ‘‘butterfly’’
system has been first studied in [7], where the analysis of
the shape design of a manipulator in creating rolling motion
of an object is presented. An energy-based control technique
through swing-up and balancing phases is used to stabilize the
butterfly system in [8]. Feasible trajectory planning and feed-
back control design that ensure stability in a neighborhood of
the planned trajectory are presented in [9]. The shape design
problem is formulated as a nonlinear optimization problem
with the kinematic and dynamic relationships as constraints
in [10]. Conditions on the shape of the object andmanipulator
are identified for a planar rolling manipulation system to be
input-state linearizable [11].

Control of rolling manipulation has also been studied in
various types of systems including the ball-on-beam. Based
on its simplified dynamic model, an approximate input-
output linearization method is used to achieve stabilization
in [12]. A formulation called interconnection and damping
assignment, based on passivity-based control, to stabilize the
system is proposed in [13]. This work can be applied to a large
class of underactuated systems although it requires kinetic
and potential energy shaping. A semi-global stabilization is
achieved using a nested saturation-based output feedback
controller in [14]. Building on this work, global asymptotic
stability is developed in [15] with a saturation control method
using state-dependent saturation levels. Sliding mode control
for simplified and complete models is studied in [16].

An extension of the ball-on-beam is the ball-on-plate.
Following the pioneering work by Montana [17] on kine-
matics of objects with rolling contact, conditions are given
in [18] under which an admissible path exists between two
configurations of an object. It is also shown that the motion
planning problem can be solved when a path exists. A sim-
ilar motion planning problem for the ball-on-plate is con-
sidered in [19]. The problem becomes more difficult when
the sphere has a limited contact area [20]. Controllers for
this type of system have been developed based on a dis-
continuous control strategy for exponential stabilization [21]
and non-smooth switching control utilizing the concept of
‘‘switching-driving Lyapunov function’’ [22]. An iterative
feedback control based on a nilpotent approximation to the
rolling model is presented in [23]. It is shown in [24] that
open-loop control is also possible within a small neighbor-
hood of goal orientations despite a bounded perturbation
in the ball radius. Typical approaches to the stabilization
control problem of the ball-on-plate system use approximate
linearization to easily apply linear control techniques. Under
a double-loop control structure, a linear state-feedback con-
troller is used in [25]. Approximate input-output feedback
linearization is applied in [26]. An I-PD controller, a variant
of the PID controller, is proposed to solve the stabilization
problem in [27].

The disk-on-disk system that was first studied in [5] can
be considered a challenging variant of the ball-on-beam
system where the beam is replaced by a disk. While feed-
back stabilization control is presented in [5], the backstep-
ping method [28] and a passivity-based control [29] are
also shown to perform the balancing task. This type of
rolling contact manipulation is also important in dexter-
ous grasping as it often appears between fingers and an
object [30], [31].

This paper extends our preliminary work in [32] where
the hand’s position, not the object’s, is controlled with no
trajectory tracking capability. In this paper, we directly tackle
the object position which is more desirable from a manipula-
tion point of view. As a result, this approach enables object
trajectory tracking. The stabilization of the object orientation
to a target is achieved by stabilizing the hand orientation to
the corresponding target. As is the case in [5], the object’s
angular velocity control while balancing the object on top of
the hand can also be performed as a second task.

II. DERIVATION OF THE DYNAMIC MODEL
In this section, we derive the equations of motion of the
mobile disk-on-disk system using Lagrange’s equation.

A. MOBILE DISK-ON-DISK SYSTEM
The schematic of the mobile disk-on-disk system is shown
in Fig. 1 as it is mounted on a (two-link) manipulator arm.
The local coordinate frames uh-vh and uo-vo are attached to
the centers of the hand and the object, respectively. The origin
of each frame, or the center of each disk, are given by ph =
[xh, yh]T and po = [xo, yo]T , respectively.
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While the detailed geometric background for general pla-
nar rolling is available in [5], we only present essential kine-
matics of the disk-shaped object here that are necessary to
derive the dynamic equation.

po = ph +
[
−(rh + ro) sin(θh + sh/rh)
(rh + ro) cos(θh + sh/rh)

]
(1)

θo = θh + κrsh (2)

κr =
1
rh
+

1
ro
. (3)

Here, sh ∈ R represents the arclength parameter that
parametrizes the curve of the hand, with which the contact
point is given by [−rh sin(sh/rh), rh cos(sh/rh)]T in the uh-vh
frame. κr denotes the relative curvature. Notice that the angle
represented by θh+sh/rh in (1) is the angle of the center of the
object measured with respect to the vertical line, described by
η2 in Fig. 1, whichwill be later driven to zero for stabilization.

B. DYNAMIC EQUATIONS
For simplicity, we initially treat the hand disk as a free-flying
body actuated by the linear force (Fx ,Fy) and the torque τh
through and about the center of mass, respectively. Later in
this section we simplify further, assuming that the control
inputs are the linear acceleration of the object and the angular
acceleration of the hand. Transformations between these con-
trols and typical joint torque controls of a robot arm can be
accomplished by standard techniques in robotics (e.g., [33]
and references therein).

We now derive the equations of motion in terms of the gen-
eralized coordinates q = [xo, yo, θh, sh]T with three inputs:
two forces Fx ,Fy in the direction of the X and Y axes and
torque τh about the center of the hand. We use Lagrange’s
equation,

d
dt
∂L
∂ q̇
−
∂L
∂q
= Q, (4)

where L denotes the Lagrangian L = K −U with the kinetic
energy K and potential energy U . The system’s K and U are
computed as

K =
1
2

(
mhṗTh ṗh + Ihθ̇

2
h + moṗ

T
o ṗo + Ioθ̇

2
o

)
(5a)

U = g(mhpTh + mop
T
o )
[
0
1

]
(5b)

where mh, Ih and mo, Io are the mass and moment of inertia
of the hand and object, respectively, and g is the gravitational
acceleration.

Substituting ph from (1) and θo from (2) into (5),
the dynamic model is subsequently obtained as

M (q)q̈+ V (q, q̇) = Q (6)

where Q = [Fx ,Fy, τh, 0]T . The detailed expressions for
M (q) and V (q, q̇) are provided in Appendix A. As we men-
tioned before, we consider the linear accelerations of the
object and the angular acceleration of the hand as the inputs to

the system such that [vx , vy, vz]T = [ẍo, ÿo, θ̈h]T . Rearrang-
ing (6) by substituting s̈h from the fourth equation into the
first three, the input transformation between the forces and
accelerations is given byFxFy

τh

 =
a11 a12 a13
a21 a22 a23
a31 a32 a33

vxvy
vz

+
b1b2
b3

 (7)

where

aij = mij − mi4m4j/m44

bi = Vi − mi4V4/m44.

See Appendix A formij and Vi. It should be mentioned that θo
cannot be selected as a generalized coordinate together with
xo and yo since in that case the transformation (7) cannot
be constructed due to the lack of the s̈h term in the fourth
equation of motion in (6). However, the control of the object
orientation θo at stabilization can still be achieved through θh,
which is explained in Section IV-A.

III. DYNAMIC FEEDBACK LINEARIZATION CONTROL
In this section, we show how to design a feedback controller
using dynamic feedback linearization through a change of
coordinates and input prolongation. As a result, the system
will be equivalently characterized by three decoupled linear
integrators.

A. INPUT PROLONGATION WITH
CHANGE OF COORDINATES
The equations of motion in (6) can be rewritten in state-space
representation in terms of 8-dimensional state variables z =
[xo, ẋo, yo, ẏo, θh, θ̇h, sh, ṡh]T with acceleration inputs vx , vy,
and vz.

ż1 = z2
ż2 = vx
ż3 = z4
ż4 = vy
ż5 = z6
ż6 = vz
ż7 = z8

ż8 = −
1
m44

(
m41vx + m42vy + m43vz + V4

)
(8)

It can be checked that the system above is not statically
feedback linearizable [6, Ch. 12]. In other words, when an
input-output linearization is conducted, internal dynamics
will appear. Therefore, we introduce two input prolongations
for each of vx and vy, along with the following change of
coordinates

η1 = m43θ̇h + m44ṡh (9a)

η2 = θh + sh/rh (9b)

δ = θh − θ
∗
h (9c)

ξ = θ̇h (9d)
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where m43 and m44 are the constant elements of M (q) in (6)
and the expressions are provided in (29) in Appendix A.
θ∗h is the target orientation of the hand corresponding to that
of the object. By the input prolongations, four additional
state variables of vx , ux , vy, and uy are employed. Then,
the prolonged dynamic model is expressed as

ż1 = z2
ż2 = vx
v̇x = ux
u̇x = ωx
ż3 = z4
ż4 = vy
v̇y = uy
u̇y = ωy
η̇1 = (α1 cos η2)vx + (α1 sin η2)vy + α1g sin η2
η̇2 = α2η1 + α3ξ

δ̇ = ξ

ξ̇ = vz (10)

where α1 ≡ moroκr , α2 ≡ 1/(rhIoκ2r ), and α3 ≡ 1/(roκr ).
Now, ωx and ωy are new inputs to the system along with the
original input vz. Note that the original inputs vx and vy and
their first derivatives are now considered state variables.

B. FEEDBACK LINEARIZATION
It can be proven that the prolonged system in (10) is now stat-
ically feedback linearizable with the three linearizing outputs
chosen as h1 = xo, h2 = yo, and h3 = η2 − α3δ. Taking
derivatives of these three outputs until an input appears yields

h(4)1 = ωx (11)

h(4)2 = ωy (12)

ḣ3 = η̇2 − α3δ̇ = α2η1 (13)

ḧ3 = α2α1vxc2 + α2α1vys2 + α2α1gs2 (14)
...
h 3 = α2α1(α2η1 + α3ξ )(−vxs2 + vyc2 + gc2)

+α2α1(uxc2 + uys2) (15)

h(4)3 = β(x)+ γ1(x)ωx + γ2(x)ωy + γ3(x)vz (16)

where s2 and c2 denote sin η2 and cos η2, respectively and

γ1(x) = α2α1 cos η2 (17)

γ2(x) = α2α1 sin η2 (18)

γ3(x) = α2α1α3(−vx sin η2 + vy cos η2 + g cos η2) (19)

with 12-dimensional x = [z1−4, vx , ux , vy, uy, η1, η2, δ, ξ ]T .
Due to its length, the detailed expression for β(x) is provided
in Appendix A.

As shown in (11), (12), and (16), the total relative degree
of the prolonged system is 12 which is equal to the dimension
of the prolonged system in (10). This ensures that the system
is now statically feedback linearizable yielding no internal
dynamics.

Finally, we obtain decoupled quadruple linear integrators.

h(4)1 = χ1 (20a)

h(4)2 = χ2 (20b)

h(4)3 = χ3 (20c)

with the input transformationωxωy
vz

 = 0−1
χ1χ2

χ3

−
 0

0
β(x)

 (21)

where

0 =

 1 0 0
0 1 0
γ1 γ2 γ3

.
Note that this feedback linearization is not an approximation.
The system described by (20) is exactly equivalent to the
original system (6). It should also be pointed out that this
input transformation has a singularity where γ3 = 0 in which
0−1 does not exist. The singular point is determined by η2
configuration and accelerations (ẍo, ÿo) of the object as seen
in (19). This is the case when the normal force between the
hand and the object is zero, so the object becomes uncontrol-
lable due to loss of contact.
For these decoupled quadruple integrators, the control law

can be designed as

χi = hd(4)i + Kiyi (22)

where yi = [hdi − hi, ḣ
d
i − ḣi, ḧ

d
i − ḧi,

...
h di −

...
h i]T and hdi is

a differentiable desired trajectory of at least class C4. Ki is a
row gain matrix. This control law makes the error dynamics
converge to zero with control gains chosen to have a Hurwitz
matrix.

IV. SIMULATION RESULTS
In this section, we present simulation results to demon-
strate the proposed dynamic feedback linearization controller.
As the object is controlled to follow a desired trajectory,
the object is also driven to the upright position as well as
the target orientation simultaneously. As the stability and
convergence of the system is guaranteed theoretically with
the linear controller in (22) for the transformed linear system
in (20), in order to evaluate the performance of the pro-
posed controller in a more realistic fashion, we considered
disturbance, noise, and uncertainty in the simulations. Since
disturbances to the system can be considered as an additional
input, we added 20% of the weight of the object each to the
calculated input χ1 and χ2. Also 20% of the weight of the
hand was added to χ3 in (22). In addition, an added 5% of
the actual value was considered in the feedback of the state
variables in the calculation of the control inputs in (22), which
would basically account for measurement noise as well as
parameter uncertainty. All units are SI unless otherwise noted.
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A. TRAJECTORY TRACKING WITH BALANCING
In this simulation, for simplicity a time-parameterized poly-
nomial of degree 5 is used for each desired trajectory of
xd (t) and yd (t) so that its coefficients can be uniquely deter-
mined by its initial and final conditions. With a chosen travel
time of tf = 5 sec, the following end conditions are used:

xd (0) = −0.5, ẋd (0) = 0, ẍd (0) = 0

xd (tf ) = 0, ẋd (tf ) = 0, ẋd (tf ) = 0

yd (0) = −0.5, ẏd (0) = 0.1, ÿd (0) = 0

yd (tf ) = 0, ẏd (tf ) = 0.1, ÿd (tf ) = 0

The given initial conditions are (xo(0), yo(0), θh(0), η2(0)) =
(−0.45,−0.5, 0, π7 ) and the disks start from rest yielding
zero initial conditions for all the other variables. To show
the trajectory tracking capability, an error of 0.05 is set to
the initial xo position and an error of 0.1 to the initial ẏo,
in addition to the disturbances and uncertainties added to the
simulation, as shown in Fig. 3.

For the desired trajectory of the output h3, we use hd3 (t) = 0
only to stabilize it to the origin since trajectory tracking of h3
has no physical meaning. The gains ofKi = [81 108 54 12] are
selected for all three χi in (22), which correspond to having
repeated poles at −3 in the s-plane.

The target orientation of the object is chosen as θ∗o =
π
2 .

Since this object’s target orientation is achieved by control-
ling the hand orientation, we use the following relationship
which is valid in steady state.

θ∗h = −
ro
rh
θ∗o (23)

which can be derived from (2) and (9b) when η2 = 0.

FIGURE 2. Simulation results. The quantities 1
10 δ and 1

10 ξ are plotted
here to be shown on the same scale of other variables. The convergence
of the state variables to zero indicates that the object becomes balanced
at the upright position and the target orientation.

As Fig. 2 shows, the state variables almost converge to the
origin despite the disturbances. Although the effect of the
disturbances is clearer in Fig. 3, the system still shows it is
capable of tracking the desired trajectory while correcting the
initial error.

FIGURE 3. Desired and actual trajectories of the object position. An initial
error of 0.05 m is given in xo and the system starts from rest whereas the
desired initial y-velocity is chosen as 0.1 m/s.

FIGURE 4. Snapshots that show the position and configuration of the
disks at t = 0, 1.5, 3.5, and 5 seconds, respectively. The dotted line is the
desired trajectory and the solid line represents the actual object
trajectory.

Fig. 4 shows the configuration of the disks at four times
during the manipulation. Initially the object is positioned at
an angle of η2(0) = π

7 (25.7 deg) with respect to the y-axis.
It is observed that the object is stabilized to 92.0 deg under
the disturbances while the target orientation is θ∗o = 90.0 deg.
In addition, the object is balanced at the upright position at
t = tf with an error of only 0.05 deg for η2. The desired and
actual trajectories of the object are plotted in a dotted and a
solid line, respectively.

B. NORMAL FORCE AND FRICTION COEFFICIENT
The dynamic model derived in previous sections always
assumes rolling contact. That is, for some states and controls a
negative normal force may be required, which implies losing
contact in reality. The normal forceN must be always positive
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to ensure that the hand ‘‘holds’’ the object at all times. In addi-
tion, in order for the disks not to slip, the magnitude of the
friction force Ft must be equal to or less than the maximum
static friction. These conditions are expressed as

N > 0 (24)

|Ft | ≤ µN . (25)

Using a free-body diagram of the object, the normal and
friction forces can be determined in terms of the angle η2 and
the accelerations of the object.

N = mo(vy + g) cos η2 − movx sin η2 (26)

Ft = mo(vy + g) sin η2 + movx cos η2. (27)

Fig. 5 shows the calculated normal force and required
minimum friction coefficient during the simulated motion.
It shows the normal force is always positive ensuring contact
during the motion.

FIGURE 5. The normal force and required minimum friction coefficient
during the simulated manipulation. The positive normal force at all times
ensures no loss of contact.

C. BALANCING WITH A CONSTANT ANGULAR VELOCITY
As is the case in [5], the task of balancing with a constant
angular velocity can also be conducted under the same frame-
work with a slight modification of δ = θh− θ̇∗h t in (9c). Here,
t is time and θ̇∗h is the target hand angular velocity. With the
same linearizing output h3 = η2−α3δ, the first derivative ḣ3
in (13) now turns out to be ḣ3 = α2η1+α3θ̇∗h . However, since
θ̇∗h is constant, the further derivatives of h3 do not change.
Therefore, the same control law given in (22) can still be used
for this velocity control task. The target angular velocity of
the object can be similarly set through that of the hand.

θ̇∗h = −
ro
rh
θ̇∗o (28)

Fig. 6 shows the simulation result under the same amount
of the disturbances and uncertainties, used in Section IV-A,
for θ̇∗o = 8 rad/s, which is equivalently θ̇∗h = −4.27 rad/s
with rh = 0.15 and ro = 0.08. The same initial conditions
and control gains from Section IV-A are used. As shown in

FIGURE 6. The balancing simulation results with velocity control. The plot
shows the hand velocity ξ converges to the target velocity of −4.30 rad/s
under the disturbances while the target value was −4.27 rad/s.

the figure, the hand angular velocity ξ converges to
−4.30 rad/s yielding the object velocity of 8.06 rad/s whereas
the target object velocity was 8 rad/s.

V. CONCLUSION
The study presented in this paper built on the authors’ pre-
vious work on rolling manipulation of the disk-on-disk. The
system is enhanced in away that it is attached to amanipulator
arm so that the lower disk moves in translation as well as
rotation to perform contact juggling manipulation. However,
we did not consider the arm’s motion directly in this paper
in order to provide more generalized control by assuming
we can separately control the force at the arm’s end point
to which the hand is attached. We designed a controller
that enables the object to follow a desired trajectory while
stabilizing it to a target orientation as well as balancing it
on top of the hand. The full-state, dynamic feedback lin-
earization method is applied along with input prolongations
and a change of coordinates. The performance of the con-
troller is demonstrated through simulation results considering
disturbances as well as measurement noise and parameter
uncertainties. Some potential practical issues would be (i) the
desired trajectory needs to be carefully planned so that the
manipulated motion can guarantee positive normal force at
all times and (ii) the controller requires full state feedback
including acceleration and jerk, but the measurement of those
quantities may not be easily available.

APPENDIX A
In (6),

M (q) =


mh + mo 0 m13 m14

0 mh + mo m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

 (29)
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where, with η2 ≡ θh +
sh
rh
,

m13 = mhrhroκr cos η2
m14 = mhroκr cos η2
m23 = mhrhroκr sin η2
m24 = mhroκr sin η2
m31 = −morhroκr cos η2
m32 = −morhroκr sin η2
m33 = Io + Ih
m34 = Ioκr
m41 = −moroκr cos η2
m42 = −moroκr sin η2
m43 = m34

m44 = Ioκ2r

V (q, q̇) =


V1
V2
V3
V4


V1 = −mh(rh + ro)η̇22 sin η2
V2 = mh(rh + ro)η̇22 cos η2 + (mh + mo)g

V3 = −mog(rh + ro) sin η2
V4 = −mogroκr sin η2. (30)

In (16),

β(x) = −α1α22 η̇1(vx sin η2 − vy cos η2 − g cos η2)

−α1α2η̇
2
2(vx cos η2 + vy sin η2 + g sin η2)

− 2α1α2η̇2(ux sin η2 − uy cos η2). (31)
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