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ABSTRACT

A GENERIC MEMORY DESIGN FOR A MEMORYLESS META-
HEURISTIC WITH THE APPLICATION OF FLOWSHOP SCHEDULING
PROBLEM

Shayan Mohammadi, M.S.
Department of Industrial and Systems Engineering
Northern Illinois University, 2017
Reinaldo Moraga and Gary Chen, Co-Directors

Although a strong construction phase in meta-heuristic algorithms is a critical factor to
yield high-quality solutions in the local search, it has not been investigated thoroughly. The most
effective mechanism to ensure the search in new areas is randomness, and a memory mechanism
can help the algorithm tracking potential of good solutions during the search. This research focuses
on depicting a general memory design in the construction phase of a memoryless meta-heuristic
entitled Meta-RaPS (Meta-heuristic for Randomized Priority Search) in order to showing the
effectiveness of spending more time in the construction phase. Permutation Flow Shop Scheduling
Problem (PFSP) and famous Tillard’s benchmark is represented as the application of memory
mechanism in the construction phase of Meta-RaPS. The results highlight that implementing
memory and learning mechanisms in the construction phase of Meta-RaPS improves its
effectiveness. Computational results display the algorithm’s competency even though the
algorithm is just a construction meta-heuristic. The suggested technique strengthens the hypothesis
that if the right procedure is executed in the construction phase of combinatorial optimization

problems, local search can be eventually eliminated.
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1-INTRODUCTION

Pinedo (2008) states that scheduling is an integral part of the process of decision making where
the intention of scheduling is to optimize the objective function(s) which is(are) subject to a group
of constraints. The main constraints of scheduling problems are limited number of resources over
the horizon of scheduling and due date of the jobs. Characteristics of resources may vary from
industry to industry and attributes of each problem is unique. In the world of manufacturing the
main resources are machines and operators. A detailed scheduling plan is necessary to satisfy the
required efficiency and effectiveness of a system. For example, in real world, jobs may have to
wait due to machines’ unavailability or when a high priority job arises, preemptions may occur as
aresult of this priority. Constraints and machine environment of a scheduling problem are the main

factors to define a problem and prepare a decent schedule.

The common notation in literature to address a problem is developed by Graham, Lawler, Lenstra
and Kan (1979) which is a three parameters notation o/f/y. Pinedo (2008) describes the field of a
as machine environment which consists of a single entry. Field of  discusses the characteristics
of process and constraints, 3 can have no entries, single entry, or multiple entries. The last field v,

contains the objective function and usually has a single entry.



Machine environment comprises five major categories:

1. Single machine
2. Parallel machine
Job shop
Flowshop

Open shop

ok~ w

Sun, Zhang, Gao and Wang (2011) address the following notations for each machine environment,
single machine is noted as 1, Pm is noted for identical parallel machine, Qm is noted for uniform
parallel machine, Jm is noted for job shop, Fm is noted for flowshop, and Om is noted for open
shop machining. Some of the examples for field B are permutation (prmu), sequence-dependent
setup times (SDST), precedence constraints (prec), lot streaming (Ism), no-wait (nwt), preemption
(prmp), limited buffers (block), breakdowns (brkdwn), machine eligibility (Mj), stochastic (stch),
and reentrant (retr). Sun et al (2011) provides some examples for field y such as total completion
time (C), total flow time (F), total tardiness (T), maximum completion (C,,,,) and maximum

lateness (Lyax)-

1-1 Background of the Problem

Pinedo (2008) mentions that in most facility and service industries each job has to follow a series
of operations. Regularly, all operations have to be performed on every job in the same order which
implies that, the jobs are following a same sequence or path. This condition is defined as flowshop
machine environment. Flowshop machine environment assumes machines are in series. Flowshop

machining can have some special features regarding to properties of a problem.
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Flowshop machining varies from industry to industry, a more general type of flowshop machining
is flexible flowshop. According to Pinedo (2008) a flexible flowshop or compound flowshop or
hybrid flowshop has three characteristics. It has at least more than one machine in one of the stages,
and a job has to be machined at each stage, but only on one of the machines on the stage(s) with
more than one machine. Allaoui and Artiba (2006) mention that in recent years hybrid flowshop
is @ more common practice than traditional flowshop, specifically in electronic manufacturing

industries.

According to Ruiz and Maroto (2006) the most common objective in flowshop machine
environment is finding a sequence to process the jobs on machines in order to minimize the
completion time of the last job on last the machine; this objective is called makespan or C,,,,. The
processing times of jobs on machines are known in advance, fixed, and non-negative. In other

words, the objective function is defined in a deterministic condition of process times.

Flowshops that do not allow sequence change between machines are called permutation flowshops.
In permutation flowshops, all jobs have to be machines in a same sequence or permutation.
According to Rahman, Sarker and Essam (2015) permutation flowshop is a way to process n jobs
on m machines while each job has to be processed on each machine without exception in a same

sequence.



1-2 Problem Statement

The proposed problem in this research would be a flowshop scheduling problem with n jobs j=1
to n, and m machines i = 1 to m, and the objective function is C,,,, , the classification of problem

base on the notation is:

le prmu | C max

Where:
Cmax;; = maX{Cmaxi,j_l, Cmaxi_l,j} + ¢
Cmax = Cmaxy,,

Cmax,j = Cmax; o =0

According to Johnson and Montgomery (1974), permutation flowshop scheduling with more than
two machines is NP-hard. Therefore, most researches develop heuristics and approximate methods

to find a high quality solution in a reasonable time.

Assumptions in permutation flowshop scheduling are:
® Process times t;; where i is referring to machines and itis i = 1, ...,m and j is referring

to jobsanditisj = 1, ..., n, are known and deterministic.



e Each job j can be processed at most on one machine i at a time

e Each machine i can process only one job j at a time

e No preemption is allowed

e All jobs are independent and are available for processing at time O
e The set-up times of the jobs on machines are negligible

e The machines are continuously available

e In-process inventory is allowed

The number of all possible permutations for PFSP is n!. Where n is the number of jobs on a given
problem. The effort is to assign jobs on machines in a way that minimizes the completion time of

the last job on the last machine.

Rabadi (2016) describes Meta-RaPS as a generic and high level algorithm which focuses on
constructing and then improving a feasible solution by introducing randomness in a simple
heuristic rule. Meta-RaPS was formally introduced by Moraga (2002). The main purpose of this
research is to embed an adaptive memory based procedure in the construction phase of the Meta-
RaPS with the application of PFSP. If high-quality solutions are generated in the construction

phase it would be a great step toward diminishing the improvement phase.

1-3 Objective and Scope

The objective of this research is to enhance the performance of the construction phase of Meta-
RaPS with memory and learning mechanisms. In order to get a high quality solution which
eventually leads to eliminating the improvement phase when it is compared to the other heuristics

and meta-heuristics.
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Scope of the research is designing a generic memory technique for the construction phase of Meta-
RaPS. PFSP is introduced as the application of this design. The priority sequencing rule is Dong,
Huang and Chen (2008) priority rule and the proposed method is tested on Taillard’s (1993)

benchmark to investigate:

e Effectiveness of Meta-RaPS with adaptive memory against memoryless Meta-RaPS
e Effectiveness of Meta-RaPS with adaptive Memory against other heuristics and meta-

heuristics

1-4 Deliverables

A generic memory design for the construction phase of Meta-RaPS has never been studied in the
literature. Hence this research will assist the society of operations research by providing a

completer version of Meta-RaPS.



2-LITERATURE REVIEW

Permutation flowshop scheduling problem is known to be NP-hard for more than two machines.
The domain of feasibility has n! unique solutions; therefore, only exhaustive search methods can
lead to the guaranteed optimal permutation. Pinedo (2008) states that even for small size problems
the exhaustive search method is expensive. Literature review section focuses on the main
approaches to tackle the permutation flowshop problem, Meta-RaPS, and memory in meta-
heuristics. Available techniques to deal with PSFP can be classified as exact algorithms, heuristics,

and meta-heuristics.

2-1 Exact Algorithms

Computing all n! permutations is the easiest and the most straightforward exact algorithm, since
it explores all feasible solutions and then reports the best one(s) out of all. However, this strategy
is almost impractical even for small size problems. This is due to computational complexity that

the method is dealing with.

Johnson (1954) proposes an algorithm for flowshop problems with two machines and n jobs which
provides the actual optimal solution. Johnson’s research demonstrates that the same permutation
of jobs can be applied on both machines to obtain the optimal solution. Johnson’s algorithm is

proven to find the optimal solution when the problem is dealing with two machines or three
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machines under specific conditions. However, Johnson’s rule is clearly ineffective when the

number of machines is more than three.

In addition to exhaustive search and Johnson’s rule, branch and bound techniques can provide the
optimal solution when known upper bound or lower bound of the problem is used to restrict the
search space. Ignall and Schrage (1965) developed the first and initial branch and bound algorithm

for PESP when the objective function is makespan.

2-2 Heuristics

According to Osman and Laporte (1996) in permutation flowshop problems, the most pragmatic
procedures to obtain an optimal or near optimal solutions are heuristics. This due to the fact that
these problems are NP-hard which results in expensive computational times for exact methods.
Generally, heuristic algorithms are divided into two classes of construction and improvement. In
constructive heuristics the effort is to construct a sequence based on some criteria; while

improvement heuristics improve a constructed solution iteratively with a local search method.

2-2-1 Construction Heuristics

Palmer (1965) suggests a slop index ranking method to sequencing the jobs based on ascending
order of indices, which means giving the higher priority to the jobs with lower slope (index). CDS
by Campbell, Dudek, and Smith (1970) is a heuristic method which converts a n jobs m machines

flowshop problem into a n jobs and two virtual machines problem to utilize the Johnson’s rule on
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the virtual machines. Gupta (1971) modifies Palmer’s ranking algorithm according to a function,
to sort the jobs and construct the schedule. Dannenbring (1977) introduces Rapid Access (RA)
heuristic algorithm which is the combination of Palmer’s sloping index with some modifications
and CDS algorithm. Therefore, it has an edge over Johnson’s rule which is applicable to two

machines flowshops.

Nawaz, Enscore, and Ham (1983) introduce a construction heuristic for flowshop problems which
is known as NEH heuristic. NEH has two stages:

1. Sorting the jobs in descending order of total process times of each job

2. Jobs are removed from the initial sorted sequence one by one and are then placed in a
partial sequence. When a job is going to be added to a partial schedule, it will be inserted
to all possible positions. Among all the positions, the job will be fixed in the cheapest one.
The procedure is continued till all jobs are scheduled in the partial sequence and the sorted

sequence is vacant.

According to Ruiz et al (2006) the computational complexity of the NEH is 0(n3m). However,
Tillard (1990) proposes a method that reduces complexity to O (n?m). Based on Turner and Booth
(1987), Ruiz, et al (2006) and Viagas, Ruiz, Framinan (2016) reviews on PFSP, the NEH heuristic
is regarded as the best construction heuristic for flowshop problems so far. Hence, developing
different versions of the NEH has been investigated a lot. According to Vigas et al (2016) different
versions of NEH are noted as NEH (a|b|c) in the literature. Where a, b and c are:

a) Initial order in the first stage of NEH, some examples of this field are:
LPT: describing value of sum of process time (original NEH)

SPT: ascending value of summation of process time
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Dev: ordering based on standard deviation of each job which is proposed by Li, Wang
and Wu (2004)
AvgStd: sum of mean and standard deviation of each job which is proposed by Dong
et al (2008)

b) Tie breaking mechanism when a same makespan is gained by different sequences

¢) Reversibility of the problem which is studied by Ribas, Companys and Martorelli
(2010)

2-2-2 Improvement Heurtistics

The essence of improvement algorithms is to modify an already constructed solution in order to
enhance it. This modification can be categorized into two main classes: neighborhood search,
which is switching a small portion of a constructed solution; and recombination mechanism, which
is combining decent properties of different solutions. Based on Viagas et al (2016) the most studied
neighborhood search techniques are simulated annealing (SA) and Tabu Search; and most studied
recombination mechanisms are genetic algorithm (GA), artificial immune system (AIS) and

artificial neural networks (ANN).

2-3 Meta-Heuristics

Osman et al (1996) describes meta-heuristics as systematic frameworks that can be used in
combinatorial optimization problems to improve the quality of solutions. Tillard (1990) applied
the first time version of Tabu search on flowshop scheduling, the other designs of Tabu Search for
flowshop problems introduced by Nowicki and Smutnicki (1996), and Ben-Daya and Al-Fawzan

(1998). Application of Genetic Algorithms on flowshop problems started by Reeves (1995); Chen,
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Vempati, and Aljaber (1995); and Murata, Ishibuchi, and Tanaka (1996). Simulated Annealing
functionality on flowshop problems was tested by Osman and Potts (1989) and Ogbu and Smith
(1990). Moreover, utilization of hybrid methods in the flowshop problems was started with

Zegordi, Itoh and Enkawa (1995) and Moccellin and Dos Santos (2000).

2-4 Meta-RaPS

Meta-RaPS stands for Metaheuristic for Randomized Priority Search. Moraga, DePuy and
Whitehouse (2005) describe Meta-RaPS as a general strategy that produces feasible solutions by
constructing and improving them through utilization of simple heuristic rules in a randomized
manner. Authors mention that Meta-RaPS is the product of a research conducted on the application
of a modified COMSOAL (Computer Method of Sequencing Operations for Assembly Lines) for

solving combinatorial optimization problems.

Arin and Rabadi (2013) state that Meta-RaPS first generates a feasible solution by including
randomness in the construction phase and then improves the generated feasible solution in the
improvement phase. According to Arin et al. (2013), Meta-RaPS constructs a solution by adding
feasible elements, variables, tasks or activities in a randomized fashion to a partially constructed
solution based on a priority rule until a termination criterion is met. Meta-RaPS avoids most local

optimums during the construction phase due to having the advantage of randomness.

Arin et al (2013) declares that Meta-RaPS execution needs four parameters: number of

iterations (1), the priority percentage (p%), restriction percentage (r%), and the improvement
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percentage (i%). Meta- RaPS does not select the component, variable, task or activity with the
best priority sequencing value in each iteration. On the other hand, the algorithm is constantly
altering between choosing the best component, variable, task or activity or accepting a component,
variable, task or activity with a good priority value, but not necessarily the best one. The parameter
p% defines the percentage of the time that a component, variable, task or activity with the best
priority sequencing value will be selected and added to the partial solution, and 100 — p% of the
times a component, variable, task or activity will be selected randomly from a candidate list (CL)
which contains “good” components, variables, tasks or activities. The CL is constructed by
including elements whose priority sequencing values (d;) are within r% of the range of best
priority value. Elements are added to a partial solution until a complete constructed solution is

generated.

If the best feasible element has the lowest priority sequencing rule, an element belongs to CL if:

di < a+ (f—a)x*r,where a = min(dj) and f = max(d;)

Otherwise, the best feasible element has the largest priority sequencing rule and an element

belongs to CL if:

di = f+ (a—p)*r, where a = min(dj) and p = max(d;)
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Smaller values of p% and larger values of r% add more randomness to the algorithm. In addition,

for a given value of p% , greater values of % add more randomness.

When construction of a feasible solution is completed it may go through the improvement phase.
In the improvement phase, usually a neighborhood search algorithm is employed. The parameter
i% determines whether an already constructed solution will be improved or not. Meta-RaPS keeps
track of both the best (b *) and the worst (w *) constructed objective functions. A constructed
solution will be considered for improvement phase if its objective function (Z) satisfies the

following inequality constraints:

{Z < b*+ (w*—b")i%} Minimization problems
{Z= b"— (b*—w=*)i%} Maximization problems

The idea is that the better constructed solutions can perform better in the improvement phase of
Meta-RaPS. Arin et al (2013) states that the quality of generated solutions by Meta-RaPS heavily
dependents on its parameters. Specifically the number of iterations and the improvement
percentage. However, it is worth mentioning that increasing the value of these parameters will

definitely boost the computational time of the algorithm.

Meta-RaPS has proven its effectiveness for some of the well-known N-P hard problems such as

capacitated vehicle routing problem (CVRP) by Moraga, Whitehouse, DePuy, Neyveli and
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Kuttuva (2001); bin packing problem by DePuy, Whitehouse and Moraga (2002); 0-1
multidimensional knapsack problem by Moraga et al (2005); traveling salesman problem (TSP)
by DePuy, Moraga and Whitehouse (2005); unrelated parallel machine problem (PMSP) by
Rabadi, Moraga and Al-Salem (2006); set covering problem (SCP) by Lan, DePuy and Whitehouse
(2007); Early/Tardy Single Machine Scheduling Problem by Hepdogan, Moraga, DePuy and
Whitehouse (2009); and Parallel Multiple-Area Spatial Scheduling Problem with Release Times

by Garcia and Rabadi (2011).

2-5 Memory and Meta-Heuristics

Glover and Laguna (1997) introduce a classification method for metaheuristic algorithms that have
an advantage over a memory mechanism. The classes are utilization of adaptive memory,
neighborhood search memory, and the number of solutions transmitted from one iteration to the
next ones. According to memory classification of Glover at al. (1997) a three field notation a|b|c
can help classify meta-heuristic algorithms. If a metaheuristic has an advantage over adaptive
memory, field a will be noted as A, otherwise it would be regarded as memoryless and it will be
noted as M. Based on the neighborhood search mechanism the second field, b, will either be N if
there exists a systematic neighborhood search or S if a random sampling method is utilized. The
field, c, would be noted as 1 if in each iteration the algorithm is dealing with one solution. On the
other hand, the field, c would be noted as P if the algorithm is based on a population of solutions

with size of P. Tablel summarizes the memory classification’s description.
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Table 1. Memory in Metaheuristics Classification

a Using Adaptive Memory A | Adaptive Memory
M Memoryless

b Type of Neighborhood Search N Systematic Search
S Random Search

c Number of Solutions at Each Iteration 1 Single Solution
P Population Solution

Arin et al (2013) states that considering Tabu Search (TS) is the best way to define the foundation
of memory and learning in meta-heuristics. TS is based on four major facets: recency, frequency,
quality, and influence. Recency tracks the changes in attributes of solutions in the search process
which are changed recently. Tabu is an attributes in the recent visited solutions and a tabu move

is a move that leads to a tabu attribute.

The best way to summarize recency in one word is short term memory. Therefore, there should be
a facet that deals with long term memory. Frequency takes the responsibility of long term memory
in TS. Frequency includes two major aspects: transition frequency, which measures how frequent
attributes are changing; and residence frequency, which measures how frequent attributes are
considered in generated solutions. Glover et al (1997) illustrates this feature by an example in
scheduling: transition frequency can be considered as the number of times that job j has been

moved to an earlier position in the sequence, and residence frequency can be considered as the
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summation of tardiness for a given job (j) when it is located in position [k]. Quality deals with the
shared features of good solutions or the paths that guide to a good solution. Mechanisms such as
applying penalty for poor moves that may lead to poor solutions are considered are instances of
quality. The last mentioned facet is influence. Influence is the effects of the decisions which are
made in the process of generating a solution. Quality facet can be regarded as a type of influence

facet.

2-5-1 Adaptive Memory Programming

Taillard, Gamberdella, Gendreau and Potvin (2001) summarize principles of an effective adaptive
memory programming (AMP) in meta-heuristics. This research compares and integrates common
features between different approaches in metaheuristics that have an advantage over AMP.
According to Taillard et al (2001), the foundation of an effective AMP is based on some or all of

the following features:

1. Memorizing a set of solutions or special data structures that aggregates the particularities
of the generated solutions throughout the search

2. Constructing a provisional solution with memorized data;

3. Using a logical search algorithm or a more sophisticated metaheuristic to improve the
solutions

4. Using new solutions’ information to update memorized data structure.

Taillard (1998) declares that the performances of AMP approaches are much better than heuristic

algorithms such as simulated annealing and genetic algorithms, and this is due to utilization of



17
memory in AMP algorithms. It can be seen in Tillard’s work (1998) that utilization of AMP can
find a better solution in a shorter time compared to Tabu Search, Simulated Annealing, and
Variable Neighborhood Search. Tillard provides stronger evidences to support his argument in a
further research entitled “Adaptive Memory Programming: A unified view of metaheuristics”,
Taillard et al (2001). This research compares different heuristics including different AMP methods

on NP-hard problems such as quadratic assignment problem (QAP).

2-5-2 Meta-RaPS and Memory

Based on Glover et al (1997) metaheuristics classification, Meta-RaPS is a memoryless meta-
heuristic. Therefore, it can benefit from a systematic procedure that utilizes memory in its
structure. Meta-RaPS with memory concept was investigated by Lan et al (2007) for the first time
on a set covering problems (SCP). Two adaptive memory structures were utilized in Lan et al
(2007) research. First, utilization of elements’ fitness in a priority rule, which is the idea of quality
in TS or how frequent an element from a solution collaborates in a set of elite solutions. Second,
partial construction which it is an illustration of a work done by Glover and Laguna (2000) on

scatter search and path relinking which explore new solutions by tracking high-quality solutions.

Zegarra-Ballon (2009) investigates incorporation of memory in Meta-RaPS on a problem of
unrelated parallel machine scheduling by integration of element fitness research by Lan et al.
(2007), and recency from TS. Zegarra-Ballon’s (2009) algorithm tracks the changes that are made
in the recent past based on recency and changes the priority rule with element fitness.

Computational results of these two researches show that Meta-RaPS with memory outperforms
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the original Meta-RaPS. Current researches show that not only Meta-RaPS is a strong meta-
heuristic framework for solving combinatorial optimization problems, but also the integration of

memory in its structure can improve its performance.

Objective of this research is to design a generic adaptive memory structure for the construction
phase of Meta-RaPS with the application of permutation flowshop scheduling problems and
compare the outcomes with original Meta-RaPS and other competitive meta-heuristics in the
literature. The ideal purpose of this research is to assess the idea of generating high-quality

solutions that eliminate the necessity of the improvement phase.

Although there exist Meta-RaPS designs with memory in the literature, but a generic memory
design is not available. Hence, designing a memory framework that helps Meta-RaPS to be
considered as an Adaptive memory based meta-heuristic (according to Glover et al (1997)

classification in Table 1) is favorable.

2-6 Summary

Literature review of flowshop scheduling problems reveals that the quality of Meta-RaPS as a
meta-heuristic to solve flowsshop problems has not been investigated yet, so it can be seen as a
gap to perform a research on. Most available meta-heuristics spend the minimum time on
construction while Meta-RaPS attempts to balance the workload between the construction phase

and the improvement phase.
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Meta-RaPS with memory was studied by Lan et al (2007) to solve set covering problems and by
Zegarra-Ballon (2009) to solve unrelated parallel machine scheduling problems. However, the
design in neither of these researches is generic. Therefore, a generic memory structure for Meta-

RaPS is another gap in this area.

In summary, the purpose of this research is to design a memory framework for Meta-RaPS to
improve the effectiveness of this algorithm. Moreover, since the performance of Meta-RaPS in

flowshop scheduling is not investigated, PFSP is selected as the application of this design.



3-METHODOLOGY

It is stated in the literature review that Meta-RaPS is a promising meta-heuristic that not only uses
construction and improvement heuristics to generate high quality solutions, but it also attempts to
balance the workload among these two phases. Rabadi (2016) states that Meta-RaPS constructs
feasible solutions through utilization of randomness in a systematic procedure to avoid getting
stuck in most local optimums and then uses a local search technique to enhance the solutions with
the hope of reaching to a global optimum. Meta-RaPS execution needs four parameters: the priority
percentage (%p), the restriction percentage (%r), the improvement percentage (%i), and the

number of iterations (1).

Number of iterations (1) controls execution of the process. p and r determine how the construction
heuristic selects the next job and adds it to the partial solution. In addition, the improvement
percentage determines whether a constructed solution will be passed through the improvement

phase or not.

3-1 Meta-RaPS Construction Phase

NEH is the best construction heuristic (Turner et al, 1987; Ruiz et al, 2006; and Viagas et al,

2016) for PFSP with the objective of makespan.



21

Original NEH is as follows:
1- Order the n jobs in decreasing value of summation of process times on machines
2- Take the first two jobs and calculate both possible permutations’ makespan, and then
select the permutation with the lower makespan
3- For job j*", j =3,...,n, insert the job into all possible places in the partial sequence and

among j possible positions put the job in the position that minimizes makespan

It is obvious that NEH construction heuristic has two phases as follows:

1- Generate an initial sequence
2- Construct a solution

Speaking colloquially, first phase of NEH is assigning a priority sequencing value to the jobs and
sorting them by descending value of this priority sequencing rule, and second phase of NEH is

constructing a partial schedule gradually until a complete solution is obtained.

3-1-1 Meta-RaPS in the Initial Phase of NEH

Dong et al (2008) improves the NEH by changing the priority rule in the phase one. The priority
rule is based on the following hypothesis: the larger the deviation for processing times for a given
job on machines, the higher its priority should be. Therefore, Dong et al (2008) use a priority rule

of AVG; + STD; in phase one and sort the jobs in a decreasing order of AVG; + STD; while AVG;

is:

1 m
i=1



22

And standard deviation of process times for a given job j is:

m
1
STD] = mzl(pu - AVG])
=

Dong et al (2008) perform a one-side paired t-test on their priority rule and original NEH on
Tillard’s benchmark (1993). They state when the significance level is 0.05 AvgDev = AVG; +
STD; performs better that NEH. Hence the utilized priority sequencing rule in this research is Dong

et al (2008) priority rule and it is noted as AvgDev.

Li et al (2004) and Dong et al (2008) show that initial sequence of NEH has a great impact on the
quality of the second of phase of NEH; therefore in this section utilization of Meta-RaPS in the

first phase of NEH with Dong priority rule is introduced.

In sequence construction phase, Meta-RaPS uses AvgDev as the priority sequencing rule. While
adding a job to the sequence, the parameter p determines that p percent of the time the job with
the best priority sequencing value (max(AvgDev)) should be added to the sequence, and 100 —
p% of the time a job from the CL. The jobs in CL are the ones that are not sequenced and their

AvgDev values are within r percent of the range of best AvgDev.
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When a sequence is constructed the second phase of NEH is performed. In other words, a job is
always positioned in the position that minimizes makespan. Ties are broken arbitrary. The pseudo

code for this algorithms is as Figure 1.

1- Set parameter I, p, r, Sch*=inf,
2- Forlter=1tol
3- Set Seq=@, Sch=@, j¢* ={1,....,n},and K = 1

4- Generate a random number rnd € [0,1]

5- If rnd <p

6- Jj* is the job that satisfies d*; = max(AvgDev;)
7- Else

Take j* randomly from the set of all j € j¢ that satisfy

d; = max(AvgDev;) + [min(AvgDev,) — max(AvgDev;)| *r
8- End
9- Assign job j* to Seq in position k

10-  Set k=k+1

11-  Delete j* from j¢

12- If j%= @ go to line 14, else go to line 4

13- End

14-  Perform NEH second phase insertion method on Seq to construct Sch
15- If Cmax(Sch) < Cmax(Sch™)

16- Update Sch*

17- End

18- End

19- Report Sch* and Cmax(Sch*)

Figure 1. Pseudo Code for Meta-RaPS In the First Phase of NEH
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3-1-2 Meta-RaPS in the Second Phase of NEH

This section introduces another design of Meta-RaPS, which is implementing Meta-RaPS in the
second phase of NEH or job insertion in the partial schedule and selecting the position that

minimizes makespan of partial schedule.

Initial sequence is constructed with Dong’s priority rule and in the second phase, Meta-RaPS
uses Crnqx Partial schedule as the priority rule. While adding a job to a partial schedule the
parameter p determines that p percent of the time the job is going to be inserted in the position that
minimizes the C,,4,. The remaining times (1 — p), the job is going to be located in a position
randomly from those positions that their C,,,, Values are within r percent of the range of best

(minimum) C,,.,. The pseudo code is as Figure 2.

3-1-3 Meta-RaPS in Both Phases of NEH

This design is the integration of both Meta-RaPS in the first and Meta-RaPS in the second phase
of NEH. First the algorithm constructs a sequence with Dong’s priority rule in Meta-RaPS
framework and when a feasible sequence is generated the algorithm uses this sequence as the input
of Meta-RaPS in the second phase of NEH. Trial and error process confirms that the parameters p
and r should be tuned separately for Meta-RaPS in the first phase and Meta-RaPS in the second
phase. Meta-RaPS in the first phase is noted by MR1 and the Meta-RaPS in the second phase is

noted by MR2. The process is illustrated in Figure 3.
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1- Sequence the jobs in descending order of AvgDev
2- Set parameters p, r, |, Sche™ = @, Cmax(Sche™)=inf
3- Forlter=1to |

4- PartialSchedule= @

5- Forj=1ton

6- Take job j from sequence

7- If j==1

8- Locate j in PartialSchedule

9- End

10- Fork=1to]

11- Insert job j in position k of PartialSchedule and calculate Cmax(k)
12- End

13- Generate a random number (rnd)

14- If rnd<p

15- Make position of job j permanent in min(Cmax(K))

16- Else choose position of job j arbitrary from positions that satisfy

Cmax(k) > min(Cmax(Kk))+[max(Cmax(k))-min(Cmax(k))]*r
17- End

18- End

19- Sche= PartialSchedule

20- If Cmax(Sche)<Cmax(Sche™)
21- Update Cmax(Sche™)

22- End

23- End

24- Report Cmax(Sche*) and Sche*

Figure 2. Pseudo Code for Meta-RaPS in the Second Phase of NEH

1- Set parameter rl1,pl, r2, p2, | and Sch*=inf
2- Forlter=1to |

3- Apply MR1 line 3 till 13

4- Apply MR2 line 5 till 19

5- If Cmax(Sche)<Cmax(Sche™)
6- Update Cmax(Sche™)

7- End

8- End

9- Report Cmax(Sche™) and Sche*

Figure 3. Pseudo Code for Meta-RaPS in Both Phases of NEH
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3-2 Adaptive Memory Based Meta-RaPS

This research investigates the effectiveness of embedding memory in the construction phase of a
memoryless meta-heuristics called Meta-RaPS which is a randomized algorithm that tries to share
the workload between the construction phase and the improvement phase with the hope of
eliminating the improvement phase. The focus of this section is to design a generic memory
mechanism in the construction phase of Meta-RaPS with the application of flowshop scheduling
problems. It is mentioned in the literature review section that memory is successfully implemented
in Meta-RaPS by Lan et al (2007) for Set Covering Problem and by Zegarra-Ballon (2009) for
Unrelated Parallel Machine Scheduling Problem by element fitness which is a technique derived
from Tabu Search and is generally embedded on improvement heuristics rather than construction

heuristics.

3-2-1 Memory Design and its Integration in Meta-RaPS Construction Phase

Multi-start algorithms usually do not benefit from generated knowledge of previous solutions in
their construction phase. However, a multi-start algorithm that benefits from this knowledge in its

construction phase can be designed by applying a well-established precept into it.

Consider list S that consists of e elite solutions with respect to an objective function. S has e null
solutions at the beginning of the search with the costs of infinity (for minimization problems). Let
C(N) be the cost of a new feasible solution N, and C(Worst(S)) be the maximum cost in list S,

if C(N) < C(Worst(S)), N is a candidate to be added in S and it will replace Worst(S).
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In each iteration, before Meta-RaPS generates a new solution, a frequency matrix is implemented
in a probabilistic procedure as a memory mechanism. Probability matrix tracks the occurrence of
each variable in the elite list. Consider Table 2 as the set of elite solutions for a problem with 5

jobs (n = 5) and 3 machines (m = 3) where e = 4.

Table 2. List S of elite solutions

List S
Position
S 1 2 3 4 5
1 4 1 5 2 3
2 3 2 5 1 4
3 2 4 3 5 1
4 2 1 5 3 4

Elements of matrix represent the jobs and their positions in each elite solution. As an example in
S1: job4 is in positionl, jobl is in position2, job5 is in position3, job2 is in position4 and job3 is
in position5. The frequency matrix which is a square matrix (n * n) tracks the occurrence of each

job in each position and it can be derived from S (Table 2), Table 3 shows the frequency matrix as

follows:



Table 3. Frequency Matrix

Position
1 2 3 4 5
1 0 2 0 1 1
2 2 1 0 1 0
Job 3 1 0 1 1 1
4 1 1 0 0 2
5 0 0 3 1 0
Ojk
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The probability p;, = S where Ojk is the number of times job j is happening in position k.
jOjk

The probability matrix of this example is as Table 4 where the summation of each row and each

column of the table should be equal to one.

Table 4. Probability Matrix

Position
1 2 3 4 5
1 0 0.5 0 0.25 0.25
2 0.5 0.25 0 0.25 0
Job 3 0.25 0 0.25 0.25 0.25
4 0.25 0.25 0 0 0.5
5 0 0 0.75 0.25 0
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Now consider parameter m as mimicking percentage parameter. This parameter controls how often
the probability matrix is going to be used. Elite solutions have n variables (in this case position);
therefore for k values one through n a random number (rnd) would be generated, if rnd (k) < m
a job j would be copied in the partial solution with respect to the probability of jobs on the
associated column with position [k] in the probability matrix, then the job should be removed and
the probability matrix should be updated after this removal. When utilization of memory is done
the solution is incomplete, so Meta-RaPS construction phase (without used jobs) would be applied

on this currently incomplete solution to generate a complete feasible solution.

Suppose m = 0.4 and rnd(1) = 0.3, since rnd(1) < m, so position [1] should be filled with the
probability matrix. Chance of jobs to be selected for position [1] are: {p;; = 0, p,; = 50, p3; =
25, p41 = 25 and ps; = 0}. Assume job 3 is selected for position [1], now job 3 will be located

in the position [1] as Figure 4.

Position
1 2 3 4 5
3(job)

Figure 4. Partial Constructed Solution
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When job 3 is removed from frequency matrix the probability matrix should be updated as Table
5. This is to avoid using this job in another position. The process continues for positionk = 2 ton
(to consider all positons for partial construction). The new partial constructed solution is currently
incomplete, so Meta-RaPS construction phase would be applied on this currently incomplete

solution to generate a complete feasible solution.

Table 5. Updated Probability Matrix after Removing Job 3

Position
1 2 3 4 5
1 0 0.50 0] 0.33 0.33
2 0.67 0.25 (0] 0.33 0
Job 3 0 (0] 0] 0 0
4 0.33 0.25 (0] 0 0.67
5 0 0 1.00 0.33 0

To keep the diversity of S high in the first iterations the value of m should be adjusted adaptively,

but up to a threshold(&). The threshold ensures that the percentage of partial construction will not
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pass a certain level. This is to keep the essence of randomness in Meta-RaPS. Value of m can be
adjusted with a function of f (iter). A simple theoretical function that has a linear behavior is used

in this research as follows, behavior of this function is depicted in Figure 5

f(iter) = log(1 + e'te")

_ (f(iter) if 0< f(iter) < §
m—{ 6 if f(iter) > 6

100.0
80.0

60.0

fliter)

40.0
20.0

0.0
0 20 40 60 80 100 120 140 160 180 200

Iter

Figure 5. Behavior of Theoretical Function with Number of Iterations
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3-2-2 Adding a Learning Mechanism

Elite list (S) tracks high quality solutions and it is used in a probabilistic fashion to construct a
partial solution from good solutions. However, the memory mechanism does not bias the search
and priority sequencing rule toward high quality solutions; therefore adding a mechanism that
adjusts the priority rule toward high quality solutions is favorable. Essentials of priority rule
adjustment are designed according to the principle of Tabu Search by Glover et al (1997). Meta-

RaPS with memory and learning structure is denoted as MMR.

The assumption of adjustment is the following hypothesis, the more frequent a job is appearing in
the first positions of the elite list, the higher its priority should be. Glover et al (2000) describes
the principles of priority rule adjustment as follows: consider attribute sets as A(x), each attribute
is counted (weighted) in accordance with the number of times it appears in elements of A(x).
Speaking colloquially, the weight assigned to A(x) is the weighted average of attributes of A to
create a linear weighting combination. By considering the hypothesis of adjustment and the Glover
principle of adjustment, frequency matrix can be used to count how often a job is appearing in a
given position in the elite list. Moreover, a slope index adjusts the weight of each position
(attribute). Let k = 1 to n be the notation that shows the position in schedule. By a linear weighting

scheme we would have:

n+1-—-k
Wiy =——""—
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Now the impact of each position (attribute) k on the priority rule for each job is:

AvgDev;
AvgDev;; = i

1—=1xW *Djk

A learning parameter [ is introduced to control the influence of adjustment on the priority rule
(setting 1=0 forces the model to utilize original priority rule). Dividing the priority rule by the
weighting scheme that gives higher weight to the first positions makes sure that if a job is observed

more in first positions its priority rule should be increased more.

Finally the new priority rule can be calculated by taking the average of all positions’ priority rules:

1 n
AvgDev; = % AvgDev;
k=1
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3-2-3 Keeping Diversity of Elit List

A critical factor to avoid being trapped in local optimums is to keep the elite list divers. Designing
a criterion to evaluate the goodness of replacing a high quality solution with one of the current

solutions in S is essential.

Level of diversity can be evaluated by comparing the candidate solution (S”) with available elite

solutions in S . In other words, measuring number of observed differences in a candidate solution
[S'] and elite solutions[S;]. If similarity level of the candidate solution with elite solution i is less

than a parameter d (diversity parameter), the candidate solution is diverse enough and it will be
added to S if its objective function is better than Worst(S). A candidate solution may have a better
objective function than Best(S). If this condition happens, the candidate solution will be added to
elite list even if it is not diverse enough, because it satisfies an aspiration criterion which is having

the best objective function. In summary a solution will be added to elite list if:

[S']—[S;]] <d.n
{C(S’) < C(Best(S))
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3-3 Adding a Tie Breaming Strategy to MR2

Preliminary results showed that implementation of Meta-RaPS in the second phase of NEH is
facing considerable amount of ties in candidate list, and according to the essence of Meta-RaPS
which is selecting randomly from the candidate list, ties are broken arbitrarily. It is obvious that
the cheapest insertion does not lead to a high quality solution (cheapest insertion is the method of
original NEH). In current state of the algorithm ties are broken arbitrarily but a more scientific
way to break the ties may improve the effectiveness of the algorithm. According to Dong et al
(2008) there is no global tie breaking algorithm that breaks the ties optimally in all problems but
tie breaking strategies can improve the overall performance of an algorithm. Vigas and Framinan
(2014) reviewed all available tie breaking rules for PFSP and all the proposed tie breaking
algorithms are applied on the cheapest position. Vigas et al (2014) Computational results confirm
that minimization of total idle time is best tie breaking mechanism, however it may not be effective
in all problems. The tie breaking strategy in this research is the minimization of total idle time for

the candidate list instead of cheapest position.

Idle time does not have a universal meaning in literature (Vigas et al, 2014). Available definitions
for idle time are:

e Considering front delays and back delays
e Without consideration of both front delays and back delays.
o Considering front delays and excluding back delays.
Last definition of idle time which is considering front delays and excluding back delays is utilized

in the tie breaking strategy of this research. Let It; be the idle time of machine i and n be number

of currently scheduled jobs, the idle time of machine i can be calculated by:
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n

Iti = Cmaxin — Z tij
j=1

And the total idle time is:

m
It=z Iti
i=1

This tie breaking strategy means if a position from candidate list is selected and there exist(s)
another/other position(s) with the same makespan the position with lower idle time is prior to other

position(s). If there is another tie, ties are broken arbitrary.



4-COMPUTATIONAL RESULTS

Three different procedures to implement Meta-RaPS in NEH are discussed, in the initial phase
(sequencing stage), in the second phase (insertion stage), and a Meta-RaPS with memory and
learning structure. This chapter starts with parameter tuning and goes through different designs to
test the effectiveness of implementing Meta-RaPS in PFSP. Methods will be tested on Tillard’s
benchmark (1993), Tillard’s benchmark has 12 problem sets. Starting with 20 jobs on 5 machines

and going to 500 jobs on 20 machines and each problem set contains 10 instances.

4-1 Parameter Tuning in Meta-RaPS

Meta-RaPS is controlled by four parameter: priority percentage (p), restriction percentage (r),
improvement percentage (i) and number of iterations (). Since the focus of this research is just

on the construction phase of Meta-RaPS the improvement percentage is considered zero.

According to Coy, Golden, Runger, and Wasil (2001) there are several strategies to effectively
tune heuristics’ and meta-heuristics’ parameters. The complexity of process varies from trial and
error to a more complex sensitivity analysis; therefore, it is a difficult task to find a universal
effective value for parameters. In this paper, for each parameter a pre-determined set of values is

considered.
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Moraga (2002) defines a systematic approach to tune the parameter as following:

Step 1: Select a subset of problems to analyze from all the instances of problems.

Step 2: Select the domain that parameters will vary upon.

Step 3: For each problem in the subset, run Meta-RaPS with changing a parameter over its domain
while other parameters are unchanged. Report the best outcome for the first parameter, continue
tuning such that all parameters are reported. For example first manipulate parameter r while p and
i are constant (set to zero). Report the r% associated with the best objective function. Continue
tuning process with next parameter, p, while r is constant and i is zero.

Step 4: Use the reported parameters in Step 3 and apply them to problem sets.

Table 6 summarizes selected domain for parameters p and r for MR1 and MR2. Parameters with
subscript 1 are associated to Meta-RaPS in the first phase of NEH (MR1) and parameters with
subscript 2 are associated with Meta-RaPS in the second phase of NEH (MR2). A random problem
set with 3 small size problems (20 and 50 jobs) and 3 large size problems (100 and 200 jobs) is
selected from Tillard’s benchmark. The outcome of the tuning process and values are demonstrated

in Table 6. The number of iterations (1) is set to 200.

Table 6. Parameters Tuning Summary

Parameter Set Best value
p1 {10%, 20%, 30%} 10%
L6} { 50%, 60%, 70%, } 70%
p2 {60%, 70%, 80%, 90% 80%
T2 {5%, 10%, 15%, 20%} 10%
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4-2 Meta-RaPS in the First Phase of NEH Computational Results

Initial phase of NEH is sequencing stage. In the original NEH jobs are sequenced in decreasing
values of summation of process times. Meta-RaPS adds randomness into a given priority
sequencing rule to create more diverse solutions. Integration of NEH sequencing phase in Meta-
RaPS construction phase is illustrated in section 3-1-1. Methods are tested on Tillard’s benchmark
with 5 independent runs and the best solution is reported from all runs. The algorithm is coded in

Matlab 2011 with an Intel CORE-i5 CPU @ 2.5GHz and 4GB installed memory.

Performance of the algorithm on each instance is measured by the deviation of makespane (Cy,qx)

from the best known solution (BKS) in OR-library as of April 2017.

Cmax, — BKS
*

1
BKS 00

Dev =

NEH deviation of makespans and MR1 deviation of makespans from BKSs and the average
computational time of MR1 for each Tillard’s instance is shown in Table 7, Table 8, Table 9, and

Table 10. If a BKS solution is found it is highlighted in bold.



Table 7. Computational Results on 20-job Taillard’s Benchmark (MR1)
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Problem n*m BKS | NEH | NEH Deviation | Meta-RaPS Meta-RaPS Average
(%) Deviation (%) | time (s)

TAO001 1278 | 1286 0.63 1278 0.00

TAO002 1359 | 1365 0.44 1365 0.44

TAOQ03 1081 | 1159 7.22 1104 2.13

TA004 1293 | 1325 2.47 1306 1.01

TAO005 20*5 1235 | 1305 5.67 1250 121

TAO006 1195 | 1228 2.76 1195 0.00 1
TAO007 1239 | 1278 3.15 1241 0.16

TAO008 1206 | 1223 141 1207 0.08

TAO009 1230 | 1291 4.96 1238 0.65

TAO010 1108 | 1151 3.88 1126 1.62

TAO11 1582 | 1680 6.19 1604 1.39

TAO012 1659 | 1729 4,22 1691 1.93

TAO013 1496 | 1557 4.08 1514 1.20

TAO014 1377 | 1439 4,50 1398 1.53

TA015 1419 | 1502 5.85 1442 1.62

TA016 20710 1397 | 1453 4.01 1421 1.72 2
TA017 1484 | 1562 5.26 1494 0.67

TAO018 1538 | 1609 4.62 1557 1.24

TAO019 1593 | 1647 3.39 1620 1.69

TAO020 1591 | 1653 3.90 1617 1.63

TAO021 2297 | 2410 4.92 2322 1.09

TAQ22 2099 | 2150 2.43 2106 0.33

TAOQ23 2326 | 2411 3.65 2347 0.90

TAQ024 2223 | 2262 1.75 2227 0.18

TA025 2291 | 2397 4.63 2323 1.40

TA026 2020 2226 | 2349 5.53 2263 1.66 5
TAO027 2273 | 2362 3.92 2312 1.72

TAO028 2200 | 2249 2.23 2220 0.91

TA029 2237 | 2320 3.71 2260 1.03

TAO030 2178 | 2277 4.55 2210 1.47




Table 8. Computational Results on 50-job Taillard’s Benchmark (MR1)
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Problem n*m BKS | NEH NEH Meta-RaPS | Meta-RaPS | Average
Deviation Deviation time (s)
TA031 2724 | 2733 0.33 2724 0.00
TA032 2834 | 2843 0.32 2843 0.32
TA033 2621 | 2640 0.72 2622 0.04
TA034 2751 | 2782 113 2761 0.36
TA035 | °0  [2863 | 2868 017 2864 0.03
TA036 2829 | 2850 0.74 2829 0.00 2l
TA037 2725 | 2758 121 2725 0.00
TA038 2683 | 2721 1.42 2683 0.00
TA039 2552 | 2576 0.94 2554 0.08
TA040 2782 | 2790 0.29 2782 0.00
TA041 2991 | 3135 181 3086 3.18
TA042 2867 | 3032 5.76 2053 3.00
TA043 2839 | 2986 5.18 2950 3.01
TA044 3063 | 3198 401 3107 1.44
TA045 2976 | 3160 618 3075 3.33
TA0as | %19 3006 [3178 5.72 3104 3.26 28
TA047 3003 | 3277 5.95 3178 2.75
TA048 3037 | 3123 2.83 3088 1.68
TA049 2897 | 3002 3.62 2064 231
TA050 3065 | 3257 6.26 3169 3.39
TAO51 3850 | 4082 6.03 4007 4.08
TA052 3704 | 3921 5.86 3864 432
TA053 3640 | 3927 7.88 3796 4.29
TA054 3720 | 3969 6.69 3857 3.68
TA055 3610 | 3835 6.23 3879 7.45
50%20 35
TA056 3681 | 3914 6.33 3816 3.67
TA057 3704 | 3952 6.70 3874 459
TA058 3601 | 3938 6.69 3898 5.61
TA059 3743 | 3952 5.58 3878 3.61
TA060 3756 | 4079 8.60 3874 3.14




Table 9. Computational Results on 100-job Taillard’s Benchmark (MR1)
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Problem n*m BKS | NEH | NEH Deviation | Meta-RaPS Meta-RaPS Average
Deviation time (s)

TAO61 5493 | 5519 0.47 5493 0.00

TA062 5268 | 5348 1.52 5280 0.23

TAO063 5175 | 5219 0.85 5179 0.08

TA064 5014 | 5023 0.18 5021 0.14

TAO065 100*5 5250 | 5266 0.30 5250 0.00

TA066 5135 | 5139 0.08 5135 0.00 29
TAO067 5246 | 5259 0.25 5249 0.06

TAO068 5094 | 5120 0.51 5097 0.06

TA069 5448 | 5489 0.75 5449 0.02

TAO070 5322 | 5341 0.36 5328 0.11

TAO071 5770 | 5846 1.32 5807 0.64

TAO072 5349 | 5453 1.94 5394 0.84

TAO073 5676 | 5824 2.61 5713 0.65

TAO074 5781 | 5929 2.56 5895 1.97

TAOQ75 5467 | 5679 3.88 5562 1.74

TAOT6 10010 5303 [ 5375 136 5335 0.60 43
TAQ77 5595 | 5704 1.95 5648 0.95

TAOQ78 5617 | 5760 2.55 5695 1.39

TAO079 5871 | 6032 2.74 5940 1.18

TAO080 5845 | 5918 1.25 5903 0.99

TAO81 6202 | 6541 5.47 6493 4.69

TAO082 6183 | 6523 5.50 6414 3.74

TAO083 6271 | 6639 5.87 6518 3.94

TAOQ84 6269 | 6557 4.59 6480 3.37

TA085 6314 | 6695 6.03 6541 3.60

TA086 100720 6364 | 6664 4.71 6622 4.05 69
TAO087 6268 | 6632 5.81 6510 3.86

TA088 6401 | 6739 5.28 6685 4.44

TA089 6275 | 6677 6.41 6537 4.18

TA090 6434 | 6677 3.78 6640 3.20




Table 10. Computational Results on 200-job Taillard’s Benchmark (MR1)
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Problem n*m BKS | NEH | NEH Deviation | Meta-RaPS Meta-RaPS Average
Deviation time (s)

TA091 10862 | 10942 0.74 10892 0.28

TAQ092 10480 | 10716 2.25 10614 1.28

TAQ093 10922 | 11025 0.94 11017 0.87

TA094 10889 | 11057 1.54 10921 0.29

TA095 10524 | 10645 1.15 10575 0.48

TAQ096 200710 10329 | 10458 1.25 10338 0.09 248
TAQ97 10854 | 10989 1.24 10934 0.74

TA098 10730 | 10829 0.92 10798 0.63

TA099 10438 | 10574 1.30 10501 0.60

TA100 10675 | 10807 1.24 10758 0.78

TA101 11195 | 11594 3.56 11195 3.39

TA102 11203 | 11675 421 11203 3.98

TA103 11281 | 11852 5.06 11281 4.32

TA104 11275 | 11803 4.68 11275 3.62

TAL105 11259 | 11685 3.78 11259 3.03

TAL106 200720 11176 | 11629 4.05 11176 3.82 481
TAL107 11360 | 11833 4.16 11360 3.57

TA108 11334 | 11913 511 11334 3.43

TA109 11192 | 11673 4.30 11192 3.70

TA110 11288 | 11869 5.15 11288 4.05
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When the number of machines are relatively low MR1 can find almost all the BKS. This is due to
the fact that the complexity of problem is not significant. Therefore, it can be stated that a small
amount of variation in a greedy rule can lead to extremely high quality solutions when the problem
is dealing with a few machines. However, when the number of machines increases to 10 and 20
machines the algorithm is still better than NEH but not quite strong. This due to the fact that when
number of machine increases the importance of second phase of NEH to yield good solutions
increases. Therefore, randomness can improve the performance of NEH but not as well as low

machine conditions

MR1 challenges the main idea behind NEH heuristic which is, the jobs with long process times
must be scheduled as soon as possible. Dong et al. (2008) and L.i et at. (2004) show that there exist
other critical factor to consider in sequencing stage of NEH, like standard deviation of process
times for a given job.

The main finding of MR1 is that first phase of NEH has an amazing impact on the performance of
second phase of NEH. Several greedy rules are proposed before this research but MR1 shows that
a greedy rule is ineffective since randomness drastically improves the performance of a greedy
rule. MR1 has taken a huge step in answering the question of what really makes a sequence
competent and effective and what features should be considered in sequencing stage of NEH to

guide the second phase of NEH to yield high quality solutions.
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4-2 Meta-RaPS in the Second Phase of NEH Computational Results

Second phase of NEH heuristic is the cheapest insertion method. In the original NEH, a job will
always be located in a position that minimizes makespan. Meta-RaPS adds randomness into the
insertion phase to avoid all jobs to be inserted in the cheapest position. The integration of NEH
insertion phase into Meta-RaPS construction phase is illustrated in section 3-1-2. The method is
tested on Tillard’s benchmark with 5 independent runs and the best solution is reported from all

runs.

Performance of the algorithm for each instance is measured by the deviation of C,,,,, from the best

known solution (BKS) in OR-library as of April 2017.

Cmax, — BKS
*

1
BKS 00

Dev =

NEH deviation of makespans and MR1 deviation of makespans from BKSs and the average
computational time of MR2 for each Tillard’s instance is shown in Table 11, Table 12, Table 13,

and Table 14. If a BKS solution is found it is highlighted in bold.



Table 11. Computational Results on 20-job Taillard’s Benchmark (MR2)
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Problem n*m BKS | NEH | NEH Deviation | Meta-RaPS Meta-RaPS Average
Deviation time (s)

TAO001 1278 | 1286 0.63 1297 1.49

TAO002 1359 | 1365 0.44 1383 1.77

TAOQ03 1081 | 1159 7.22 1116 3.24

TA004 1293 | 1325 2.47 1302 0.70

TAO005 20*5 1235 | 1305 5.67 1283 3.89

TAO006 1195 | 1228 2.76 1230 2.93 !
TAO007 1239 | 1278 3.15 1246 0.56

TAO008 1206 | 1223 141 1216 0.83

TAO009 1230 | 1291 4.96 1253 1.87

TAO010 1108 | 1151 3.88 1122 1.26

TAO11 1582 | 1680 6.19 1634 3.29

TAO012 1659 | 1729 4,22 1682 1.39

TAO013 1496 | 1557 4.08 1517 1.40

TAO014 1377 | 1439 4,50 1397 1.45

TAO015 1419 | 1502 5.85 1444 1.76

TAO016 20*10 1397 | 1453 4.01 1427 2.15 .
TA017 1484 | 1562 5.26 1503 1.28

TAO018 1538 | 1609 4.62 1577 2.54

TAO019 1593 | 1647 3.39 1623 1.88

TAO020 1591 | 1653 3.90 1627 2.26

TAO021 2297 | 2410 4.92 2328 1.35

TAQ22 2099 | 2150 2.43 2155 2.67

TAOQ23 2326 | 2411 3.65 2341 0.64

TAQ024 2223 | 2262 1.75 2235 0.54

TA025 2291 | 2397 4.63 2331 1.75

TA026 2020 2226 | 2349 5.53 2272 2.07 3
TAO027 2273 | 2362 3.92 2311 1.67

TAO028 2200 | 2249 2.23 2227 1.23

TA029 2237 | 2320 3.71 2260 1.03

TAO030 2178 | 2277 4.55 2201 1.06




Table 12. Computational Results on 50-job Taillard’s Benchmark (MR2)
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Problem n*m BKS | NEH | NEH Deviation | Meta-RaPS Meta-RaPS Average
Deviation time (s)

TA031 2724 | 2733 033 2724 0.00

TA032 2834 | 2843 0.32 2848 0.49

TAO033 2621 | 2640 072 2625 0.15

TA034 2751 | 2782 113 2762 0.40

TA035 50*5 2863 | 2868 017 2864 0.03

TAO036 2829 | 2850 074 2831 0.07 16
TAO037 2725 | 2758 191 2732 0.26

TAO038 2683 | 2721 142 2684 0.04

TAO039 2552 | 2576 0.94 2552 0.00

TA040 2782 | 2790 0.29 2786 0.14

TA041 2991 3135 4.81 3101 3.68

TA042 2867 | 3032 576 2978 3.87

TAO043 2839 | 2986 5.18 2936 3.42

TA044 3063 | 3198 441 3103 131

TAO045 2976 | 3160 6.18 3093 3.93

TA046 50710 3006 | 3178 572 3110 3.46 20
TA047 3093 | 3277 505 3179 278

TAO048 3037 | 3123 2.83 3102 2.14

TA049 2897 | 3002 3.62 2971 255

TAO050 3065 | 3257 6.26 3162 3.16

TA051 3850 | 4082 6.03 3994 3.74

TAO052 3704 | 3921 5 86 3860 4.21

TAO053 3640 | 3927 788 3812 4.73

TA054 3720 | 3969 6.69 3884 4.41

TAO055 3610 | 3835 6.23 3874 7.31

TAO056 50720 3681 | 3914 6.33 3833 4.13 32
TAO057 3704 | 3952 6.70 3893 5.10

TAO058 3691 | 3938 6.69 3843 4.12

TAO059 3743 | 3952 558 3892 3.98

TA060 3756 | 4079 8.60 3931 4.66




Table 13. Computational Results on 100-job Taillard’s Benchmark (MR2)
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Problem n*m BKS | NEH | NEH Deviation | Meta-RaPS Meta-RaPS Average
Deviation time (s)

TAO61 5493 | 5519 0.47 5493 0.00

TA062 5268 | 5348 1.52 5275 0.13

TAO063 5175 | 5219 0.85 5192 0.33

TA064 5014 | 5023 0.18 5023 0.18

TAO065 100*5 5250 | 5266 0.30 5255 0.10

TA066 5135 | 5139 0.08 5135 0.00 32
TAO067 5246 | 5259 0.25 5257 0.21

TAO068 5094 | 5120 0.51 5100 0.12

TA069 5448 | 5489 0.75 5454 0.11

TAO070 5322 | 5341 0.36 5328 0.11

TAO071 5770 | 5846 1.32 5820 0.87

TAO072 5349 | 5453 1.94 5405 1.05

TAO073 5676 | 5824 2.61 5708 0.56

TAO074 5781 | 5929 2.56 5949 2.91

TAOQ75 5467 | 5679 3.88 5601 2.45

TAOT6 10010 5303 [ 5375 136 5358 1.04 44
TAQ77 5595 | 5704 1.95 5659 1.14

TAOQ78 5617 | 5760 2.55 5707 1.60

TAOQ79 5871 | 6032 2.74 5983 1.91

TAO080 5845 | 5918 1.25 5909 1.09

TAO81 6202 | 6541 5.47 6533 5.34

TAO082 6183 | 6523 5.50 6537 5.73

TAO083 6271 | 6639 5.87 6582 4.96

TAOQ84 6269 | 6557 4.59 6566 4.74

TA085 6314 | 6695 6.03 6620 4.85

TA086 100720 6364 | 6664 4.71 6673 4.86 n
TAO087 6268 | 6632 5.81 6606 5.39

TA088 6401 | 6739 5.28 6710 4.83

TA029 2237 | 2320 3.71 6570 4.70

TAO030 2178 | 2277 4.55 6615 2.81




Table 14. Computational Results on 200-job Taillard’s Benchmark (MR2)
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Problem n*m BKS | NEH | NEH Deviation | Meta-RaPS Meta-RaPS Average
Deviation time (s)

TA091 10862 | 10942 0.74 10897 0.32

TAQ092 10480 | 10716 2.25 10673 1.84

TAQ093 10922 | 11025 0.94 11017 0.87

TA094 10889 | 11057 1.54 10929 0.37

TA095 10524 | 10645 1.15 10586 0.59

TAQ096 200710 10329 | 10458 1.25 10396 0.65 254
TAQ97 10854 | 10989 1.24 10947 0.86

TA098 10730 | 10829 0.92 10789 0.55

TA099 10438 | 10574 1.30 10512 0.71

TA100 10675 | 10807 1.24 10767 0.86

TA101 11195 | 11594 3.56 11572 3.37

TA102 11203 | 11675 421 11665 4.12

TA103 11281 | 11852 5.06 11779 441

TA104 11275 | 11803 4.68 11663 3.44

TA105 11259 | 11685 3.78 11630 3.30

TAt06 | 29020 11176 11629 4.05 11609 3.87 310
TAL107 11360 | 11833 4.16 11782 3.71

TA108 11334 | 11913 511 11783 3.96

TA109 11192 | 11673 4.30 11630 3.91

TA110 11288 | 11869 5.15 11763 4.21
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The main drawback of NEH is that when the algorithm progresses at a given time only one job is
considered for insertion and when a job is inserted to a position its position will remain constant
in all next insertions. At each insertion step NEH behaves as a greedy rule and fixes the job in the
cheapest position. However, it is clearly obvious that the best position for a job at its insertion step

will not lead to a good solution when the next job is going to be inserted.

MR2 challenges the greedy behavior of NEH insertion phase. While it is a good idea to consider
more than a job for insertion at each step, MR2 takes a different approach. While it is clearly
ineffective to fix the jobs in the cheapest position and this related to mathematical properties of
PFSP, it seems promising to considering other positions for insertion. Mathematics of PFSP
indicates that the makespan of a flowshop problem equals to the longest path from the matrix of
scheduled jobs from job 1 on machine 1 to job n on machine m. Therefore, changing the position
of jobs changes the columns of the matrix and consequently the length of the path from first node
to the last node. Fixing a job in a position that creates the shortest path at each step will be
ineffective when a new column is added to the matrix. This is due to the fact that when a new job
arises the length of the paths after its insertion will not the same as before its insertion. Therefore,
MR2 attempts to fix a job in a position that does not seem favorable is its insertion step but will

perform better when the next job or jobs will be inserted.
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4-3 MMR Computational Results

MMR has three more parameters to tune. Therefore, setse ={5,6,7},6 =
{40%, 50%, 60%,70%}, and [ ={0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5} are
considered for the domain of these parameters. To evaluate the effectiveness of memory the
parameters p and r are similar as MR1 (Meta-RaPS in the first phase of NEH). Figure 6, Figure 7
and Figure 8 reflect the Relative Percentage Deviation (RPD) for parameters & with different
capacity (e) of elite list. A random subset of problems with 3 small size problems (20 and 50 jobs)
and 3 large size problems (100 and 200 jobs) is selected from Tillard’s benchmark. The best setting

obtained from parameters § and e is used in further analysis to tune the parameter [.

Parameters analysis with 95% confidence intervals shows that increasing the size of elite list
increases the performance of algorithm and this is due to having more options in the probability
matrix, because having more options helps the algorithm avoid some of the local optimums. The
behavior of m is interesting. By increasing the threshold, the performance of the algorithm
increases but up to a point. Then the algorithm loses its potency and this is due to trapping new
solutions in the areas close to the solutions in the elite list. It is shown in Figure 9 that low levels
of [ are performing better to bias the search. This is due to the fact that low levels of [ only impact
the positions with higher probabilities while high levels of [ impact the behavior of the algorithm
entirely. Figure 9 demonstrates that there is no significant difference between high levels of [ but
with fixing this parameter relatively low (in this research 0.2) better results are obtained. MMR’s

summary of parameters is shown in Table 15.
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Table 15. Summary of Parameter for MMR

Parameter Value
Priority percentage (p) 10%
Restriction Percentage (r) 70%
Number of Interations (1) 200
Elite list capacity (e) 7
Threshold (&) 60%
Learning parameter (I) 0.2

Effectiveness of Memory structure in the construction phase of Meta-RaPS is tested in the first
phase of NEH since the computational results confirmed a better performance in MR1. MMR with
the application of PFSP is illustrated in section 3-2. Methods are tested on Tillard’s benchmark
with 5 independent runs and the best solution is reported from all runs. Performance of the

algorithm is compared to BKS in OR-library as of April 2017.

MR1 deviation of makespans and MMR deviation of makespans from BKSs and the average
computational time of MMR for each Tillard’s instance is shown in Table 16, Table 17, Table 18,

and Table 19. If MMR has a better performance than MR1 the solution is highlighted in bold.



Table 16. Computational Results on 20-job Taillard’s Benchmark (MMR)
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Problem n*m BKS Meta-RaPS | Meta-RaPS MMR MMR Average
Deviation Deviation time (s)

TA001 1278 1278 0.00 1278 0.00

TAO002 1359 1365 0.44 1359 0.00

TAO003 1081 1104 2.13 1085 0.37

TA004 1293 1306 1.01 1297 0.31

TA005 | 20 1235 1250 121 1236 0.08

TAO006 1195 1195 0.00 1195 0.00 12
TAO007 1239 1241 0.16 1239 0.00

TAO008 1206 1207 0.08 1206 0.00

TAO009 1230 1238 0.65 1234 0.33

TAO010 1108 1126 1.62 1109 0.09

TAO11 1582 1604 1.39 1596 0.88

TAO012 1659 1691 1.93 1682 1.39

TAO013 1496 1514 1.20 1505 0.60

TA014 1377 1398 1.53 1379 0.15

TAO015 1419 1442 1.62 1425 0.42

TAO016 20710 1397 1421 1.72 1412 1.07 13
TA017 1484 1494 0.67 1486 0.13

TAO018 1538 1557 1.24 1555 1.11

TAO019 1593 1620 1.69 1615 1.38

TA020 1591 1617 1.63 1598 0.44

TA021 2297 2322 1.09 2321 1.04

TA022 2099 2106 0.33 2105 0.29

TA023 2326 2347 0.90 2356 1.29

TA024 2223 2227 0.18 2231 0.36

TA025 2291 2323 1.40 2314 1.00

TA026 20720 2226 2263 1.66 2244 0.81 14
TA027 2273 2312 1.72 2298 1.10

TAO028 2200 2220 0.91 2220 0.91

TA029 2237 2260 1.03 2252 0.67

TAO030 2178 2210 1.47 2204 1.19




Table 17. Computational Results on 50-job Taillard’s Benchmark (MMR)
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Problem n*m BKS | Meta-RaPS | Meta-RaPS MMR MMR Average
Deviation Deviation time (s)
TA031 2724 | 2124 0.00 2724 0.00
TA032 2834 | 2843 0.32 2838 0.14
TA033 2621 | 2622 0.04 2622 0.04
TA034 2751 | 2761 0.36 2761 0.36
TA035 | 20" 2863 | 2864 0.03 2863 0.00
TA036 2829 | 2829 0.00 2829 0.00 134
TA037 2725 | 2725 0.00 2725 0.00
TA038 2683 | 2683 0.00 2683 0.00
TA039 2552 | 2554 0.08 2552 0.00
TA040 2782 | 2782 0.00 2782 0.00
TA041 2091 | 3086 3.18 3026 117
TA042 2867 | 2953 3.00 2950 2.90
TA043 2839 | 2950 3.01 2022 2.92
TA044 3063 | 3107 1.44 3096 1.08
TA045 2076 | 3075 333 3075 3.33
TA0a6 | 2010 3006 [ 3104 3.26 3093 2.89 135
TA047 3003 | 3178 2.75 3178 2.75
TA048 3037 | 3088 1.68 3083 151
TA049 2897 | 2964 231 2960 217
TA050 3065 | 3169 3.39 3167 3.33
TAO51 3850 | 4007 4.08 3991 3.66
TA052 3704 | 3864 432 3856 410
TA053 3640 | 379 4.9 3792 418
TA054 3720 | 3857 3.68 3823 2.77
TA055 3610 | 3879 7.45 3828 6.04
50%20 170
TA056 3681 | 3816 3.67 3812 3.56
TA057 3704 | 3874 459 3825 3.27
TA058 3601 | 3898 5.61 3841 4.06
TA059 3743 | 3878 3.61 3845 273
TA060 3756 | 3874 3.14 3874 3.14




Table 18. Computational Results on 100-job Taillard’s Benchmark (MMR)
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Problem n*m BKS | Meta-RaPS | Meta-RaPS MMR MMR Average
Deviation Deviation time (s)

TA061 5493 5493 0.00 5493 0.00

TA062 5268 5280 0.23 5270 0.04

TA063 5175 5179 0.08 5176 0.02

TA064 5014 5021 0.14 5017 0.06

TA0B5 | 1005 75250 [ 5250 0.00 5250 0.00

TA066 5135 5135 0.00 5135 0.00 900
TA067 5246 5249 0.06 5248 0.04

TAO068 5094 5097 0.06 5097 0.06

TA069 5448 5449 0.02 5450 0.04

TAO070 5322 5328 0.11 5328 0.11

TA071 5770 5807 0.64 5802 0.55

TAOQ72 5349 5394 0.84 5385 0.67

TAO073 5676 5713 0.65 5692 0.28

TAO74 5781 5895 1.97 5879 1.70

TAOQ75 5467 5562 1.74 5553 1.57

TAOQ76 100%10 5303 5335 0.60 5331 0.53 1100
TAQ077 5595 5648 0.95 5645 0.89

TAOQ78 5617 5695 1.39 5689 1.28

TAO079 5871 5940 1.18 5951 1.36

TAO080 5845 5903 0.99 5893 0.82

TAO081 6202 6493 4.69 6449 3.98

TAO082 6183 6414 3.74 6411 3.69

TAO083 6271 6518 3.94 6477 3.28

TA084 6269 6480 3.37 6470 3.21

TAO085 6314 6541 3.60 6524 3.33

TAO086 100%20 6364 6622 4.05 6590 3.55 1500
TAO087 6268 6510 3.86 6518 3.99

TAO088 6401 6685 4.44 6679 4.34

TAO089 6275 6537 4.18 6509 3.73

TA090 6434 6640 3.20 6610 2.74




Table 19. Computational Results on 200-job Taillard’s Benchmark (MMR)
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Problem n*m BKS | Meta-RaPS | Meta-RaPS MMR MMR Average
Deviation Deviation time (s)

TA091 10862 10892 0.28 10874 0.11

TA092 10480 10614 1.28 10582 0.97

TA093 10922 11017 0.87 11000 0.71

TA09%4 10889 10921 0.29 10893 0.04

TA095 10524 10575 0.48 10558 0.32

TA096 200710 10329 10338 0.09 10373 0.43 2450
TA097 10854 10934 0.74 10923 0.64

TA098 10730 10798 0.63 10781 0.48

TA099 10438 10501 0.60 10484 0.44

TA100 10675 10758 0.78 10741 0.62

TA101 11195 11195 3.39 11523 2.93

TA102 11203 11203 3.98 11631 3.82

TA103 11281 11281 4.32 11695 3.67

TAL104 11275 11275 3.62 11631 3.16

TA105 11259 11259 3.03 11516 2.28

TA106 200720 11176 11176 3.82 11524 3.11 3800
TA107 11360 11360 3.57 11718 3.15

TA108 11334 11334 3.43 11710 3.32

TA109 11192 11192 3.70 11576 3.43

TA110 11288 11288 4.05 11664 3.33
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A paired t-test is performed to test the effectiveness of memory design and validate if memory
implementation is statistically improving the performance of Meta-RaPS. Average performance
of MR1 and MMR for each Tillard’s benchmark problem size alongside the p-value is shown in

Table 20. The null and the alternative hypothesis are as follows:

{Hnu”: There is no signifant dif ferent between MMR and Meta — RaPS$S
Hyiternative MMR outperforms Meta — RaPS
Or

{Hnull: RPDymr = RPDyeta—raps

Haiternative: RPDyyr < RPDyeta-raps

It can be seen in Table 20 that in all cases (except in the problem sizes 50*5 and 10*5) MMR s
outperforming Meta-RaPS with 95% confidence and the null hypothesis is rejected in favor of
alternative hypothesis. To validate the overall performance of MMR and Meta-RaPS the p-values
from different problems sizes should be combined. If p-values are independent, Fisher (1925)
suggests a method to integrate extreme values (p-values) from different tests to one Chi-square
(x?) test. Fisher’s Method is as follows where p; is the p-value from it" test and n is number of

tests to combine:



n
—2 Z log(py) ~ x%n
i=1
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The p-value from Fisher’s Method is shown in the third column and the last row of Table 20.

Fisher’s p-value strongly states that MMR and Meta-RaPS are statistically different.

Table 20. Meta-RaPS and MMR Computations Results Comparison

Problem size Meta-RaPS1 MMR (RPD) p-value

20*5 0.731 0.118 0.008
20*10 1.462 0.758 0.000
20*20 1.069 0.704 0.016
50*5 0.083 0.054 0.074
50*10 2.824 241 0.032
50*20 4.443 3.75 0.003
100*5 0.069 0.036 0.067
100*10 1.095 0.967 0.011
100*20 3.906 3.583 0.003
200*10 0.604 0.475 0.022
200*20 3.691 3.22 0.000
All 181 1.461 0.000
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4-4 Tie Breaking Strategy Computational Results

Tie breaking strategy is proposed since Meta-RaPS is facing considerable amount of ties in the
candidate list (CL) when applied in the second phase of NEH. Therefore, adding a mechanism to
select a better position when there exists a tie is favorable. Integration of tie breaking strategy and
MR?2 is illustrated in section 3-3. Methods are tested on Tillard’s benchmark with 5 independent
runs and the best solution is reported from all runs. The algorithm is coded in Matlab 2011 with

an Intel CORE-i5 CPU @ 2.5GHz and 4GB installed memory.

Performance of Tie breaking strategy for each instance is measured by the deviation of C,,,, from

the BKS in OR-library as of April 2017 as follows:

Cmax,, — BKS
*

BKS 100

Dev =

MR2 makespans’ deviation and MR2 with tie breaking strategy makespans’ deviation from BKSs
and the average computational time for MR2 with tie breaking mechanism for each Tillard’s
instance is shown in Table 21, Table 22, Table 23, and Table 24. If a tie breaking strategy finds a

better solution it is highlighted in bold.



Table 21. Computational Results on 20-job Taillard’s Benchmark (Tie Breaking)
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Problem n*m BKS | Meta-RaPS | Meta-RaPS Tie Tie breaking | Average
Deviation Breaking Deviation time (s)

TAO001 1278 1297 1.49 1297 1.49

TAO002 1359 1383 1.77 1383 1.77

TAO003 1081 1116 3.24 1107 241

TA004 1293 1302 0.70 1302 0.70

TA005 20™5 1235 1283 3.89 1283 3.89

TAO006 1195 1230 2.93 1230 2.93 !
TAO007 1239 1246 0.56 1246 0.56

TAO008 1206 1216 0.83 1212 0.50

TAO009 1230 1253 1.87 1245 1.22

TAO010 1108 1122 1.26 1122 1.26

TAO11 1582 1634 3.29 1629 2.97

TAO012 1659 1682 1.39 1682 1.39

TAO013 1496 1517 1.40 1515 1.27

TA014 1377 1397 1.45 1399 1.60

TA015 1419 1444 1.76 1437 1.27

TAO016 20*10 1397 1427 2.15 1427 2.15 2
TA017 1484 1503 1.28 1503 1.28

TAO018 1538 1577 2.54 1569 2.02

TAO019 1593 1623 1.88 1623 1.88

TAO020 1591 1627 2.26 1619 1.76

TAO021 2297 2328 1.35 2325 1.22

TA022 2099 2155 2.67 2125 1.24

TA023 2326 2341 0.64 2341 0.64

TA024 2223 2235 0.54 2233 0.45

TA025 2291 2331 1.75 2321 1.31

TA026 2020 2226 2272 2.07 2272 2.07 5
TAO027 2273 2311 1.67 2311 1.67

TAO028 2200 2227 1.23 2226 1.18

TA029 2237 2260 1.03 2259 0.98

TAO030 2178 2201 1.06 2202 1.10




Table 22. Computational Results on 50-job Taillard’s Benchmark (Tie Breaking)
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Problem n*m BKS | Meta-RaPS | Meta-RaPS Tie Tie breaking | Average
Deviation Breaking Deviation time (s)

TAO031 2724 2274 0.00 2724 0.00

TA032 2834 2848 0.49 2848 0.49

TAO033 2621 2625 0.15 2625 0.15

TA034 2751 2762 0.40 2762 0.40

TAO035 50*5 2863 2864 0.03 2889 0.91

TAO036 2829 2831 0.07 2831 0.07 19
TAO037 2725 2732 0.26 2725 0.00

TAO038 2683 2684 0.04 2683 0.00

TAO039 2552 2552 0.00 2552 0.00

TAO040 2782 2786 0.14 2782 0.00

TA041 2991 3101 3.68 3093 341

TA042 2867 2978 3.87 2977 3.84

TAO043 2839 2936 3.42 2952 3.98

TAQ044 3063 3103 1.31 3109 1.50

TAO045 2976 3093 3.93 3092 3.90

TAO046 50*10 3006 3110 3.46 3099 3.09 26
TAQ047 3093 3179 2.78 3185 2.97

TA048 3037 3102 2.14 3088 1.68

TA049 2897 2971 2.55 2971 2.55

TAO050 3065 3162 3.16 3152 2.84

TAO051 3850 3994 3.74 4002 3.95

TAO052 3704 3860 4.21 3845 3.81

TAO053 3640 3812 4.73 3828 5.16

TAO054 3720 3884 441 3890 4.57

TAO055 3610 3874 7.31 3897 7.95

TAO056 50%20 3681 3833 4.13 3811 3.53 39
TAOQ57 3704 3893 5.10 3888 4.97

TAO058 3691 3843 4.12 3851 4.33

TAO059 3743 3892 3.98 3901 4.22

TAO060 3756 3931 4.66 3931 4.66




Table 23. Computational Results on 100-job Taillard’s Benchmark (Tie Breaking)
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Problem n*m BKS | Meta-RaPS | Meta-RaPS Tie Tie breaking | Average
Deviation Breaking Deviation time (s)

TAO061 5493 5493 0.00 5493 0.00

TA062 5268 5275 0.13 5268 0.00

TAO063 5175 5192 0.33 5192 0.33

TA064 5014 5023 0.18 5023 0.18

TA065 100*5 5250 5255 0.10 5255 0.10

TA066 5135 5135 0.00 5139 0.08 48
TAO067 5246 5257 0.21 5256 0.19

TAO068 5094 5100 0.12 5099 0.10

TA069 5448 5454 0.11 5454 0.11

TAO070 5322 5328 0.11 5322 0.00

TAOQ71 5770 8520 0.87 5816 0.80

TAQ72 5349 5405 1.05 5399 0.93

TAQ73 5676 5708 0.56 5728 0.92

TA074 5781 5949 291 5924 2.47

TAOQ75 5467 5601 245 5573 1.94

TAOT6 100*10 " 5303 5358 1.04 5346 0.81 58
TAOQ77 5595 5659 1.14 5666 1.27

TA078 5617 5707 1.60 5711 1.67

TAOQ79 5871 5983 191 5955 1.43

TAO080 5845 5909 1.09 5903 0.99

TA081 6202 6533 5.34 6530 5.29

TA082 6183 6537 5.73 6519 5.43

TAO083 6271 6582 4.96 6580 4.93

TA084 6269 6566 4.74 6550 4.48

TA085 6314 6620 4.85 6653 5.37

TA086 100720 6364 6673 4.86 6653 4.54 89
TAO087 6268 6606 5.39 6582 5.01

TA088 6401 6710 4.83 6754 5.51

TA029 2237 6570 4.70 6592 5.05

TAO030 2178 6615 281 6600 2.58




Table 24. Computational Results on 200-job Taillard’s Benchmark (Tie Breaking)
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Problem n*m BKS | Meta-RaPS | Meta-RaPS Tie Tie breaking | Average
Deviation Breaking Deviation time (s)

TA091 10862 10897 0.32 10885 0.21

TAQ092 10480 10673 1.84 10635 1.48

TAQ093 10922 11017 0.87 11009 0.80

TA094 10889 10929 0.37 10931 0.39

TA095 10524 10586 0.59 10600 0.72

TAQ096 200710 10329 10396 0.65 10402 0.71 380
TAQ97 10854 10947 0.86 10941 0.80

TAQ098 10730 10789 0.55 10761 0.29

TA099 10438 10512 0.71 10502 0.61

TA100 10675 10767 0.86 10762 0.81

TA101 11195 11572 3.37 11574 3.39

TA102 11203 11665 4.12 11649 3.98

TA103 11281 11779 441 11768 4.32

TA104 11275 11663 3.44 11683 3.62

TAL105 11259 11630 3.30 11600 3.03

TAt06 | 29020 1176 | 11609 3.87 11603 3.82 435
TAL107 11360 11782 3.71 11766 3.57

TAL108 11334 11783 3.96 11723 3.43

TAL109 11192 11630 3.91 11606 3.70

TA110 11288 11763 4.21 11745 4.05
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A paired t-test is performed to test the effectiveness of tie breaking strategy and validate if the
implementation of tie breaking is statistically improving the performance of Meta-RaPS.
Performance of MR2 and MR2 with tie breaking strategy is compared in Table 25 where p-value
of each problem size is shown in the last column of the Table. The null and the alternative

hypothesis are as follows:

{Hnu”: There is no statistical dif ferent between MR2 and MR2 with Tie breaking
Haiternative Tie Breaking strategy outperforms MR2
Or

{Hnull: RPDygr2 with Tie Breaking = RPDur2

Halternative: RPDMRZ with Tie Breaking < RPDMRZ

P-values of Table 25 illustrates the fact that although the tie breaking strategy descreses the
average performance of the algorithms in many cases but this improvement is not statistically
significant and this is due to the fact that the improvement does not happen in all instances.
Therefore, there is no reason to reject the null hypothesis .To validate the overall performance of
MR2 and MR2 with tie breaking strategy, p-values from different problem sizes should be
combined. If p-values are independent, Fisher (1925) suggests a method to integrate extreme
values (p-values) from different tests to one Chi-square (x?) test. Fisher’s Method is as follows

where p; is the p-value from it" test and n is number of tests to combine:



n
—2 Z log(py) ~ x%n
i=1
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Fisher’s p-value represents the fact that even though the tie breaking strategy does not outperform

MR2 and alternative hypothesis is rejected in favor of null hypothesis, but with a 95% confidence

interval the tie breaking strategy indeed outperforms MR2 in overall.

Table 25. MR2 and MR2 with Tie Breaking Strategy Comparison

Problem size Meta-RaPS2 Tie Breaking p-value

20*5 1.853 1.671 0.051
20*10 1.94 1.758 0.024
20*20 1.4 1.187 0.084
50*5 0.159 0.203 0.331
50*10 3.03 2.977 0.302
50*20 4.639 4.715 0.266
100*5 0.129 0.108 0.154
100*10 1.462 1.324 0.077
100*20 4.82 4.820 0.499
200*10 0.762 0.682 0.059
200*20 3.832 3.691 0.020
All 2.18 2.103 0.007
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4-5 Algorithms Comparison

Two basic Meta-RaPS designs alongside a design with memory and learning and a design with tie
breaking strategy are discussed in this thesis. This chapter provides a comprehensive comparison
for all of these four designs. The second part of this chapter provides a comparison between the

performance of MMR and the best algorithms of PFSP.

4-5-1 Meta-RaPS Designs Compariosn

Meta-RaPS in the first phase of NEH (MR1) performs better than Meta-RaPS in the second phase
of NEH (MR2) with C,,,, objective function. Meta-RaPS in the second phase of NEH has a much
better performance than NEH heuristic but the performance is not competitive with Meta-RaPS in

the first phase. Therefore, a tie breaking strategy is added to MR2 to help the algorithm.

The main objective of this research is to design a generic memory structure for the construction
phase of Meta-RaPS. Memory design is discussed in chapter 3-2-1, PFSP is introduced as the
application of memory design, this design is entitled “MMR?”. Performance of these four designs

is compared to each other in Figure 10.

Figure 10 depicts the fact that when the number of machines increases all designs effectiveness
decreases. MMR has the best performance in all cases when compared to other three designs.
Therefore, it can be concluded that memory implementation in the construction phase of Meta-

RaPS improves the performance of the meta-heuristic.
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Figure 10. Meta-RaPS Designs Comparison

4-5-2 MMR Comparison with Other Algorithms

MMR has the strongest performance among all discussed Meta-RaPS designs for PFSP. To
validate the effectiveness of MMR the best algorithms in the literature with the criterion of
makespan are compared to MMR in Table 26. A simulated annealing algorithm (SAOP) by Osman
and Potts (1986), a Tabu Search by Widmer and Hertz endtitled Spirit (1989), an ant colony
optimization by Rajendran and Ziegler entitled M-MMAS (2004), a hybrid meta-heuristic by
Zobolas, Tarantilis, and loannou (2009), and an iterative greedy search by Ruiz and Stutzle (2007)

are selected from the literature.



Table 26. MMR Comparisons with Competitive Algorithms in the Literature
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Algorithm NEH SAOP SPIRIT GA_AA IG_RS NEGAVNS MMR
20*5 3.26 1.09 477 0.94 0.04 0.00 0.12
20*10 460 2.63 5.61 1.54 0.25 0.01 0.76
20*20 373 2.38 4.44 1.43 0.21 0.02 0.70
50*5 0.73 0.52 2.19 0.36 0.04 0.00 0.05
50*10 507 3.51 6.04 3.72 1.06 0.82 2.41
50*20 6.66 452 7.63 4.69 1.82 1.08 3.75
100*5 053 0.30 1.06 0.32 0.05 0.00 0.04

100*10 298 1.48 3.01 1.72 0.39 0.14 0.97
100*20 535 4.63 6.74 491 2.04 1.40 3.58
200*10 1.26 1.01 2.07 1.27 0.34 0.16 0.47
200*200 442 3.81 4.97 4.21 1.99 1.25 3.22

All 3.44 2.35 4.41 2.28 0.75 0.44 1.46

Table 26 highlights the effectiveness of MMR in PFSP with makespan criterion. Among all the

algorithms just IG_RS and NEHA VNS perform better than MMR. However, it should not be

forgetten that NEHA VNS is a hybrid local search algorithm and IG_RS is not a pure construction

heuristic since it starts iterating over a given solution.



5-BEYOND THE SCOPE

The main purpose of this research is to investigate the effectiveness of embedding local search
memory and learning techniques in the construction phase of a memoryless meta-heuristic entitled
“Meta-RaPS. The computational results show that a memory mechanism improves the
performance of Meta-RaPS and also, the algorithms is competitive with the best algorithms in the

literature but there exist better algorithms.

Meta-RaPS has two phases, the construction phase and the improvement phase. In the section 4-1
is it mentioned that the scope of this research is restricted to the construction phase of Meta-RaPS.
Therefore, the improvement parameter (i) does not need to be tuned and is considered zero. In this
section a simple local search technique is introduced to confirm adding a local search method to

an algorithm will improve the performance of the algorithm

5-1 Iterated Greedy Algorithm

Lourenco, Martin and Stutzle (2002) describe iterated greedy algorithms as a mechanism as
follows:

Generate a complete feasible solution, destruct the solution with removing some variables and then
applying a greedy heuristic to construct a complete feasible solution. When a new solution is

constructed, a criterion decides whether to accept the solution or alternatively not.
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Ruiz et al. (2007) introduces the first version of iterated greedy for PFSP noted as IG_RS and the
algorithm is as follows:

1- Apply the destruction phase to a permutation m to remove d jobs randomly without
repetition and keep the jobs in a set 7z, with the order of removing. Now there are two sets,
one with  — d jobs which is entitled r; and another set with d jobs noted as m,.

2- Third step of NEH heuristic is the construction phase. Start with the first job in set r,- and
insert the job in all positions of m;. Make a job’s position permanent in the cheapest

position of ;. Continue the process for all d available jobs in m,.

Ruiz et al. (2007) considers the above described procedure as the construction phase of IG_RS.
Hence, a local search mechanism is added to process to enhance the results. The utilized local
search mechanism is neighborhood insertion which is removing a random job from permutation =

and insert it in a new position k.

Construction phase of IG_RS is considered as a the improvement phase of MMR to enhance the

solutions and the local search method in IG_RS is not part of the improvement phase of MMR

5-2 Computational Results

IG_RS adds a new parameter d (the number of jobs to remove) to the algorithm. Ruiz et al. (2007)
obtained d = 4 as the best value for number of jobs to remove. Therefore, destruction size in this

research would be the same as Ruiz et al. (2007) setting.
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The construction phase of MMR constructs a feasible solution with the makespan C,,.x = Z , @

constructed solution will go through the improvement phase if:

Z< b+ —w)*i%

Where b* is the best found solution before the improvement phase, and w* is the worst found

solution before the improvement phase.

In Section 4-1 the parameter i is considered zero while now the parameter should be tuned, rest of
the parameter as the same as Table 15. According to Moraga’s (2002) tuning process:
1. Selecting a subset of problems: problems are selected randomly from Tillard’s benchmark
('3 small size problems, 3 large size problems)
2. The domain that parameter i will vary is {30%, 40%, 50%, 60%, 70%, 80%, 90%}

3. While other parameters are constant and the same as Table 15 manipulate the values of i

and report a value associate to the best objective functions.

Summary of tuning parameter (i) is shown in Figure 11 and Figure 12. Surprisingly it can be seen

that increasing the value of i does not lead to a significant improvement in the objective function
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Cmax While the computational time increases significantly. This is due to allowing more solution

through the improvement phase.

The range for RPD in Figure 12 is around 0.09 so it can be concluded that the increasing the
parameter I does not improve the algorithm’s performance significantly while it increases the
computational times exponentially. Interpretation of Figures 11 and 12 indicates that the best value

for parameter i equals = 0.5 .

Performance of MMR and MMR with an improvement phase is depicted is Table 27. The results
indicate that adding a local search increase the performance of an algorithm. However, it is worth
it to mention that the iterated greed local search does not lead to a huge improvement in MMR

while Ruiz et al (2007) obtains extremely competitive results with a worst starting point.
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Table 27. RPD for MMR with Locals Seach and MMR without Local Search

Problem size (m*n) MMR (%) MMR with Local Search (%)
20*5 0.12 0.08
20*10 0.76 0.82
20*20 0.7 0.55
50*5 0.05 0.02
50*10 241 2.20
50*20 3.75 3.66
100*5 0.04 0.05

100*10 0.97 0.96
100*20 3.58 3.56
200*10 0.47 0.41
200*20 3.22 2.96

All 1.461 1.388
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The belief of the authors is that Ruiz et al (2007) obtains better performance in iterated greedy due

to spending more time on destructing and constructing a solution. To validate this hypothesis the

algorithms is run on the hardest problem sizes (50*10 and 50*20) in Tillard’s benchmark with

different time spans. The computational results confirm that increasing the time on improves the

effectiveness the improvement phase. Table 28 shows two different settings for iterated greedy

allowed time span in the local search. The results signify the hypothesis that if the time increases,

the object function improves.



Table 28. Local Search Performance for Different Time Spans
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Problem n*m BKS | Local Search with20 | RPD Local Search with 80 RPD
iterations Iterations

TA041 2991 3080 2.98 3022 1.04
TA042 2867 2934 2.34 2946 2.76
TA043 2839 2914 2.64 2919 2.82
TA044 3063 3095 1.04 3088 0.82
TA045 50%10 2976 3051 2.52 3064 2.96
TA046 3006 3066 2.00 3055 1.63
TA047 3093 3154 1.97 3144 1.65
TA048 3037 3076 1.28 3071 1.12
TAO049 2897 2954 1.97 2954 1.97
TAO050 3065 3166 3.30 3160 3.10

Average 3049 2.20 3042 1.98
TAO051 3850 3985 3.51 3964 2.96
TAO052 3704 3848 3.89 3838 3.62
TAO053 3640 3788 4.07 3771 3.60
TAO054 3720 3823 2.77 3818 2.63
TAO055 50%20 3610 3825 5.96 3812 5.60
TAO056 3681 3812 3.56 3802 3.29
TAO057 3704 3821 3.16 3800 2.59
TAO058 3691 3838 3.98 3804 3.06
TAO059 3743 3842 2.64 3836 2.48
TAO060 3756 3873 3.12 3866 2.93

Average 3845 3.66 3831 3.28




6-CONCLUSION

The purpose of this research is to design a generic memory mechanism for the construction phase
of a memoryless meta-heuristic algorithm entitled “Meta-RaPS” with the application of PFSP
(Permutation Flowshop Scheduling Problem) to minimize an objective function known as
makespan. The first memory design in construction phase of Meta-RaPS was introduced by Lan
et al (2007) with the application of SCP (Set Covering Problem). However, a few researches have
been carried out to implement memory and/or learning in Meta-RaPS since then. Even fewer
researches have been done in the realm of meta-heuristics to incorporate memory mechanisms in
the construction phase of optimization algorithms. The main contribution of this research is to
provide a novel generic memory structure for the construction phase of Meta-RaPS and adjusting
the structure according to characteristic of PFSP. In addition to memory structure, the illustrated
methods to construct high-quality solutions and computational results are the other contributions
of this research. This thesis demonstrated that the performance of a memoryless algorithm can be

enhanced with an embedded artificial intelligence.

6-1 Summary

Obijective of this research is to improve the effectiveness of the construction phase of Meta-RaPS
with the application of PFSP. NEH is known to be the best construction heuristic for PFSP. NEH

has two phases: sequencing phase, and the cheapest insertion phase. The computational results
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confirm that Meta-RaPS is a powerful algorithm to solve PFSP. Meta-RaPS in the first phase of
NEH has a better performance than Meta-RaPS in the second phase of NEH. Therefore, this setting
is used for further analysis in memory design. In Section 3-2 a generic memory design for
construction phase of Meta-RaPS is introduced and then a learning mechanism is added to the
algorithm to bias the search toward high quality solutions, the algorithm is noted as MMR. MMR
is tested with famous Tillard’s benchmark and the computational results strengthens the hypothesis
that adding memory and learning mechanisms to a memoryless algorithm can enhance its
performance and its capability of finding high-quality solutions. It is observed that when the
number of machines are relatively low MMR can find almost all the BKSs (Best Known Solution)

of PFSP.

Comparison of MMR and the best algorithms in the literature shows that although MMR is just a
construction algorithm but there are few algorithms with better performance for PFSP with
makespan criterion. Meta-RaPS has two phases, the construction phase and the improvement phase
but MMR does not benefit from the improvement phase. Therefore, to increase the competency of
MMR a simple local search technique, Iterated greedy which is introduced by Ruiz et al (2007) as
a construction heuristics, is utilized to prove if a local search technique is added to an algorithm,

the performance increases.

Meta-RaPS in second phase of NEH faces significant amount of ties in the candidate list.
Therefore, a tie breaking strategy is proposed to overcome the problem. The computational results

show that the tie breaking algorithm is improving the performance of Meta-RaPS but not in all
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cases and all problem sizes. This is due to the fact that, there is no global tie breaking strategy that

can always enhance an algorithm’s performance.

6-2 Future Research

Obijective of this research is to enhance the performance of Meta-RaPS with implementing a
memory and learning mechanism in the construction phase of this meta-heuristic algorithm.
Memory mechanism is developed from the principles of an effective AMP by Tillard et al. (2001)
and the learning mechanism is developed from principle of Tabu Search by Glover et al (1997) to
influence the search toward good solutions. Future research can focus on designing a generic

learning mechanism for the construction phase of Meta-RaPS.

Randomness improves the performance of an algorithms since it assists the algorithm to expand
the domain of the search. Meta-RaPS has an advantage over randomness in several ways; however,
there exist other ways to add more randomness to Meta-RaPS and expand the search further. A
strategy to add randomness to current state of Meta-RaPS can be selecting the priority sequencing
rule from a pool of rules in each iteration. For example is the case of PFSP this research uses
Dong’s priority rule is all 200 iterations while at each iteration the algorithm can select the priority
rule randomly from some of the well-known greedy rules like Palmer’s index, CDS, Avg, and
AvgDev. This is due to the fact that memory mechanisms focus on the intensification aspect of
AMP structure while another factor that plays a critical role in reaching to a global optimum is
diversification. Therefore, having diverse high-quality solutions in the elite list helps to balancing

the intensification and the diversification of the algorithm.
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MMR is implemented in the first phase of NEH since Meta-RaPS has a better performance on
NEH sequencing phase. Developing other applications of memory based Meta-RaPS based on the
principles of MMR for other well-known NP-hard problems to verify the effectiveness of MMR

IS promising.

Moreover, adding a simple local search to the algorithm confirms that even a basic local search
technique increases the effectiveness of MMR. Therefore, more studies should be done to

investigate implementation of sophisticated techniques in the improvement phase of MMR.



6-REFERENCES

Allaoui, H., Artiba, A. (2006). Scheduling two-stage hybrid flow shop with availability constraints.
Computers & Operations Research, 33, 1399-1419.

Arin, A., Rabadi, G (2013) Memory and Learning in Metaheuristics, Artificial Intelligent
Evolution Computer and Metaheuristics, SCI 427, pp. 435-476.

Ben-Daya, M., Al-Fawzan, M. (1998). A tabu search approach for the flow shop scheduling
problem. European Journal of Operational Research, 109: 88-95.

Campbell, H.G., Dudek, R.A. & Smith, M.L. (1970). A heuristic algorithm for the n job, m
machine sequencing problem. Management Science, 16: 630-637.

Chen, C.-L., Vempati, V.S. & Aljaber, N. (1995). An application of genetic algorithms for flow
shop problems. European Journal of Operational Research, 80: 389-396.

Coy, S. P., Golden, B. L., Runger, G. C., & Wasil, E. A. (2001). Using experimental design to find
effective parameter settings for heuristics. Journal of Heuristics, 7(1), 77-97.

Dannenbring, D.G. (1977). An evaluation of flow shop sequencing heuristics. Management
Science, 23: 1174-1182.

DePuy, G., Moraga, R., & Whitehouse, G. (2005). Meta-RaPS: A Simple and Effective Approach
for Solving the Traveling Salesman Problem. Transportation Research Part E: Logistics
and Transportation Review, 41 (2), 115-130.

DePuy, G., Whitehouse, G., & Moraga, R. (2002). Using the Meta-RaPS Approach to Solve
Combinatorial Problems. Proceedings of the 2002 Industrial Engineering Research
Conference. Orlando, Florida.



83

Dong, X.-Y., Huang, H.-K. & Chen, P. (2008). An improved NEH-based heuristic for the
permutation flowshop problem. Computers & Operations Research, 35: 3962-3968.

Fisher, R. A. (1925). Statistical methods for research workers. Genesis Publishing Pvt Ltd.

Garcia, C., Rabadi, G (2011) A Meta-RaPS algorithm for spatial scheduling with release times.
International Journal of Planning and Scheduling, 1(1/2), 19-31

Glover, F., Laguna, M (1997) Tabu Search, University of Colorado, Boulder. Kluwer Academic
Publishers, Boston

Glover, F., & Laguna, M. (2000). Fundamentals of scatter search and path relinking.
Control and Cybernetics, 29(3), 653-684.

Gupta, J.N.D. (1971). An improved combinatorial algorithm for the flowshop scheduling problem.
Operations Research, 19: 1735-1758.

Graham, R., Lawler, E., Lenstra, J., & Kan, R, A. (1979). Optimization and approximation in
deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics. 287-
326.

Hepdogan, S., Moraga, R.J., DePuy, G.W. & Whitehouse, G.E (2009): A Meta-RaPS For The
Early/Tardy Single Machine Scheduling Problem. International Journal of Production
Research, 47(7), 1717-1732.

Ignall, E., Schrage L. E (1965). Application of branch-and-bound techniques to some flowshop
problems. Operation Research, 13:400-412

Johnson, L.A., Montgomery, D.C. (1974). Operation research in production planning, scheduling,
and inventory control. (pp. 35-40). New York: John Wiley & Sons, Inc.

Johnson, S.M. (1954). Optimal two- and three-stage production schedules with setup times
included. Naval Research Logistics Quarterly, 1: 61-68.



84

Lan, G., DePuy, G. (2006). On the effectiveness of incorporating randomness and memory into a
multi-start metaheuristic with application to the Set Covering Problem. Computers &
Industrial Engineering, 51 (2006) 362—-374

Lan, G., DePuy, G., & Whitehouse, G. (2007). An effective and simple heuristic for the set
covering problem. European Journal of Operational Research, 176, 1387— 1403.

Li X, P, Wang Y, X, & Wu, C (2004). Heuristic algorithms for large flowshop scheduling
problems. Proceedings of the 5th world congress on intelligent control and automation.
Hangzhou China, 2999-3003.

Lourenco, H. R., Martin, O. C., & Stitzle, T. (2003). Iterated local search. In Handbook of
metaheuristics (pp. 320-353). Springer US.

Moccellin, J, A, V., Dos Santos, M, O. (2000). An adaptive hybrid meta-heuristic for permutation
flowshop scheduling. Control and Cybernetics, 29: 761-771.

Moraga, R, J (2002) Meta-RaPS: an effective solution approach for combinatorial problems. Ph.D.
Dissertation, University of Central Florida, FL 32816, USA.

Moraga, R. J., DePuy, G. W., & Whitehouse, G. E. (2005). Meta-RaPS approach for the 0-1
Multidimensional Knapsack Problem. Computers & Industrial Engineering, 83-96.

Moraga, R, J., Whitehouse, G., DePuy, G., Neyveli, B., & Kuttuva, S. (2001). Solving the
Capacitated Vehicle Routing Problem using the Meta-RaPS approach. Proceedings of the
Conference on Computers and Industrial Engineering, (pp. 76-81). Montreal, Canada.

Murata, T., Ishibuchi, H. & Tanaka, H. (1996). Genetic algorithms for flowshop scheduling
problems. Computer and Industrial Engineering, 30: 1061-1071.

Nawaz, E, M., Enscore Jr, E. & Ham, | (1983). A heuristic algorithm for the mmachine, n-job
flow-shop sequencing problem. OMEGA, 11(1):91-95



85

Nowicki, E., Smutnicki, C. (1996). A fast tabu search algorithm for the permutation flow-shop
problem. European Journal of Operational Research, 91: 160- 175.

Ogbu, F., Smith, D. (1990). The application of the simulated annealing algorithms to the solution
of the n/m/Cmax flowshop problem. Computers & Operations Research, 17: 243-253.

Osman, H., Laporte, G. (1996) Metaheuristics: A bibliography. Annals of Operations Research,
63:513-623, 1996.

Osman, 1., Potts, C. (1989). Simulated annealing for permutation flow-shop scheduling. OMEGA,
the International Journal of Management Science, 17: 551-557.

Palmer, D.S. (1965). Sequencing jobs through a multi-stage process in the minimum total time-a
quick method of obtaining a near optimum. Operational Research Quarterly, 16: 10 107.

Pinedo, M, L (2008). Scheduling: Theory, Algorithms, and systems (3" ed.). New York, NY:
Springer.

Rabadi, G (2016). Heuristics, metaheuristics and Approximate Methods in Planning and
Scheduling. New York, NY: Springer.

Rabadi, G., Moraga, R., & Al-Salem, A. (2006). Heuristics for the unrelated parallel machine
scheduling problem with setup times. Journal of Intelligent Manufacturing, 17, 85-97.

Rahman, H., Sarker, R., & Essam, D. (2015). A real-time order acceptance and scheduling
approach for permutation flow shop problems. European Journal of Operational Research,
247, 488-503.

Rajendran, C., & Ziegler, H. (2004). Ant-colony algorithms for permutation flowshop scheduling
to minimize makespan/total flowtime of jobs. European Journal of Operational Research,
155(2), 426-438.

Reeves, C.R. (1995). A genetic algorithm for flowshop sequencing. Computers & Operations
Research, 22: 5-13.



86

Ribas, 1., Companys, R. & Tort-Martorell, X (2010). Comparing three-step heuristics for the
permutation flow shop problem. Computers and Operations Research, 37(12):2062—
2070, 2010.

Ruiz, R., Maroto, C. (2006). A comprehensive review and evaluation of permutation flowshop
heuristics. European Journal of Operational Research, 165: 479- 494.

Ruiz, R., & Stutzle, T. (2007). A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033-
2049.

Sun, Y., Zhang, C., Gao, L., & Wang, X. (2011). Multi-objective optimization algorithms for flow
shop scheduling problem: a review and prospects. International Journal of Advanced
Manufacturing Technology, 55, 723-739.

Taillard, E, D (1990). Some efficient heuristic methods for the flow shop sequencing problem.
European Journal of Operational Research, 47(1):65-74, 1990.

Taillard, E, D (1993). Benchmarks for basic scheduling problems. European Journal of
Operational Research, 64: 278-285.

Taillard, E, D. (1998). FANT: Fast Ant System. Techical Report, 46-98.

Taillard, E, D., Gamberdella, L. M., Gendreau, M., & Potvin, J.-Y. (2001). Adaptive memory
programming: A unified view of metaheuristics. European Journal of Operational
Research (135), 1-16.

Turner, S., Booth, D., 1987. Comparison of heuristics for flow shop sequencing. OMEGA, The
International Journal of Management Science, 15 (1), 75-78.

Vigas, F, V., Framinan, M, J (2014). On insertion tie-breaking rules in heuristics for permutation
flowshop scheduling problem. Computers & Operations Research, 45(1), 60-67



87

Vigas, F, V., Ruiz, R. & Framinan, M, J (2016). A new vision of approximate methods for the
permutation flowshop to minimise makespan: state-of-the-art and computational
evaluation. European Journal of Operation Research, 257 (3), 707-721.

Widmer, M., & Hertz, A. (1989). A new heuristic method for the flow shop sequencing problem.
European Journal of Operational Research, 41(2), 186-193.

Zegarra-Ballon, D, B. (2009). On effectiveness of incorporating memory mechanisms into the
construction phase of Meta-RaPS with application to the Unrelated Parellel Machine
Problem. Masters Thesis. Northern Illinois University, DeKalb, Illinois, USA.

Zegordi, S. H., Itoh, K. & Enkawa, T. (1995). Minimizing makespan for flowshop scheduling by
combining simulated annealing with sequencing knowledge. European Journal of
Operational Research, 85: 515-531.

Zobolas, G. I., Tarantilis, C. D., & loannou, G. (2009). Minimizing makespan in permutation flow
shop scheduling problems using a hybrid metaheuristic algorithm. Computers &
Operations Research, 36(4), 1249-1267.



	A generic memory design for a memoryless metaheuristic with the application of flowshop scheduling problem
	Recommended Citation

	tmp.1647475568.pdf.TQ7Je

