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ABSTRACT 

A GENERIC MEMORY DESIGN FOR A MEMORYLESS META-

HEURISTIC WITH THE APPLICATION OF FLOWSHOP SCHEDULING 

PROBLEM 

Shayan Mohammadi, M.S.
Department of Industrial and Systems Engineering

Northern Illinois University, 2017
 Reinaldo Moraga and Gary Chen, Co-Directors 

Although a strong construction phase in meta-heuristic algorithms is a critical factor to 

yield high-quality solutions in the local search, it has not been investigated thoroughly. The most 

effective mechanism to ensure the search in new areas is randomness, and a memory mechanism 

can help the algorithm tracking potential of good solutions during the search. This research focuses 

on depicting a general memory design in the construction phase of a memoryless meta-heuristic 

entitled Meta-RaPS (Meta-heuristic for Randomized Priority Search) in order to showing the 

effectiveness of spending more time in the construction phase. Permutation Flow Shop Scheduling 

Problem (PFSP) and famous Tillard’s benchmark is represented as the application of memory 

mechanism in the construction phase of Meta-RaPS. The results highlight that implementing 

memory and learning mechanisms in the construction phase of Meta-RaPS improves its 

effectiveness. Computational results display the algorithm’s competency even though the 

algorithm is just a construction meta-heuristic. The suggested technique strengthens the hypothesis 

that if the right procedure is executed in the construction phase of combinatorial optimization 

problems, local search can be eventually eliminated. 
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1-INTRODUCTION 

Pinedo (2008) states that scheduling is an integral part of the process of decision making where 

the intention of scheduling is to optimize the objective function(s) which is(are) subject to a group 

of constraints. The main constraints of scheduling problems are limited number of resources over 

the horizon of scheduling and due date of the jobs. Characteristics of resources may vary from 

industry to industry and attributes of each problem is unique. In the world of manufacturing the 

main resources are machines and operators. A detailed scheduling plan is necessary to satisfy the 

required efficiency and effectiveness of a system. For example, in real world, jobs may have to 

wait due to machines’ unavailability or when a high priority job arises, preemptions may occur as 

a result of this priority. Constraints and machine environment of a scheduling problem are the main 

factors to define a problem and prepare a decent schedule. 

 

The common notation in literature to address a problem is developed by Graham, Lawler, Lenstra 

and Kan (1979) which is a three parameters notation α/β/γ. Pinedo (2008) describes the field of α 

as machine environment which consists of a single entry. Field of β discusses the characteristics 

of process and constraints, β can have no entries, single entry, or multiple entries.  The last field γ, 

contains the objective function and usually has a single entry. 
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Machine environment comprises five major categories: 

1. Single machine 

2. Parallel machine 

3. Job shop 

4. Flowshop 

5. Open shop 

 

Sun, Zhang, Gao and Wang (2011) address the following notations for each machine environment, 

single machine is noted as 1, Pm is noted for identical parallel machine, Qm is noted for uniform 

parallel machine, Jm is noted for job shop, Fm is noted for flowshop, and Om is noted for open 

shop machining. Some of the examples for field β are permutation (prmu), sequence-dependent 

setup times (SDST), precedence constraints (prec), lot streaming (lsm), no-wait (nwt), preemption 

(prmp), limited buffers (block), breakdowns (brkdwn), machine eligibility (Mj), stochastic (stch), 

and reentrant (retr). Sun et al (2011) provides some examples for field γ such as total completion 

time (C), total flow time (F), total tardiness (T), maximum completion (𝐶𝑚𝑎𝑥) and maximum 

lateness (𝐿𝑚𝑎𝑥). 

 

1-1 Background of the Problem 

Pinedo (2008) mentions that in most facility and service industries each job has to follow a series 

of operations. Regularly, all operations have to be performed on every job in the same order which 

implies that, the jobs are following a same sequence or path. This condition is defined as flowshop 

machine environment. Flowshop machine environment assumes machines are in series. Flowshop 

machining can have some special features regarding to properties of a problem. 
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Flowshop machining varies from industry to industry, a more general type of flowshop machining 

is flexible flowshop.  According to Pinedo (2008) a flexible flowshop or compound flowshop or 

hybrid flowshop has three characteristics. It has at least more than one machine in one of the stages, 

and a job has to be machined at each stage, but only on one of the machines on the stage(s) with 

more than one machine. Allaoui and Artiba (2006) mention that in recent years hybrid flowshop 

is a more common practice than traditional flowshop, specifically in electronic manufacturing 

industries. 

 

According to Ruiz and Maroto (2006) the most common objective in flowshop machine 

environment is finding a sequence to process the jobs on machines in order to minimize the 

completion time of the last job on last the machine; this objective is called makespan or 𝐶𝑚𝑎𝑥. The 

processing times of jobs on machines are known in advance, fixed, and non-negative. In other 

words, the objective function is defined in a deterministic condition of process times. 

 

Flowshops that do not allow sequence change between machines are called permutation flowshops. 

In permutation flowshops, all jobs have to be machines in a same sequence or permutation. 

According to Rahman, Sarker and Essam (2015) permutation flowshop is a way to process 𝑛 jobs 

on 𝑚 machines while each job has to be processed on each machine without exception in a same 

sequence. 
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1-2 Problem Statement 

The proposed problem in this research would be a flowshop scheduling problem with n jobs j=1 

to 𝑛, and m machines 𝑖 = 1 to 𝑚, and the objective function is 𝐶𝑚𝑎𝑥 , the classification of problem 

base on the notation is: 

 

 

𝐹𝑚| 𝑝𝑟𝑚𝑢 | 𝐶 𝑚𝑎𝑥 

 

 

Where: 

𝐶𝑚𝑎𝑥𝑖𝑗 = max{𝐶𝑚𝑎𝑥𝑖,𝑗−1, 𝐶𝑚𝑎𝑥𝑖−1,𝑗} + 𝑡𝑖𝑗 

𝐶𝑚𝑎𝑥 = 𝐶𝑚𝑎𝑥𝑚𝑛 

𝐶𝑚𝑎𝑥0,𝑗 = 𝐶𝑚𝑎𝑥𝑖,0 = 0 

 

 

According to Johnson and Montgomery (1974), permutation flowshop scheduling with more than 

two machines is NP-hard. Therefore, most researches develop heuristics and approximate methods 

to find a high quality solution in a reasonable time. 

 

Assumptions in permutation flowshop scheduling are: 

 Process times 𝑡𝑖𝑗 where 𝑖 is referring to machines and it is 𝑖 = 1, … , 𝑚 and 𝑗 is referring 

to jobs and it is 𝑗 = 1, … , 𝑛, are known and deterministic. 
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 Each job 𝑗 can be processed at most on one machine 𝑖 at a time 

 Each machine 𝑖 can process only one job 𝑗 at a time 

 No preemption is allowed 

 All jobs are independent and are available for processing at time 0 

 The set-up times of the jobs on machines are negligible 

 The machines are continuously available 

 In-process inventory is allowed 

 

The number of all possible permutations for PFSP is 𝑛!. Where 𝑛 is the number of jobs on a given 

problem. The effort is to assign jobs on machines in a way that minimizes the completion time of 

the last job on the last machine. 

 

Rabadi (2016) describes Meta-RaPS as a generic and high level algorithm which focuses on 

constructing and then improving a feasible solution by introducing randomness in a simple 

heuristic rule. Meta-RaPS was formally introduced by Moraga (2002). The main purpose of this 

research is to embed an adaptive memory based procedure in the construction phase of the Meta-

RaPS with the application of PFSP. If high-quality solutions are generated in the construction 

phase it would be a great step toward diminishing the improvement phase. 

 

1-3 Objective and Scope 

The objective of this research is to enhance the performance of the construction phase of Meta-

RaPS with memory and learning mechanisms. In order to get a high quality solution which 

eventually leads to eliminating the improvement phase when it is compared to the other heuristics 

and meta-heuristics. 
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Scope of the research is designing a generic memory technique for the construction phase of Meta-

RaPS. PFSP is introduced as the application of this design. The priority sequencing rule is Dong, 

Huang and Chen (2008) priority rule and the proposed method is tested on Taillard’s (1993) 

benchmark to investigate: 

 Effectiveness of Meta-RaPS with adaptive memory against memoryless Meta-RaPS 

 Effectiveness of Meta-RaPS with adaptive Memory against other heuristics and meta-

heuristics 

 

1-4 Deliverables 

A generic memory design for the construction phase of Meta-RaPS has never been studied in the 

literature. Hence this research will assist the society of operations research by providing a 

completer version of Meta-RaPS. 
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2-LITERATURE REVIEW 

Permutation flowshop scheduling problem is known to be NP-hard for more than two machines. 

The domain of feasibility has 𝑛! unique solutions; therefore, only exhaustive search methods can 

lead to the guaranteed optimal permutation. Pinedo (2008) states that even for small size problems 

the exhaustive search method is expensive. Literature review section focuses on the main 

approaches to tackle the permutation flowshop problem, Meta-RaPS, and memory in meta-

heuristics. Available techniques to deal with PSFP can be classified as exact algorithms, heuristics, 

and meta-heuristics. 

 

2-1 Exact Algorithms 

Computing all 𝑛! permutations is the easiest and the most straightforward exact algorithm, since 

it explores all feasible solutions and then reports the best one(s) out of all. However, this strategy 

is almost impractical even for small size problems. This is due to computational complexity that 

the method is dealing with. 

 

Johnson (1954) proposes an algorithm for flowshop problems with two machines and 𝑛 jobs which 

provides the actual optimal solution. Johnson’s research demonstrates that the same permutation 

of jobs can be applied on both machines to obtain the optimal solution. Johnson’s algorithm is 

proven to find the optimal solution when the problem is dealing with two machines or three 



8 

 

machines under specific conditions. However, Johnson’s rule is clearly ineffective when the 

number of machines is more than three. 

 

In addition to exhaustive search and Johnson’s rule, branch and bound techniques can provide the 

optimal solution when known upper bound or lower bound of the problem is used to restrict the 

search space. Ignall and Schrage (1965) developed the first and initial branch and bound algorithm 

for PFSP when the objective function is makespan. 

 

2-2 Heuristics 

According to Osman and Laporte (1996) in permutation flowshop problems, the most pragmatic 

procedures to obtain an optimal or near optimal solutions are heuristics. This due to the fact that 

these problems are NP-hard which results in expensive computational times for exact methods. 

Generally, heuristic algorithms are divided into two classes of construction and improvement. In 

constructive heuristics the effort is to construct a sequence based on some criteria; while 

improvement heuristics improve a constructed solution iteratively with a local search method. 

 

2-2-1 Construction Heuristics 

Palmer (1965) suggests a slop index ranking method to sequencing the jobs based on ascending 

order of indices, which means giving the higher priority to the jobs with lower slope (index). CDS 

by Campbell, Dudek, and Smith (1970) is a heuristic method which converts a 𝑛 jobs 𝑚 machines 

flowshop problem into a 𝑛 jobs and two virtual machines problem to utilize the Johnson’s rule on 



9 

 

the virtual machines. Gupta (1971) modifies Palmer’s ranking algorithm according to a function, 

to sort the jobs and construct the schedule. Dannenbring (1977) introduces Rapid Access (RA) 

heuristic algorithm which is the combination of Palmer’s sloping index with some modifications 

and CDS algorithm. Therefore, it has an edge over Johnson’s rule which is applicable to two 

machines flowshops. 

 

Nawaz, Enscore, and Ham (1983) introduce a construction heuristic for flowshop problems which 

is known as NEH heuristic. NEH has two stages: 

1. Sorting the jobs in descending order of total process times of each job 

2. Jobs are removed from the initial sorted sequence one by one and are then placed in a 

partial sequence. When a job is going to be added to a partial schedule, it will be inserted 

to all possible positions. Among all the positions, the job will be fixed in the cheapest one. 

The procedure is continued till all jobs are scheduled in the partial sequence and the sorted 

sequence is vacant. 

 

According to Ruiz et al (2006) the computational complexity of the NEH is 𝑂(𝑛3𝑚). However, 

Tillard (1990) proposes a method that reduces complexity to 𝑂(𝑛2𝑚). Based on Turner and Booth 

(1987), Ruiz, et al (2006) and Viagas, Ruiz, Framinan (2016) reviews on PFSP, the NEH heuristic 

is regarded as the best construction heuristic for flowshop problems so far. Hence, developing 

different versions of the NEH has been investigated a lot. According to Vigas et al (2016) different 

versions of NEH are noted as 𝑁𝐸𝐻(𝑎|𝑏|𝑐) in the literature. Where a, b and c are: 

a) Initial order in the first stage of NEH, some examples of this field are: 

LPT: describing value of sum of process time (original NEH) 

SPT: ascending value of summation of process time 



10 

 

Dev: ordering based on standard deviation of each job which is proposed by Li, Wang 

and Wu (2004) 

AvgStd: sum of mean and standard deviation of each job which is proposed by Dong 

et al (2008) 

b) Tie breaking mechanism when a same makespan is gained by different sequences 

c) Reversibility of the problem which is studied by Ribas, Companys and Martorelli 

(2010) 

 

2-2-2 Improvement Heurtistics 

The essence of improvement algorithms is to modify an already constructed solution in order to 

enhance it. This modification can be categorized into two main classes: neighborhood search, 

which is switching a small portion of a constructed solution; and recombination mechanism, which 

is combining decent properties of different solutions. Based on Viagas et al (2016) the most studied 

neighborhood search techniques are simulated annealing (SA) and Tabu Search; and most studied 

recombination mechanisms are genetic algorithm (GA), artificial immune system (AIS) and 

artificial neural networks (ANN). 

 

2-3 Meta-Heuristics 

Osman et al (1996) describes meta-heuristics as systematic frameworks that can be used in 

combinatorial optimization problems to improve the quality of solutions. Tillard (1990) applied 

the first time version of Tabu search on flowshop scheduling, the other designs of Tabu Search for 

flowshop problems introduced by Nowicki and Smutnicki (1996), and Ben-Daya and Al-Fawzan 

(1998). Application of Genetic Algorithms on flowshop problems started by Reeves (1995); Chen, 
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Vempati, and Aljaber (1995); and Murata, Ishibuchi, and Tanaka (1996). Simulated Annealing 

functionality on flowshop problems was tested by Osman and Potts (1989) and Ogbu and Smith 

(1990). Moreover, utilization of hybrid methods in the flowshop problems was started with 

Zegordi, Itoh and Enkawa (1995) and Moccellin and Dos Santos (2000). 

 

2-4 Meta-RaPS 

Meta-RaPS stands for Metaheuristic for Randomized Priority Search. Moraga, DePuy and 

Whitehouse (2005) describe Meta-RaPS as a general strategy that produces feasible solutions by 

constructing and improving them through utilization of simple heuristic rules in a randomized 

manner. Authors mention that Meta-RaPS is the product of a research conducted on the application 

of a modified COMSOAL (Computer Method of Sequencing Operations for Assembly Lines) for 

solving combinatorial optimization problems. 

 

Arin and Rabadi (2013) state that Meta-RaPS first generates a feasible solution by including 

randomness in the construction phase and then improves the generated feasible solution in the 

improvement phase. According to Arin et al. (2013), Meta-RaPS constructs a solution by adding 

feasible elements, variables, tasks or activities in a randomized fashion to a partially constructed 

solution based on a priority rule until a termination criterion is met. Meta-RaPS avoids most local 

optimums during the construction phase due to having the advantage of randomness. 

 

Arin et al (2013) declares that Meta-RaPS execution needs four parameters: number of 

iterations (𝐼), the priority percentage (𝑝%), restriction percentage (𝑟%), and the improvement 
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percentage (𝑖%). Meta- RaPS does not select the component, variable, task or activity with the 

best priority sequencing value in each iteration. On the other hand, the algorithm is constantly 

altering between choosing the best component, variable, task or activity or accepting a component, 

variable, task or activity with a good priority value, but not necessarily the best one. The parameter 

𝑝% defines the percentage of the time that a component, variable, task or activity with the best 

priority sequencing value will be selected and added to the partial solution, and 100 −  𝑝% of the 

times a component, variable, task or activity will be selected randomly from a candidate list (CL) 

which contains “good” components, variables, tasks or activities. The CL is constructed by 

including elements whose priority sequencing values (𝑑𝑗) are within 𝑟% of the range of best 

priority value. Elements are added to a partial solution until a complete constructed solution is 

generated. 

 

If the best feasible element has the lowest priority sequencing rule, an element belongs to CL if: 

 

𝑑𝑗 ≤  𝛼 + (𝛽 − 𝛼) ∗ 𝑟, where 𝛼 = min(𝑑𝑗) 𝑎𝑛𝑑 𝛽 = max (𝑑𝑗) 

 

 

Otherwise, the best feasible element has the largest priority sequencing rule and an element 

belongs to CL if: 

 

 𝑑𝑗 ≥  𝛽 + (𝛼 − 𝛽) ∗ 𝑟, where 𝛼 = min(𝑑𝑗) 𝑎𝑛𝑑 𝛽 = max (𝑑𝑗) 
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Smaller values of 𝑝% and larger values of 𝑟% add more randomness to the algorithm. In addition, 

for a given value of 𝑝% , greater values of 𝑟% add more randomness. 

 

When construction of a feasible solution is completed it may go through the improvement phase. 

In the improvement phase, usually a neighborhood search algorithm is employed. The parameter 

𝑖% determines whether an already constructed solution will be improved or not. Meta-RaPS keeps 

track of both the best (𝑏 ∗) and the worst (𝑤 ∗) constructed objective functions. A constructed 

solution will be considered for improvement phase if its objective function (𝑍) satisfies the 

following inequality constraints: 

 

 

{𝑍 ≤  𝑏∗ + (𝑤∗ − 𝑏∗)𝑖%}  Minimization problems 
{𝑍 ≥  𝑏∗ − (𝑏 ∗ −𝑤 ∗)𝑖%}  Maximization problems 

 

 

The idea is that the better constructed solutions can perform better in the improvement phase of 

Meta-RaPS. Arin et al (2013) states that the quality of generated solutions by Meta-RaPS heavily 

dependents on its parameters. Specifically the number of iterations and the improvement 

percentage. However, it is worth mentioning that increasing the value of these parameters will 

definitely boost the computational time of the algorithm. 

 

Meta-RaPS has proven its effectiveness for some of the well-known N-P hard problems such as 

capacitated vehicle routing problem (CVRP) by Moraga, Whitehouse, DePuy, Neyveli and 
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Kuttuva (2001); bin packing problem by DePuy, Whitehouse and Moraga (2002); 0-1 

multidimensional knapsack problem by Moraga et al (2005); traveling salesman problem (TSP) 

by DePuy, Moraga and Whitehouse (2005); unrelated parallel machine problem (PMSP) by 

Rabadi, Moraga and Al-Salem (2006); set covering problem (SCP) by Lan, DePuy and Whitehouse 

(2007); Early/Tardy Single Machine Scheduling Problem by Hepdogan, Moraga, DePuy and 

Whitehouse (2009); and Parallel Multiple-Area Spatial Scheduling Problem with Release Times 

by Garcia and Rabadi (2011). 

 

2-5 Memory and Meta-Heuristics 

Glover and Laguna (1997) introduce a classification method for metaheuristic algorithms that have 

an advantage over a memory mechanism. The classes are utilization of adaptive memory, 

neighborhood search memory, and the number of solutions transmitted from one iteration to the 

next ones. According to memory classification of Glover at al. (1997) a three field notation 𝑎|𝑏|𝑐 

can help classify meta-heuristic algorithms. If a metaheuristic has an advantage over adaptive 

memory, field 𝑎 will be noted as 𝐴, otherwise it would be regarded as memoryless and it will be 

noted as 𝑀. Based on the neighborhood search mechanism the second field, 𝑏, will either be 𝑁 if 

there exists a systematic neighborhood search or 𝑆 if a random sampling method is utilized. The 

field, 𝑐, would be noted as 1 if in each iteration the algorithm is dealing with one solution. On the 

other hand, the field, 𝑐 would be noted as 𝑃 if the algorithm is based on a population of solutions 

with size of 𝑃. Table1 summarizes the memory classification’s description. 
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Table 1. Memory in Metaheuristics Classification 

a Using Adaptive Memory A Adaptive Memory 

M Memoryless 

b Type of Neighborhood Search N Systematic Search 

S Random Search 

c Number of Solutions at Each Iteration 1 Single Solution 

P Population Solution 

 

 

 

 

Arin et al (2013) states that considering Tabu Search (TS) is the best way to define the foundation 

of memory and learning in meta-heuristics. TS is based on four major facets: recency, frequency, 

quality, and influence. Recency tracks the changes in attributes of solutions in the search process 

which are changed recently. Tabu is an attributes in the recent visited solutions and a tabu move 

is a move that leads to a tabu attribute. 

 

The best way to summarize recency in one word is short term memory. Therefore, there should be 

a facet that deals with long term memory. Frequency takes the responsibility of long term memory 

in TS. Frequency includes two major aspects: transition frequency, which measures how frequent 

attributes are changing; and residence frequency, which measures how frequent attributes are 

considered in generated solutions. Glover et al (1997) illustrates this feature by an example in 

scheduling: transition frequency can be considered as the number of times that job 𝑗 has been 

moved to an earlier position in the sequence, and residence frequency can be considered as the 
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summation of tardiness for a given job (𝑗) when it is located in position [𝑘]. Quality deals with the 

shared features of good solutions or the paths that guide to a good solution. Mechanisms such as 

applying penalty for poor moves that may lead to poor solutions are considered are instances of 

quality. The last mentioned facet is influence. Influence is the effects of the decisions which are 

made in the process of generating a solution. Quality facet can be regarded as a type of influence 

facet. 

 

2-5-1 Adaptive Memory Programming 

Taillard, Gamberdella, Gendreau and Potvin (2001) summarize principles of an effective adaptive 

memory programming (AMP) in meta-heuristics. This research compares and integrates common 

features between different approaches in metaheuristics that have an advantage over AMP. 

According to Taillard et al (2001), the foundation of an effective AMP is based on some or all of 

the following features: 

 

1. Memorizing a set of solutions or special data structures that aggregates the particularities 

of the generated solutions throughout the search 

2.  Constructing a provisional solution with memorized data; 

3. Using a logical search algorithm or a more sophisticated metaheuristic to improve the 

solutions 

4. Using new solutions’ information to update memorized data structure. 

 

 

 

Taillard (1998) declares that the performances of AMP approaches are much better than heuristic 

algorithms such as simulated annealing and genetic algorithms, and this is due to utilization of 
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memory in AMP algorithms. It can be seen in Tillard’s work (1998) that utilization of AMP can 

find a better solution in a shorter time compared to Tabu Search, Simulated Annealing, and 

Variable Neighborhood Search. Tillard provides stronger evidences to support his argument in a 

further research entitled “Adaptive Memory Programming: A unified view of metaheuristics”, 

Taillard et al (2001). This research compares different heuristics including different AMP methods 

on NP-hard problems such as quadratic assignment problem (QAP).  

 

2-5-2 Meta-RaPS and Memory 

Based on Glover et al (1997) metaheuristics classification, Meta-RaPS is a memoryless meta-

heuristic. Therefore, it can benefit from a systematic procedure that utilizes memory in its 

structure. Meta-RaPS with memory concept was investigated by Lan et al (2007) for the first time 

on a set covering problems (SCP). Two adaptive memory structures were utilized in Lan et al 

(2007) research. First, utilization of elements’ fitness in a priority rule, which is the idea of quality 

in TS or how frequent an element from a solution collaborates in a set of elite solutions. Second, 

partial construction which it is an illustration of a work done by Glover and Laguna (2000) on 

scatter search and path relinking which explore new solutions by tracking high-quality solutions. 

 

Zegarra-Ballón (2009) investigates incorporation of memory in Meta-RaPS on a problem of 

unrelated parallel machine scheduling by integration of element fitness research by Lan et al. 

(2007), and recency from TS. Zegarra-Ballón’s (2009) algorithm tracks the changes that are made 

in the recent past based on recency and changes the priority rule with element fitness. 

Computational results of these two researches show that Meta-RaPS with memory outperforms 
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the original Meta-RaPS. Current researches show that not only Meta-RaPS is a strong meta-

heuristic framework for solving combinatorial optimization problems, but also the integration of 

memory in its structure can improve its performance. 

 

Objective of this research is to design a generic adaptive memory structure for the construction 

phase of Meta-RaPS with the application of permutation flowshop scheduling problems and 

compare the outcomes with original Meta-RaPS and other competitive meta-heuristics in the 

literature. The ideal purpose of this research is to assess the idea of generating high-quality 

solutions that eliminate the necessity of the improvement phase. 

 

 Although there exist Meta-RaPS designs with memory in the literature, but a generic memory 

design is not available. Hence, designing a memory framework that helps Meta-RaPS to be 

considered as an Adaptive memory based meta-heuristic (according to Glover et al (1997) 

classification in Table 1) is favorable. 

 

2-6 Summary 

Literature review of flowshop scheduling problems reveals that the quality of Meta-RaPS as a 

meta-heuristic to solve flowsshop problems has not been investigated yet, so it can be seen as a 

gap to perform a research on. Most available meta-heuristics spend the minimum time on 

construction while Meta-RaPS attempts to balance the workload between the construction phase 

and the improvement phase. 
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Meta-RaPS with memory was studied by Lan et al (2007) to solve set covering problems and by 

Zegarra-Ballón (2009) to solve unrelated parallel machine scheduling problems. However, the 

design in neither of these researches is generic. Therefore, a generic memory structure for Meta-

RaPS is another gap in this area. 

 

In summary, the purpose of this research is to design a memory framework for Meta-RaPS to 

improve the effectiveness of this algorithm. Moreover, since the performance of Meta-RaPS in 

flowshop scheduling is not investigated, PFSP is selected as the application of this design. 
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3-METHODOLOGY 

It is stated in the literature review that Meta-RaPS is a promising meta-heuristic that not only uses 

construction and improvement heuristics to generate high quality solutions, but it also attempts to 

balance the workload among these two phases. Rabadi (2016) states that Meta-RaPS constructs 

feasible solutions through utilization of randomness in a systematic procedure to avoid getting 

stuck in most local optimums and then uses a local search technique to enhance the solutions with 

the hope of reaching to a global optimum. Meta-RaPS execution needs four parameters: the priority 

percentage (%p), the restriction percentage (%r), the improvement percentage (%i), and the 

number of iterations (I). 

 

Number of iterations (I) controls execution of the process. 𝑝 and 𝑟 determine how the construction 

heuristic selects the next job and adds it to the partial solution. In addition, the improvement 

percentage determines whether a constructed solution will be passed through the improvement 

phase or not. 

 

3-1 Meta-RaPS Construction Phase 

NEH is the best construction heuristic (Turner et al, 1987; Ruiz et al, 2006; and Viagas et al, 

2016) for PFSP with the objective of makespan. 
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Original NEH is as follows: 

1- Order the 𝑛 jobs in decreasing value of summation of process times on machines 

2- Take the first two jobs and calculate both possible permutations’ makespan, and then 

select the permutation with the lower makespan 

3- For  job 𝑗𝑡ℎ, 𝑗 = 3, . . . , 𝑛, insert the job into all possible places in the partial sequence and 

among 𝑗 possible positions put the job in the position that minimizes makespan 

 

It is obvious that NEH construction heuristic has two phases as follows: 

1- Generate an initial sequence 

2- Construct a solution 

 

Speaking colloquially, first phase of NEH is assigning a priority sequencing value to the jobs and 

sorting them by descending value of this priority sequencing rule, and second phase of NEH is 

constructing a partial schedule gradually until a complete solution is obtained. 

 

3-1-1 Meta-RaPS in the Initial Phase of NEH 

Dong et al (2008) improves the NEH by changing the priority rule in the phase one. The priority 

rule is based on the following hypothesis: the larger the deviation for processing times for a given 

job on machines, the higher its priority should be. Therefore, Dong et al (2008) use a priority rule 

of  𝐴𝑉𝐺𝑗 + 𝑆𝑇𝐷𝑗 in phase one and sort the jobs in a decreasing order of 𝐴𝑉𝐺𝑗 + 𝑆𝑇𝐷𝑗 while 𝐴𝑉𝐺𝑗 

is: 

 

𝐴𝑉𝐺𝑗 =
1

𝑚
∑ 𝑝𝑖𝑗

𝑚

𝑖=1
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And standard deviation of process times for a given job 𝑗 is: 

 

 

𝑆𝑇𝐷𝑗 = √
1

𝑚 − 1
∑(𝑝𝑖𝑗

𝑚

𝑖=1

− 𝐴𝑉𝐺𝑗) 

 

 

 

Dong et al (2008) perform a one-side paired t-test on their priority rule and original NEH on 

Tillard’s benchmark (1993). They state when the significance level is 0.05 𝐴𝑣𝑔𝐷𝑒𝑣 = 𝐴𝑉𝐺𝑗 +

𝑆𝑇𝐷𝑗 performs better that NEH. Hence the utilized priority sequencing rule in this research is Dong 

et al (2008) priority rule and it is noted as 𝐴𝑣𝑔𝐷𝑒𝑣. 

 

Li et al (2004) and Dong et al (2008) show that initial sequence of NEH has a great impact on the 

quality of the second of phase of NEH; therefore in this section utilization of Meta-RaPS in the 

first phase of NEH with Dong priority rule is introduced. 

 

In sequence construction phase, Meta-RaPS uses 𝐴𝑣𝑔𝐷𝑒𝑣 as the priority sequencing rule. While 

adding a job to the sequence, the parameter 𝑝 determines that 𝑝 percent of the time the job with 

the best priority sequencing value (𝑚𝑎𝑥 (𝐴𝑣𝑔𝐷𝑒𝑣)) should be added to the sequence, and 100 −

𝑝% of the time a job from the CL. The jobs in CL are the ones that are not sequenced and their  

𝐴𝑣𝑔𝐷𝑒𝑣 values are within 𝑟 percent of the range of best 𝐴𝑣𝑔𝐷𝑒𝑣. 
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When a sequence is constructed the second phase of NEH is performed. In other words, a job is 

always positioned in the position that minimizes makespan. Ties are broken arbitrary. The pseudo 

code for this algorithms is as Figure 1. 

 

 

 

 

 
1- Set parameter I, p, r, 𝑆𝑐ℎ∗=inf,  

2- For Iter= 1 to I 

3-        Set Seq=Ø, Sch= Ø, 𝑗𝑎 = {1, … . , 𝑛 }, 𝑎𝑛𝑑 𝐾 = 1 

4-        Generate a random number rnd ∈ [0,1] 

5-                  If rnd <p 

6-                  𝑗∗ is the job that satisfies 𝑑∗
𝑗 = max (𝐴𝑣𝑔𝐷𝑒𝑣𝑗) 

7-                  Else 

                             Take 𝑗∗ randomly from the set of all 𝑗 ∈  𝑗𝑎 that satisfy 

                             𝑑𝑗 ≥ max(𝐴𝑣𝑔𝐷𝑒𝑣𝑗) + [min(𝐴𝑣𝑔𝐷𝑒𝑣𝑗) − max(𝐴𝑣𝑔𝐷𝑒𝑣𝑗)] ∗ 𝑟 

8-                End 

9-      Assign job 𝑗∗ to Seq in position k 

10-      Set k=k+1 

11-      Delete 𝑗∗ from 𝑗𝑎 

12-           If 𝑗𝑎= Ø go to line 14, else go to line 4 

13-           End 

14-      Perform NEH second phase insertion method on Seq to construct Sch 

15-             If 𝐶𝑚𝑎𝑥(𝑆𝑐ℎ) < 𝐶𝑚𝑎𝑥(𝑆𝑐ℎ∗) 

16-             Update 𝑆𝑐ℎ∗ 

17-            End 

18-  End 

19- Report 𝑆𝑐ℎ∗ and 𝐶𝑚𝑎𝑥(𝑆𝑐ℎ∗) 

 
Figure 1. Pseudo Code for Meta-RaPS In the First Phase of NEH 
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3-1-2 Meta-RaPS in the Second Phase of NEH 

This section introduces another design of Meta-RaPS, which is implementing Meta-RaPS in the 

second phase of NEH or job insertion in the partial schedule and selecting the position that 

minimizes makespan of partial schedule.  

 

Initial sequence is constructed with Dong’s priority rule and in the second phase, Meta-RaPS 

uses 𝐶𝑚𝑎𝑥 partial schedule as the priority rule. While adding a job to a partial schedule the 

parameter 𝑝 determines that 𝑝 percent of the time the job is going to be inserted in the position that 

minimizes the 𝐶𝑚𝑎𝑥. The remaining times (1 − 𝑝), the job is going to be located in a position 

randomly from those positions that their 𝐶𝑚𝑎𝑥 values are within 𝑟 percent of the range of best 

(minimum) 𝐶𝑚𝑎𝑥. The pseudo code is as Figure 2. 

 

3-1-3 Meta-RaPS in Both Phases of NEH 

This design is the integration of both Meta-RaPS in the first and Meta-RaPS in the second phase 

of NEH. First the algorithm constructs a sequence with Dong’s priority rule in Meta-RaPS 

framework and when a feasible sequence is generated the algorithm uses this sequence as the input 

of Meta-RaPS in the second phase of NEH. Trial and error process confirms that the parameters 𝑝 

and 𝑟 should be tuned separately for Meta-RaPS in the first phase and Meta-RaPS in the second 

phase. Meta-RaPS in the first phase is noted by MR1 and the Meta-RaPS in the second phase is 

noted by MR2. The process is illustrated in Figure 3. 
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1- Sequence the jobs in descending order of AvgDev 

2- Set parameters p, r, I, 𝑆𝑐ℎ𝑒∗ = Ø, Cmax(𝑆𝑐ℎ𝑒∗)=inf 

3- For Iter=1 to I 

4-        PartialSchedule= Ø 

5-                  For j=1 to n 

6-                  Take job j from sequence 

7-                                 If j==1 

8-                                 Locate j in PartialSchedule 

9-                                 End 

10-                       For k=1 to j 

11-                       Insert job j in position k of PartialSchedule and calculate Cmax(k) 

12-                       End 

13-                   Generate a random number (rnd) 

14-                            If rnd<p 

15-                            Make position of job j permanent in min(Cmax(k)) 

 

16-                            Else choose position of job j arbitrary from positions that satisfy 

                           Cmax(k) > min(Cmax(k))+[max(Cmax(k))-min(Cmax(k))]*r 

17-                            End 

18-                   End 

19-                  Sche= PartialSchedule 

20-                         If Cmax(Sche)<Cmax(𝑆𝑐ℎ𝑒∗) 

21-                          Update Cmax(𝑆𝑐ℎ𝑒∗) 

22-                        End 

23-  End 

24- Report Cmax(𝑆𝑐ℎ𝑒∗) and 𝑆𝑐ℎ𝑒∗ 

 
Figure 2. Pseudo Code for Meta-RaPS in the Second Phase of NEH 

 

 

 

1- Set parameter r1,p1, r2, p2, I and 𝑆𝑐ℎ∗=inf 

2- For Iter=1 to I 

3-                Apply MR1 line 3 till 13 

4-               Apply MR2 line 5 till 19 

5-                    If Cmax(Sche)<Cmax(𝑆𝑐ℎ𝑒∗) 

6-                         Update Cmax(𝑆𝑐ℎ𝑒∗) 

7-                   End 

8-  End 

9- Report Cmax(𝑆𝑐ℎ𝑒∗) and 𝑆𝑐ℎ𝑒∗ 

 
Figure 3. Pseudo Code for Meta-RaPS in Both Phases of NEH 
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3-2 Adaptive Memory Based Meta-RaPS 

This research investigates the effectiveness of embedding memory in the construction phase of a 

memoryless meta-heuristics called Meta-RaPS which is a randomized algorithm that tries to share 

the workload between the construction phase and the improvement phase with the hope of 

eliminating the improvement phase. The focus of this section is to design a generic memory 

mechanism in the construction phase of Meta-RaPS with the application of flowshop scheduling 

problems. It is mentioned in the literature review section that memory is successfully implemented 

in Meta-RaPS by Lan et al (2007) for Set Covering Problem and by Zegarra-Ballón (2009) for 

Unrelated Parallel Machine Scheduling Problem by element fitness which is a technique derived 

from Tabu Search and is generally embedded on improvement heuristics rather than construction 

heuristics. 

 

3-2-1 Memory Design and its Integration in Meta-RaPS Construction Phase 

Multi-start algorithms usually do not benefit from generated knowledge of previous solutions in 

their construction phase. However, a multi-start algorithm that benefits from this knowledge in its 

construction phase can be designed by applying a well-established precept into it. 

 

Consider list 𝑆 that consists of 𝑒 elite solutions with respect to an objective function. 𝑆 has 𝑒 null 

solutions at the beginning of the search with the costs of infinity (for minimization problems). Let 

𝐶(𝑁) be the cost of a new feasible solution 𝑁, and 𝐶(𝑊𝑜𝑟𝑠𝑡(𝑆)) be the maximum cost in list 𝑆,                                    

if 𝐶(𝑁) < 𝐶(𝑊𝑜𝑟𝑠𝑡(𝑆)) , 𝑁 is a candidate to be added in 𝑆 and it will replace 𝑊𝑜𝑟𝑠𝑡(𝑆). 
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In each iteration, before Meta-RaPS generates a new solution, a frequency matrix is implemented 

in a probabilistic procedure as a memory mechanism. Probability matrix tracks the occurrence of 

each variable in the elite list. Consider Table 2 as the set of elite solutions for a problem with 5 

jobs (𝑛 = 5) and 3 machines (𝑚 = 3) where 𝑒 = 4.  

 

 

 

 

Table 2. List S of elite solutions 

S 1 2 3 4 5

1 4 1 5 2 3

2 3 2 5 1 4

3 2 4 3 5 1

4 2 1 5 3 4

List S

Position

 

 

 

 

Elements of matrix represent the jobs and their positions in each elite solution. As an example in 

S1: job4 is in position1, job1 is in position2, job5 is in position3, job2 is in position4 and job3 is 

in position5.  The frequency matrix which is a square matrix (𝑛 ∗ 𝑛) tracks the occurrence of each 

job in each position and it can be derived from 𝑆 (Table 2), Table 3 shows the frequency matrix as 

follows: 
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Table 3. Frequency Matrix 

1 2 3 4 5

1 0 2 0 1 1

2 2 1 0 1 0

3 1 0 1 1 1

4 1 1 0 0 2

5 0 0 3 1 0

Job

Position

 

 

 

 

 

The probability 𝑝𝑗𝑘 =
𝑂𝑗𝑘

∑ 𝑂𝑗𝑘𝑗
  where 𝑂𝑗𝑘  is the number of times job 𝑗 is happening in position 𝑘. 

The probability matrix of this example is as Table 4 where the summation of each row and each 

column of the table should be equal to one. 

 

 

 

Table 4. Probability Matrix 

1 2 3 4 5

1 0 0.5 0 0.25 0.25

2 0.5 0.25 0 0.25 0

3 0.25 0 0.25 0.25 0.25

4 0.25 0.25 0 0 0.5

5 0 0 0.75 0.25 0

Job

Position
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Now consider parameter 𝑚 as mimicking percentage parameter. This parameter controls how often 

the probability matrix is going to be used. Elite solutions have 𝑛 variables (in this case position); 

therefore for 𝑘 values one through 𝑛 a random number (rnd) would be generated, if 𝑟𝑛𝑑(𝑘) < 𝑚 

a job j would be copied in the partial solution with respect to the probability of jobs on the 

associated column with position [𝑘] in the probability matrix, then the job should be removed and 

the probability matrix should be updated after this removal. When utilization of memory is done 

the solution is incomplete, so Meta-RaPS construction phase (without used jobs) would be applied 

on this currently incomplete solution to generate a complete feasible solution. 

 

Suppose 𝑚 = 0.4 and 𝑟𝑛𝑑(1) = 0.3, since 𝑟𝑛𝑑(1)  < 𝑚, so position [1] should be filled with the 

probability matrix. Chance of jobs to be selected for position [1] are: {𝑝11 = 0 , 𝑝21 = 50,   𝑝31 =

25,   𝑝41 = 25 and 𝑝51 = 0}. Assume job 3 is selected for position [1], now job 3 will be located 

in the position [1] as Figure 4.  

 

 

 

 

 

Position 

1 2 3 4 5 

3(job)     

Figure 4. Partial Constructed Solution 
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When job 3 is removed from frequency matrix the probability matrix should be updated as Table 

5. This is to avoid using this job in another position. The process continues for position 𝑘 =  2 𝑡𝑜 𝑛 

(to consider all positons for partial construction). The new partial constructed solution is currently 

incomplete, so Meta-RaPS construction phase would be applied on this currently incomplete 

solution to generate a complete feasible solution. 

 

 

 

 

Table 5. Updated Probability Matrix after Removing Job 3 

1 2 3 4 5

1 0 0.50 0 0.33 0.33

2 0.67 0.25 0 0.33 0

3 0 0 0 0 0

4 0.33 0.25 0 0 0.67

5 0 0 1.00 0.33 0

Job

Position

 

 

 

 

 

To keep the diversity of 𝑆 high in the first iterations the value of 𝑚 should be adjusted adaptively, 

but up to a threshold(𝛿). The threshold ensures that the percentage of partial construction will not 
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pass a certain level. This is to keep the essence of randomness in Meta-RaPS. Value of 𝑚 can be 

adjusted with a function of 𝑓(𝑖𝑡𝑒𝑟). A simple theoretical function that has a linear behavior is used 

in this research as follows, behavior of this function is depicted in Figure 5 

𝑓(𝑖𝑡𝑒𝑟) = log (1 + 𝑒𝑖𝑡𝑒𝑟) 

𝑚 = {
𝑓(𝑖𝑡𝑒𝑟)           𝑖𝑓 0 < 𝑓(𝑖𝑡𝑒𝑟) < 𝛿

𝛿                        𝑖𝑓 𝑓(𝑖𝑡𝑒𝑟) > 𝛿
 

 

 

 

 

 

Figure 5. Behavior of Theoretical Function with Number of Iterations 
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3-2-2 Adding a Learning Mechanism 

Elite list (𝑆) tracks high quality solutions and it is used in a probabilistic fashion to construct a 

partial solution from good solutions. However, the memory mechanism does not bias the search 

and priority sequencing rule toward high quality solutions; therefore adding a mechanism that 

adjusts the priority rule toward high quality solutions is favorable. Essentials of priority rule 

adjustment are designed according to the principle of Tabu Search by Glover et al (1997).  Meta-

RaPS with memory and learning structure is denoted as MMR. 

 

The assumption of adjustment is the following hypothesis, the more frequent a job is appearing in 

the first positions of the elite list, the higher its priority should be. Glover et al (2000) describes 

the principles of priority rule adjustment as follows: consider attribute sets as 𝐴(𝑥), each attribute 

is counted (weighted) in accordance with the number of times it appears in elements of 𝐴(𝑥). 

Speaking colloquially, the weight assigned to 𝐴(𝑥) is the weighted average of attributes of 𝐴 to 

create a linear weighting combination. By considering the hypothesis of adjustment and the Glover 

principle of adjustment, frequency matrix can be used to count how often a job is appearing in a 

given position in the elite list. Moreover, a slope index adjusts the weight of each position 

(attribute). Let 𝑘 = 1 to 𝑛 be the notation that shows the position in schedule. By a linear weighting 

scheme we would have: 

 

𝑊(𝑘) =
𝑛 + 1 − 𝑘

𝑛
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Now the impact of each position (attribute) 𝑘 on the priority rule for each job is: 

  

 

𝐴𝑣𝑔𝐷𝑒𝑣𝑗,𝑘 =
𝐴𝑣𝑔𝐷𝑒𝑣𝑗

1 − 𝑙 ∗ 𝑊𝑘 ∗ 𝑝𝑗𝑘
 

 

 

A learning parameter 𝑙 is introduced to control the influence of adjustment on the priority rule 

(setting l=0 forces the model to utilize original priority rule). Dividing the priority rule by the 

weighting scheme that gives higher weight to the first positions makes sure that if a job is observed 

more in first positions its priority rule should be increased more. 

 

Finally the new priority rule can be calculated by taking the average of all positions’ priority rules: 

 

 

𝐴𝑣𝑔𝐷𝑒𝑣𝑗 =
1

𝑘
∑ 𝐴𝑣𝑔𝐷𝑒𝑣𝑗,𝑘

𝑛

𝑘=1
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3-2-3 Keeping Diversity of Elit List 

A critical factor to avoid being trapped in local optimums is to keep the elite list divers. Designing 

a criterion to evaluate the goodness of replacing a high quality solution with one of the current 

solutions in 𝑆 is essential. 

Level of diversity can be evaluated by comparing the candidate solution (𝑆’) with available elite 

solutions in 𝑆 . In other words, measuring number of observed differences in a candidate solution 

[𝑆′] and elite solutions[𝑆𝑖]. If similarity level of the candidate solution with elite solution 𝑖 is less 

than a parameter 𝑑 (diversity parameter), the candidate solution is diverse enough and it will be 

added to 𝑆 if its objective function is better than 𝑊𝑜𝑟𝑠𝑡(𝑆). A candidate solution may have a better 

objective function than 𝐵𝑒𝑠𝑡(𝑆). If this condition happens, the candidate solution will be added to 

elite list even if it is not diverse enough, because it satisfies an aspiration criterion which is having 

the best objective function. In summary a solution will be added to elite list if: 

 

 

{
[𝑆′] − [𝑆𝑖] < 𝑑. 𝑛

𝐶(𝑆′) < 𝐶(𝐵𝑒𝑠𝑡(𝑆))
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3-3 Adding a Tie Breaming Strategy to MR2 

Preliminary results showed that implementation of Meta-RaPS in the second phase of NEH is 

facing considerable amount of ties in candidate list, and according to the essence of Meta-RaPS 

which is selecting randomly from the candidate list, ties are broken arbitrarily. It is obvious that 

the cheapest insertion does not lead to a high quality solution (cheapest insertion is the method of 

original NEH). In current state of the algorithm ties are broken arbitrarily but a more scientific 

way to break the ties may improve the effectiveness of the algorithm. According to Dong et al 

(2008) there is no global tie breaking algorithm that breaks the ties optimally in all problems but 

tie breaking strategies can improve the overall performance of an algorithm. Vigas and Framinan 

(2014) reviewed all available tie breaking rules for PFSP and all the proposed tie breaking 

algorithms are applied on the cheapest position. Vigas et al (2014) Computational results confirm 

that minimization of total idle time is best tie breaking mechanism, however it may not be effective 

in all problems. The tie breaking strategy in this research is the minimization of total idle time for 

the candidate list instead of cheapest position. 

 

Idle time does not have a universal meaning in literature (Vigas et al, 2014).  Available definitions 

for idle time are: 

 Considering front delays and back delays 

 Without consideration of both front delays and back delays. 

 Considering front delays and excluding back delays. 

 

 

Last definition of idle time which is considering front delays and excluding back delays is utilized 

in the tie breaking strategy of this research. Let 𝐼𝑡𝑖 be the idle time of machine 𝑖  and 𝑛 be number 

of currently scheduled jobs, the idle time of machine 𝑖 can be calculated by: 
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𝐼𝑡𝑖 = 𝐶𝑚𝑎𝑥𝑖𝑛 − ∑ 𝑡𝑖𝑗

𝑛

𝑗=1
 

 

 

 

And the total idle time is: 

 

 

𝐼𝑡 = ∑ 𝐼𝑡𝑖

𝑚

𝑖=1
 

 

 

This tie breaking strategy means if a position from candidate list is selected and there exist(s) 

another/other position(s) with the same makespan the position with lower idle time is prior to other 

position(s). If there is another tie, ties are broken arbitrary. 
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4-COMPUTATIONAL RESULTS  

Three different procedures to implement Meta-RaPS in NEH are discussed, in the initial phase 

(sequencing stage), in the second phase (insertion stage), and a Meta-RaPS with memory and 

learning structure. This chapter starts with parameter tuning and goes through different designs to 

test the effectiveness of implementing Meta-RaPS in PFSP. Methods will be tested on Tillard’s 

benchmark (1993), Tillard’s benchmark has 12 problem sets. Starting with 20 jobs on 5 machines 

and going to 500 jobs on 20 machines and each problem set contains 10 instances. 

 

4-1 Parameter Tuning in Meta-RaPS 

Meta-RaPS is controlled by four parameter: priority percentage (𝑝), restriction percentage (𝑟), 

improvement percentage (𝑖) and number of iterations (𝐼). Since the focus of this research is just 

on the construction phase of Meta-RaPS the improvement percentage is considered zero. 

 

According to Coy, Golden, Runger, and Wasil (2001) there are several strategies to effectively 

tune heuristics’ and meta-heuristics’ parameters. The complexity of process varies from trial and 

error to a more complex sensitivity analysis; therefore, it is a difficult task to find a universal 

effective value for parameters. In this paper, for each parameter a pre-determined set of values is 

considered. 
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Moraga (2002) defines a systematic approach to tune the parameter as following: 

Step 1: Select a subset of problems to analyze from all the instances of problems. 

Step 2: Select the domain that parameters will vary upon. 

Step 3: For each problem in the subset, run Meta-RaPS with changing a parameter over its domain 

while other parameters are unchanged. Report the best outcome for the first parameter, continue 

tuning such that all parameters are reported. For example first manipulate parameter 𝑟 while 𝑝 and 

𝑖 are constant (set to zero). Report the 𝑟% associated with the best objective function. Continue 

tuning process with next parameter, 𝑝, while 𝑟 is constant and 𝑖 is zero. 

Step 4: Use the reported parameters in Step 3 and apply them to problem sets. 

 

Table 6 summarizes selected domain for parameters 𝑝 and 𝑟 for MR1 and MR2. Parameters with 

subscript 1 are associated to Meta-RaPS in the first phase of NEH (MR1) and parameters with 

subscript 2 are associated with Meta-RaPS in the second phase of NEH (MR2). A random problem 

set with 3 small size problems (20 and 50 jobs) and 3 large size problems (100 and 200 jobs) is 

selected from Tillard’s benchmark. The outcome of the tuning process and values are demonstrated 

in Table 6. The number of iterations (𝐼) is set to 200. 

 

 

 

 

Table 6. Parameters Tuning Summary 

Parameter Set Best value 

𝑝1 {10%, 20%, 30%} 10% 

𝑟1 { 50%, 60%, 70%, } 70% 

𝑝2 {60%, 70%, 80%, 90% 80% 

𝑟2 {5%, 10%, 15%, 20%} 10% 
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4-2 Meta-RaPS in the First Phase of NEH Computational Results 

Initial phase of NEH is sequencing stage. In the original NEH jobs are sequenced in decreasing 

values of summation of process times. Meta-RaPS adds randomness into a given priority 

sequencing rule to create more diverse solutions. Integration of NEH sequencing phase in Meta-

RaPS construction phase is illustrated in section 3-1-1. Methods are tested on Tillard’s benchmark 

with 5 independent runs and the best solution is reported from all runs. The algorithm is coded in 

Matlab 2011 with an Intel CORE-i5 CPU @ 2.5GHz and 4GB installed memory. 

 

Performance of the algorithm on each instance is measured by the deviation of makespane (𝐶𝑚𝑎𝑥) 

from the best known solution (BKS) in OR-library as of April 2017. 

 

 

𝐷𝑒𝑣 =
𝐶𝑚𝑎𝑥𝑠𝑜𝑙 − 𝐵𝐾𝑆

𝐵𝐾𝑆
∗ 100 

 

 

NEH deviation of makespans and MR1 deviation of makespans from BKSs and the average 

computational time of MR1 for each Tillard’s instance is shown in Table 7, Table 8, Table 9, and 

Table 10. If a BKS solution is found it is highlighted in bold.   
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Table 7. Computational Results on 20-job Taillard’s Benchmark (MR1) 

Problem n*m BKS NEH NEH Deviation 

(%) 

Meta-RaPS Meta-RaPS 

Deviation (%) 

Average 

time (s) 

TA001 

20*5 

 

1278 1286 0.63 1278 0.00 

1 

TA002 1359 1365 0.44 1365 0.44 

TA003 1081 1159 7.22 1104 2.13 

TA004 1293 1325 2.47 1306 1.01 

TA005 1235 1305 5.67 1250 1.21 

TA006 1195 1228 2.76 1195 0.00 

TA007 1239 1278 3.15 1241 0.16 

TA008 1206 1223 1.41 1207 0.08 

TA009 1230 1291 4.96 1238 0.65 

TA010 1108 1151 3.88 1126 1.62 

TA011 

20*10 

1582 1680 6.19 1604 1.39 

2 

TA012 1659 1729 4.22 1691 1.93 

TA013 1496 1557 4.08 1514 1.20 

TA014 1377 1439 4.50 1398 1.53 

TA015 1419 1502 5.85 1442 1.62 

TA016 1397 1453 4.01 1421 1.72 

TA017 1484 1562 5.26 1494 0.67 

TA018 1538 1609 4.62 1557 1.24 

TA019 1593 1647 3.39 1620 1.69 

TA020 1591 1653 3.90 1617 1.63 

TA021 

20*20 

2297 2410 4.92 2322 1.09 

5 

TA022 2099 2150 2.43 2106 0.33 

TA023 2326 2411 3.65 2347 0.90 

TA024 2223 2262 1.75 2227 0.18 

TA025 2291 2397 4.63 2323 1.40 

TA026 2226 2349 5.53 2263 1.66 

TA027 2273 2362 3.92 2312 1.72 

TA028 2200 2249 2.23 2220 0.91 

TA029 2237 2320 3.71 2260 1.03 

TA030 2178 2277 4.55 2210 1.47 
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Table 8. Computational Results on 50-job Taillard’s Benchmark (MR1) 

Problem n*m BKS NEH NEH 

Deviation 

Meta-RaPS Meta-RaPS 

Deviation 

Average 

time (s) 

TA031 

50*5 

 

2724 2733 0.33 2724 0.00 

21 

TA032 2834 2843 0.32 2843 0.32 

TA033 2621 2640 0.72 2622 0.04 

TA034 2751 2782 1.13 2761 0.36 

TA035 2863 2868 0.17 2864 0.03 

TA036 2829 2850 0.74 2829 0.00 

TA037 2725 2758 1.21 2725 0.00 

TA038 2683 2721 1.42 2683 0.00 

TA039 2552 2576 0.94 2554 0.08 

TA040 2782 2790 0.29 2782 0.00 

TA041 

50*10 

2991 3135 4.81 3086 3.18 

28 

TA042 2867 3032 5.76 2953 3.00 

TA043 2839 2986 5.18 2950 3.91 

TA044 3063 3198 4.41 3107 1.44 

TA045 2976 3160 6.18 3075 3.33 

TA046 3006 3178 5.72 3104 3.26 

TA047 3093 3277 5.95 3178 2.75 

TA048 3037 3123 2.83 3088 1.68 

TA049 2897 3002 3.62 2964 2.31 

TA050 3065 3257 6.26 3169 3.39 

TA051 

50*20 

3850 4082 6.03 4007 4.08 

35 

TA052 3704 3921 5.86 3864 4.32 

TA053 3640 3927 7.88 3796 4.29 

TA054 3720 3969 6.69 3857 3.68 

TA055 3610 3835 6.23 3879 7.45 

TA056 3681 3914 6.33 3816 3.67 

TA057 3704 3952 6.70 3874 4.59 

TA058 3691 3938 6.69 3898 5.61 

TA059 3743 3952 5.58 3878 3.61 

TA060 3756 4079 8.60 3874 3.14 
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Table 9. Computational Results on 100-job Taillard’s Benchmark (MR1) 

Problem n*m BKS NEH NEH Deviation Meta-RaPS Meta-RaPS 

Deviation 

Average 

time (s) 

TA061 

100*5 

 

5493 5519 0.47 5493 0.00 

29 

TA062 5268 5348 1.52 5280 0.23 

TA063 5175 5219 0.85 5179 0.08 

TA064 5014 5023 0.18 5021 0.14 

TA065 5250 5266 0.30 5250 0.00 

TA066 5135 5139 0.08 5135 0.00 

TA067 5246 5259 0.25 5249 0.06 

TA068 5094 5120 0.51 5097 0.06 

TA069 5448 5489 0.75 5449 0.02 

TA070 5322 5341 0.36 5328 0.11 

TA071 

100*10 

5770 5846 1.32 5807 0.64 

43 

TA072 5349 5453 1.94 5394 0.84 

TA073 5676 5824 2.61 5713 0.65 

TA074 5781 5929 2.56 5895 1.97 

TA075 5467 5679 3.88 5562 1.74 

TA076 5303 5375 1.36 5335 0.60 

TA077 5595 5704 1.95 5648 0.95 

TA078 5617 5760 2.55 5695 1.39 

TA079 5871 6032 2.74 5940 1.18 

TA080 5845 5918 1.25 5903 0.99 

TA081 

100*20 

6202 6541 5.47 6493 4.69 

69 

TA082 6183 6523 5.50 6414 3.74 

TA083 6271 6639 5.87 6518 3.94 

TA084 6269 6557 4.59 6480 3.37 

TA085 6314 6695 6.03 6541 3.60 

TA086 6364 6664 4.71 6622 4.05 

TA087 6268 6632 5.81 6510 3.86 

TA088 6401 6739 5.28 6685 4.44 

TA089 6275 6677 6.41 6537 4.18 

TA090 6434 6677 3.78 6640 3.20 
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Table 10. Computational Results on 200-job Taillard’s Benchmark (MR1) 

Problem n*m BKS NEH NEH Deviation Meta-RaPS Meta-RaPS 

Deviation 

Average 

time (s) 

TA091 

200*10 

10862 10942 0.74 10892 0.28 

248 

TA092 10480 10716 2.25 10614 1.28 

TA093 10922 11025 0.94 11017 0.87 

TA094 10889 11057 1.54 10921 0.29 

TA095 10524 10645 1.15 10575 0.48 

TA096 10329 10458 1.25 10338 0.09 

TA097 10854 10989 1.24 10934 0.74 

TA098 10730 10829 0.92 10798 0.63 

TA099 10438 10574 1.30 10501 0.60 

TA100 10675 10807 1.24 10758 0.78 

TA101 

200*20 

11195 11594 3.56 11195 3.39 

481 

TA102 11203 11675 4.21 11203 3.98 

TA103 11281 11852 5.06 11281 4.32 

TA104 11275 11803 4.68 11275 3.62 

TA105 11259 11685 3.78 11259 3.03 

TA106 11176 11629 4.05 11176 3.82 

TA107 11360 11833 4.16 11360 3.57 

TA108 11334 11913 5.11 11334 3.43 

TA109 11192 11673 4.30 11192 3.70 

TA110 11288 11869 5.15 11288 4.05 
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When the number of machines are relatively low MR1 can find almost all the BKS. This is due to 

the fact that the complexity of problem is not significant. Therefore, it can be stated that a small 

amount of variation in a greedy rule can lead to extremely high quality solutions when the problem 

is dealing with a few machines. However, when the number of machines increases to 10 and 20 

machines the algorithm is still better than NEH but not quite strong. This due to the fact that when 

number of machine increases the importance of second phase of NEH to yield good solutions 

increases. Therefore, randomness can improve the performance of NEH but not as well as low 

machine conditions 

 

MR1 challenges the main idea behind NEH heuristic which is, the jobs with long process times 

must be scheduled as soon as possible. Dong et al. (2008) and Li et at. (2004) show that there exist 

other critical factor to consider in sequencing stage of NEH, like standard deviation of process 

times for a given job. 

 

The main finding of MR1 is that first phase of NEH has an amazing impact on the performance of 

second phase of NEH. Several greedy rules are proposed before this research but MR1 shows that 

a greedy rule is ineffective since randomness drastically improves the performance of a greedy 

rule. MR1 has taken a huge step in answering the question of what really makes a sequence 

competent and effective and what features should be considered in sequencing stage of NEH to 

guide the second phase of NEH to yield high quality solutions. 
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4-2 Meta-RaPS in the Second Phase of NEH Computational Results 

Second phase of NEH heuristic is the cheapest insertion method. In the original NEH, a job will 

always be located in a position that minimizes makespan. Meta-RaPS adds randomness into the 

insertion phase to avoid all jobs to be inserted in the cheapest position. The integration of NEH 

insertion phase into Meta-RaPS construction phase is illustrated in section 3-1-2. The method is 

tested on Tillard’s benchmark with 5 independent runs and the best solution is reported from all 

runs. 

 

Performance of the algorithm for each instance is measured by the deviation of 𝐶𝑚𝑎𝑥 from the best 

known solution (BKS) in OR-library as of April 2017. 

 

 

𝐷𝑒𝑣 =
𝐶𝑚𝑎𝑥𝑠𝑜𝑙 − 𝐵𝐾𝑆

𝐵𝐾𝑆
∗ 100 

 

 

NEH deviation of makespans and MR1 deviation of makespans from BKSs and the average 

computational time of MR2 for each Tillard’s instance is shown in Table 11, Table 12, Table 13, 

and Table 14. If a BKS solution is found it is highlighted in bold.   
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Table 11. Computational Results on 20-job Taillard’s Benchmark (MR2) 

Problem n*m BKS NEH NEH Deviation Meta-RaPS Meta-RaPS 

Deviation 

Average 

time (s) 

TA001 

20*5 

 

1278 1286 0.63 1297 1.49 

1 

TA002 1359 1365 0.44 1383 1.77 

TA003 1081 1159 7.22 1116 3.24 

TA004 1293 1325 2.47 1302 0.70 

TA005 1235 1305 5.67 1283 3.89 

TA006 1195 1228 2.76 1230 2.93 

TA007 1239 1278 3.15 1246 0.56 

TA008 1206 1223 1.41 1216 0.83 

TA009 1230 1291 4.96 1253 1.87 

TA010 1108 1151 3.88 1122 1.26 

TA011 

20*10 

1582 1680 6.19 1634 3.29 

1 

TA012 1659 1729 4.22 1682 1.39 

TA013 1496 1557 4.08 1517 1.40 

TA014 1377 1439 4.50 1397 1.45 

TA015 1419 1502 5.85 1444 1.76 

TA016 1397 1453 4.01 1427 2.15 

TA017 1484 1562 5.26 1503 1.28 

TA018 1538 1609 4.62 1577 2.54 

TA019 1593 1647 3.39 1623 1.88 

TA020 1591 1653 3.90 1627 2.26 

TA021 

20*20 

2297 2410 4.92 2328 1.35 

3 

TA022 2099 2150 2.43 2155 2.67 

TA023 2326 2411 3.65 2341 0.64 

TA024 2223 2262 1.75 2235 0.54 

TA025 2291 2397 4.63 2331 1.75 

TA026 2226 2349 5.53 2272 2.07 

TA027 2273 2362 3.92 2311 1.67 

TA028 2200 2249 2.23 2227 1.23 

TA029 2237 2320 3.71 2260 1.03 

TA030 2178 2277 4.55 2201 1.06 
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Table 12. Computational Results on 50-job Taillard’s Benchmark (MR2) 

Problem n*m BKS NEH NEH Deviation Meta-RaPS Meta-RaPS 

Deviation 

Average 

time (s) 

TA031 

50*5 

 

2724 2733 0.33 2724 0.00 

16 

TA032 2834 2843 0.32 2848 0.49 

TA033 2621 2640 0.72 2625 0.15 

TA034 2751 2782 1.13 2762 0.40 

TA035 2863 2868 0.17 2864 0.03 

TA036 2829 2850 0.74 2831 0.07 

TA037 2725 2758 1.21 2732 0.26 

TA038 2683 2721 1.42 2684 0.04 

TA039 2552 2576 0.94 2552 0.00 

TA040 2782 2790 0.29 2786 0.14 

TA041 

50*10 

2991 3135 4.81 3101 3.68 

20 

TA042 2867 3032 5.76 2978 3.87 

TA043 2839 2986 5.18 2936 3.42 

TA044 3063 3198 4.41 3103 1.31 

TA045 2976 3160 6.18 3093 3.93 

TA046 3006 3178 5.72 3110 3.46 

TA047 3093 3277 5.95 3179 2.78 

TA048 3037 3123 2.83 3102 2.14 

TA049 2897 3002 3.62 2971 2.55 

TA050 3065 3257 6.26 3162 3.16 

TA051 

50*20 

3850 4082 6.03 3994 3.74 

32 

TA052 3704 3921 5.86 3860 4.21 

TA053 3640 3927 7.88 3812 4.73 

TA054 3720 3969 6.69 3884 4.41 

TA055 3610 3835 6.23 3874 7.31 

TA056 3681 3914 6.33 3833 4.13 

TA057 3704 3952 6.70 3893 5.10 

TA058 3691 3938 6.69 3843 4.12 

TA059 3743 3952 5.58 3892 3.98 

TA060 3756 4079 8.60 3931 4.66 
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Table 13. Computational Results on 100-job Taillard’s Benchmark (MR2) 

Problem n*m BKS NEH NEH Deviation Meta-RaPS Meta-RaPS 

Deviation 

Average 

time (s) 

TA061 

100*5 

 

5493 5519 0.47 5493 0.00 

32 

TA062 5268 5348 1.52 5275 0.13 

TA063 5175 5219 0.85 5192 0.33 

TA064 5014 5023 0.18 5023 0.18 

TA065 5250 5266 0.30 5255 0.10 

TA066 5135 5139 0.08 5135 0.00 

TA067 5246 5259 0.25 5257 0.21 

TA068 5094 5120 0.51 5100 0.12 

TA069 5448 5489 0.75 5454 0.11 

TA070 5322 5341 0.36 5328 0.11 

TA071 

100*10 

5770 5846 1.32 5820 0.87 

44 

TA072 5349 5453 1.94 5405 1.05 

TA073 5676 5824 2.61 5708 0.56 

TA074 5781 5929 2.56 5949 2.91 

TA075 5467 5679 3.88 5601 2.45 

TA076 5303 5375 1.36 5358 1.04 

TA077 5595 5704 1.95 5659 1.14 

TA078 5617 5760 2.55 5707 1.60 

TA079 5871 6032 2.74 5983 1.91 

TA080 5845 5918 1.25 5909 1.09 

TA081 

100*20 

6202 6541 5.47 6533 5.34 

71 

TA082 6183 6523 5.50 6537 5.73 

TA083 6271 6639 5.87 6582 4.96 

TA084 6269 6557 4.59 6566 4.74 

TA085 6314 6695 6.03 6620 4.85 

TA086 6364 6664 4.71 6673 4.86 

TA087 6268 6632 5.81 6606 5.39 

TA088 6401 6739 5.28 6710 4.83 

TA029 2237 2320 3.71 6570 4.70 

TA030 2178 2277 4.55 6615 2.81 
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Table 14. Computational Results on 200-job Taillard’s Benchmark (MR2) 

Problem n*m BKS NEH NEH Deviation Meta-RaPS Meta-RaPS 

Deviation 

Average 

time (s) 

TA091 

200*10 

10862 10942 0.74 10897 0.32 

254 

TA092 10480 10716 2.25 10673 1.84 

TA093 10922 11025 0.94 11017 0.87 

TA094 10889 11057 1.54 10929 0.37 

TA095 10524 10645 1.15 10586 0.59 

TA096 10329 10458 1.25 10396 0.65 

TA097 10854 10989 1.24 10947 0.86 

TA098 10730 10829 0.92 10789 0.55 

TA099 10438 10574 1.30 10512 0.71 

TA100 10675 10807 1.24 10767 0.86 

TA101 

200*20 

11195 11594 3.56 11572 3.37 

310 

TA102 11203 11675 4.21 11665 4.12 

TA103 11281 11852 5.06 11779 4.41 

TA104 11275 11803 4.68 11663 3.44 

TA105 11259 11685 3.78 11630 3.30 

TA106 11176 11629 4.05 11609 3.87 

TA107 11360 11833 4.16 11782 3.71 

TA108 11334 11913 5.11 11783 3.96 

TA109 11192 11673 4.30 11630 3.91 

TA110 11288 11869 5.15 11763 4.21 
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The main drawback of NEH is that when the algorithm progresses at a given time only one job is 

considered for insertion and when a job is inserted to a position its position will remain constant 

in all next insertions. At each insertion step NEH behaves as a greedy rule and fixes the job in the 

cheapest position. However, it is clearly obvious that the best position for a job at its insertion step 

will not lead to a good solution when the next job is going to be inserted. 

 

MR2 challenges the greedy behavior of NEH insertion phase. While it is a good idea to consider 

more than a job for insertion at each step, MR2 takes a different approach. While it is clearly 

ineffective to fix the jobs in the cheapest position and this related to mathematical properties of 

PFSP, it seems promising to considering other positions for insertion. Mathematics of PFSP 

indicates that the makespan of a flowshop problem equals to the longest path from the matrix of 

scheduled jobs from job 1 on machine 1 to job n on machine m. Therefore, changing the position 

of jobs changes the columns of the matrix and consequently the length of the path from first node 

to the last node. Fixing a job in a position that creates the shortest path at each step will be 

ineffective when a new column is added to the matrix. This is due to the fact that when a new job 

arises the length of the paths after its insertion will not the same as before its insertion. Therefore, 

MR2 attempts to fix a job in a position that does not seem favorable is its insertion step but will 

perform better when the next job or jobs will be inserted. 

 

 

 



51 

 

4-3 MMR Computational Results 

MMR has three more parameters to tune. Therefore, sets 𝑒 = {5,6,7}, 𝛿 =

{40%, 50%, 60%, 70%}, and 𝑙 = { 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 , 0.35, 0.4, 0.45, 0.5} are 

considered for the domain of these parameters. To evaluate the effectiveness of memory the 

parameters 𝑝 and 𝑟 are similar as MR1 (Meta-RaPS in the first phase of NEH). Figure 6, Figure 7 

and Figure 8 reflect the Relative Percentage Deviation (RPD) for parameters 𝛿 with different 

capacity (𝑒) of elite list. A random subset of problems with 3 small size problems (20 and 50 jobs) 

and 3 large size problems (100 and 200 jobs) is selected from Tillard’s benchmark. The best setting 

obtained from parameters 𝛿 and 𝑒 is used in further analysis to tune the parameter 𝑙. 

 

Parameters analysis with 95% confidence intervals shows that increasing the size of elite list 

increases the performance of algorithm and this is due to having more options in the probability 

matrix, because having more options helps the algorithm avoid some of the local optimums. The 

behavior of 𝑚 is interesting. By increasing the threshold, the performance of the algorithm 

increases but up to a point. Then the algorithm loses its potency and this is due to trapping new 

solutions in the areas close to the solutions in the elite list. It is shown in Figure 9 that low levels 

of 𝑙 are performing better to bias the search. This is due to the fact that low levels of 𝑙 only impact 

the positions with higher probabilities while high levels of 𝑙 impact the behavior of the algorithm 

entirely. Figure 9 demonstrates that there is no significant difference between high levels of 𝑙 but 

with fixing this parameter relatively low (in this research 0.2) better results are obtained. MMR’s 

summary of parameters is shown in Table 15. 
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Figure 6. Average RPD to Store 5 Jobs in Elite List and Maximum Threshold 𝛿 

 

 

 

 

Figure 7. Average RPD to Store 6 Jobs in Elite List and Maximum Threshold 𝛿 
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Figure 8. Average RPD to Store 7 Jobs in Elite List and Maximum Threshold 𝛿 

 

 

 

Figure 9. Average RPD for Parameter 𝑙 
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Table 15. Summary of Parameter for MMR 

Parameter Value 

Priority percentage (p) 10% 

Restriction Percentage (r) 70% 

Number of Interations (I) 200 

Elite list capacity (e) 7 

Threshold (𝛿) 60% 

Learning parameter (l) 0.2 

 

 

 

 

 

Effectiveness of Memory structure in the construction phase of Meta-RaPS is tested in the first 

phase of NEH since the computational results confirmed a better performance in MR1. MMR with 

the application of PFSP is illustrated in section 3-2. Methods are tested on Tillard’s benchmark 

with 5 independent runs and the best solution is reported from all runs. Performance of the 

algorithm is compared to BKS in OR-library as of April 2017. 

 

MR1 deviation of makespans and MMR deviation of makespans from BKSs and the average 

computational time of MMR for each Tillard’s instance is shown in Table 16, Table 17, Table 18, 

and Table 19. If MMR has a better performance than MR1 the solution is highlighted in bold.   
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Table 16. Computational Results on 20-job Taillard’s Benchmark (MMR) 

Problem n*m BKS Meta-RaPS Meta-RaPS 

Deviation 

MMR MMR 

Deviation 

Average 

time (s) 

TA001 

20*5 

 

1278 1278 0.00 1278 0.00 

12 

TA002 1359 1365 0.44 1359 0.00 

TA003 1081 1104 2.13 1085 0.37 

TA004 1293 1306 1.01 1297 0.31 

TA005 1235 1250 1.21 1236 0.08 

TA006 1195 1195 0.00 1195 0.00 

TA007 1239 1241 0.16 1239 0.00 

TA008 1206 1207 0.08 1206 0.00 

TA009 1230 1238 0.65 1234 0.33 

TA010 1108 1126 1.62 1109 0.09 

TA011 

20*10 

1582 1604 1.39 1596 0.88 

13 

TA012 1659 1691 1.93 1682 1.39 

TA013 1496 1514 1.20 1505 0.60 

TA014 1377 1398 1.53 1379 0.15 

TA015 1419 1442 1.62 1425 0.42 

TA016 1397 1421 1.72 1412 1.07 

TA017 1484 1494 0.67 1486 0.13 

TA018 1538 1557 1.24 1555 1.11 

TA019 1593 1620 1.69 1615 1.38 

TA020 1591 1617 1.63 1598 0.44 

TA021 

20*20 

2297 2322 1.09 2321 1.04 

14 

TA022 2099 2106 0.33 2105 0.29 

TA023 2326 2347 0.90 2356 1.29 

TA024 2223 2227 0.18 2231 0.36 

TA025 2291 2323 1.40 2314 1.00 

TA026 2226 2263 1.66 2244 0.81 

TA027 2273 2312 1.72 2298 1.10 

TA028 2200 2220 0.91 2220 0.91 

TA029 2237 2260 1.03 2252 0.67 

TA030 2178 2210 1.47 2204 1.19 
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Table 17. Computational Results on 50-job Taillard’s Benchmark (MMR) 

Problem n*m BKS Meta-RaPS Meta-RaPS 

Deviation 

MMR MMR 

Deviation 

Average 

time (s) 

TA031 

50*5 

 

2724 2724 0.00 2724 0.00 

134 

TA032 2834 2843 0.32 2838 0.14 

TA033 2621 2622 0.04 2622 0.04 

TA034 2751 2761 0.36 2761 0.36 

TA035 2863 2864 0.03 2863 0.00 

TA036 2829 2829 0.00 2829 0.00 

TA037 2725 2725 0.00 2725 0.00 

TA038 2683 2683 0.00 2683 0.00 

TA039 2552 2554 0.08 2552 0.00 

TA040 2782 2782 0.00 2782 0.00 

TA041 

50*10 

2991 3086 3.18 3026 1.17 

135 

TA042 2867 2953 3.00 2950 2.90 

TA043 2839 2950 3.91 2922 2.92 

TA044 3063 3107 1.44 3096 1.08 

TA045 2976 3075 3.33 3075 3.33 

TA046 3006 3104 3.26 3093 2.89 

TA047 3093 3178 2.75 3178 2.75 

TA048 3037 3088 1.68 3083 1.51 

TA049 2897 2964 2.31 2960 2.17 

TA050 3065 3169 3.39 3167 3.33 

TA051 

50*20 

3850 4007 4.08 3991 3.66 

170 

TA052 3704 3864 4.32 3856 4.10 

TA053 3640 3796 4.29 3792 4.18 

TA054 3720 3857 3.68 3823 2.77 

TA055 3610 3879 7.45 3828 6.04 

TA056 3681 3816 3.67 3812 3.56 

TA057 3704 3874 4.59 3825 3.27 

TA058 3691 3898 5.61 3841 4.06 

TA059 3743 3878 3.61 3845 2.73 

TA060 3756 3874 3.14 3874 3.14 
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Table 18. Computational Results on 100-job Taillard’s Benchmark (MMR) 

Problem n*m BKS Meta-RaPS Meta-RaPS 

Deviation 

MMR MMR 

Deviation 

Average 

time (s) 

TA061 

100*5 

 

5493 5493 0.00 5493 0.00 

900 

TA062 5268 5280 0.23 5270 0.04 

TA063 5175 5179 0.08 5176 0.02 

TA064 5014 5021 0.14 5017 0.06 

TA065 5250 5250 0.00 5250 0.00 

TA066 5135 5135 0.00 5135 0.00 

TA067 5246 5249 0.06 5248 0.04 

TA068 5094 5097 0.06 5097 0.06 

TA069 5448 5449 0.02 5450 0.04 

TA070 5322 5328 0.11 5328 0.11 

TA071 

100*10 

5770 5807 0.64 5802 0.55 

1100 

TA072 5349 5394 0.84 5385 0.67 

TA073 5676 5713 0.65 5692 0.28 

TA074 5781 5895 1.97 5879 1.70 

TA075 5467 5562 1.74 5553 1.57 

TA076 5303 5335 0.60 5331 0.53 

TA077 5595 5648 0.95 5645 0.89 

TA078 5617 5695 1.39 5689 1.28 

TA079 5871 5940 1.18 5951 1.36 

TA080 5845 5903 0.99 5893 0.82 

TA081 

100*20 

6202 6493 4.69 6449 3.98 

1500 

TA082 6183 6414 3.74 6411 3.69 

TA083 6271 6518 3.94 6477 3.28 

TA084 6269 6480 3.37 6470 3.21 

TA085 6314 6541 3.60 6524 3.33 

TA086 6364 6622 4.05 6590 3.55 

TA087 6268 6510 3.86 6518 3.99 

TA088 6401 6685 4.44 6679 4.34 

TA089 6275 6537 4.18 6509 3.73 

TA090 6434 6640 3.20 6610 2.74 
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Table 19. Computational Results on 200-job Taillard’s Benchmark (MMR) 

Problem n*m BKS Meta-RaPS Meta-RaPS 

Deviation 

MMR MMR 

Deviation 

Average 

time (s) 

TA091 

200*10 

10862 10892 0.28 10874 0.11 

2450 

TA092 10480 10614 1.28 10582 0.97 

TA093 10922 11017 0.87 11000 0.71 

TA094 10889 10921 0.29 10893 0.04 

TA095 10524 10575 0.48 10558 0.32 

TA096 10329 10338 0.09 10373 0.43 

TA097 10854 10934 0.74 10923 0.64 

TA098 10730 10798 0.63 10781 0.48 

TA099 10438 10501 0.60 10484 0.44 

TA100 10675 10758 0.78 10741 0.62 

TA101 

200*20 

11195 11195 3.39 11523 2.93 

3800 

TA102 11203 11203 3.98 11631 3.82 

TA103 11281 11281 4.32 11695 3.67 

TA104 11275 11275 3.62 11631 3.16 

TA105 11259 11259 3.03 11516 2.28 

TA106 11176 11176 3.82 11524 3.11 

TA107 11360 11360 3.57 11718 3.15 

TA108 11334 11334 3.43 11710 3.32 

TA109 11192 11192 3.70 11576 3.43 

TA110 11288 11288 4.05 11664 3.33 
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A paired t-test is performed to test the effectiveness of memory design and validate if memory 

implementation is statistically improving the performance of Meta-RaPS. Average performance 

of MR1 and MMR for each Tillard’s benchmark problem size alongside the p-value is shown in 

Table 20. The null and the alternative hypothesis are as follows: 

 

{
𝐻𝑛𝑢𝑙𝑙:                             𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑠𝑖𝑔𝑛𝑖𝑓𝑎𝑛𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑀𝑀𝑅 𝑎𝑛𝑑 𝑀𝑒𝑡𝑎 − 𝑅𝑎𝑃𝑆
𝐻𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 ∶                                                                                𝑀𝑀𝑅 𝑜𝑢𝑡𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑠 𝑀𝑒𝑡𝑎 − 𝑅𝑎𝑃𝑆

 

Or 

{
𝐻𝑛𝑢𝑙𝑙:                                                      𝑅𝑃𝐷𝑀𝑀𝑅 = 𝑅𝑃𝐷𝑀𝑒𝑡𝑎−𝑅𝑎𝑃𝑆  
𝐻𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒:                                           𝑅𝑃𝐷𝑀𝑀𝑅 <  𝑅𝑃𝐷𝑀𝑒𝑡𝑎−𝑅𝑎𝑃𝑆

 

 

 

It can be seen in Table 20 that in all cases (except in the problem sizes 50*5 and 10*5) MMR is 

outperforming Meta-RaPS with 95% confidence and the null hypothesis is rejected in favor of 

alternative hypothesis. To validate the overall performance of MMR and Meta-RaPS the p-values 

from different problems sizes should be combined. If p-values are independent, Fisher (1925) 

suggests a method to integrate extreme values (p-values) from different tests to one Chi-square 

(𝑥2) test. Fisher’s Method is as follows where 𝑝𝑖 is the p-value from 𝑖𝑡ℎ test and 𝑛 is number of 

tests to combine: 
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−2 ∑ log (𝑝𝑖

𝑛

𝑖=1

) ~ 𝑥2𝑛
2  

The p-value from Fisher’s Method is shown in the third column and the last row of Table 20. 

Fisher’s p-value strongly states that MMR and Meta-RaPS are statistically different. 

 

 

 

 

Table 20. Meta-RaPS and MMR Computations Results Comparison 

Problem size Meta-RaPS1 MMR (RPD) p-value 

20*5 0.731 0.118 0.008 

20*10 1.462 0.758 0.000 

20*20 1.069 0.704 0.016 

50*5 0.083 0.054 0.074 

50*10 2.824 2.41 0.032 

50*20 4.443 3.75 0.003 

100*5 0.069 0.036 0.067 

100*10 1.095 0.967 0.011 

100*20 3.906 3.583 0.003 

200*10 0.604 0.475 0.022 

200*20 3.691 3.22 0.000 

All 1.81 1.461 0.000 
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4-4 Tie Breaking Strategy Computational Results 

Tie breaking strategy is proposed since Meta-RaPS is facing considerable amount of ties in the 

candidate list (CL) when applied in the second phase of NEH. Therefore, adding a mechanism to 

select a better position when there exists a tie is favorable.  Integration of tie breaking strategy and 

MR2 is illustrated in section 3-3. Methods are tested on Tillard’s benchmark with 5 independent 

runs and the best solution is reported from all runs. The algorithm is coded in Matlab 2011 with 

an Intel CORE-i5 CPU @ 2.5GHz and 4GB installed memory. 

 

Performance of Tie breaking strategy for each instance is measured by the deviation of 𝐶𝑚𝑎𝑥 from 

the BKS in OR-library as of April 2017 as follows: 

 

 

𝐷𝑒𝑣 =
𝐶𝑚𝑎𝑥𝑠𝑜𝑙 − 𝐵𝐾𝑆

𝐵𝐾𝑆
∗ 100 

 

 

MR2 makespans’ deviation and MR2 with tie breaking strategy makespans’ deviation from BKSs 

and the average computational time for MR2 with tie breaking mechanism for each Tillard’s 

instance is shown in Table 21, Table 22, Table 23, and Table 24. If a tie breaking strategy finds a 

better solution it is highlighted in bold. 
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Table 21. Computational Results on 20-job Taillard’s Benchmark (Tie Breaking) 

Problem n*m BKS Meta-RaPS Meta-RaPS 

Deviation 

Tie 

Breaking 

Tie breaking  

Deviation 

Average 

time (s) 

TA001 

20*5 

 

1278 1297 1.49 1297 1.49 

1 

TA002 1359 1383 1.77 1383 1.77 

TA003 1081 1116 3.24 1107 2.41 

TA004 1293 1302 0.70 1302 0.70 

TA005 1235 1283 3.89 1283 3.89 

TA006 1195 1230 2.93 1230 2.93 

TA007 1239 1246 0.56 1246 0.56 

TA008 1206 1216 0.83 1212 0.50 

TA009 1230 1253 1.87 1245 1.22 

TA010 1108 1122 1.26 1122 1.26 

TA011 

20*10 

1582 1634 3.29 1629 2.97 

2 

TA012 1659 1682 1.39 1682 1.39 

TA013 1496 1517 1.40 1515 1.27 

TA014 1377 1397 1.45 1399 1.60 

TA015 1419 1444 1.76 1437 1.27 

TA016 1397 1427 2.15 1427 2.15 

TA017 1484 1503 1.28 1503 1.28 

TA018 1538 1577 2.54 1569 2.02 

TA019 1593 1623 1.88 1623 1.88 

TA020 1591 1627 2.26 1619 1.76 

TA021 

20*20 

2297 2328 1.35 2325 1.22 

5 

TA022 2099 2155 2.67 2125 1.24 

TA023 2326 2341 0.64 2341 0.64 

TA024 2223 2235 0.54 2233 0.45 

TA025 2291 2331 1.75 2321 1.31 

TA026 2226 2272 2.07 2272 2.07 

TA027 2273 2311 1.67 2311 1.67 

TA028 2200 2227 1.23 2226 1.18 

TA029 2237 2260 1.03 2259 0.98 

TA030 2178 2201 1.06 2202 1.10 
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Table 22. Computational Results on 50-job Taillard’s Benchmark (Tie Breaking) 

Problem n*m BKS Meta-RaPS Meta-RaPS 

Deviation 

Tie 

Breaking 

Tie breaking  

Deviation 

Average 

time (s) 

TA031 

50*5 

 

2724 2274 0.00 2724 0.00 

19 

TA032 2834 2848 0.49 2848 0.49 

TA033 2621 2625 0.15 2625 0.15 

TA034 2751 2762 0.40 2762 0.40 

TA035 2863 2864 0.03 2889 0.91 

TA036 2829 2831 0.07 2831 0.07 

TA037 2725 2732 0.26 2725 0.00 

TA038 2683 2684 0.04 2683 0.00 

TA039 2552 2552 0.00 2552 0.00 

TA040 2782 2786 0.14 2782 0.00 

TA041 

50*10 

2991 3101 3.68 3093 3.41 

26 

TA042 2867 2978 3.87 2977 3.84 

TA043 2839 2936 3.42 2952 3.98 

TA044 3063 3103 1.31 3109 1.50 

TA045 2976 3093 3.93 3092 3.90 

TA046 3006 3110 3.46 3099 3.09 

TA047 3093 3179 2.78 3185 2.97 

TA048 3037 3102 2.14 3088 1.68 

TA049 2897 2971 2.55 2971 2.55 

TA050 3065 3162 3.16 3152 2.84 

TA051 

50*20 

3850 3994 3.74 4002 3.95 

39 

TA052 3704 3860 4.21 3845 3.81 

TA053 3640 3812 4.73 3828 5.16 

TA054 3720 3884 4.41 3890 4.57 

TA055 3610 3874 7.31 3897 7.95 

TA056 3681 3833 4.13 3811 3.53 

TA057 3704 3893 5.10 3888 4.97 

TA058 3691 3843 4.12 3851 4.33 

TA059 3743 3892 3.98 3901 4.22 

TA060 3756 3931 4.66 3931 4.66 
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Table 23. Computational Results on 100-job Taillard’s Benchmark (Tie Breaking) 

Problem n*m BKS Meta-RaPS Meta-RaPS 

Deviation 

Tie 

Breaking 

Tie breaking  

Deviation 

Average 

time (s) 

TA061 

100*5 

 

5493 5493 0.00 5493 0.00 

48 

TA062 5268 5275 0.13 5268 0.00 

TA063 5175 5192 0.33 5192 0.33 

TA064 5014 5023 0.18 5023 0.18 

TA065 5250 5255 0.10 5255 0.10 

TA066 5135 5135 0.00 5139 0.08 

TA067 5246 5257 0.21 5256 0.19 

TA068 5094 5100 0.12 5099 0.10 

TA069 5448 5454 0.11 5454 0.11 

TA070 5322 5328 0.11 5322 0.00 

TA071 

100*10 

5770 8520 0.87 5816 0.80 

58 

TA072 5349 5405 1.05 5399 0.93 

TA073 5676 5708 0.56 5728 0.92 

TA074 5781 5949 2.91 5924 2.47 

TA075 5467 5601 2.45 5573 1.94 

TA076 5303 5358 1.04 5346 0.81 

TA077 5595 5659 1.14 5666 1.27 

TA078 5617 5707 1.60 5711 1.67 

TA079 5871 5983 1.91 5955 1.43 

TA080 5845 5909 1.09 5903 0.99 

TA081 

100*20 

6202 6533 5.34 6530 5.29 

89 

TA082 6183 6537 5.73 6519 5.43 

TA083 6271 6582 4.96 6580 4.93 

TA084 6269 6566 4.74 6550 4.48 

TA085 6314 6620 4.85 6653 5.37 

TA086 6364 6673 4.86 6653 4.54 

TA087 6268 6606 5.39 6582 5.01 

TA088 6401 6710 4.83 6754 5.51 

TA029 2237 6570 4.70 6592 5.05 

TA030 2178 6615 2.81 6600 2.58 
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Table 24. Computational Results on 200-job Taillard’s Benchmark (Tie Breaking) 

Problem n*m BKS Meta-RaPS Meta-RaPS 

Deviation 

Tie 

Breaking 

Tie breaking 

Deviation 

Average 

time (s) 

TA091 

200*10 

10862 10897 0.32 10885 0.21 

380 

TA092 10480 10673 1.84 10635 1.48 

TA093 10922 11017 0.87 11009 0.80 

TA094 10889 10929 0.37 10931 0.39 

TA095 10524 10586 0.59 10600 0.72 

TA096 10329 10396 0.65 10402 0.71 

TA097 10854 10947 0.86 10941 0.80 

TA098 10730 10789 0.55 10761 0.29 

TA099 10438 10512 0.71 10502 0.61 

TA100 10675 10767 0.86 10762 0.81 

TA101 

200*20 

11195 11572 3.37 11574 3.39 

435 

TA102 11203 11665 4.12 11649 3.98 

TA103 11281 11779 4.41 11768 4.32 

TA104 11275 11663 3.44 11683 3.62 

TA105 11259 11630 3.30 11600 3.03 

TA106 11176 11609 3.87 11603 3.82 

TA107 11360 11782 3.71 11766 3.57 

TA108 11334 11783 3.96 11723 3.43 

TA109 11192 11630 3.91 11606 3.70 

TA110 11288 11763 4.21 11745 4.05 
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A paired t-test is performed to test the effectiveness of tie breaking strategy and validate if the 

implementation of tie breaking is statistically improving the performance of Meta-RaPS. 

Performance of MR2 and MR2 with tie breaking strategy is compared in Table 25 where p-value 

of each problem size is shown in the last column of the Table. The null and the alternative 

hypothesis are as follows: 

 

{
𝐻𝑛𝑢𝑙𝑙:             𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑀𝑅2 𝑎𝑛𝑑 𝑀𝑅2 𝑤𝑖𝑡ℎ 𝑇𝑖𝑒 𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔
𝐻𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 ∶                                                                   𝑇𝑖𝑒 𝐵𝑟𝑒𝑎𝑘𝑖𝑛𝑔 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑜𝑢𝑡𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑠 𝑀𝑅2

 

Or 

{
𝐻𝑛𝑢𝑙𝑙:                                                      𝑅𝑃𝐷𝑀𝑅2 𝑤𝑖𝑡ℎ 𝑇𝑖𝑒 𝐵𝑟𝑒𝑎𝑘𝑖𝑛𝑔 = 𝑅𝑃𝐷𝑀𝑅2  

𝐻𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒:                                           𝑅𝑃𝐷𝑀𝑅2 𝑤𝑖𝑡ℎ 𝑇𝑖𝑒 𝐵𝑟𝑒𝑎𝑘𝑖𝑛𝑔 <  𝑅𝑃𝐷𝑀𝑅2
 

 

P-values of  Table 25 illustrates the fact that although the tie breaking strategy descreses the 

average performance of the algorithms in many cases but this improvement is not statistically 

significant and this is due to the fact that the improvement does not happen in all instances. 

Therefore, there is no reason to reject the null hypothesis .To validate the overall performance of 

MR2 and MR2 with tie breaking strategy, p-values from different problem sizes should be 

combined. If p-values are independent, Fisher (1925) suggests a method to integrate extreme 

values (p-values) from different tests to one Chi-square (𝑥2) test. Fisher’s Method is as follows 

where 𝑝𝑖 is the p-value from 𝑖𝑡ℎ test and 𝑛 is number of tests to combine: 
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𝑛
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) ~ 𝑥2𝑛
2  

 

Fisher’s p-value represents the fact that even though the tie breaking strategy does not outperform 

MR2 and alternative hypothesis is rejected in favor of null hypothesis, but with a 95% confidence 

interval the tie breaking strategy indeed outperforms MR2 in overall. 

 

 

 

 

Table 25. MR2 and MR2 with Tie Breaking Strategy Comparison 

Problem size Meta-RaPS2 Tie Breaking p-value 

20*5 1.853 1.671 0.051 

20*10 1.94 1.758 0.024 

20*20 1.4 1.187 0.084 

50*5 0.159 0.203 0.331 

50*10 3.03 2.977 0.302 

50*20 4.639 4.715 0.266 

100*5 0.129 0.108 0.154 

100*10 1.462 1.324 0.077 

100*20 4.82 4.820 0.499 

200*10 0.762 0.682 0.059 

200*20 3.832 3.691 0.020 

All 2.18 2.103 0.007 
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4-5 Algorithms Comparison 

Two basic Meta-RaPS designs alongside a design with memory and learning and a design with tie 

breaking strategy are discussed in this thesis. This chapter provides a comprehensive comparison 

for all of these four designs. The second part of this chapter provides a comparison between the 

performance of MMR and the best algorithms of PFSP. 

 

4-5-1 Meta-RaPS Designs Compariosn 

Meta-RaPS in the first phase of NEH (MR1) performs better than Meta-RaPS in the second phase 

of NEH (MR2) with 𝐶𝑚𝑎𝑥 objective function. Meta-RaPS in the second phase of NEH has a much 

better performance than NEH heuristic but the performance is not competitive with Meta-RaPS in 

the first phase. Therefore, a tie breaking strategy is added to MR2 to help the algorithm. 

 

The main objective of this research is to design a generic memory structure for the construction 

phase of Meta-RaPS. Memory design is discussed in chapter 3-2-1, PFSP is introduced as the 

application of memory design, this design is entitled “MMR”. Performance of these four designs 

is compared to each other in Figure 10. 

 

Figure 10 depicts the fact that when the number of machines increases all designs effectiveness 

decreases. MMR has the best performance in all cases when compared to other three designs. 

Therefore, it can be concluded that memory implementation in the construction phase of Meta-

RaPS improves the performance of the meta-heuristic. 
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Figure 10. Meta-RaPS Designs Comparison 

 

 

 

 

4-5-2 MMR Comparison with Other Algorithms 

MMR has the strongest performance among all discussed Meta-RaPS designs for PFSP. To 

validate the effectiveness of MMR the best algorithms in the literature with the criterion of 

makespan are compared to MMR in Table 26. A simulated annealing algorithm (SAOP) by Osman 

and Potts (1986), a Tabu Search by Widmer and Hertz endtitled Spirit (1989), an ant colony 

optimization by Rajendran and Ziegler entitled M-MMAS (2004), a hybrid meta-heuristic by 

Zobolas, Tarantilis, and Ioannou (2009), and an iterative greedy search by Ruiz and Stützle (2007) 

are selected from the literature. 
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Table 26. MMR Comparisons with Competitive Algorithms in the Literature 

Algorithm NEH SAOP SPIRIT GA_AA IG_RS NEGAVNS MMR 

20*5 3.26 1.09 4.77 0.94 0.04 0.00 0.12 

20*10 4.60 2.63 5.61 1.54 0.25 0.01 0.76 

20*20 3.73 2.38 4.44 1.43 0.21 0.02 0.70 

50*5 0.73 0.52 2.19 0.36 0.04 0.00 0.05 

50*10 5.07 3.51 6.04 3.72 1.06 0.82 2.41 

50*20 6.66 4.52 7.63 4.69 1.82 1.08 3.75 

100*5 0.53 0.30 1.06 0.32 0.05 0.00 0.04 

100*10 2.28 1.48 3.01 1.72 0.39 0.14 0.97 

100*20 5.35 4.63 6.74 4.91 2.04 1.40 3.58 

200*10 1.26 1.01 2.07 1.27 0.34 0.16 0.47 

200*200 4.42 3.81 4.97 4.21 1.99 1.25 3.22 

All 3.44 2.35 4.41 2.28 0.75 0.44 1.46 

 

 

 

 

Table 26 highlights the effectiveness of MMR in PFSP with makespan criterion. Among all the 

algorithms just IG_RS and NEHA_VNS perform better than MMR. However, it should not be 

forgetten that NEHA_VNS is a hybrid local search algorithm and IG_RS is not a pure construction 

heuristic since it starts iterating over a given solution. 
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5-BEYOND THE SCOPE 

The main purpose of this research is to investigate the effectiveness of embedding local search 

memory and learning techniques in the construction phase of a memoryless meta-heuristic entitled 

“Meta-RaPS. The computational results show that a memory mechanism improves the 

performance of Meta-RaPS and also, the algorithms is competitive with the best algorithms in the 

literature but there exist better algorithms. 

 

Meta-RaPS has two phases, the construction phase and the improvement phase. In the section 4-1 

is it mentioned that the scope of this research is restricted to the construction phase of Meta-RaPS. 

Therefore, the improvement parameter (𝑖) does not need to be tuned and is considered zero. In this 

section a simple local search technique is introduced to confirm adding a local search method to 

an algorithm will improve the performance of the algorithm 

 

5-1 Iterated Greedy Algorithm 

Lourenco, Martin and Stutzle (2002) describe iterated greedy algorithms as a mechanism as 

follows: 

Generate a complete feasible solution, destruct the solution with removing some variables and then 

applying a greedy heuristic to construct a complete feasible solution. When a new solution is 

constructed, a criterion decides whether to accept the solution or alternatively not. 
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Ruiz et al. (2007) introduces the first version of iterated greedy for PFSP noted as IG_RS and the 

algorithm is as follows: 

1- Apply the destruction phase to a permutation π to remove 𝑑 jobs randomly without 

repetition and keep the jobs in a set 𝜋𝑟 with the order of removing. Now there are two sets, 

one with 𝜋 − 𝑑 jobs which is entitled 𝜋𝑑 and another set with 𝑑 jobs noted as 𝜋𝑟 

2- Third step of NEH heuristic is the construction phase. Start with the first job in set 𝜋𝑟 and 

insert the job in all positions of 𝜋𝑑. Make a job’s position permanent in the cheapest 

position of 𝜋𝑑. Continue the process for all 𝑑 available jobs in 𝜋𝑑.  

 

Ruiz et al. (2007) considers the above described procedure as the construction phase of IG_RS. 

Hence, a local search mechanism is added to process to enhance the results. The utilized local 

search mechanism is neighborhood insertion which is removing a random job from permutation 𝜋 

and insert it in a new position 𝑘. 

 

Construction phase of IG_RS is considered as a the improvement phase of MMR to enhance the 

solutions and the local search method in IG_RS is not part of the improvement phase of MMR 

 

5-2 Computational Results  

IG_RS adds a new parameter 𝑑 (the number of jobs to remove) to the algorithm. Ruiz et al. (2007) 

obtained 𝑑 = 4 as the best value for number of jobs to remove. Therefore, destruction size in this 

research would be the same as Ruiz et al. (2007) setting. 
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The construction phase of MMR constructs a feasible solution with the makespan 𝐶𝑚𝑎𝑥 = 𝑍 , a 

constructed solution will go through the improvement phase if: 

 

 

𝑍 ≤  𝑏∗ + (𝑏∗ − 𝑤∗) ∗ 𝑖% 

 

 

Where 𝑏∗ is the best found solution before the improvement phase, and 𝑤∗ is the worst found 

solution before the improvement phase. 

 

In Section 4-1 the parameter 𝑖 is considered zero while now the parameter should be tuned, rest of 

the parameter as the same as Table 15. According to Moraga’s (2002) tuning process: 

1. Selecting a subset of problems:  problems are selected randomly from Tillard’s benchmark 

( 3 small size problems, 3 large size problems) 

2. The domain that parameter 𝑖 will vary is {30%, 40%, 50%, 60%, 70%, 80%, 90%} 

3. While other parameters are constant and the same as Table 15 manipulate the values of 𝑖 

and report a value associate to the best objective functions. 

 

Summary of tuning parameter (𝑖) is shown in Figure 11 and Figure 12. Surprisingly it can be seen 

that increasing the value of 𝑖 does not lead to a significant improvement in the objective function 
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𝐶𝑚𝑎𝑥 while the computational time increases significantly. This is due to allowing more solution 

through the improvement phase.  

 

The range for RPD in Figure 12 is around 0.09 so it can be concluded that the increasing the 

parameter I does not improve the algorithm’s performance significantly while it increases the 

computational times exponentially. Interpretation of Figures 11 and 12 indicates that the best value 

for parameter i equals = 0.5 .  

 

Performance of MMR and MMR with an improvement phase is depicted is Table 27. The results 

indicate that adding a local search increase the performance of an algorithm. However, it is worth 

it to mention that the iterated greed local search does not lead to a huge improvement in MMR 

while Ruiz et al (2007) obtains extremely competitive results with a worst starting point.  
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Figure 11. Computational Time for Different Values of 𝑖 

 

 

 

 

 
Figure 12. Average RPD for an Associated Time (Time is Related to 𝑖) 
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Table 27. RPD for MMR with Locals Seach and MMR without Local Search 

Problem size (m*n) MMR (%) MMR with Local Search (%) 

20*5 0.12 0.08 

20*10 0.76 0.82 

20*20 0.7 0.55 

50*5 0.05 0.02 

50*10 2.41 2.20 

50*20 3.75 3.66 

100*5 0.04 0.05 

100*10 0.97 0.96 

100*20 3.58 3.56 

200*10 0.47 0.41 

200*20 3.22 2.96 

All 1.461 1.388 

 

 

 

The belief of the authors is that Ruiz et al (2007) obtains better performance in iterated greedy due 

to spending more time on destructing and constructing a solution. To validate this hypothesis the 

algorithms is run on the hardest problem sizes (50*10 and 50*20) in Tillard’s benchmark with 

different time spans. The computational results confirm that increasing the time on improves the 

effectiveness the improvement phase. Table 28 shows two different settings for iterated greedy 

allowed time span in the local search. The results signify the hypothesis that if the time increases, 

the object function improves. 
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Table 28. Local Search Performance for Different Time Spans 

Problem n*m BKS Local Search with 20 

iterations 

RPD Local Search with 80 

Iterations 

RPD 

TA041 

50*10 

2991 3080 2.98 3022 1.04 

TA042 2867 2934 2.34 2946 2.76 

TA043 2839 2914 2.64 2919 2.82 

TA044 3063 3095 1.04 3088 0.82 

TA045 2976 3051 2.52 3064 2.96 

TA046 3006 3066 2.00 3055 1.63 

TA047 3093 3154 1.97 3144 1.65 

TA048 3037 3076 1.28 3071 1.12 

TA049 2897 2954 1.97 2954 1.97 

TA050 3065 3166 3.30 3160 3.10 

Average 3049 2.20 

 

3042 1.98 

TA051 

50*20 

3850 3985 3.51 3964 2.96 

TA052 3704 3848 3.89 3838 3.62 

TA053 3640 3788 4.07 3771 3.60 

TA054 3720 3823 2.77 3818 2.63 

TA055 3610 3825 5.96 3812 5.60 

TA056 3681 3812 3.56 3802 3.29 

TA057 3704 3821 3.16 3800 2.59 

TA058 3691 3838 3.98 3804 3.06 

TA059 3743 3842 2.64 3836 2.48 

TA060 3756 3873 3.12 3866 2.93 

Average 3845 3.66 

 

3831 3.28 
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6-CONCLUSION 

The purpose of this research is to design a generic memory mechanism for the construction phase 

of a memoryless meta-heuristic algorithm entitled “Meta-RaPS” with the application of PFSP 

(Permutation Flowshop Scheduling Problem) to minimize an objective function known as 

makespan. The first memory design in construction phase of Meta-RaPS was introduced by Lan 

et al (2007) with the application of SCP (Set Covering Problem). However, a few researches have 

been carried out to implement memory and/or learning in Meta-RaPS since then. Even fewer 

researches have been done in the realm of meta-heuristics to incorporate memory mechanisms in 

the construction phase of optimization algorithms. The main contribution of this research is to 

provide a novel generic memory structure for the construction phase of Meta-RaPS and adjusting 

the structure according to characteristic of PFSP. In addition to memory structure, the illustrated 

methods to construct high-quality solutions and computational results are the other contributions 

of this research. This thesis demonstrated that the performance of a memoryless algorithm can be 

enhanced with an embedded artificial intelligence.  

 

6-1 Summary 

Objective of this research is to improve the effectiveness of the construction phase of Meta-RaPS 

with the application of PFSP. NEH is known to be the best construction heuristic for PFSP. NEH 

has two phases: sequencing phase, and the cheapest insertion phase. The computational results 
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confirm that Meta-RaPS is a powerful algorithm to solve PFSP. Meta-RaPS in the first phase of 

NEH has a better performance than Meta-RaPS in the second phase of NEH. Therefore, this setting 

is used for further analysis in memory design. In Section 3-2 a generic memory design for 

construction phase of Meta-RaPS is introduced and then a learning mechanism is added to the 

algorithm to bias the search toward high quality solutions, the algorithm is noted as MMR. MMR 

is tested with famous Tillard’s benchmark and the computational results strengthens the hypothesis 

that adding memory and learning mechanisms to a memoryless algorithm can enhance its 

performance and its capability of finding high-quality solutions. It is observed that when the 

number of machines are relatively low MMR can find almost all the BKSs (Best Known Solution) 

of PFSP. 

  

Comparison of MMR and the best algorithms in the literature shows that although MMR is just a 

construction algorithm but there are few algorithms with better performance for PFSP with 

makespan criterion. Meta-RaPS has two phases, the construction phase and the improvement phase 

but MMR does not benefit from the improvement phase. Therefore, to increase the competency of 

MMR a simple local search technique, Iterated greedy which is introduced by Ruiz et al (2007) as 

a construction heuristics, is utilized to prove if a local search technique is added to an algorithm, 

the performance increases. 

 

Meta-RaPS in second phase of NEH faces significant amount of ties in the candidate list. 

Therefore, a tie breaking strategy is proposed to overcome the problem. The computational results 

show that the tie breaking algorithm is improving the performance of Meta-RaPS but not in all 
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cases and all problem sizes. This is due to the fact that, there is no global tie breaking strategy that 

can always enhance an algorithm’s performance.  

 

6-2 Future Research 

Objective of this research is to enhance the performance of Meta-RaPS with implementing a 

memory and learning mechanism in the construction phase of this meta-heuristic algorithm. 

Memory mechanism is developed from the principles of an effective AMP by Tillard et al. (2001) 

and the learning mechanism is developed from principle of Tabu Search by Glover et al (1997) to 

influence the search toward good solutions. Future research can focus on designing a generic 

learning mechanism for the construction phase of Meta-RaPS. 

 

Randomness improves the performance of an algorithms since it assists the algorithm to expand 

the domain of the search. Meta-RaPS has an advantage over randomness in several ways; however, 

there exist other ways to add more randomness to Meta-RaPS and expand the search further. A 

strategy to add randomness to current state of Meta-RaPS can be selecting the priority sequencing 

rule from a pool of rules in each iteration. For example is the case of PFSP this research uses 

Dong’s priority rule is all 200 iterations while at each iteration the algorithm can select the priority 

rule randomly from some of the well-known greedy rules like Palmer’s index, CDS, Avg, and 

AvgDev.  This is due to the fact that memory mechanisms focus on the intensification aspect of 

AMP structure while another factor that plays a critical role in reaching to a global optimum is 

diversification. Therefore, having diverse high-quality solutions in the elite list helps to balancing 

the intensification and the diversification of the algorithm. 
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MMR is implemented in the first phase of NEH since Meta-RaPS has a better performance on 

NEH sequencing phase. Developing other applications of memory based Meta-RaPS based on the 

principles of MMR for other well-known NP-hard problems to verify the effectiveness of MMR 

is promising. 

 

Moreover, adding a simple local search to the algorithm confirms that even a basic local search 

technique increases the effectiveness of MMR. Therefore, more studies should be done to 

investigate implementation of sophisticated techniques in the improvement phase of MMR.  
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