
Northern Illinois University Northern Illinois University 

Huskie Commons Huskie Commons 

Graduate Research Theses & Dissertations Graduate Research & Artistry 

2015 

A divide-and-conquer split Schur algorithm A divide-and-conquer split Schur algorithm 

Steven J. Kifowit 

Follow this and additional works at: https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations 

Recommended Citation Recommended Citation 
Kifowit, Steven J., "A divide-and-conquer split Schur algorithm" (2015). Graduate Research Theses & 
Dissertations. 289. 
https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations/289 

This Dissertation/Thesis is brought to you for free and open access by the Graduate Research & Artistry at Huskie 
Commons. It has been accepted for inclusion in Graduate Research Theses & Dissertations by an authorized 
administrator of Huskie Commons. For more information, please contact jschumacher@niu.edu. 

https://huskiecommons.lib.niu.edu/
https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations
https://huskiecommons.lib.niu.edu/allgraduate
https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations?utm_source=huskiecommons.lib.niu.edu%2Fallgraduate-thesesdissertations%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations/289?utm_source=huskiecommons.lib.niu.edu%2Fallgraduate-thesesdissertations%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jschumacher@niu.edu


ABSTRACT

A DIVIDE-AND-CONQUER SPLIT SCHUR ALGORITHM

Steven J. Kifowit, Ph.D.
Department of Mathematical Sciences

Northern Illinois University, 2015
Gregory S. Ammar, Director

Positive definite Toeplitz systems of equations arise in a number of applications in pure

and applied mathematics. Methods of solution specifically designed to exploit the symmetry

of such linear systems have been studied in earnest since the late 1940’s. By 1990, “superfast”

methods, whose operation counts were asymptotically far lower than traditional methods,

had been developed and implemented.

This dissertation concerns the superfast solution of Toeplitz systems. In particular, a new

algorithm is described for solving the Yule-Walker equations associated with a Hermitian

positive definite Toeplitz matrix. The new algorithm is based on a doubling procedure

applied to the split Schur algorithm. This procedure computes the solution of the Yule-

Walker equations by processing a family of split Levinson symmetric polynomials. The

operation count for the new algorithm is among the lowest for all known direct methods for

solving the Yule-Walker equations.

The foundations of the new superfast algorithm rest on the split Schur algorithm. A

new derivation of the split Schur algorithm is also described in this work. That derivation



highlights the classical underpinnings of the split Schur algorithm and reveals its nature as

a recursion on a certain class of functions.

The new superfast algorithm is rich in operations on symmetric polynomials. It derives

its speed from fast Fourier transform techniques for polynomial multiplication and division.

A number of new symmetry-exploiting FFT techniques are also contained in this work.
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CHAPTER 1

INTRODUCTION

In a variety of applications in pure and applied mathematics, one must solve a system of

linear equations where the coefficient matrix is a Toeplitz matrix, i.e., a matrix whose ele-

ments are constant along each diagonal. Toeplitz systems originally arose in connection with

the trigonometric moment problem, the Carathéodory coefficient problem, and the theory

of polynomials orthogonal on the unit circle [1, 35, 53, 57]. Today, Toeplitz systems rou-

tinely arise in signal processing applications such as spectrum analysis [42], linear prediction

[47], and filter design [36]. Other applications include statistical time-series analysis, the

numerical solution of partial differential equations, and Padé approximation, to name but a

few.

It has been known for some time that an n×n Hermitian positive definite Toeplitz system

can be solved directly in far fewer arithmetic operations than required by traditional Gaussian

elimination or Cholesky factorization. While these traditional methods have operation counts

on the order of n3, Levinson’s algorithm [46], presented in 1947, is more economical by a

factor of n. A streamlined version of Levinson’s algorithm was presented by Durbin [32] in

1960 for the solution of the specific system of equations known as the Yule-Walker equations.

The Levinson-Durbin algorithm requires roughly 2n2 operations, and it is arguably the most

popular Toeplitz solver. Since its development, a number of other fast Toeplitz solvers have



2

been developed and analyzed (for example, see [9, 23, 40, 44, 58, 64]). For the purposes

of this work, the most notable among these is the split Levinson algorithm of Delsarte and

Genin [23].

Around 1980, a new class of direct Toeplitz solvers was introduced [5, 10, 13, 22, 48].

These algorithms typically make use of doubling strategies and are asymptotically faster than

the Levinson-Durbin algorithm, requiring significantly fewer operations for sufficiently large

systems. Notable among these is the generalized Schur algorithm of Ammar and Gragg

[5]. When applied to real Toeplitz systems, it requires fewer than 8n(log2 n)
2 arithmetic

operations.

More recently, the preconditioned conjugate gradient method has been applied to Toeplitz

systems [18]. For certain classes of Toeplitz matrices, this iterative technique can be used to

obtain satisfactory results with an operation count on the order of n log2 n. Another recently

proposed asymptotically fast Toeplitz solver [19] is based on transforming the Toeplitz matrix

to a Cauchy-like matrix. The new Cauchy-like matrix is then approximated by a certain

type of matrix with a special low-rank structure. Overall, this method has an operation

count on the order of n log2 n, but in practice, it is not clear that it is faster than the direct

superfast methods mentioned above. Although these methods lead to important classes of

efficient Toeplitz solvers, they will not be considered here.

This dissertation is concerned with the direct, numerical solution of Hermitian positive

definite Toeplitz systems. In particular, a new asymptotically-fast algorithm will be pre-

sented for the solution of the Yule-Walker equations of order n and the determination of
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the Schur parameters associated with an (n + 1) × (n + 1) Toeplitz matrix. The following

applications illustrate the types of problems solved by the new algorithm.

Suppose a continuous-time signal s(t) is sampled at intervals of time T to obtain the

discrete-time signal sn = s(nT ). In the all-pole linear prediction problem [47, 49], it is

assumed that sn is a linear combination of past values and the input un:

sn = −
p
∑

k=1

aksn−k +Gun,

where the constant G is called the gain factor. If the input signal is completely unknown,

as is the case in the analysis of electroencephalograms (EEGs) measured from spontaneous

brain activity (for example, see [52]), the signal sn is approximated by

s̃n = −
p
∑

k=1

aksn−k.

The prediction error, or residual, rn, is given by

rn = sn − s̃n.

In the least-squares method, the prediction parameters ak are obtained by minimizing the

sum of the squares of the residuals, E =
∑

n r
2
n. By setting ∂E/∂aj = 0, one obtains the

normal equations
p
∑

k=1

ak
∑

n

sn−ksn−j = −
∑

n

snsn−j, 1 ≤ j ≤ p.
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If s is a deterministic signal of infinite duration or a random, stationary (time-independent)

signal, then the autocorrelation function

M(j − k) =
∑

n

sn−ksn−j, 1 ≤ j, k ≤ p

depends only on the difference j−k. The corresponding autocorrelation matrix [M(j−k)]pj,k=1

is a symmetric positive definite Toeplitz matrix, and the normal equations are the Yule-

Walker equations. Fast solution methods for the Yule-Walker equations involve certain

intermediate quantities called Schur parameters, which measure the partial correlations be-

tween sn and sn+j.

In transmission line theory, the Schur parameters are called reflection coefficients. They

describe the reflected impulses of current at junction points in transmission lines [17]. The

reflection coefficients are tied to the central mass sequence {ρ1, ρ2, . . . , ρn} of a symmetric

positive definite Toeplitz matrix Mn:

ρk = sup{ρ : (Mk − ρΠk) is positive definite},

where Mk is the k × k leading submatrix of Mn and Πk is the k × k matrix of 1’s. Caflisch

[17] showed that knowledge of the capacitance tapers of a transmission line is equivalent to

knowledge of the reflection coefficients. This, in turn, is equivalent to the knowledge of a

matrix central mass sequence. Dickinson [29] described how fast Toeplitz solvers could be

used to obtain the central mass sequence of a Toeplitz matrix via its Schur parameters. In this
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type of application, the solution of the Toeplitz system itself is not inherently interesting—

the important quantities are the Schur parameters.

1.1 Organization of this Dissertation

This dissertation is organized as follows:

Chapter 2 contains background information and general results pertaining to the solution

of Toeplitz systems. The chapter also includes a summary of basic facts concerning the

discrete Fourier transform (DFT) and fast Fourier transform (FFT) algorithms. For the most

part, FFT algorithms will be considered “black boxes,” and their precise details will not be

considered, though numerous references are given. Chapter 2 also includes descriptions of the

fast and superfast direct Toeplitz solvers that have inspired the current work. Conspicuously

absent from the chapter are the “split” Toeplitz solvers originally proposed by Delsarte and

Genin [23, 24]. The split methods are described thoroughly in later chapters.

The split Levinson algorithm is derived in Chapter 3. The derivation is somewhat similar

to that given by Krishna and Morgera [44], but it is unique in that it uses the output of the

Levinson algorithm as it starting point. This approach makes the connections between the

algorithms clear. The disadvantage, however, is that further efforts are required to make the

algorithms independent of one another.

In the fourth chapter, the split Schur algorithm is derived. Using Schur’s classical al-

gorithm [51] and the split Levinson algorithm as starting points, the split Schur algorithm
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is derived by splitting Schur functions into appropriate parts and then processing linear

combinations of the parts. A new class of functions, called quasi-Carathéodory functions,

is defined, and it is shown that the split Schur algorithm is a method for constructing a

continued fraction representation for such a function.

In Chapter 5, a divide-and-conquer approach to the split Schur algorithm is proposed. A

new Toeplitz solver is derived, which is based on a doubling strategy applied to a continued

fraction representation of a certain quasi-Carathéodory function. The new algorithm is rich

in polynomial multiplication and consequently can be implemented efficiently by using fast

Fourier transform techniques.

An FFT-based implementation of the new divide-and-conquer split Schur algorithm is

described in Chapter 6. This implementation applies to real symmetric positive definite

Toeplitz matrices whose dimensions are powers of two. The algorithm processes a number of

vectors with certain symmetry properties. In order to take advantage of FFT-based convolu-

tion techniques, these vectors must be padded with zeros, thus destroying their symmetries.

A variety of techniques are developed in Chapter 6 for efficiently computing the DFTs of

the zero-padded symmetric vectors. These techniques result in a real Toeplitz solver that

requires 7n(log2 n)
2 +O(n logn) real floating-point operations.

Chapter 7 contains the results of a number of numerical tests of the superfast implemen-

tation of the divide-and-conquer split Schur algorithm. These include tests of the accuracy

of the new algorithm as well as accuracy comparisons of the new algorithm with other split

algorithms.
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The final chapter, Chapter 8, contains a brief summary of the main results described in

this dissertation. It also contains a number of related problems that are proposed for future

work.

1.2 Notation

Throughout this work, efforts have been made to use notation consistently. From this

point forward, the following notation is used:

D open unit disk {z : |z| < 1}

∆ machine precision

αR, µR, δR single real addition, multiplication, and division

αC, µC, δC single complex addition, multiplication, and division

ψj For j = 1, 2, . . . , 7, used to denote FFT flop counts

i imaginary unit, i =
√
−1

ω primitive nth root of unity, ω = e−2πi/n

n positive integer (often the dim/deg of vectors, matrices, or polys)

A, B general matrices

x, y general vectors (i.e. column matrices)

a, b general vectors, often used to denote the rhs of a linear system

j, k, ℓ, m general integer indices

p, N positive integers, usually an exponent
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K positive integer, used to denote the order of a matrix

s, t, z general (real or complex) variables

f , g general functions (often general polynomial functions)

H general lower triangular matrix

L general unit lower triangular matrix, or

lower-triangular Toeplitz matrix operator

I (In) n× n identity matrix

ek kth column of the identity matrix, k = 1, 2, . . .

J (Jn) n× n reversal matrix

Pn n× n even/odd permutation matrix

M = [mj−k] Toeplitz matrix, generally indexed from 0

C general circulant matrix or circulant matrix operator

Ω (Ωn) n× n Fourier matrix

Wk diag([ωj]k−1
j=0)

U the unitary matrix Ωn/
√
n

R the unit upper triangular matrix in R∗MR = D

rk kth column of the matrix R

D general diagonal matrix, or

diagonal matrix in the reverse Cholesky factorization D = R∗MR

δk kth diagonal element of D = R∗MR (i.e., kth prediction error)

σk positive element of the rhs of the alternate YW equation (σk = δk)
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ρk kth monic Szegő polynomial

γk kth Schur parameter

T used briefly as T = LD in the fast Cholesky algorithm

φ, φk Schur function

αk, βk numerator and denominator of Schur function

τk Möbius transformations in Schur/split Schur algorithm

Tk composition of τj ’s

ηk, ξk Schur polynomials in the generalized Schur algorithm

wk split Levinson symmetric polynomials in the split Levinson algorithm

̟k reversed split Levinson symmetric polynomials, wk = ̟k

λk, µk, ζk, νk split Levinson/split Schur parameters

(λk are called Jacobi parameters, ζk are called qC-parameters)

κ used briefly to represent the product of Jacobi parameters

hk split Schur functions

h
(m)
k split Schur function truncated to m terms

χk quasi-Carathéodory functions from the split Schur algorithm

pk, qk, uk, vk split Levinson polynomials in the DCSSA

θk used briefly in the DCSSA to represent µk+1/µk+1

Y , Z used in proofs to represent DFTs of vectors x and y

O, E used in proofs to denote arbitrary odd or even vectors

Ψ used for flop count of the DCSSA



CHAPTER 2

REVIEW OF LITERATURE

The primary object of study is the linear system

Mx = b,

where the matrix M is a complex Toeplitz matrix. In particular, this work focuses on

the direct, numerical solution of the Yule-Walker equations of order n associated with an

(n + 1)× (n + 1) Hermitian positive definite Toeplitz matrix. In this chapter, fundamental

results pertaining to the solution of this system of equations are reviewed.

2.1 Preliminaries

In this section, definitions, notation, and basic facts are laid out for subsequent use.

2.1.1 Definitions and Basic Facts

For any matrix B, BT represents the transpose of B, B represents the conjugate of B,

and B∗ represents the conjugate transpose of B (B∗ = B
T
= BT ). Furthermore, if B is
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nonsingular, B−1 represents the inverse of B. These operations have several important

properties that will be used throughout:

• For any pair of matrices A and B for which AB is defined, (AB)T = BTAT and

(AB)∗ = B∗A∗.

• For nonsingular, square matrices A and B, (B−1)T = (BT )−1, (B−1)∗ = (B∗)−1, and

(AB)−1 = B−1A−1.

A matrix B is symmetric if B = BT and Hermitian if B = B∗.

Depending on the situation, the elements of an n-dimensional vector may be indexed

from 1 to n, as in

x = [x1, x2, . . . , xn]
T = [xj ]

n
j=1,

or from 0 to n− 1, as in

x = [x0, x1, . . . , xn−1]
T = [xj ]

n−1
j=0 .

In either case, it should be clear from context which indexing scheme is being used.

Given the n-dimensional vector x = [x1, x2, . . . , xn]
T ,

diag(x) = diag(x1, x2, . . . , xn)

represents the n×n diagonal matrix with the elements of x along the main diagonal and 0’s

elsewhere.
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A Hermitian matrix B ∈ Cn×n is positive definite if x∗Bx > 0 for every nonzero vector

x ∈ C
n and nonnegative definite if the inequality is not strict. Positive definite matrices

have the following important properties:

• All principal submatrices of a positive definite matrix are positive definite. (In partic-

ular, the diagonal elements are positive, real numbers.)

• Positive definite matrices are nonsingular, and their inverses are also positive definite.

Every positive definite, Hermitian matrix B ∈ Cn×n has a unique Cholesky factorization:

B = HH∗,

where H is a lower-triangular matrix in Cn×n whose main diagonal elements, hk,k, are posi-

tive, real numbers. Letting D = diag(h21,1, h
2
2,2, . . . , h

2
n,n), the Cholesky factorization can be

rewritten

B = LDL∗,

where L is unit lower triangular.

The identity matrix of order n, In, is the n× n matrix with 1’s along the main diagonal

and 0’s elsewhere. Whenever the size is irrelevant or clear from context, the subscript will be

omitted and the appropriately-sized identity matrix will be denoted by I. The ith column

of I is denoted by ei. The columns may be indexed from i = 1 or i = 0 depending on the

context.
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The reversal matrix, J (or Jn), is the matrix obtained by reversing the columns (or rows)

of I,

J = [en, en−1, . . . , e2, e1].

Left multiplication of a matrix by J reverses the rows of the matrix, whereas right multipli-

cation by J reverses the columns. Notice that J = JT = J−1.

The even/odd permutation matrix of order n, Pn, is defined for even n by

Pn = [e1, e3, . . . , en−1, e2, e4, . . . , en].

Equivalently, Pn is defined by its action on the n-dimensional vector x = [xj ]
n−1
j=0 :

P T
n x =







xe

xo






,

where xe = [x2j ]
n/2−1
j=0 and xo = [x2j+1]

n/2−1
j=0 are the even-indexed and odd-indexed parts of x,

respectively. Left multiplication of a matrix by P T
n results in the even/odd permutation of the

rows of the matrix, whereas right multiplication by Pn results in the even/odd permutation

of the columns.

A matrix B ∈ Cn×n is unitary if B∗B = I.

A matrix B ∈ Cn×n is said to be persymmetric if it is symmetric about its main cross

(northeast-southwest) diagonal. That is to say that B is persymmetric if and only if B =
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JBTJ . An extremely important property, to be exploited throughout this work, is that the

inverse of a nonsingular, persymmetric matrix is also persymmetric.

The matrix M =Mn+1 = [mj,k]
n
j,k=0 ∈ C(n+1)×(n+1) is a Toeplitz matrix if

mj,k = mj−k; j, k = 0, 1, 2, . . . n.

Toeplitz matrices share the following important properties:

• The principal submatrices of a Toeplitz matrix are Toeplitz matrices.

• Toeplitz matrices are persymmetric.

Any Hermitian Toeplitz matrix has the following form:

M =Mn+1 =



















m0 m−1 m−2 · · · m−n

m1 m0 m−1 · · · m1−n

m2 m1 m0
. . .

...

...
...

. . .
. . . m−1

mn mn−1 · · · m1 m0



















,

where m−j = mj . Furthermore if M is positive definite, then m0 > 0 and the principal

submatrices Mk, k = 1, 2, . . . , n+ 1, are Hermitian positive definite Toeplitz matrices.

The eigenvalues of the matrix A ∈ Cn×n are the complex numbers λ such that

Ax = λx.
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An n × n matrix has n eigenvalues, counting multiplicity. Hermitian matrices have real

eigenvalues and are positive definite if and only if the eigenvalues are positive.

The Schur product of two n-dimensional vectors x and y is the vector obtained from

element-by-element multiplication:

x ⋆ y = [x1y1, x2y2, . . . , xnyn]
T .

The Schur product is also called the Hadamard product.

The vector p-norm of x = [x1, x2, . . . , xn]
T ∈ Cn is denoted by ‖x‖p and defined by

‖x‖p =







(|x1|p + |x2|p + · · ·+ |xn|p)1/p, if 1 ≤ p <∞

max{|x1|, |x2|, . . . , |xn|}, if p =∞
.

The matrix p-norm of B ∈ Cm×n is induced by the vector p-norm:

‖B‖p = max{‖Bx‖p : x ∈ C
n with ‖x‖p = 1}.

Whenever the value of p is irrelevant or clear from context, the subscript will be omitted,

and the norm will be denoted by ‖ · ‖.

For any particular p-norm, the condition number of a nonsingular matrix B ∈ Cn×n is

defined as

cond(B) = ‖B‖ ‖B−1‖.
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By convention, if B is singular, cond(B) =∞. The condition number of a matrix is always

greater than or equal to 1. A matrix is said to be well-conditioned if its condition number

is not large. Otherwise, it is ill-conditioned. It is a useful fact that for Hermitian matrices,

the 2-norm condition number is the absolute value of the ratio of the extreme eigenvalues.

An algorithm for solving linear equations is stable (or backward stable) if for each matrix

A and each right-hand side b, the computed solution x̃ to Ax = b satisfies Ǎx̃ = b̌, where

‖Ǎ− A‖/‖A‖ and ‖b̌− b‖/‖b‖ are small.

An algorithm for solving linear equations is weakly stable if for each well-conditioned

matrix A and each right-hand side b, the computed solution x̃ to Ax = b is such that the

relative residual, ‖Ax̃ − b‖/‖b‖, is small. Equivalently, the relative error, ‖x − x̃‖/‖x‖, is

small. Stability implies weak stability but not vice versa.

Given a complex polynomial g of degree n, g denotes the polynomial obtained by conju-

gating the coefficients, g(z) = g(z). The reciprocal polynomial ĝ is the polynomial

ĝ(z) = zng(1/z),

which can be obtained from g by conjugating and reversing the order of its power basis

coefficients.

If g(z) = ĝ(z), the polynomial is said to be self reciprocal or conjugate symmetric. The

product of two conjugate-symmetric polynomials is conjugate symmetric.

In addition to symmetric polynomials, three types of highly symmetric vectors will be

encountered in this work. The n-dimensional vector x = [x0, x1, . . . , xn−1]
T ∈ Rn is said to
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have real even (RE) symmetry if xk = xn−k and real odd (RO) symmetry if xk = −xn−k. An

RO symmetric vector has the property that x0 = 0 and, if n is even, xn/2 = 0. The vector x

is said to have real quarter-even (RQE) symmetry if xk = xn−k−1. For example, the vectors

[1, 2, 3, 4, 5, 4, 3, 2]T , [0, 1, 2, 3, 0,−3,−2,−1]T , [1, 2, 3, 4, 4, 3, 2, 1]T

exhibit RE, RO, and RQE symmetries, respectively.

A flop is a single floating-point arithmetic operation. Normally this will refer to one

multiplication or addition of two floating-point numbers. If the number of floating-point

operations required by an algorithm is bounded by a multiple of np, the algorithm is said

to require O(np) flops. The symbols αR, µR, and δR denote a single real addition, multi-

plication, and division operation, respectively, and αC, µC and δC are defined similarly for

complex operations. Operation counts involving complex arithmetic will assume that com-

plex multiplication is carried out with four real multiplications and two real additions, i.e.,

µC = 4µR + 2αR.
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2.1.2 Circulant Matrices and FFTs

A circulant matrix of order n is an n×n Toeplitz matrix in which each column is a cyclic

downshift of the previous column. In other words, a square circulant matrix C is a matrix

of the form

C =



















c1 cn cn−1 · · · c2

c2 c1 cn · · · c3

c3 c2 c1
. . .

...

...
...

. . .
. . . cn

cn cn−1 · · · c2 c1



















.

Circulant matrices have many special properties [43]. Chief among them is that circulant

matrices are unitarily diagonalizable, and all circulant matrices are diagonalized by the same

unitary matrix.

For a positive integer n, let ω be the primitive nth root of unity,

ω = e−2πi/n.
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The Fourier matrix of order n is

Ω = Ωn = [ωjk]n−1
j,k=0 =



















1 1 1 · · · 1

1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

. . .
...

1 ωn−1 ω2(n−1) · · · w(n−1)(n−1)



















.

The Fourier matrix is nonsingular, and its inverse is given by

Ω−1 =
1

n
Ω∗.

It follows that U = Ω/
√
n is a unitary matrix.

Every square circulant matrix is diagonalized by U . More precisely, if C is any n × n

circulant matrix and U = Ωn/
√
n, then

UCU∗ = D,

where D is the diagonal matrix of eigenvalues of C.
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The discrete Fourier transform (DFT) of an n-dimensional vector x is the vector y = Ωx.

For emphasis, this is sometimes called the forward DFT of x to distinguish it from the

backward or inverse discrete Fourier transform (IDFT) of y,

x =
1

n
Ω∗y.

With the vectors indexed from 0 to n − 1, it follows that the elements of the DFT/IDFT

pair satisfy

yk =

n−1∑

j=0

xj e
−2πjki/n (2.1a)

and

xk =
1

n

n−1∑

j=0

yj e
2πjki/n, (2.1b)

for k = 0, 1, . . . , n− 1.

While a matrix-vector product generally requires O(n2) flops, the computation of the

DFT and IDFT can be performed in O(n log2 n) flops by using the well-known computa-

tional procedures called Fast Fourier Transforms (FFTs). FFT algorithms are based on

a divide-and-conquer strategy in which an n-dimensional DFT is split into smaller DFTs.

For example, suppose n is an even number. Let xe = [x2j ]
n/2−1
j=0 and xo = [x2j+1]

n/2−1
j=0 be

the even-indexed and odd-indexed parts of the n-dimensional vector x. Then (2.1a) can be

rewritten

yk =

n/2−1
∑

j=0

x2j e
−2πjki/(n/2) + e−2πki/n

n/2−1
∑

j=0

x2j+1 e
−2πjki/(n/2). (2.2)
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For k = 0, 1, . . . , n/2 − 1, the summations in (2.2) describe the elements of the DFTs of xe

and xo, respectively. Since

e−2πj(k+n/2)i/(n/2) = e−2πjki/(n/2) and e−2π(k+n/2)i/n = −e−2πki/n,

it follows that the DFT of x can be obtained from the DFTs of xe and xo:

yk =

n/2−1
∑

j=0

x2j e
−2πjki/(n/2) + e−2πki/n

n/2−1
∑

j=0

x2j+1 e
−2πjki/(n/2),

yk+n/2 =

n/2−1
∑

j=0

x2j e
−2πjki/(n/2) − e−2πki/n

n/2−1
∑

j=0

x2j+1 e
−2πjki/(n/2),

(2.3)

for k = 0, 1, . . . , n/2− 1. In matrix notation, (2.3) takes the form

Ωnx =







Ωn/2 diag([e−2πki/n]
n/2−1
k=0 )Ωn/2

Ωn/2 −diag([e−2πki/n]
n/2−1
k=0 )Ωn/2













xe

xo






, (2.4)

from which it is clear that an n-dimensional DFT can be computed with two n/2-dimensional

DFTs, n/2 complex multiplications, and n complex additions. The classic Cooley-Tukey

power-of-two FFT [20] obtains its fast status by making repeated use of the splitting pro-

cedure described above. (See [31] for a tutorial review of FFT techniques and [37] for the

history of the FFT.)

The exact number of flops required by an FFT depends on the nature of the integer n,

the data type of the input vector, and the particular type of FFT algorithm. For example,

if n is a power of 2 and the input vector is real, the Duhamel-Hollmann split-radix FFT [30]
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requires 2n log2 n− 4n+ 6 flops. The more efficient Johnson-Frigo modified split-radix FFT

[41] requires 17
9
n log2 n− 89

27
n +O(log2 n) flops for the same type of vector.

Because circulant matrices are diagonalized by the Fourier matrix, matrix-vector opera-

tions involving circulant matrices can be carried out efficiently with FFT techniques. Indeed,

since UCU∗ = D implies ΩC = DΩ, it follows that

ΩCe1 = DΩe1 = D[1, 1, . . . , 1]T .

Therefore, the DFT of the first column of C gives the diagonal elements of D. By further

exploiting this fact, the circulant matrix-vector product can be computed as follows:

Cx = U∗DUx =
1

n
Ω∗DΩx =

1

n
Ω∗[diag(ΩCe1)Ωx]

or

Cx =
1

n
Ω∗ [Ω(Ce1) ⋆ Ωx].

Thus, the product Cx follows from the IDFT of the Schur product of two DFTs. Using FFTs,

this product can be computed in O(n log2 n) flops—3 FFTs of length n and n additional

complex multiplications associated with the Schur product. Just as circulant matrix-vector

products reduce to Schur products in the transform domain, circulant systems can be solved

with element-by-element division in the transform domain.
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Toeplitz matrix-vector multiplication can also be accomplished efficiently with FFTs.

The Toeplitz matrix M whose first column and row are

[m0, m1, . . . , mn−1]
T and [m0, m−1, . . . , m−(n−1)],

respectively, is embedded in the upper left corner of the circulant matrix of twice the size

whose first column is

[m0, m1, . . . , mn−1, 0, m−(n−1), m−(n−2), . . . , m−1]
T .

In block form, this 2n× 2n circulant matrix can be written







M B

B M






,

and the Toeplitz matrix-vector productMx forms the first n elements of the circulant matrix-

vector product






M B

B M













x

0n






,

where the 0n represents the n-dimensional zero vector. In this way, a Toeplitz matrix-vector

product can be computed in O(n log2 n) flops.
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Perhaps the most important application of FFTs in this work is the fast multiplication

of polynomials. Suppose f and g are polynomials of degrees m and n, respectively:

f(z) =

m∑

j=0

fj z
j and g(z) =

n∑

j=0

gj z
j .

The polynomial product f(z)g(z) has degree n +m with n +m + 1 coefficients. Let C be

the circulant matrix whose first column is

y = [f0, f1, . . . , fm, 0, 0, . . . , 0
︸ ︷︷ ︸

n zeros

]T ,

and let

x = [g0, g1, . . . , gn, 0, 0, . . . , 0
︸ ︷︷ ︸

m zeros

]T .

The coefficients of the polynomial product are the elements of the circulant matrix-vector

product Cx. This product is also called the convolution of the polynomials’ zero-padded

coefficient vectors. It will alternatively be denoted by

Cx = y ∗ x.

As it is a circulant matrix-vector product, the polynomial product (or convolution) can be

computed efficiently with FFTs of length n+m+1. Because the DFT is a linear transform,
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addition and scalar multiplication of polynomials can be carried out in the transform domain.

This indicates that a sum of products of polynomials, such as

f1(z)g1(z) + g2(z)f2(z),

can be computed with several FFTs (of zero-padded vectors), but only requires a single

inverse FFT following the addition in the transform domain.

When a vector exhibits a certain type of symmetry, its DFT typically exhibits a related

type of symmetry [55]. By exploiting these symmetries, the arithmetic complexity of the

corresponding symmetric FFTs can be greatly reduced. For example, it is well known that

the DFT of a real vector is conjugate symmetric, and its computation requires roughly half

as many operations as a general complex FFT. Several types of symmetric vectors (often

associated with symmetric polynomials) will be encountered in this dissertation. FFTs

corresponding to these symmetries are discussed in [55]. The FFT algorithms used in this

work, their references, flop counts, and other properties are summarized below.

1. CFFTF—Duhamel-Hollman Complex Split-Radix FFT [30]

• Complex input and output vectors of size n = 2p

• Flop count denoted by ψ1(n), n ≥ 2:

ψ1(n) = (n log2 n− 3n+ 4)µR + (3n log2 n− 3n+ 4)αR = 4n log2 n− 6n + 8
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2. RFFTF—Duhamel-Hollman Real Split-Radix FFT [30]

• Real input vector of size n = 2p

• Complex, conjugate-symmetric output vector

• Flop count denoted by ψ2(n), n ≥ 2:

ψ2(n) =

(
n

2
log2 n−

3n

2
+ 2

)

µR+

(
3n

2
log2 n−

5n

2
+ 4

)

αR = 2n log2 n−4n+6

3. RFFTB—Duhamel-Hollman Real Split-Radix Inverse FFT [30]

• Complex, conjugate-symmetric input vector of size n = 2p

• Real output vector

• Flop count denoted by ψ3(n), n ≥ 2:

ψ3(n) = ψ2(n) + nδR = 2n log2 n− 3n+ 6

4. RDCTF—RE-Symmetric FFT

• Derived from RFFTF as described by Swarztrauber [55]

• Real even input vector of size n = 2p ≥ 4

• Real even output vector
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• Flop count denoted by ψ4(n), n ≥ 4:

ψ4(n) = ψ2(n/2) +

(
3n

4
− 1

)

µR + (2n− 3)αR = n log2 n−
n

4
+ 2

5. RDCTB—RE-Symmetric Inverse FFT

• Derived from RFFTF as described by Swarztrauber [55]

• Real even input vector of size n = 2p ≥ 4

• Real even output vector

• Flop count denoted by ψ5(n), n ≥ 4:

ψ5(n) = ψ4(n) +
(n

2
+ 1
)

δR = n log2 n +
n

4
+ 3

6. RDSTF—RO-Symmetric FFT

• Derived from RFFTF as described by Swarztrauber [55]

• Real odd input vector of size n = 2p ≥ 4

• Purely imaginary, odd output vector

• Flop count denoted by ψ6(n), n ≥ 4:

ψ6(n) = ψ2(n/2) +
(n

2
+ 1
)

µR +

(
7n

4
− 1

)

αR = n log2 n−
3n

4
+ 6

7. RQETB—RQE-Symmetric Inverse FFT
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• Derived from RFFTF as described by Swarztrauber [55]

• Complex, conjugate-symmetric input vector of size n = 2p ≥ 4

• Input vector is the transform of an RQE-symmetric vector

• Real quarter-even output vector

• Flop count denoted by ψ7(n), n ≥ 4:

ψ7(n) = ψ2(n/2) + (2n− 5)µR + (2n− 7)αR +
n

2
δR = n log2 n+

3n

2
− 6

The operation counts given above do not include the computations of the powers of the roots

of unity required by the FFT algorithms. For all of the FFTs used in this work, these values

are precomputed, stored in sine/cosine tables, and retrieved as necessary.

2.2 Toeplitz Solvers

This section provides a summary of some results that are specific to the solution of

Toeplitz systems. Several solution methods—those that have directly influenced the current

research—are also reviewed.

An algorithm for the solution of the Toeplitz system Mx = b is referred to as a Toeplitz

solver. A Toeplitz solver is said to be fast if it requires O(n2) flops for the solution of an

n × n system. Among the fast Toeplitz solvers are the Levinson-Durbin algorithm [32],

Trench’s inversion algorithm [58], the Bareiss algorithm for the Cholesky factorization [9],
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and the split Levinson algorithm [23]. Superfast Toeplitz solvers require strictly less than

O(n2) flops and are more efficient than fast solvers only for sufficiently large n. In this

class of solvers are the generalized Schur algorithm [5] and those derived from algorithms for

computing elements in the Padé table [13]. These algorithms require O(n (log2 n)
2) flops in

contrast to Stewart’s superfast Schur algorithm with improved stability [54], which requires

O(n (log2 n)
3) flops.

Toeplitz solvers are generally divided into two main classes:

(A) those that compute M−1 or a decomposition of M−1 (Levinson-type), and

(B) those that compute a decomposition of M (Schur-type).

The Levinson-Durbin algorithm is in class (A), while the Bareiss algorithm is in class (B).

Most Toeplitz solvers are two-phase algorithms. In phase one, the algorithms compute

the decomposition referred to above. In phase two, the decomposition is used to solve the

system with a specific right-hand side. Because the second phase typically involves fewer

operations than the first, emphasis is normally placed on phase one.

Although there are a wide variety of Toeplitz solvers, different solvers often have surpris-

ing connections. A number of authors have provided general frameworks for describing the

relationships among these algorithms (for example, see [2, 15, 63]).

The Toeplitz solvers referenced above are known, or believed to be, at least weakly stable

when applied to positive definite systems. On the other hand, when applied to indefinite or

nonsymmetric systems, stability cannot be expected. In fact, simple examples can show that

the algorithms can be highly unstable when applied to general Toeplitz matrices. Several
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approaches for overcoming this unstable behavior have been developed (see [59] and the

references therein). These “fixes” have the potential to greatly increase the computational

complexity of an algorithm. Fortunately, many of the applications that give rise to Toeplitz

systems also give rise to positive definite systems.

2.2.1 Yule-Walker Equations

From this point forward, unless otherwise indicated, M refers to the complex (n + 1)×

(n+ 1) Hermitian Toeplitz matrix

M =Mn+1 =



















m0 m−1 m−2 · · · m−n

m1 m0 m−1 · · · m1−n

m2 m1 m0
. . .

...

...
...

. . .
. . . m−1

mn mn−1 · · · m1 m0



















,

with n ≥ 1. The Yule-Walker equations of order k are given by the system

Mkx = −[m1, m2, . . . , mk]
T ; k = 1, 2, . . . , n, (2.5)
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where Mk is the k × k leading submatrix of M . If M is positive definite, then each leading

principal submatrix is positive definite, and each system of Yule-Walker equations has a

unique solution.

Yule-Walker equations appear in a number of applications in engineering, statistics, and

mathematics. For example, in digital signal processing and time series analysis, they often

arise in connection with least-squares parameter estimation. In Yule’s own work [62], they

arose in the context of modeling accidentally-disturbed periodic phenomena. (Walker [60]

later extended Yule’s ideas.)

The Yule-Walker equations are often written in the alternate form















m0 m−1 · · · m−k

m1

... Mk

mk





























x0

x1

...

xk















=















σk

0

...

0















, (2.6)

where the rows indexed 1 through k form the original Yule-Walker system and σk is uniquely

determined by the normalization x0 = 1.

Because M is a Hermitian Toeplitz (persymmetric) matrix, the Yule-Walker equations

(2.5) are equivalent to

JMkJJx = −[mk, mk−1, . . . , m1]
T .
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This matrix equation reduces to

Mky = −[mk, mk−1, . . . , m1]
T , (2.7)

where y = Jx is the reverse conjugate of the solution of (2.5). The alternate form associated

with equation (2.7) is















m−k

Mk m−(k−1)

...

mk mk−1 · · · m0
















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


y0

y1

...

yk















=















0

...

0

σk















, (2.8)

where σk is determined by the normalization yk = 1 and is equal to its counterpart in

equation (2.6).

By renormalizing equation (2.6) so that σk = 1 (instead of x0 = 1), the new solution

gives the first column of M−1
k+1. It follows that the solution of the Yule-Walker equations

(2.5) implicitly gives the first column of M−1
k+1. More precisely, if

x = [x1, x2, . . . , xk]
T

satisfies equation (2.5) and

σk = m0 +m−1x1 +m−2x2 + · · ·+m−kxk,
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then the first column of M−1
k+1 is given by

1

σk
[1, x1, x2, . . . , xk]

T ,

where σk is guaranteed to be a positive real number by the positive definite nature of M . In

a similar way, the solution of equation (2.7) implicitly gives the last column of M−1
k+1, which,

as described above, is the reverse conjugate of the first column.

By solving the Yule-Walker equations of order n, the first (or last) column ofM−1 can be

computed. From this column, a complete, phase-one, decomposition ofM−1 can be obtained

from the Gohberg-Semencul formula or one of its variants [39].

2.2.2 Gohberg-Semencul Formula

In 1972, Gohberg and Semencul [33] presented a formula that expresses the inverse of

Toeplitz matrix belonging to a certain class in terms of only the first (or last) column of its

inverse. In particular, the Gohberg-Semecul formula is given as follows.
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Theorem 2.1 (Gohberg-Semecul Formula). Let M be a nonsingular (n+ 1)× (n+ 1) Her-

mitian Toeplitz matrix with a nonsingular n× n leading submatrix. Let x = [x0, x1, . . . , xn]
T

be the first column of M−1. Then x0 6= 0 and

M−1 =
1

x0
·


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

,

where L(y) denotes the lower-triangular Toeplitz matrix whose first column is y.

With the Gohberg-Semencul formula, the problem of solvingMx = y reduces to the prob-

lem of solving the Yule-Walker equations of order n. Once the Yule-Walker solution is ob-

tained, M−1y can be computed with FFTs, via the Gohberg-Semecul formula, in O(n log2 n)

flops.

There are a number Gohberg-Semecul-type formulas that offer a reduced arithmetic com-

plexity. Among them is the circulant variant presented by Ammar and Gader [3]:

M−1 =
1

x0
·
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


,
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where x and L are as defined above and C(y) denotes the circulant matrix whose first column

is y. The use of this formula in the second phase of a two-phase Toeplitz solver provides a

significant computational advantage over the Gohberg-Semecul formula [4].

2.2.3 Szegő Polynomials and the Levinson-Durbin Algorithm

The Hermitian positive definite (HPD) Toeplitz matrix M =Mn+1 = [mj−k]
n
j,k=0 has the

unique factorization

M = LDL∗,

where L is a unit lower-triangular matrix and D = diag(δ0, δ1, . . . , δn) has positive (real)

diagonal elements. Equivalently,

R∗MR = D, (2.9)

where R = [rj,k]
n
j,k=0 = (L∗)−1 is unit upper triangular. The matrix M induces an inner

product on Cn+1,

〈x, y〉 = y∗Mx,

and by equation (2.9), the columns of R are orthogonal with respect to this inner product.

In particular, denoting the columns of R by rk, it follows that

〈rk, rℓ〉 = r∗ℓMrk =







δk, k = ℓ

0, k 6= ℓ

.
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Under the identification

f(z) =

n∑

j=0

fj z
j ↔ [f0, f1, . . . , fn]

T ,

it is clear that the matrix also induces an inner product on Cn[z], the space of complex

polynomials of degree at most n. The monic polynomials

ρk(z) =

n∑

j=0

rj,k z
j ; k = 0, 1, . . . , n,

where deg(ρk) = k, are therefore orthogonal with respect to the inner product. These

polynomials are the Szegő polynomials associated withM (see [57]). Starting with ρ0(z) = 1

and δ0 = m0, they satisfy the Szegő recurrence relation

ρk+1(z) = zρk(z) + γk+1ρ̂k(z), (2.10a)

where ρ̂k denotes the reciprocal polynomial. The numbers γk, k = 1, 2, . . . , n, are given by

γk+1 = −
(

k∑

j=0

mj+1 rj,k

)

/δk, (2.10b)

where

δk+1 = δk
(
1− |γk+1|2

)
. (2.10c)
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Algorithm 2.1 Levinson-Durbin Algorithm

Input: [m0, m1, . . . , mn]
T = first column of M

Initialize: R = [rj,k = 0]nj,k=0; δ0 = m0; r0,0 = 1
for k = 0 to n− 1 do

γk+1 = −[m1, m2, . . . , mk+1]
T [r0,k, r1,k, . . . , rk,k]/δk

δk+1 = δk(1− |γk+1|2)
[r0,k+1, r1,k+1, . . . , rk+1,k+1] = [0, r0,k, r1,k, . . . , rk,k] + γk+1[rk,k, rk−1,k, . . . , r0,k, 0]

end for

Output: R; D = diag(δ0, . . . , δn); γ1, γ2, . . . , γn

The numbers δk, k = 0, 1, . . . , n, are the elements of the diagonal matrix D in equation

(2.9). In applications, they arise as the norms of prediction error vectors and will henceforth

be called prediction errors. Since M is a positive definite matrix, the prediction errors are

necessarily real and positive, and they form a nonincreasing sequence. Through equation

(2.10c), the positive definite nature of M is manifested in the inequalities

|γk| < 1; k = 1, 2, . . . , n. (2.11)

Depending on the context in which they arise, the γk’s are called Schur parameters, reflection

coefficients, partial correlation coefficients, or even Verblunsky coefficients [53].

The Levinson-Durbin algorithm (Algorithm 2.1) for solving the Yule-Walker equations

of order n is simply a matrix-vector formulation of the Szegő recurrence relation (2.10). In

its kth step, the Levinson-Durbin algorithm solves the Yule-Walker equations (2.8), where

σk = δk. Upon completion, the algorithm yields the matrices R and D in the factorization

(2.9), or alternatively, the last column of M−1. Notice that this also provides factorizations,

and last columns of inverses, for all smaller leading principal submatrices of M .
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The Levinson-Durbin algorithm requires 2n2 +O(n) flops when M is real or 8n2 +O(n)

flops when M is complex. An inductive proof of the validity of the algorithm is given in [6]

and makes judicious use of the persymmetry and Hermitian symmetry of M .

Cybenko [21] was one of the first to investigate the numerical stability of the Levinson-

Durbin algorithm. In floating-point arithmetic, with x̃ representing the computed solution

of the nth-order Yule-Walker system (2.5), he found that the residual

y =Mnx̃+ [m1, m2, . . . , mn]
T

satisfies

‖y‖1 ≤ ∆

(
n2

2
+ 11n

)[ n∏

k=1

(1 + |γk|)− 1

]

+O(∆2), (2.12)

where ∆ is the machine precision. By comparing (2.12) with the analogous result for the well-

behaved Cholesky algorithm, Cybenko concluded that the Levinson-Durbin and Cholesky

algorithms have comparable residual bounds when all Schur parameters are positive. Bunch

[16] later clarified Cybenko’s results and concluded that the Levinson-Durbin algorithm is

weakly stable when applied to the class of real symmetric positive definite Toeplitz matrices.

Bunch also argued that it would be a “formidable task” to prove (strong) stability. Brent

[12] further showed that

‖y‖ = O

(

cond(Mn)∆

(
32

27

)n)

,
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which compares favorably to the residual bound for Gaussian elimination with partial pivot-

ing, and he suggested that weak stability of the Levinson-Durbin algorithm is the most that

could be expected.

2.2.4 Schur’s Algorithm and the Cholesky Factorization

The Szegő recursions are used in the Levinson-Durbin algorithm to find the triangular

factor R and the diagonal matrix D in the factorization R∗MR = D. They can also be used

to find the factors L and D in the Cholesky factorization M = LDL∗. This is the essence of

the fast Toeplitz solver presented by Bareiss [9] in 1969.

Sweet [56] and Bojanczyk et al. [11] showed that the Bareiss algorithm is stable when

applied to symmetric positive definite Toeplitz matrices. In fact, the numerical properties

of the algorithm are similar to those of Gaussian elimination without pivoting. Their results

also suggest that the Levinson-Durbin algorithm can give much larger residuals than the

Bareiss algorithm.

An algorithm for the fast Cholesky factorization of an HPD Toeplitz matrix is given in

Algorithm 2.2. The use of the Szegő recursions can be seen in the innermost loop. Like the

Levinson-Durbin algorithm, the fast Cholesky factorization requires 2n2+O(n) or 8n2+O(n)

flops for the real or complex versions, respectively. A complete derivation of the algorithm

is described in [6].
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Algorithm 2.2 Fast Cholesky Factorization

Input: [m0, m1, . . . , mn]
T = first column of M

Initialize: T = [tj,k = 0]nj,k=0; t0,0 = m0

for j = 1 to n do

tj,0 = mj

s = mj (s is a temporary variable)
for k = 1 to j − 1 do

tj,k = tj−1,k−1 + γk · s
s = s+ γk · tj−1,k−1

end for

γj = −s/tj−1,j−1

tj,j = tj−1,j−1 · (1− |γj|2)
end for

Output: T = LD; γ1, γ2, . . . , γn

It is known that the algorithm for the fast Cholesky factorization is a manifestation

of Schur’s algorithm for classifying certain analytic functions [51]. A Schur function is

an analytic function that maps the open unit disk into its closure. Schur showed that

each function in this class can be parameterized by a certain sequence of complex numbers,

called Schur parameters. Given any Schur function φ0, the corresponding sequence of Schur

parameters {γk} determines a continued fraction representation for φ0. Schur’s algorithm

(Algorithm 2.3) provides a procedure for computing these parameters. Alternatively, Schur’s

algorithm can be viewed as a procedure for generating a sequence of Schur functions {φk}

from the initial Schur function φ0. It can be shown that the original and subsequent functions

are Schur functions if and only if one of the following is true:

1. |γk| < 1 for k = 1, 2, . . . or

2. |γk| < 1 for k = 1, 2, . . . , n− 1, |γn| = 1, and φn is the constant function φn(z) = γn.
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Algorithm 2.3 Schur’s Algorithm

Input: A complex function, φ0(z)
Initialize: γ1 = φ0(0); k = 1
while |γk| < 1 do

φk(z) =
1

z

φk−1(z)− γk
1− γk φk−1(z)

γk+1 = φk(0)
k = k + 1

end while

Output: γ1, γ2, γ3 . . .

If the Schur function φk is represented as a ratio of formal power series

φk(z) =
αk(z)

βk(z)
=
α0,k + α1,kz + α2,kz

2 + · · ·
β0,k + β1,kz + β2,kz2 + · · ·

, (2.13)

then Schur’s algorithm can be formulated in terms of the numerator and denominator of φk.

It is easy to establish that the functional iteration in Schur’s algorithm takes the form

αk(z) =
1

z
(αk−1(z)− γkβk−1(z)) and βk(z) = βk−1(z)− γkαk−1(z). (2.14)

With the requirement that β0,0 > 0, it follows that β0,k = (1− |γk|2) β0,k−1.

Stated in terms of αk and βk, the recurrence relation in Schur’s algorithm clearly resembles

the recurrence relations in the fast Cholesky factorization algorithm. In fact, the connection

between the algorithms is made explicit by the following theorem (see [2, 6]).
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Theorem 2.2. Let M = [mj−k]
n
j,k=0 be a Hermitian positive definite Toeplitz matrix. Define

the polynomials

α⋆
0(z) =

n−1∑

j=0

−mj+1 z
j

and

β⋆
0(z) =

n∑

j=0

mj z
j .

Then the terms of α⋆
0(z) and β⋆

0(z) are the leading terms of power series α0(z) and β0(z)

(nonunique) whose ratio is a Schur function φ0. Moreover, the elements of the lower tri-

angular matrix T = [tj,k]
n
j,k=0 = LD are given by tj,k = βj−k,k for k ≤ j, where βk(z)

is the denominator polynomial that results from k steps of Schur’s algorithm applied to

φ0(z) = α0(z)/β0(z). In addition, the sequences of Schur parameters {γk}nk=1 and pre-

diction errors {δk}nk=0 (δk = βk(0) = β0,k) generated by Schur’s algorithm, the fast Cholesky

algorithm, and the Levinson-Durbin algorithm are identical.

Notice that operations on infinite series are required when applying Schur’s algorithm

to φ0(z) = α0(z)/β0(z). However, the computations can be arranged sequentially so that j

terms of αk−1 and βk−1 are processed to obtain j− 1 terms of αk and βk. This is the essence

of the progressive Schur algorithm described in [6]. It follows that the polynomials α⋆
0(z)

and β⋆
0(z) are sufficient to generate the Cholesky factorization of M , as well as its Schur

parameters and prediction errors.
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2.2.5 The Generalized Schur Algorithm

In the previous section, Schur’s algorithm was described as a procedure for generating

a sequence of Schur functions. In particular, provided |γk| < 1, the Schur function φk is

generated from the Schur function φk−1 by the expression

φk(z) =
1

z

φk−1(z)− γk
1− γkφk−1(z)

.

Solving for φk−1 gives

φk−1(z) =
γk + zφk(z)

1 + γkzφk(z)
= τk(φk(z)),

where τk is the Möbius transformation

τk(s) =
γk + zs

1 + γkzs
.

With this definition, an initial Schur function φ0 satisfies

φ0 = τ1(φ1) = τ1(τ2(φ2)) = · · · = τ1(τ2(. . . (τk(φk) . . . ))).

This composition of k Möbius transformations gives k steps of Schur’s continued fraction

representation for φ0.
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Let Tk represent the composition

Tk(s) = (τ1 ◦ τ2 ◦ · · · ◦ τk)(s)

so that φ0 = Tk(φk). It is shown in [6] that Tk(s) can be written

Tk(s) =
ξk(z) + η̃k(z)s

ηk(z) + ξ̃k(z)s
, (2.15)

where ηk, ξk, η̃k, and ξ̃k are polynomials satisfying the recurrence relations







η̃k(z) ξk(z)

ξ̃k(z) ηk(z)






=







η̃k−1(z) ξk−1(z)

ξ̃k−1(z) ηk−1(z)













z γk

γkz 1






,







η̃0(z) ξ0(z)

ξ̃0(z) η0(z)






=







1 0

0 1






.

Furthermore, η̃k(z) = zkηk(1/z) and ξ̃k(z) = zkξk(1/z). With M , α0, and β0 defined as in

Theorem 2.2, the kth Szegő polynomial associated with M is given by

ρk(z) = η̃k(z) +
1

z
ξ̃k(z).

In this way, Schur’s algorithm can be used to construct the Szegő polynomials and the first

column of M−1.

In the 1980’s, Musicus [48] and de Hoog [22] independently presented a superfast Toeplitz

solver that was later interpreted in terms of a doubling procedure applied to the composition

Tn. This doubling generalization of Schur’s algorithm was described and implemented by



45

Ammar and Gragg in a series of articles [5, 6, 7, 8]. Using the notation Tj,k to represent the

k-step composition starting with the Schur function φj (rather than φ0), the key observations

are the following:

• k steps of the continued fraction representation of φ0 yield φk and T0,k.

• ℓ steps of the continued fraction representation of φk yield φk+ℓ and Tk,ℓ.

• T0,k+ℓ = T0,k ◦ Tk,ℓ.

• More generally, Tj,k+ℓ = Tj,k ◦ Tj+k,ℓ represents k + ℓ steps of the continued fraction

representation of φj .

In order to make use of these observations, φk must be obtained from φ0. Inverting

equation (2.15) gives

T−1
j,k (s) =

ηj,k(z)s− ξj,k(z)
η̃j,k(z)− ξ̃j,k(z)s

,

from which it follows that φk = T−1
0,k (φ0). In terms of the formal power series defined by

equation (2.13), T−1
0,k (φ0) can be written

φk =
αk

βk
= T−1

0,k (
α0

β0
) =

α0η0,k − β0ξ0,k
β0η̃0,k − α0ξ̃0,k

.
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It is shown in [6] that both the numerator and the denominator of this expression are divisible

by zk. Therefore it is natural to take

αk(z) =
α0(z)η0,k(z)− β0(z)ξ0,k(z)

zk

βk(z) =
β0(z)η̃0,k(z)− α0(z)ξ̃0,k(z)

zk
.

(2.16)

At this point, the Schur function φk = αk/βk can be used as an “initial” Schur function from

which the ℓ-step composition Tk,ℓ, and the polynomials ηk,ℓ and ξk,ℓ, can be generated. The

composition T0,k+ℓ can then be constructed by composing T0,k and Tk,ℓ. In particular, the

composition gives

ξ0,k+ℓ = η̃0,kξk,ℓ + ξ0,kηk,ℓ

η0,k+ℓ = ξ̃0,kξk,ℓ + η0,kηk,ℓ.

(2.17)

Notice that equations (2.16) and (2.17) apply more generally to any initial Schur function

so that φj+k could be obtained from φj, ηj,k, ξj,k, η̃j,k, and ξ̃j,k. In this case, the compositions

corresponding to equations (2.17) take the form

ξj,k+ℓ = η̃j,kξj+k,ℓ + ξj,kηj+k,ℓ

ηj,k+ℓ = ξ̃j,kξj+k,ℓ + ηj,kηj+k,ℓ.

The generalized Schur algorithm of Ammar and Gragg is a doubling procedure based on

the recursive use of equations (2.16) and (2.17). In practice, only k coefficients of α0 and

β0 are required to compute η0,k and ξ0,k. With this in mind, let α
(p)
k and β

(p)
k denote the
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Algorithm 2.4 Generalized Schur Algorithm

Input: α
(n)
0 and β

(n)
0 obtained from Mn+1, where n = 2p

Initialize: η0,1 = 1; ξ0,1 = γ1 = α
(1)
0 /β

(1)
0

for k = 1, 2, 4, . . . , 2p−1 do

Use equations (2.16) to compute α
(k)
k , β

(k)
k from α

(2k)
0 , β

(2k)
0 .

Treating αk/βk as an initial Schur function, compute ηk,k, ξk,k from α
(k)
k , β

(k)
k just as

η0,k, ξ0,k were computed from α
(k)
0 , β

(k)
0 .

Use equations (2.17) to compute η0,2k, ξ0,2k.
end for

Output: η0,n; ξ0,n; γ1, γ2, . . . , γn

polynomials obtained from αk and βk by removing all terms of degree p or greater. Using

this notation, the generalized Schur algorithm is described in Algorithm 2.4.

As can be seen from equations (2.16) and (2.17), the generalized Schur algorithm is rich in

polynomial multiplication. By using FFT techniques to efficiently compute these products,

the nth Szegő polynomial associated with M can be obtained in O(n(log2 n)
2) flops.

An implementation of the algorithm and its application to real symmetric positive definite

Toeplitz systems is described in [7] and [8]. When applied to the real Toeplitz matrix Mn+1,

where n = 2p, the algorithm requires fewer than 8n(log2 n)
2 flops. Since the Levinson-

Durbin algorithm requires more than 2n2 flops, the superfast generalized Schur algorithm

has a smaller operation count when n ≥ 256. Numerical results described in [8] indicate that

the accuracy of the generalized Schur algorithm is comparable to that of the Levinson-Durbin

algorithm. Therefore, it is expected that the algorithms have similar stability properties.
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2.2.6 Conditioning of Toeplitz Matrices

While analyzing the numerical properties of the Levinson-Durbin algorithm, Cybenko

[21] also established bounds on the value ‖M−1‖1. His bounds give rather simple estimates

for cond(M).

Suppose M =Mn+1 is a real symmetric positive definite Toeplitz matrix with the further

restriction that m0 = 1. Since M is positive definite and m0 = 1, it follows that |mk| ≤ 1

for all k, and therefore

1 ≤ ‖M‖1 ≤ n+ 1.

As a consequence, for moderately-sized Toeplitz matrices, the conditioning is essentially

determined by ‖M−1‖1. Given the Schur parameters and prediction errors associated with

M , Cybenko showed that

max

{
1

δn
,

1
∏n

k=1(1− γk)

}

≤ ‖M−1‖1 ≤
n∏

k=1

(1 + |γk|)
(1− |γk|)

, (2.18)

from which it follows that

max

{
1

δn
,

1
∏n

k=1(1− γk)

}

≤ cond(M) ≤ (n+ 1)
n∏

k=1

(1 + |γk|)
(1− |γk|)

.

From his bounds on ‖M−1‖1, Cybenko drew several striking conclusions. First, cond(M)

is guaranteed large when δn is small. Unfortunately, in applications where δn measures a
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prediction error, the smallness of δn is desirable. Such is the case in linear prediction. Next,

if any γk is close to 1, cond(M) will be large. This type of situation occurs when there is a

strong correlation between certain data values. In some applications this is also desirable,

but it is indicative of nonstationarity, and the underlying assumptions that gave rise to the

Toeplitz system are probably questionable. As long as no γk are close to 1 and n is not too

large, the Toeplitz matrix M is well conditioned and the residual bound given by (2.12) is

not large.



CHAPTER 3

SPLIT LEVINSON ALGORITHM

This chapter contains a complete derivation of the split Levinson algorithm for the com-

putation of the nth Szegő polynomial associated with the HPD Toeplitz matrix M =Mn+1.

Unlike the Szegő recursions, the split Levinson algorithm processes a family of conjugate-

symmetric polynomials. The symmetry properties of these polynomials are exploited to

yield an algorithm requiring significantly fewer multiplications than the Levinson-Durbin al-

gorithm. The derivation given below is similar to the one presented by Krishna and Morgera

[44]. Connections between the split Levinson symmetric polynomials and the Szegő polyno-

mials are emphasized throughout. The parameters and formulas described in this chapter

play important roles in subsequent chapters.

3.1 History

In 1986, the Levinson-Durbin algorithm for the solution of real symmetric positive defi-

nite Toeplitz systems was shown to contain certain redundancies. Delsarte and Genin [23]

split the Levinson-Durbin algorithm into two more efficient algorithms, a symmetric version

and an antisymmetric version, either of which could be used to obtain the nth Szegő polyno-

mial. These “split” algorithms use three-term recurrence relations that generate conjugate-
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symmetric polynomials. The symmetries in these polynomials give rise to redundancies

identified by Delsarte and Genin. Their discovery made possible the splitting of several

other important signal processing algorithms. In particular, Delsarte and Genin presented a

split Schur algorithm in [24].

When first presented, a major drawback of the split Levinson algorithm was its restriction

to real matrices. Shortly after its introduction, however, it was extended to the complex case

[44]. It was also subjected to stability analysis [45], described under a broader framework

[26], and even generalized [61].

3.2 Split Levinson Symmetric Polynomials

Suppose that the Szegő polynomials {ρk(z)}nk=0, Schur parameters {γk}nk=1, and predic-

tion errors {δk}nk=0 associated with the HPD Toeplitz matrix M = Mn+1 = [mj−k]
n
j,k=0 are

given. Recall that the Szegő polynomials are monic polynomials with deg(ρk) = k. They

satisfy the recurrence relation

ρk(z) = zρk−1(z) + γkρ̂k−1(z) (3.1)

and its reciprocal version

ρ̂k(z) = ρ̂k−1(z) + γkzρk−1(z), (3.2)
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where ρ0(z) = ρ̂0(z) = 1. Since ρk is monic, ρ̂k(0) = 1 and it follows that ρk(0) = γk. The

identities

ρk(z)− γkρ̂k(z) = zρk−1(z)(1− |γk|2),

ρ̂k(z)− γkρk(z) = ρ̂k−1(z)(1 − |γk|2)

are easy to verify from the recurrence relations (3.1) and (3.2). Furthermore, the following

inequalities are guaranteed by the positive definite nature of M , via (2.11):

ρk(1) 6= 0, ρ̂k(1) 6= 0; k = 0, 1, . . . , n.

In fact, it is well known that the zeros of the Szegő polynomials associated with an HPD

Toeplitz matrix lie strictly inside the unit circle, while those of the reciprocal polynomials

lie strictly outside [57].

A number of definitions and related formulas will now set the stage for the split Levinson

algorithm.

Definition 3.1. Let {γk}nk=1 be the sequence of Schur parameters associated with the HPD

Toeplitz matrix M = [mj−k]
n
j,k=0. With µ0 = 1, µ1 = 1/m0, and λ1 = 2/m0, define the

sequences {µk}n+1
k=0 and {λk}n+1

k=1 recursively as follows. For k = 1, 2, . . . , n,

µk+1 =
µk

λk(
µk

µk
− γk)

, (3.3a)

λk+1 = 2Re

(
µk+1

µk

)

− 1

λk
. (3.3b)
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Proposition 3.1. The sequences described by Definition 3.1 are well defined. Moreover,

each µk is a nonzero complex number and each λk is a positive real number.

Proof. The proof is by induction. Obviously µ0 6= 0. Since M is positive definite, m0 is a

positive real number. Therefore µ1 and λ1 are positive real numbers.

Now assume µj 6= 0 and λj > 0 for some j, 1 ≤ j ≤ n. Since |γj| < 1, it follows that

µj

µj
− γj 6= 0 and therefore,

µj+1 =
µj

λj(
µj

µj
− γj)

is defined and nonzero. Furthermore, from Definition 3.1,

λj+1 =
µj+1

µj
+
µj+1

µj

− 1

λj
=

1

λj




µj/µj

µj

µj
− γj

+
µj/µj
µj

µj
− γj

− 1



 .

After obtaining the positive real common denominator

(
µj

µj
− γj

)(
µj

µj

− γj
)

= (1 + |γj|2)− 2Re(
µj

µj

γj),

the equation becomes

λj+1 =
1

λj

(
2− 2Re(

µj

µj
γj)

(1 + |γj|2)− 2Re(
µj

µj
γj)
− 1

)

.

Since −1 < Re(µjγj/µj) < 1 and (1+ |γj|2) < 2, it follows that λj+1 is real and positive.
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There are several important identities that relate the quantities described in Definition

3.1. The following will be especially useful. All hold for k = 1, 2, . . . , n.

γk =

(

1− µk

λkµk+1

)
µk

µk
(3.4)

µk − µkγk =
|µk|2
λkµk+1

(3.5)

|γk|2 − 1 =
|µk|2

λ2k|µk+1|2
− µk

λkµk+1
− µk

λkµk+1

(3.6)

−µk+1 =
|µk|2

λk(µkγk − µk)
=
λk+1(µkγk − µk)

1− |γk|2
(3.7)

λk+1

λk
=
|µk+1|2
|µk|2

(1− |γk|2) (3.8)

The first two follow immediately from (3.3a). Identity (3.6) can be obtained from (3.4) by

direct computation. The left equality in (3.7) follows easily from (3.5), while the right can

be verified by cross-multiplying and using (3.3b), (3.4), and (3.6). The final identity, (3.8),

can be verified by using (3.5) to make a substitution into the right-hand side of (3.7).

The next proposition describes the relationship between the numbers λk and the predic-

tion errors δk.

Proposition 3.2. For k = 1, 2, . . . , n+1, let µk and λk be defined as in Definition 3.1. Also

let {δj}nj=0 be the sequence of prediction errors associated with M . Then

λk = 2δk−1|µk|2. (3.9)
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Proof. A proof by induction is straightforward, requiring only (3.8) and (2.10c).

The numbers λk are called Jacobi parameters by Delsarte and Genin because of their

relationship to a certain tridiagonal matrix [26]. Notice that the positive definite nature of

M is reflected in the positivity constraints

λk > 0; k = 1, 2, . . . , n+ 1.

The split Levinson polynomials and their properties are now described.

Definition 3.2. Given the Szegő polynomials {ρk(z)}nk=0 associated with M and the pa-

rameters from Definition 3.1, define the split Levinson polynomials {wk(z)}n+1
k=0 as follows:

w0(z) = 1 and

wk+1(z) = µk+1ρ̂k(z) + µk+1zρk(z); k = 0, 1, . . . , n. (3.10)

Proposition 3.3. For k = 0, 1, . . . , n+1, the split Levinson polynomial wk has the following

properties:

i.) wk(0) = µk

ii.) deg(wk) = k

iii.) wk is conjugate symmetric. That is, wk(z) = ŵk(z).
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Proof. The properties obviously hold for k = 0. When k ≥ 1, properties (i) and (ii) follow

immediately from Definition 3.2, the properties of the Szegő polynomials, and the fact that

µk is nonzero. For property (iii), notice that

ŵk(z) = zkwk(1/z)

= zk
(
µk

1
zk−1ρk−1(z)

)
+ zk

(
µk

1
z
ρk−1(1/z)

)

= µkzρk−1(z) + µkz
k−1ρk−1(1/z)

= µkzρk−1(z) + µkρ̂k−1(z)

= wk(z).

Proposition 3.4. For k = 0, 1, . . . , n, the split Levinson polynomial wk satisfies

λk+1wk(z) = µk+1ρ̂k(z) + µk+1ρk(z).

Proof. From Definition 3.1, µ1 = µ1 = 1/m0 and λ1 = 2/m0. Since ρ0(z) = ρ̂0(z) = 1,

λ1w0(z) =
2

m0
=

1

m0
+

1

m0
= µ1ρ̂0(z) + µ1ρ0(z).

Therefore, the proposition holds for k = 0. Now assume 1 ≤ k ≤ n. From the Szegő

recursions (3.1) and (3.2), the right-hand side can be written

µk+1(ρ̂k−1(z) + γkzρk−1(z)) + µk+1(zρk−1(z) + γkρ̂k−1(z)).
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Using (3.4) to replace γk, gives

µk+1ρ̂k−1(z)+µk+1

(

1− µk

λkµk+1

)
µk

µk
zρk−1(z)+µk+1zρk−1(z)+µk+1

(

1− µk

λkµk+1

)
µk

µk

ρ̂k−1(z).

Expanding and factoring now gives

µkρ̂k−1(z)

[
µk+1

µk
+
µk+1

µk

− 1

λk

]

+ µkzρk−1(z)

[
µk+1

µk
+
µk+1

µk

− 1

λk

]

.

Finally, using the definition of λk+1, (3.3b), in the expression above gives

λk+1(µkρ̂k−1(z) + µkzρk−1(z)),

which reduces to λk+1wk(z) by definition of wk.

Proposition 3.5. For k = 0, 1, . . . , n+1, wk(1) is a nonzero real number. Furthermore, for

k ≥ 1,

λk =
wk(1)

wk−1(1)
.

Proof. It follows from the conjugate symmetry of wk that wk(1) is real. That wk(1) 6= 0 and

λk = wk(1)/wk−1(1) follow by induction, using Proposition 3.4 and Definition 3.2.

Proposition 3.6 (Split Levinson recurrence relation). For k = 1, 2, . . . n, the split Levinson

polynomials satisfy the three-term recurrence relation

wk+1(z) = (ζk + ζkz)wk(z)− zwk−1(z), (3.11)
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where ζk = µk+1/µk.

Proof. Assume 1 ≤ k ≤ n. Definition 3.2 gives

wk+1(z) = µk+1ρ̂k(z) + µk+1zρk(z).

With the Szegő recursions, the right-hand side becomes

µk+1 [ρ̂k−1(z) + γkzρk−1(z)] + µk+1z [zρk−1(z) + γkρ̂k−1(z)] .

Expanding this expression and rearranging terms gives

µk+1ρ̂k−1(z) + µk+1z
2ρk−1(z) + µk+1zγkρ̂k−1(z) + µk+1γkzρk−1(z).

Using (3.4) to replace γk gives

µk+1ρ̂k−1(z)+µk+1z
2ρk−1(z)+zρ̂k−1(z)µk+1

(

1− µk

λkµk+1

)
µk

µk

+zρk−1(z)µk+1

(

1− µk

λkµk+1

)
µk

µk
.

After expanding and rearranging terms, this becomes

µk+1ρ̂k−1(z)+zρ̂k−1(z)µk

µk+1

µk

+zρk−1(z)µk

µk+1

µk
+µk+1z

2ρk−1(z)−zρ̂k−1(z)
µk

λk
−zρk−1(z)

µk

λk
.
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Finally, after factoring and using Definition 3.2 and Proposition 3.4, this expression reduces

to
(
µk+1

µk

+
µk+1

µk

z

)

[µkρ̂k−1(z) + µkzρk−1(z)]− z
[
µk

λk
ρ̂k−1(z) +

µk

λk
ρk−1(z)

]

= (ζk + ζkz)wk(z)− zwk−1(z).

At this point, an important observation is in order. The modified split Levinson recur-

rence relation

̟k+1(z) = (ζk + ζkz)̟k(z)− z̟k−1(z) (3.12)

simply generates the split Levinson polynomials with conjugated coefficients. More precisely,

if (3.12) is applied with ̟k(z) = wk(z) and ̟k−1(z) = wk−1(z), then ̟k+1(z) = wk+1(z).

Given the conjugate symmetry of the split Levinson polynomials, wk+1 is simply wk+1 with its

coefficients reversed. Taking a slightly different point of view, if initialized with ̟0 = w0 and

̟1 = w1, the recurrence relation (3.12) generates the split Levinson polynomials associated

with M .

The next proposition shows how the Szegő polynomials can be obtained from the split

Levinson polynomials.

Proposition 3.7. With the split Levinson polynomials defined as in Definition 3.2, the Szegő

polynomial ρk satisfies

µk+1(1− z)ρ̂k(z) = wk+1(z)− λk+1zwk(z); k = 0, 1, . . . , n.
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Proof. Assume 0 ≤ k ≤ n. By Definition 3.2,

wk+1(z)− λk+1zwk(z) =
[
µk+1ρ̂k(z) + µk+1zρk(z)

]
− λk+1zwk(z).

Now, by Proposition 3.4, the right-hand side becomes

[
µk+1ρ̂k(z) + µk+1zρk(z)

]
− z

[
µk+1ρ̂k(z) + µk+1ρk(z)

]
.

After expanding, the expression above reduces to µk+1ρ̂k(z)(1− z).

It follows from Proposition 3.7 that the Szegő polynomials and their reciprocals can be

recovered from the split Levinson polynomials by the formulas:

ρk(z) =
1

µk+1(z − 1)
[wk+1(z)− λk+1wk(z)] ; k = 0, 1, . . . , n, (3.13)

ρ̂k(z) =
1

µk+1(1− z)
[wk+1(z)− λk+1zwk(z)] ; k = 0, 1, . . . , n. (3.14)

3.3 The Algorithm

The split Levinson algorithm processes the family of split Levinson polynomials via the

recurrence relation (3.11). It is clear from the formulas presented above that the Szegő

polynomials, Schur parameters, and predictions errors can be recovered from corresponding

quantities associated with the split Levinson recursions. However, as it stands now, the split
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Levinson parameters (µk, λk, and ζk) are defined in terms of the Szegő recursion’s parameters.

Before the split Levinson recursions can be useful alternatives to the Szegő recursions, the

parameters must be made independent of the Schur parameters and prediction errors.

Recall that the coefficients of the kth Szegő polynomial and its reciprocal form vectors

that satisfy the Yule-Walker equations (2.8) and (2.6), respectively. More precisely, if ρk and

ρ̂k are given by

ρk(z) =
k∑

j=0

rj,k z
j and ρ̂k(z) =

k∑

j=0

rk−j,k z
j ,

then

Mk+1















r0,k

...

rk−1,k

rk,k















=















0

...

0

δk















and Mk+1















rk,k

rk−1,k

...

r0,k















=















δk

0

...

0















.

Now let wj,k denote the coefficient of zj in the split Levinson polynomial wk so that

wk(z) =

k∑

j=0

wj,k z
j ; k = 0, 1, . . . , n+ 1.

It follows from Proposition 3.4 that

λk+1Mk+1















w0,k

w1,k

...

wk,k















= µk+1Mk+1















rk,k

...

r1,k

r0,k















+µk+1Mk+1















r0,k

r1,k

...

rk,k















= µk+1















δk

0

...

0















+µk+1















0

...

0

δk















.
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Since λk+1 and δk are positive real numbers, the vector equation above can be written

Mk+1















w0,k

w1,k

...

wk,k















=















νk

0

...

νk















; k = 1, 2, . . . , n, (3.15)

where νk = µk+1δk/λk+1. Equation (3.15) also gives the following expression for νk:

νk =

k∑

j=0

mj wj,k; k = 1, 2, . . . , n. (3.16a)

While equations (3.15) and (3.16a) do not apply when k = 0, the definition

νk =
µk+1δk
λk+1

can be extended to include the case for k = 0 by defining, via Proposition 3.4,

ν0 =
µ1δ0
λ1

=
m0

2
. (3.16b)

With the expressions for νk given above, it follows that νk 6= 0 and

νk−1

νk
=
µkδk−1

λk
· λk+1

µk+1δk
; k = 1, 2, . . . , n.
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Algorithm 3.1 Split Levinson Algorithm

Input: [m0, m1, . . . , mn]
T = first column of M

Initialize: w0(z) = 1; w1(z) = (1 + z)/m0; ν0 = m0/2; λ1 = 2/m0

for k = 1 to n do

νk =
k∑

j=0

mj wj,k

ζk = νk−1/νk
wk+1(z) = (ζk + ζkz)wk(z)− zwk−1(z)
λk+1 = ζk + ζk − 1/λk

γk =

(

1− 1

λkζk

)
w0,k

w0,k

end for

ρn(z) =
1

w0,n+1

(
wn+1(z)− λn+1wn(z)

z − 1

)

δn = λn+1/(2 |w0,n+1|2)
Output: ρn; δn; γ1, γ2, . . . , γn

Using (3.8) and (2.10c), this equation becomes

νk−1

νk
=
µk+1

µk

= ζk; k = 1, 2, . . . , n, (3.17)

where ζk was defined in Proposition 3.6.

Equations (3.16) and (3.17) now make the split Levinson recurrence relation (3.11) inde-

pendent of the Szegő polynomials. With the intent of obtaining ρn(z) and δn, the split Levin-

son algorithm is initialized with w0(z) = 1, w1(z) = (1 + z)/m0, ν0 = m0/2 and λ1 = 2/m0

and recursively implements (3.16a), (3.17), (3.11), and (3.3b). The nth Szegő polynomial and

prediction error follow from equations (3.13) and (3.9), respectively. If the Schur parameters

are required, they can be obtained from (3.4), recalling that wk(0) = w0,k = µk.
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The split Levinson algorithm is given in Algorithm 3.1. Because of the symmetry in the

split Levinson polynomials, some of the multiplications in (3.16a) are redundant. Further-

more, only one-half of the coefficients need be computed in the split Levinson recurrence

relation (3.11). With these strategies implemented in Algorithm 3.1, the split Levinson al-

gorithm requires 3
2
n2 + O(n) flops in the case that M is real and 6n2 + O(n) flops in the

case that M is complex. In each case, this amounts to a 25% reduction in operations over

the Levinson-Durbin algorithm. A careful look shows that the savings are entirely in mul-

tiplications. Even though the split Levinson polynomials are symmetric, two consecutive

polynomials are always required in algorithm. Therefore, there is no reduction is storage.

Krishna and Wang [45] investigated the stability of the split Levinson algorithm when

applied to real symmetric positive definite Toeplitz matrices. They showed that the algorithm

is weakly stable, and they established bounds on the residual similar to those found by

Cybenko [21] in his analysis of the Levinson-Durbin algorithm. In particular, their bound

on the residual, y =Mnx̃+ [m1, m2, . . . , mn]
T , is given by

‖y‖1 ≤ ∆
(
20n3 + 18n2 − 14n

)
n∏

k=1

(1 + |γk|), (3.18)

where ∆ is the machine precision. Krishna and Wang also suggested that the weak stability

of the algorithm is the most that could be expected. Their practical conclusion was that if

n is large or M is ill-conditioned, the residual may be large.
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It is interesting to view Cybenko’s bounds on ‖M−1‖1 (see section 2.2.6) in light of the

parameters of the split Levinson algorithm. Assuming that M is a real symmetric positive

definite matrix with m0 = 1, it follows from (3.9), (3.4), and the definition of ζj that

1

δn
=

2µ2
n+1

λn+1

and
1

∏n
j=1(1− γj)

=
n∏

j=1

λjζj = µn+1

n∏

j=1

λj.

Therefore, with κ =
∏n

j=1 λj, Cybenko’s lower bound in (2.18) takes the form

max

{
2µ2

n+1

λn+1

, µn+1κ

}

≤ ‖M−1‖1. (3.19)

Now, with the given conditions on M and the help of (3.4) and (3.3b), it can be shown that

λj+1λj =
1 + γj
1− γj

.

In the case that all Schur parameters are positive, it then follows that Cybenko’s upper

bound in (2.18) takes the form

‖M−1‖1 ≤
n∏

j=1

λj+1λj =
λn+1κ

2

2
. (3.20)
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3.4 Example

Consider the 4× 4 Hermitian Toeplitz matrix

M =















8 4 + i 2 1− i

4− i 8 4 + i 2

2 4− i 8 4 + i

1 + i 2 4− i 8















.

It is not difficult to verify that M is positive definite, as its leading principal minors are 8,

47, 268, and 1497. Applying Algorithm 3.1 in exact arithmetic yields the following results:

ρ3(z) = 13+36i
268
− 10−15i

134
z − 131+60i

268
z2 + z3

δ3 = 1497
268

{γk}3k=1 =
{
−4+i

8
,−1−8i

47
, 13+36i

268

}
.

In addition,

{λk}4k=1 ≈ {0.25, 1.30, 0.74, 1.37}

{ζk}3k=1 ≈ {2.65 + 0.22i, 0.75− 0.13i, 1.36− 0.20i}

w4(z) ≈ (0.34− 0.08i)− (0.14− 0.17i)z − 0.07z2 − (0.14 + 0.17i)z3 + (0.34 + 0.08i)z4

w3(z) ≈ (0.25− 0.02i)− (0.13− 0.11i)z − (0.13 + 0.11i)z2 + (0.25 + 0.02i)z3.
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Notice that, as expected, the positive definite nature of M is reflected in the inequalities

δ3 > 0, |γk| < 1, and λk > 0.



CHAPTER 4

SPLIT SCHUR ALGORITHM

Schur’s classical algorithm was presented in Section 2.2.4 as a means of parameterizing

a Schur function and thereby obtaining a continued fraction representation for it. The

algorithm was also described as a method for constructing a sequence of Schur functions

from an initial Schur function. Written in terms of the numerators and denominators of

Schur functions, Schur’s algorithm led to a fast algorithm (Algorithm 2.2) for the Cholesky

factorization of an HPD Toeplitz matrix. In certain applications, the Schur parameters

{γk}nk=1 are the important quantities (see [36, 47]), and the matrix factorization itself is not

required. Viewed in this light, Schur’s algorithm provides an O(n2) method for computing

the Schur parameters. In applications, the Schur parameters are usually called reflection

coefficients, as in transmission line theory [17, 29] and seismology [50], or partial correlation

coefficients, as in statistics.

After Delsarte and Genin split the Levinson-Durbin algorithm, they used similar ap-

proaches to split several classical algorithms in linear prediction theory [24, 25]. Among

those algorithms was the Schur algorithm. Originally presented for the case of real data, the

split Schur algorithm was later extended to complex data [26]. While the Schur algorithm

is naturally associated with Schur functions, it turns out that the split Schur algorithm is

similarly associated with Carathéodory functions.
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In this chapter, a complete derivation of the split Schur algorithm is presented, and the

connections to Carathéodory functions are described. The split Schur algorithm will be seen

as a means of parameterizing functions in a certain class of Carathéodory-like functions. Just

as Schur’s algorithm provides a continued fraction representation for a Schur function, the

split Schur algorithm provides a continued fraction representation for its kind of function.

4.1 Carathéodory Functions

A Carathéodory function is an analytic function s = f(z) that maps the open unit disk

{z : |z| < 1} into the closed right half-plane {s : Re(s) ≥ 0}. It follows from the open

mapping theorem that a nonconstant Carathéodory function must be nonzero on the open

unit disk. It is easy to see that the conjugate and the reciprocal of a (nonzero) Carathéodory

function are Carathédory functions, as is the sum of two Carathéodory functions.

Recall that a Schur function is an analytic function that maps the open unit disk into its

closure. There is a one-to-one correspondence between the class of Carathéodory functions

and the class of Schur functions. Indeed, f(z) is a Carathéodory function if and only if

φ(z) =
1
z
[f(0)− f(z)]
f(0) + f(z)

(4.1)

is a Schur function (see [1]).

There is a connection between Carathéodory functions and Toeplitz matrices, which is

made clear by the Carathéodory-Toeplitz theorem (see [1]).
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Theorem 4.1 (Carathéodory-Toeplitz Theorem). Consider the power series

f(z) = m+

∞∑

j=1

mj z
j

and the Hermitian Toeplitz matrix Mn+1 = [mj−k]
n
j,k=0, where m0 = 2Re(m) and m−j = mj.

The function f is a Carathéodory function if and only if the matrix Mn+1 is nonnegative

definite for each integer n ≥ 0.

4.2 Split Schur Functions

Suppose M∞ = [mj−k]
∞
j,k=0 is an infinite Hermitian Toeplitz matrix with the property

that every leading k× k submatrix is positive definite. Further assume that the elements of

M∞ are absolutely summable, i.e.,

∞∑

k=0

|mk| <∞.

Such a matrix can always be constructed (extended) in infinitely many ways from a finite

HPD Toeplitz matrix via the Szegő recursions. Under the given conditions, it follows from

the Weierstrass M-test that

F (z) =
m0

2
+m1z +m2z

2 + · · ·+mnz
n + · · ·
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is uniformly convergent on the open unit disk D = {z : |z| < 1}. It also follows from the

Carathéodory-Toeplitz theorem that F (z) is a Carathéodory function.

Now define the powers series α0(z) and β0(z) by

α0(z) = 1
z
[F (0)− F (z)] = −m1 −m2z −m3z

2 − · · · −mnz
n−1 + · · ·

β0(z) = F (0) + F (z) = m0 +m1z +m2z
2 + · · ·+mnz

n + · · · .

These series converge uniformly on D, and by the correspondence (4.1), the ratio φ0 = α0/β0

is a Schur function. Starting with φ0, Schur’s algorithm (see Section 2.2.4) generates the

sequence of Schur functions {φk = αk/βk}∞k=0, where the numerators and denominators

satisfy

αk(z) = 1
z
(αk−1(z)− γkβk−1(z))

βk(z) = βk−1(z)− γkαk−1(z).

(4.2)

It is easy to verify that the backward versions of the recurrence relations (4.2) are given by

αk−1(z) =
zαk(z) + γkβk(z)

1− |γk|2

βk−1(z) =
γkzαk(z) + βk(z)

1− |γk|2
.

(4.3)

As described in Theorem 2.2, the Schur functions give the Cholesky factorization, Schur

parameters, and prediction errors associated with each leading principal submatrix of M∞.

Since those submatrices are positive definite, each Schur parameter in the infinite sequence

of parameters has magnitude less than 1. It follows that the sequences of split Levinson
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parameters defined in Definition 3.1 can be extended ad infinitum, while preserving the

properties described in Proposition 3.1.

The splitting of Schur’s algorithm begins with the splitting of the Schur functions that

it generates. The split Schur functions are defined next, and a number of their important

properties are laid out.

Definition 4.1. With M∞, {αk(z)}∞k=0, and {βk(z)}∞k=0 as described above, let {µk}∞k=0 be

the extended sequence of parameters from Definition 3.1. The split Schur functions associated

with M∞ (or F (z)) are defined as follows:

h−1(z) = 1
2
− 1

2
z,

h0(z) = F (z) = m0

2
+m1z +m2z

2 + · · ·+mnz
n + · · · ,

hk+1(z) = µk+1βk(z)− µk+1αk(z); k = 0, 1, 2, . . . .

Proposition 4.1. For each k, the split Schur function hk(z) is uniformly convergent and

nonzero on the open unit disk D = {z : |z| < 1}.

Proof. h−1(z) is clearly a nonzero polynomial on D. By definition, h0 is the uniformly

convergent Carathéodory function F (z). Since m0 must be positive, h0 is not identically

zero. It follows from the open mapping theorem that h0(z) must be nonzero on D.

Now since the coefficients of F (z) are absolutely summable, so are the coefficients of

α0(z) and β0(z). It follows by induction that the coefficients of αk(z) and βk(z) are also

absolutely summable. Thus each series converges uniformly on D by the Weierstrass M-test.

In turn, it follows that hk(z) is uniformly convergent for each k.
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To show that hk(z) is nonzero, let k ≥ 1 and suppose to the contrary that hk(z) = 0 for

some z ∈ D. Then

hk(z) = µkβk−1(z)− µkαk−1(z) = 0.

By Proposition 3.1, µk 6= 0. Furthermore, since βk−1(z) is the denominator of a well-defined

Schur function, it must be nonzero on D. Therefore,

hk(z) = 0 =⇒ µkαk−1(z)

µkβk−1(z)
= 1,

from which it follows that |αk−1(z)/βk−1(z)| = 1. By the maximum principle, αk−1(z)/βk−1(z)

must be a constant function with magnitude 1. However, this contradicts the fact that

|αk−1(0)/βk−1(0)| = |γk| < 1.

At this point, a technical lemma is required. The purpose of the lemma is twofold. First,

it will provide a new means for computing the ζk-parameters defined in Proposition 3.6.

Next, it will aid in the derivation of a recurrence relation for the split Schur functions.

Lemma 4.1. Given the extended sequences of parameters from Definition 3.1, the Schur

function numerators {αk}∞k=0, and the split Schur functions from Definition 4.1, it follows

that

µk+1

µk

hk(z)− hk−1(z) = −µk+1zαk(z) +
µk

λk
zαk−1(z); k = 1, 2, 3, . . . .
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Proof. For k = 2, 3, 4, . . . , Definition 4.1 gives

µk+1

µk

hk(z)− hk−1(z) =
µk+1

µk

(µkβk−1(z)− µkαk−1(z))− µk−1βk−2(z) + µk−1αk−2(z).

After using (4.3) to replace αk−2 and βk−2, the right-hand side can be written

[
µk+1µk

µk

+
µk−1γk−1 − µk−1

1− |γk−1|2
]

βk−1(z)− µk+1αk−1(z) + z

(
µk−1 − µk−1γk−1

1− |γk−1|2
)

αk−1(z).

With the use of (3.7), this expression reduces to

[
µk+1µk

µk

− µk

λk

]

βk−1(z)− µk+1αk−1(z) +
µk

λk
zαk−1(z),

and with (3.4), it further reduces to

µk+1γkβk−1(z)− µk+1αk−1(z) +
µk

λk
zαk−1(z).

Finally, with the recurrence relations (4.2), this becomes

−µk+1zαk(z) +
µk

λk
zαk−1(z),

as asserted.
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While computationally tedious, the case for k = 1 can be verified directly by showing

that each side is formally equal to

m0m2 − 2m1m1 −m0m1

2(m0 +m1)
z +

m0m3 − 2m1m2 −m0m2

2(m0 +m1)
z2 + · · ·

+
m0mn − 2m1mn−1 −m0mn−1

2(m0 +m1)
zn−1 +

m0mn+1 − 2m1mn −m0mn

2(m0 +m1)
zn + · · · .

Proposition 4.2. Let ζk = µk+1/µk as originally defined in Proposition 3.6. Then for

k = 0, 1, 2, . . . ,

ζkhk(0)− hk−1(0) = 0,

and therefore ζk = hk−1(0)/hk(0).

Proof. The result can be directly verified for k = 0. For k ≥ 1, the result follows immediately

from Lemma 4.1 and Proposition 4.1

Proposition 4.3 (Split Schur recurrence relation). With ζk = hk−1(0)/hk(0) as described in

Proposition 4.2, the split Schur functions satisfy the following three-term recurrence relation:

hk+1(z) = ζkhk(z) +
1

z

[
ζkhk(z)− hk−1(z)

]
; k = 0, 1, 2, . . . . (4.4)
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Proof. The case for k = 0 can be verified directly. For k = 1, 2, 3, . . . , Lemma 4.1 and the

definition of hk make the right-hand side equal to

µk+1

µk
(µkβk−1(z)− µkαk−1(z))− µk+1αk(z) +

µk

λk
αk−1(z).

After expanding and rearranging terms, this can be written

µk+1

[

βk−1(z)−
(
µk

µk
− µk

λkµk+1

)

αk−1(z)

]

− µk+1αk(z).

With (3.4), this reduces to

µk+1 [βk−1(z)− γkαk−1(z)]− µk+1αk(z).

After using the recurrence relations (4.2), this expression reduces to

µk+1βk(z)− µk+1αk(z),

which is precisely hk+1(z).

The last result in this section highlights another connection between the split Schur

functions and the split Levinson polynomials. This result will be used in the split Schur

algorithm to simplify the computation of the Schur parameters.
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Proposition 4.4. Given the split Levinson parameters and the prediction errors associated

with the leading principal submatrices of M∞, let

νk =
µk+1δk
λk+1

; k = 0, 1, 2, . . . ,

as described in Section 3.3. Then

νk = hk(0) and
νk
νk

=
hk(0)

hk(0)
=
µk+1

µk+1

.

Proof. The proof follows by induction using (3.16b), (3.17), and Proposition 4.2.

4.3 The Algorithm

With Proposition 4.2, the split Schur recurrence relation (4.4) is independent of the

parameters of the Levinson-Durbin and split Levinson algorithms. Furthermore, with the

help of Proposition 4.4, the Schur parameters can be computed very easily from the formulas

(3.3b) and (3.4):

λk+1 = 2Re(ζk)−
1

λk
, γk+1 =

(

1− 1

λk+1ζk+1

)

hk(0)

hk(0)
. (4.5)

Initialized with ζ0 = 1/m0, λ0 =∞, and h−1 and h0 from Definition 4.1, the split Schur

algorithm uses the split Schur recurrence relation and the formulas above to compute the
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Algorithm 4.1 Progressive Split Schur Algorithm

Input: F (z) = m0/2 +m1z +m2z
2 + · · ·+mnz

n + · · ·
Initialize: h0,0 = m0/2; h1,−1 = −1/2; ζ0 = 1/m0; λ0 =∞
for k = 0, 1, 2, . . . , do

hk+1,0 = mk+1

if (k 6= 0) hk+1,−1 = 0
λk+1 = 2Re(ζk)− 1

λk

for j = 0 to k do

hk−j,j+1 = ζjhk−j,j + ζjhk−j+1,j − hk−j+1,j−1

end for

ζk+1 = h0,k/h0,k+1

γk+1 =

(

1− 1

λk+1ζk+1

)

h0,k

h0,k
end for

Output: γ1, γ2, γ3, . . .

split Schur functions and Schur parameters associated with M∞. As in the case of applying

Schur’s algorithm to α0(z)/β0(z) (see Section 2.2.4), these computations involve operations

on infinite power series. Nonetheless, the operations can be arranged sequentially so that each

of the parameters λk, ζk, and γk can be obtained in a finite number of arithmetic operations.

This is the essence of the progressive split Schur algorithm given in Algorithm 4.1, where

coefficients of consecutive split Schur functions are computed one at a time. It is clear from

the derivations of formulas (4.4) and (4.5) that the parameters λk and ζk are identical to the

corresponding parameters of the split Levinson algorithm when that algorithm is applied to

the finite leading principal submatrices of M∞.

If the progressive split Schur algorithm is used to compute the Schur parameters ofMn+1,

the leading (n + 1) × (n + 1) submatrix of M∞, then the outer k-loop can be stopped at
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k = n− 1. The resulting algorithm requires 3
2
n2 +O(n) flops in the real case or 6n2 +O(n)

flops in the complex case. These flop counts match those of the split Levinson algorithm.

Notice that the work in the progressive split Schur algorithm is back loaded in the sense

that the number of operations required by the inner loop increases with k. In its application

to the finite matrix Mn+1, the computations can be rearranged so that the work is front

loaded.

Let h
(p)
k denote the polynomial obtained from hk by removing all terms of degree p or

greater. In order to compute the final Schur parameter γn, only h
(1)
n and h

(1)
n−1 are required.

In order to compute the first term of each of hn and hn−1, two terms of hn−1 and hn−2 are

required. In general, in order to compute h
(p)
k , only h

(p+1)
k−1 and h

(p+1)
k−2 are required. Thus,

when used to compute the Schur parameters of Mn+1, the split Schur recurrence relation

(4.4) can be replaced with its streamlined version

h
(n−k)
k+1 (z) = ζkh

(n−k)
k (z) +

1

z

[

ζkh
(n−k+1)
k (z)− h(n−k+1)

k−1 (z)
]

; k = 0, 1, 2, . . . , n− 1.

This results in the polynomial split Schur algorithm given in Algorithm 4.2, whose flop counts

match those given above.
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Algorithm 4.2 Polynomial Split Schur Algorithm

Input: [m0, m1, . . . , mn]
T = first column of Mn+1

Initialize: h
(n+1)
−1 (z) = (1− z)/2; h(n+1)

0 (z) = m0/2 +m1z +m2z
2 + · · ·+mnz

n

ζ0 = 1/m0; λ0 =∞
for k = 0 to n− 1 do

λk+1 = 2Re(ζk)− 1
λk

h
(n−k)
k+1 (z) = ζkh

(n−k)
k (z) + 1

z
[ζkh

(n−k+1)
k (z)− h(n−k+1)

k−1 (z)]

ζk+1 = hk(0)/hk+1(0)

γk+1 =

(

1− 1

λk+1ζk+1

)

hk(0)

hk(0)
end for

Output: γ1, γ2, . . . , γn

4.4 Connections to Carathéodory Functions

The split Schur algorithm is initialized with the Carathédory functions h−1 and h0, but

the subsequent role of Carathéodory functions is not immediately clear. The connection to

Carathéodory functions can be illuminated by rewriting the recurrence relation (4.4).

Consider the ratios of split Schur functions,

χk(z) =
hk(z)

hk−1(z)
; k = 0, 1, 2, . . . .

Provided that all leading principal submatrices of M∞ are positive definite, Proposition 4.1

guarantees that χk is defined and nonzero on the unit disk D = {z : |z| < 1}. Notice that
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χk(0) = 1/ζk and that (1− z)χ0(z) = 2h0(z) is a Carathéodory function. Upon dividing by

hk(z), the split Schur recurrence relation (4.4) takes the form

χk+1(z) = ζk +
1

z

[

ζk −
1

χk(z)

]

; k = 0, 1, 2, . . . . (4.6)

Proposition 4.5. Let {χk = hk/hk−1}∞k=0 be the ratios of the split Schur functions from

Definition 4.1. Also let {λk}∞k=1 be the sequence of Jacobi parameters associated with M∞.

If m0

2
+
∑∞

j=1mj exists and is nonzero, then

lim
z→1

χk(z) = λk; k = 1, 2, 3, . . .

Proof. Recall that the Jacobi parameters are nonzero since the leading principal submatrices

of M∞ are positive definite. The proof is by induction.

For k = 1, λ1 = 2/m0 and ζ0 = 1/m0. By using

h1(z) =
1

m0
h0(z) +

1

z

[
1

m0
h0(z)− h−1(z)

]

,

one can verify that

lim
z→1

χ1(z) = lim
z→1

h1(z)

h0(z)
=

2

m0

[
m0 + 2m1 + 2m2 + · · · 2mn + · · ·
m0 + 2m1 + 2m2 + · · · 2mn + · · ·

]

=
2

m0
= λ1.
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Now assume the result is true for k = j. Then by recurrence relation (4.6),

lim
z→1

χj+1(z) = lim
z→1

(

ζj +
1

z

[

ζj −
1

χj(z)

])

= ζj + ζj −
1

limz→1 χj(z)
= 2Re(ζj)−

1

λj
.

The right-hand side is equal to λj+1 by its definition.

It turns out that the recurrence relation (4.6) is almost a recursion on Carathéodory

functions. To be exact, it is a recursion on a new class of functions called quasi-Carathéodory

functions.

Definition 4.2. An analytic function f(z) defined on the open unit disk D = {z : |z| < 1}

is a quasi-Carathéodory function (or qC-function) if (1−z)f(z) is a Carathéodory function.

To show that (4.6) is a recursion on qC-functions, the following lemma of Delsarte and

Genin [26] is required.

Lemma 4.2. Let fk be an arbitrary Carathéodory function and define fk+1 by means of

fk(z) =
fk(0) + fk(0)z

1− z − z

(1− z)2fk+1(z)
.

Then fk+1 is a Carathéodory function satisfying

0 ≤ lim
z→1

1

(1− z)fk+1(z)
≤ 2Re(fk(0)),

with the possibility that fk+1(z) =∞.
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Proof. A proof is given in [26].

Proposition 4.6. Suppose χk is a qC-function and ζk = 1/χk(0). Then the function χk+1

generated by the modified split Schur recurrence relation (4.6),

χk+1(z) = ζk +
1

z

[

ζk −
1

χk(z)

]

,

is a qC-function satisfying 0 ≤ limz→1 χk+1(z) ≤ 2Re(ζk).

Proof. Suppose χk is a qC-function. Then (1 − z)χk is a Carathéodory function, as is its

reciprocal [(1− z)χk(z)]
−1. Let

f(z) =
1

(1− z)χk(z)
.

It follows that f(0) = ζk. By Lemma 4.2, the function g, defined by

f(z) =
ζk + ζkz

1− z − z

(1− z)2g(z) ,

is a Carathéodory function. Rearranging gives

1

(1− z)g(z) = ζk +
1

z

[

ζk −
1

χk(z)

]

= χk+1(z).
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Since g is a Carathéodory function, so is 1/g. Thus (1−z)χk+1(z) is a Carathéodory function.

Furthermore, it follows from Lemma 4.2 that

lim
z→1

χk+1(z) = lim
z→1

1

(1− z)g(z)

exists and lies between 0 and 2Re(ζk).

Proposition 4.7. Let χ0(z) = h0(z)/h−1(z) be the ratio of the initial split Schur functions

associated with M∞. Also let {χk}∞k=1 be the sequence of functions generated by the modified

split Schur recurrence relation (4.6), where ζk = 1/χk(0). Then each χk is a qC-function.

Proof. Since h0 is a Carathéodory function and (1 − z)χ0(z) = 2h0(z), χ0 is a qC-function.

It follows from Proposition 4.6 that the recurrence relation (4.6) generates qC-function from

qC-functions.

By Propositions 4.6 and 4.7, the functions {χk}∞k=0 generated by the split Schur algorithm

are qC-functions, and, under the condition of Proposition 4.5, their limits at z = 1 give the

Jacobi parameters. In addition, the ζk’s generated by the algorithm, henceforth called the

qC-parameters, parameterize the original qC-function χ0 in the following way. Solving the

recurrence relation (4.6) for χk yields

χk(z) =
1

ζk + ζkz − zχk+1(z)
. (4.7)
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Repeated use of this formula gives the continued fraction

χ0(z) =
1

ζ0 + ζ0z −
z

ζ1 + ζ1z −
z

ζ2 + ζ2z − . . .

. (4.8)

Thus the polynomial split Schur algorithm generates n steps of a continued fraction repre-

sentation for χ0.



CHAPTER 5

DIVIDE-AND-CONQUER SPLIT SCHUR ALGORITHM

The split Schur algorithm was derived in Chapter 4 by splitting the Schur functions

that are generated by Schur’s algorithm. The recurrence relations used in Schur’s algorithm

to generate the numerators and denominators of Schur functions gave rise to a three-term

recurrence relation for the split Schur functions. This three-term recurrence relation provides

an efficient means for computing the Schur parameters associated with an HPD Toeplitz

matrix.

From a different point of view, the split Schur algorithm is a recursion on quasi-Carathéodory

(qC-) functions. It generates a sequence of qC-functions, as well as a sequence of complex

numbers parameterizing an initial qC-function. The qC-parameters give rise to a continued

fraction representation for a qC-function (see equation (4.8)) much like Schur’s algorithm

yields a continued fraction for a Schur function.

In Section 2.2.5, a doubling generalization of Schur’s algorithm was described. The

generalized Schur algorithm of Ammar and Gragg [5, 6, 7, 8] is a doubling procedure applied

to a continued fraction representation of a certain Schur function. It is natural to wonder

whether a similar doubling procedure could be applied to the quasi-Carathéodory continued

fraction generated by the split Schur algorithm. This is indeed the case.
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In this chapter, a new algorithm for solving HPD Toeplitz systems will be presented.

The new algorithm is based on a doubling procedure applied to the continued fraction (4.8).

The algorithm computes the nth Szegő polynomial, the nth prediction error, and the Schur

parameters associated with the (n+ 1)× (n+ 1) HPD matrix M . Interestingly, if given the

same input as the split Schur or split Levinson algorithms, the output of the new algorithm

will be associated with M rather than M .

It will be seen that the new algorithm processes two families of conjugate-symmetric

polynomials and is rich in polynomial multiplication. If implemented using FFTs for the

polynomial multiplication, the new algorithm requires O(n(log2 n)
2) flops. Thus the algo-

rithm presented here is a superfast split Schur algorithm.

5.1 Main Ideas

The main ideas of the new algorithm are put forth in this section. In particular, a

divide-and-conquer strategy is established by which the (m + k)-step continued fraction

representation for the qC-function χ0 can be obtained from anm-step and a k-step continued

fraction.

Let {ζk}∞k=0 and {χk(z)}∞k=0 be the sequences of qC-parameters and qC-functions asso-

ciated with the Toeplitz matrix M∞, whose leading principal submatrices are Hermitian
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positive definite and whose first column is absolutely summable. Define τk+1 to represent

the (k + 1)st step of the continued fraction (4.8):

τk+1(s) =
1

ζk + ζkz − zs
.

With this definition, it follows from (4.7) that

χk(z) = τk+1(χk+1(z))

and

χ0 = τ1(χ1) = τ1(τ2(χ2)) = · · · = τ1(τ2(. . . (τk(χk) . . . ))).

Now let Tk represent the composition

Tk(s) = (τ1 ◦ τ2 ◦ · · · ◦ τk)(s).

Notice that Tk encapsulates k steps of χ0’s continued fraction representation (4.8). The finite

continued fraction Tk(s) can be simplified and written as a quotient of two multi-variable

polynomials in s and z. With this in mind, define polynomials pk+1(z), qk+1(z), uk+1(z), and

vk+1(z) such that

Tk+1(s) =
uk+1 + vk+1s

pk+1 + qk+1s
.
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Since Tk+1(s) = Tk(τk+1(s)), it follows that

uk+1 + vk+1s

pk+1 + qk+1s
=

uk + vk

(
1

ζk+ζkz−zs

)

pk + qk

(
1

ζk+ζkz−zs

)

=
[(ζk + ζkz)uk + vk]− zuks
[(ζk + ζkz)pk + qk]− zpks

.

After equating terms, this gives

uk+1(z) = (ζk + ζkz)uk(z) + vk(z)

vk+1(z) = −zuk(z)

pk+1(z) = (ζk + ζkz)pk(z) + qk(z)

qk+1(z) = −zpk(z).

(5.1a)

These recurrence relations are initialized by recognizing that

T1(s) = τ1(s) =
1

ζ0 + ζ0z − zs
,

from which it follows that

u1(z) = 1, v1(z) = 0, p1(z) = ζ0 + ζ0z, q1(z) = −z. (5.1b)
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Taking u0(z) = 0 and p0(z) = 1, equations (5.1a) reduce to the pair of recurrence relations

uk+1(z) = (ζk + ζkz)uk(z)− zuk−1(z)

pk+1(z) = (ζk + ζkz)pk(z)− zpk−1(z).

(5.2)

for k = 1, 2, 3, . . . .

The recurrence relations above have the form of the modified split Levinson recurrence

relation (3.12). Notice that the relation for the pk’s is initialized with p0 = 1 and p1 = ζ0+ζ0z,

which are precisely the conjugates of the split Levinson polynomials w0 and w1 (discussed in

Chapter 3). Thus the pk’s generated in this way are the coefficient-conjugated split Levinson

polynomials associated with the leading principal submatrices of M∞, that is,

pk(z) = wk(z); k = 0, 1, 2, . . . . (5.3)

These polynomials have all the appropriately-modified properties that were described in

Chapter 3. In particular,

deg(pk) = k, pk(0) = µk, pk(z) = p̂k(z); k = 0, 1, 2, . . . . (5.4)

While the uk’s satisfy the same recurrence relation as the pk’s, they are initialized with

u0(z) = 0, u1(z) = 1, and u2(z) = ζ1 + ζ1z. The different initial conditions on the uk’s
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and pk’s give rise to two distinct families of polynomials. Each uk is a type of down-shifted,

coefficient-conjugated split Levinson polynomial. It is easy to verify that

deg(uk) = k − 1, uk(0) = µk/µ1, uk(z) = ûk(z); k = 1, 2, 3, . . . . (5.5)

Viewed in light of the composition Tk(s) and the recurrence relations (5.2), the split Schur

algorithm processes two distinct families of conjugate-symmetric polynomials.

Notice that the recurrence relations (5.1) can be written in the matrix form







uk+1 vk+1

pk+1 qk+1






=







uk vk

pk qk













(ζk + ζkz) −z

1 0






,







u1 v1

p1 q1






=







1 0

(ζ0 + ζ0z) −z






.

Computing determinants inductively leads to the following formula, which holds for k =

0, 1, 2, . . . :

det













pk+1 qk+1

uk+1 vk+1













= vk+1(z)pk+1(z)− uk+1(z)qk+1(z) = zk+1. (5.6)

This determinant formula exposes a redundancy in the split Levinson polynomials—any one

polynomial is completely determined by the other three.

Two important formulas, which have the semblance of the formula (5.6), can be deduced

from the fact that χ0(z) = Tk+1(χk+1(z)).
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Proposition 5.1. Given the split Schur functions associated with M∞ and the polynomials

described by the recurrence relations (5.1) (along with u0(z) = 0), the following formulas are

valid:

pk+1(z)h0(z)− uk+1(z)h−1(z) = zk+1hk+1(z); k = −1, 0, 1, . . .

vk+1(z)h−1(z)− qk+1(z)h0(z) = zk+1hk(z); k = 0, 1, 2, . . . .

Proof. The first formula is obviously true for k = −1, and its truth for k = 0 follows easily

from Proposition 4.3.

Now assume the first formula is true for j ≤ k. By the recurrence relations (5.2),

pk+1(z)h0(z)−uk+1(z)h−1(z) = [(ζk+ζkz)pk(z)−zpk−1(z)]h0(z)−[(ζk+ζkz)uk(z)−zuk−1(z)]h−1(z).

After rearranging terms, the right-hand side becomes

(ζk + ζkz)[pk(z)h0(z)− uk(z)h−1(z)]− z[pk−1(z)h0(z)− uk−1(z)h−1(z)].

With the induction hypothesis, this expression reduces to

(ζk + ζkz)[z
khk(z)]− z[zk−1hk−1(z)].

This can be written

zk+1

[
ζk
z
hk(z) + ζkhk(z)−

1

z
hk−1(z)

]

,

which is precisely zk+1hk+1(z) by Proposition 4.3. Thus the first formula is proved.
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The second formula follows immediately from the first by using vk+1(z) = −zuk(z) and

qk+1(z) = −zpk(z).

As is clear from the proof, the validity of Proposition 5.1 does not depend on how h−1 and

h0 were originally defined. The proposition remains valid for any initial split Schur functions

provided that subsequent split Schur functions satisfy (4.4) and the polynomials p, q, u, v

satisfy (5.1a) with the ζ ’s corresponding to the split Schur functions. In fact, Proposition

5.1 is simply a restatement of the identity

χk+1(z) = T−1
k+1(χ0(z)),

and the comments above simply describe the idea that

χk+1(z) = (T−1
k+1 ◦ Tj)(χj(z)).

At this point, the task is to determine how the composition of ℓ steps, Tℓ(s), can be

broken into a composition of two “smaller” functions. This will determine how a doubling

strategy can be implemented.

Let χ0(z) = h0(z)/h−1(z) be the initial qC-function determined by the split Schur func-

tions h0 and h−1. Beginning with this qC-function, m steps of the split Schur algorithm will

yield the parameters ζ0, ζ1, . . . , ζm−1 and the corresponding polynomials pm, qm, um, and vm.

These give

χ0(z) = Tm(χm(z)) = T0,m(χm(z)),
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where

T0,m(s) =
u0,m + v0,ms

p0,m + q0,ms
.

The additional subscript has been appended to indicate (and emphasize) that the process

began with χ0. It follows from Proposition 5.1 that χm(z) = hm(z)/hm−1(z), where

hm(z) =
p0,m(z)h0(z)− u0,m(z)h−1(z)

zm

hm−1(z) =
v0,m(z)h−1(z)− q0,m(z)h0(z)

zm
.

(5.7)

Now that χm has been computed, it can be considered an initial qC-function, and the

split Schur algorithm can be applied to it. Taking k steps from χm, the split Schur algorithm

will yield the parameters ζm, ζm+1, . . . , ζm+k−1 and the polynomials pm,k, qm,k, um,k, and vm,k.

These polynomials define the composition Tm,k(s) so that

χm(z) = Tm,k(χm+k(z)),

where

Tm,k(s) =
um,k + vm,ks

pm,k + qm,ks
.

Notice that the (m, k)-polynomials are associated with the Toeplitz matrix M∞ through

the intermediate qC-function χm. They are not explicitly associated with M∞ in the same

way that the (0, m)-polynomials are. Nonetheless, because they are generated by recurrence
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relations of the form (5.1), the polynomials pm,k and um,k have properties analogous to those

of p0,m and u0,m, including conjugate-symmetry. In particular,

deg(pm,k) = k, pm,k(z) = p̂m,k(z), deg(um,k) = k − 1, um,k(z) = ûm,k(z).

Once the composition Tm,k has been obtained, it follows that (T0,m◦Tm,k)(s) = T0,m+k(s).

This gives

u0,m + v0,m

(
um,k + vm,ks

pm,k + qm,ks

)

p0,m + q0,m

(
um,k + vm,ks

pm,k + qm,ks

) =
u0,m+k + v0,m+ks

p0,m+k + q0,m+ks
.

After expanding and equating coefficients, formulas for the (m + k)-step polynomials are

obtained:

u0,m+k(z) = u0,m(z)pm,k(z) + v0,m(z)um,k(z)

v0,m+k(z) = u0,m(z)qm,k(z) + v0,m(z)vm,k(z)

p0,m+k(z) = p0,m(z)pm,k(z) + q0,m(z)um,k(z)

q0,m+k(z) = p0,m(z)qm,k(z) + q0,m(z)vm,k(z).

(5.8)

Recall that q0,m+k(z) = −zp0,m+k−1(z) and that p0,j(z) = wj(z), where wj is the jth split

Levinson polynomial associated with M∞. Thus p0,m+k and q0,m+k describe two consecutive

coefficient-conjugated split Levinson polynomials associated with M∞.
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5.2 The Algorithm

In the last section, a divide-and-conquer approach to the split Schur algorithm was in-

troduced. This approach naturally gives rise to the following doubling strategy:

A. Starting with the initial split Schur functions h−1 and h0, take m steps of the split

Schur algorithm to generate the qC-parameters ζ0, ζ1, . . . , ζm−1 and the corresponding

polynomials u0,m, v0,m, p0,m and q0,m.

B. Use equations (5.7) to compute the split Schur functions hm−1 and hm.

C. With hm−1 and hm as a new set of initial split Schur functions, take m steps of the

split Schur algorithm to generate the qC-parameters ζm, ζm+1, . . . , ζ2m−1 and the cor-

responding polynomials um,m, vm,m, pm,m and qm,m.

D. Use equations (5.8) to compose the (0, m)-polynomials and the (m,m)-polynomials to

obtain the (0, 2m)-polynomials u0,2m, v0,2m, p0,2m and q0,2m.

In theory, the operations involving the split Schur functions are operations on infinite

power series. As in Chapter 4, when working with the finite HPD Toeplitz matrixM =Mn+1,

the power series can be truncated to polynomials.

In the procedure described above, the split Schur algorithm processes the split Schur

functions solely for the computation of the qC-parameters. As discussed at the end of

Section 4.3, once a qC-parameter is computed, the computation of the next qC-parameter

requires one fewer term of the corresponding split Schur functions. In the doubling strategy,
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this amounts to the fact that hm−1 and hm need only half the number of terms as h−1 and

h0 in order to compute the (m,m)-polynomials.

Let h
(p)
k denote the polynomial obtained from hk by removing all terms of degree p or

greater. The split Schur functions in the doubling strategy can then be replaced by h
(2m)
−1 ,

h
(2m)
0 , h

(m)
m , and h

(m)
m−1. From equations (5.7), it follows that

h(m)
m (z) = first m terms of

p0,m(z)h
(2m)
0 (z)− u0,m(z)h(2m)

−1 (z)

zm
(5.9a)

and

h
(m)
m−1(z) = first m terms of

v0,m(z)h
(2m)
−1 (z)− q0,m(z)h(2m)

0 (z)

zm
. (5.9b)

It is worthwhile to observe that these formulas imply that the polynomials h
(m)
m and h

(m)
m−1

are determined by the middle one-third of the coefficients (i.e., coefficients of zm through

z2m−1) of the expressions

p0,m(z)h
(2m)
0 (z)− u0,m(z)h(2m)

−1 (z) and v0,m(z)h
(2m)
−1 (z)− q0,m(z)h(2m)

0 (z),

respectively.

The doubling strategy described above can now be applied recursively. Suppose the HPD

Toeplitz matrix M has the dimensions (n + 1) × (n + 1), where n + 1 = 2N . The divide-

and-conquer split Schur algorithm (DCSSA) is initialized with p0,1, q0,1, u0,1, and v0,1 as

given in equation (5.1b) and ζ0 = h
(1)
−1/h

(1)
0 . It then repeatedly applies itself, doubling the
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Algorithm 5.1 Divide-and-Conquer Split Schur Algorithm (Version 1)

Input: h−1(z) and h0(z) associated with Mn+1, where n+ 1 = 2N

Initialize: ζ0 = h
(1)
−1/h

(1)
0 ; p0,1(z) = ζ0 + ζ0z; q0,1(z) = −z; u0,1(z) = 1; v0,1(z) = 0

for m = 1, 2, 4, . . . , 2N−1 do

1. Use equations (5.9) to compute h
(m)
m−1 and h

(m)
m from h

(2m)
−1 and h

(2m)
0 .

2. Compute pm,m, qm,m, um,m, and vm,m from h
(m)
m−1 and h

(m)
m just as p0,m, q0,m, u0,m,

and v0,m were computed from h
(m)
−1 and h

(m)
0 .

3. Use equations (5.8) to compute p0,2m, q0,2m, u0,2m, and v0,2m.
end for

Output: p0,n+1; q0,n+1; u0,n+1; v0,n+1; ζ0, ζ1, . . . , ζn

polynomials until p0,n+1, q0,n+1, u0,n+1, and v0,n+1 are obtained. A preliminary version of the

algorithm is described in Algorithm 5.1.

At its lowest level of recursion, the algorithm computes the (0, 1)-polynomials, followed

by the (0, 2)-polynomials, followed by the (0, 4)-polynomials, etc., until the final (0, n + 1)-

polynomials are computed. Of course, all along the algorithm is being used recursively to

compute (and double) the intermediate polynomials whose compositions eventually give the

(0, 2k)-polynomials.

The following list shows the order in which the polynomials are computed and composed

in an 8× 8 example:

(0, 1), (1, 1)
︸ ︷︷ ︸

(0,2)

,

(0,4)
︷ ︸︸ ︷

(0, 2), (2, 1), (3, 1)
︸ ︷︷ ︸

(2,2)

, (2, 2),

(0,8)
︷ ︸︸ ︷

(0, 4), (4, 1), (5, 1)
︸ ︷︷ ︸

(4,2)

,

(4,4)
︷ ︸︸ ︷

(4, 2), (6, 1), (7, 1)
︸ ︷︷ ︸

(6,2)

, (6, 2), (4, 4), (0, 8).

A one-step polynomial is computed each time the algorithm is recursed. At each of these

steps, a qC-parameter is computed from a ratio of truncated split Schur functions. Thus
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the entire set of qC-parameters is computed. For the 8× 8 example, the pairs of split Schur

functions are computed in the following order

(h
(1)
0 , h

(1)
1 ), (h

(2)
1 , h

(2)
2 ), (h

(1)
2 , h

(1)
3 ), (h

(4)
3 , h

(4)
4 ), (h

(1)
4 , h

(1)
5 ), (h

(2)
5 , h

(2)
6 ), (h

(1)
6 , h

(1)
7 ),

and they are obtained via (5.9) from

(h
(2)
−1, h

(2)
0 ), (h

(4)
−1, h

(4)
0 ), (h

(2)
1 , h

(2)
2 ), (h

(8)
−1, h

(8)
0 ), (h

(2)
3 , h

(2)
4 ), (h

(4)
3 , h

(4)
4 ), (h

(2)
5 , h

(2)
6 ),

respectively.

Algorithm 5.2 gives a detailed function description of the DCSSA. Given the HPD

Toeplitz matrix Mn+1, where n + 1 = 2N , the function is invoked with the input h−1,

h0, and N . Its output is the set of polynomials p0,n+1, q0,n+1, u0,n+1, and v0,n+1. During the

function execution, the step count is kept by the global variable k, which must be initialized

to k = 0 before the function is initially invoked. The variable k indexes the sequences {ζk}

and {θk}, whose scopes must also be global. The ζk’s are, of course, the qC-parameters.

The numbers θk = h
(1)
k /h

(1)
k are required for the computation of the Schur parameters (see

equations (4.5)), but if preferred, they could be computed later from the qC-parameters.

These sequences are not technically function output, but as globally defined sequences, their

values are computed and stored throughout function execution.

After the DCSSA function has been applied, the output polynomials p0,n+1(z) and

q0,n+1(z) = −zp0,n(z) describe the coefficient-conjugated split Levinson polynomials asso-
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Algorithm 5.2 Divide-and-Conquer Split Schur Algorithm (Version 2)

Remarks: Given Mn+1 with n + 1 = 2N , this function applies the divide-and-conquer
split Schur algorithm. The variables k, ζk, and θk must be defined outside the scope of the
function. k = 0 must be initialized before the function is applied.
Begin Function

function [P,Q, U, V ] = dcssa(H1, H2, N)

ζk = H
(1)
1 /H

(1)
2 ; θk = H

(1)
2 /H

(1)
2

P (z) = ζk + ζkz; Q(z) = −z; U(z) = 1; V (z) = 0
k = k + 1
for j = 0 to N − 1 do

m = 2j

H̃
(m)
1 (z) = first m terms of

V (z)H
(2m)
1 (z)−Q(z)H(2m)

2 (z)

zm

H̃
(m)
2 (z) = first m terms of

P (z)H
(2m)
2 (z)− U(z)H(2m)

1 (z)

zm

[P1, Q1, U1, V1] = dcssa(H̃
(m)
1 , H̃

(m)
2 , j)

P2(z) = P (z)P1(z) +Q(z)U1(z); Q2(z) = P (z)Q1(z) +Q(z)V1(z)
U2(z) = U(z)P1(z) + V (z)U1(z); V2(z) = U(z)Q1(z) + V (z)V1(z)
P (z) = P2(z); Q(z) = Q2(z); U(z) = U2(z); V (z) = V2(z)

end for

Output: P (z), Q(z), U(z), V (z)
End Function
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ciated with M (which are the split Levinson polynomials associated with M). Thus, by

formula (3.13), the Szegő polynomial ρn is given by

ρn(z) =
1

p0,n+1(0)(z − 1)

[

p0,n+1(z) +
λn+1

z
q0,n+1(z)

]

.

This formula requires the value λn+1 which can be obtained, along with the Schur parameters,

from equations (4.5). The nth prediction error associated withM can be obtained from (3.9):

δn =
λn+1

2|p0,n+1(0)|2
.

An entire procedure for using the DCSSA function to compute the nth Szegő polynomial,

the nth prediction error, and the Schur parameters is described in Algorithm 5.3.

5.3 Example

Returning to the example at the end of Chapter 3, in which

M =















8 4 + i 2 1− i

4− i 8 4 + i 2

2 4− i 8 4 + i

1 + i 2 4− i 8















,
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Algorithm 5.3 Divide-and-Conquer Split Schur Algorithm (Version 3)

Input: [m0, m1, . . . , mn]
T = first column of Mn+1, where n+ 1 = 2N

Declare: Global variables k, {ζk}, and {θk}
Initialize: h−1(z) = (1− z)/2; h0(z) = m0/2 +m1z +m2z

2 + · · ·+mnz
n

k = 0 (This k keeps the count in the DCSSA function.)
[pn+1, qn+1, un+1, vn+1] = dcssa(h−1, h0, N)
λ1 = 2/m0

for k = 1 to n do

γk =

(

1− 1

λkζk

)

θk−1

λk+1 = 2Re(ζk)− 1
λk

end for

δn = λn+1/(2|pn+1(0)|2)
ρn(z) =

1

pn+1(0)(z − 1)

[

pn+1(z) +
λn+1

z
qn+1(z)

]

.

Output: ρn; δn; γ1, γ2, . . . , γn

Algorithm 5.3 produces identical output. However, as described above, the split-Levinson

polynomials are coefficient-conjugated:

p4(z) ≈ (0.34 + 0.08i)− (0.14 + 0.17i)z − 0.07z2 − (0.14− 0.17i)z3 + (0.34− 0.08i)z4

q4(z) ≈ −(0.25 + 0.02i)z + (0.13 + 0.11i)z2 + (0.13− 0.11i)z3 − (0.25− 0.02i)z4.

Notice that p4(z) = w4(z) and q4(z) = −z w3(z), as expected.



CHAPTER 6

SUPERFAST IMPLEMENTATION OF THE

DIVIDE-AND-CONQUER SPLIT SCHUR ALGORITHM

A divide-and-conquer approach to the split Schur algorithm was described in Chapter 5.

The resulting new algorithm, abbreviated DCSSA, is rich in polynomial multiplication. If

these multiplications are performed directly, the algorithm requires at least O(n2) flops when

applied to a real or complex (n+ 1)× (n+ 1) Toeplitz matrix. In this chapter, a superfast,

O(n(log2 n)
2), implementation of the DCSSA is described for real symmetric positive definite

Toeplitz matrices of size n+1 = 2N . For real Toeplitz matrices, the split Levinson symmetric

polynomials, the split Schur functions, and the qC-parameters are all real, as are the Szegő

polynomials and Schur parameters.

The real-case implementation of the DCSSA described below follows Algorithm 5.1. In

order to derive a superfast implementation, the polynomial multiplications in steps 1 and

3 must be written as convolutions and FFT techniques must be applied. It will be shown

that the nth Szegő polynomial associated with M =Mn+1, the nth prediction error, and the

Schur parameters can be obtained in 7n(log2 n)
2 +O(n log2 n) flops.
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6.1 Symmetric Vectors

The DCSSA processes the polynomials um, vm, pm, and qm described by the recurrence

relations (5.1), as well as the truncated versions of the split Schur functions hm−1 and hm

described by equations (5.7). In Chapter 5, a second subscript was appended to the symbols

um, vm, pm, and qm to indicate (and emphasize) the qC-function from which the polynomials

originated. For example, uk,m(z) is the polynomial obtained from m steps of the recurrence

relation (5.1) by using χk(z) = hk(z)/hk−1(z) as the initial qC-function. Because the prop-

erties of the polynomials do not depend on their initial qC-functions, the first subscript will

be omitted for the time being.

The first step in implementing a convolution-based, superfast version of Algorithm 5.1

is to associate the polynomials um, vm, pm, and qm with corresponding vectors. There are

several difficulties that arise if the polynomials are naively associated with their vectors

of coefficients. In this section, the properties of the polynomials um, vm, pm, and qm are

reviewed, corresponding vectors are defined, and the properties of those vectors are described.

Because Algorithm 5.1 is based on a doubling procedure, the subscript m will be restricted

to a power of two.

As discussed in Chapter 5 (see properties (5.5) and (5.4)), the polynomials um and pm

have degrees m−1 and m, respectively. They are also conjugate symmetric in the sense that

um(z) = ûm(z) = zm−1um(1/z) and pm(z) = p̂m(z) = zmpm(1/z).
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By definition, the polynomials vm and qm are simply the shifted versions of −um−1 and

−pm−1:

vm(z) = −zum−1(z), qm(z) = −zpm−1(z).

It follows that they have degrees m−1 and m, respectively. While not conjugate symmetric,

they satisfy vm(0) = qm(0) = 0, and it is clear that 1
z
vm(z) and 1

z
qm(z) are conjugate

symmetric.

In a real-valued implementation of the DCSSA, the conjugate-symmetric polynomials um,

vm/z, pm, and qm/z are, in fact, are real symmetric polynomials. As a consequence, their

coefficient vectors read the same top-to-bottom as bottom-to-top. In Chapter 2, this type

of vector symmetry was referred to as real quarter-even (RQE) symmetry. The following

notation will be used from here on to associate the general polynomial f with its vector of

coefficients f:

f(z) =

m∑

j=0

fjz
j ←→ f = [f0, f1, . . . , fm]

T = [fj]
m
j=0.

All vectors associated with polynomials will be indexed from 0. Under this identification,

the vectors um and pm display RQE symmetry, while the vectors vm and qm do not. On the

other hand, if vm and qm were upshifted, the new vectors would display RQE symmetry.

Notice that um and vm arem-dimensional vectors, while pm and qm are (m+1)-dimensional

vectors. Because m is a power of two in Algorithm 5.1, the vectors um and vm are well suited

for use with the efficient, split-radix, power-of-two FFTs described in Chapter 2. On the
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other hand, pm and qm lack the same suitability. To accommodate this defect, define the

modified polynomials ṗm and q̇m, both of degree m− 1, so that

pm(z) = ṗm(z) + pm(0)z
m

and

qm(z) = zq̇m(z).

Since pm is real symmetric, the modified polynomial ṗm is obtained from pm by simply

removing its degree-m term. The modified polynomial q̇m is simply the upshifted qm, which

is equal to −pm−1. In order to keep notation consistent, the “modified” polynomials u̇m and

v̇m are defined by

u̇m(z) = um(z) and v̇m(z) = vm(z).

Each modified polynomial is associated with its corresponding m-dimensional vector of

coefficients:

u̇m(z)←→ u̇m, v̇m(z)←→ v̇m, ṗm(z)←→ ṗm, q̇m(z)←→ q̇m.

It is the coefficient vectors of the modified polynomials that will be processed in the superfast

implementation of the DCSSA. These vectors inherit symmetry from their corresponding



107

polynomials. Specifically, the vectors u̇m and q̇m display RQE symmetry. The vector ṗm has

the form

[t0, t1, . . . , tm/2−1, tm/2, tm/2−1, . . . , t1]
T ,

and therefore displays RE symmetry. Similarly, the vector v̇m has the form

[0, s1, . . . , sm/2−1, sm/2, sm/2−1, . . . , s1]
T ,

and also displays RE symmetry.

The superfast implementation of the DCSSA will use FFT techniques to compute the

polynomial products encountered in steps 1 and 3 of Algorithm 5.1. These products involve

convolutions of the symmetric vectors defined above. The symmetry in these vectors will be

exploited both in the computations of their DFTs and the computations of the convolutions.

The following proposition highlights some of the important properties of the DFTs of the

symmetric vectors.

Proposition 6.1. Suppose that x = [xj ]
n−1
j=0 is an n-dimensional vector, where n is even,

and y = Ωnx is the DFT of x.

i.) If x is a real vector, then y is complex, conjugate-symmetric, i.e., yj = yn−j. Further-

more, y0 and yn/2 are real numbers.

ii.) If x is RE symmetric, then y is RE symmetric.

iii.) If x is RO symmetric, then y is purely imaginary and odd symmetric.
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iv.) If x is RQE symmetric, then [e−πji/nyk]
n−1
j=0 is RO symmetric with the exception that y0

may be nonzero. Consequently, yn/2 = 0.

Proof. The first three results are well known. Discussions and proofs can be found in [14] or

[55]. In part (iv), the fact that [e−πji/nyj]
n−1
j=0 is a real vector is discussed in [55]. To establish

its nearly odd symmetry, notice that

e−(n−j)πi/nyn−j = e−πiejπi/nyn−j = −ejπi/nyn−j.

Now since y is the DFT of a real vector, it is conjugate symmetric and thus, yn−j = yj . It

follows that

−ejπi/nyn−j = −ejπi/nyj.

Finally, since these expressions describe real numbers, they are all equal to their conjugates.

Therefore

e−(n−j)πi/nyn−j = −e−jπi/nyj.

This is the desired form of the vector. To establish that yn/2 = 0, simply substitute j =

n/2.

6.2 Zero-Padded Vectors

The symmetric vectors that will be processed in the superfast DCSSA were described

above. However, before the algorithm can be implemented, another important detail must



109

be cleared up. The product of two polynomials of degree m − 1 is a polynomial of degree

2m− 2, which has at most 2m− 1 nonzero coefficients. In order to compute such a product

using power-of-two FFTs (see Section 2.1.2), the original coefficient vectors must be padded

with zeros to length 2m. The product of two (m − 1)-degree polynomials is thus obtained

as follows:

1. Pad each m-dimensional coefficient vector with m zeros to length 2m.

2. Compute the DFT of each zero-padded vector.

3. Compute the Schur (element-by-element) product of the DFTs.

4. Compute the inverse DFT of the resulting vector to obtain the coefficient vector of the

product polynomial.

In symbols, the coefficient vector of the product of the (m− 1)-degree polynomials f and g

is given by the vector convolution







f

0m






∗







g

0m






=

1

2m
Ω∗

2m






Ω2m







f

0m






⋆ Ω2m







g

0m












,

where 0m denotes the m-dimensional zero vector.

When computed with DFTs, the convolution requires the transforms of the zero-padded

vectors. Any symmetry in the original vectors (other than real symmetry) is likely destroyed

when the vectors are padded with zeros. Therefore, symmetric FFTs cannot be used directly

to compute the DFTs once the vectors have been padded with zeros. The rest of this section
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is devoted to developing and implementing a general method for computing the DFT of a

zero-padded vector from the DFT of the original vector.

6.2.1 DFTs of Zero-Padded Vectors

Suppose n is a fixed even integer. Let ω = e−2πi/n and, for any positive integer k,

Wk = diag([ωj]k−1
j=0). As can be seen from equation (2.4), the Fourier matrix Ωn satisfies

ΩnPn =







Ωm WmΩm

Ωm −WmΩm






,

where Pn is the even/odd permutation matrix and n = 2m. Because the Fourier matrix (of

any order) is symmetric, it follows that

P T
n Ωn =







Ωm Ωm

ΩmWm −ΩmWm






. (6.1)

Therefore, the even/odd permutation of the DFT of the zero-padded m-dimensional vector

x is given by

P T
n Ωn







x

0m






=







Ωmx

ΩmWmx






. (6.2)

According to equation (6.2), the even-indexed part of the DFT of a zero-padded vector is

the DFT of the original vector. The odd-indexed part of the DFT can be obtained from an
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additional m-dimensional DFT. Equation (6.2) does not necessarily offer an improvement

over simply computing the n-dimensional DFT of the zero-padded vector. On the other

hand, if m also happens to be an even number, the matrix splitting can be repeated.

The root of unity associated with the Fourier matrix Ωm is e−2πi/m = ω2. Therefore, by

using equation (6.1) to split Ωm, one finds that

P T
mΩmWmx =







Ωm/2 Ωm/2

Ωm/2W
2
m/2 −Ωm/2W

2
m/2






·Wmx. (6.3)

Now partition x so that x =







a

b






, where a and b are m/2-dimensional vectors. Since

ωm/2 = −i, it follows that

Wmx =







Wm/2 0

0 −iWm/2













a

b






=







Wm/2a

−iWm/2b






,

where 0 refers to the zero matrix of order m/2. Substituting this into equation (6.3) and

multiplying gives

P T
mΩmWmx =







Ωm/2Wm/2(a− bi)

Ωm/2W
3
m/2(a + bi)






. (6.4)

It turns out that the vector described by equation (6.4) is conjugate symmetric, as established

by the following proposition.
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Proposition 6.2. Suppose m is divisible by two. Let n = 2m, ω = e−2πi/n, and Wm/2 =

diag([ωj]
m/2−1
j=0 ). Then

Ωm/2W
3
m/2 = JΩm/2Wm/2,

where J is the reversal matrix of order m/2.

Proof. Let A = Ωm/2W
3
m/2 and B = Ωm/2Wm/2. With rows and columns indexed from 0 to

m/2− 1, the (k, ℓ)-element of A is ω4kℓω3ℓ = ω(4k+3)ℓ. On the other hand, the (k, ℓ)-element

of B is ω4kℓwℓ. Upon reversing the rows of B and using ω−2m = 1, the (k, ℓ)-element of JB

is

ω4(m/2−1−k)ℓωℓ = (ω−2m)ℓω(4k+4)ℓω−ℓ = ω(4k+3)ℓ.

It follows that A = JB.

By Proposition 6.2, the bottom half of the vector described in equation (6.4) is the

reverse conjugate of the top half. Thus the DFT of the m-dimensional vector Wmx can be

computed from a related m/2-dimensional DFT. If equations (6.2) and (6.4) are combined,

the 2m-dimensional DFT of a zero-padded vector can be obtained from an m-dimensional

DFT and an m/2-dimensional DFT. Depending on the nature of the vector x, this has the

potential to significantly reduce the arithmetic complexity of its DFT. The cases in which x

is RE symmetric or RQE symmetric are discussed next.
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Proposition 6.3. Let m be a multiple of four, n = 2m, ω = e−2πi/n, and Wm/2 =

diag([ωj]
m/2−1
j=0 ). Suppose x ∈ R

m is partitioned into two vectors of length m/2:

x =







a

b






.

Let y be the complex, m/2-dimensional vector y = Wm/2(a− bi).

i.) If x is RE symmetric, then y has the form

[y0, y1, . . . , ym/4−1, ym/4,−ym/4−1, · · · − y1]T .

Furthermore, Re(ym/4) = 0.

ii.) If x is RQE symmetric, then y has the form

[y0, . . . , ym/4−1,−ωym/4−1, . . . ,−ωy0]T .

Proof. Assume that the vectors are indexed from 0. To prove the first part, suppose that x is

RE symmetric, so that bm/2−j = aj for j = 1, 2, . . . , m/2− 1. Now for k = 1, 2, . . . , m/2− 1,

yk = ωk(ak − ibk) = ωk(ak − iam/2−k). On the other hand, since ωm/2 = −i,

ym/2−k = ωm/2−k(am/2−k − iak) = −iωk(−i)(ak + iam/2−k) = −ωk(ak + iam/2−k).
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It follows that ym/2−k = −yk; k = 1, 2, . . . , m/2 − 1. This gives the desired form. Further-

more, since am/4 = bm/4 and ωm/4 =
√
2
2
− i

√
2
2
,

Re(ym/4) =

√
2

2
am/4 −

√
2

2
am/4 = 0.

To prove the second part, suppose that x is RQE symmetric, so that bm/2−1−j = aj for

j = 0, 1, . . . , m/2−1. Then for k = 0, 1, . . . , m/2−1, yk = ωk(ak−ibk) = ωk(ak−iam/2−1−k).

On the other hand, since ωm/2 = −i,

ym/2−1−k = ωm/2−1−k(am/2−1−k−iak) = −iωωk(−i)(ak+iam/2−1−k) = −ωωk(ak+iam/2−1−k).

It follows that ym/2−1−k = −ωyk; k = 0, 1, . . . , m/2− 1. This gives the desired form.

The next two propositions describe how the results of Proposition 6.3 will be used in

computing DFTs.

Proposition 6.4. Referring to Proposition 6.3, suppose x is RE symmetric. Then

y = t0 e0 +O + Ei,

where t0 = Re(y0), O ∈ Rm/2 is an RO-symmetric vector and E ∈ Rm/2 is an RE-symmetric

vector. Consequently, Y = Ωm/2y can be computed from two symmetric m/2-dimensional

FFTs. Furthermore, Re(Yk) = t0 for all k.
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Proof. The form of y follows directly from Proposition 6.3. To establish the other statements,

notice that

Y = Ωm/2y = t0Ωm/2e0 + Ωm/2O + iΩm/2E.

By Proposition 6.1, Ωm/2O is odd symmetric and purely imaginary. Similarly, Ωm/2E is even

symmetric and purely real. Thus Ωm/2(O + Ei) is purely imaginary, and it follows that the

real part of Y satisfies

Re(Y ) = t0Ωm/2e0 = t0











1

...

1











.

Proposition 6.5. Referring to Proposition 6.3, suppose x is RQE symmetric. Let Y =

Ωm/2y and let Z = Ωm/4ye, where ye = [y2j]
m/4−1
j=0 is the even-indexed part of y. Then for

k = 0, 1, . . . , m/4− 1,

Yk = Zk − ωe4πik/mZk

Yk+m/4 = Zk + ωe4πik/mZk

.

Consequently, Y can be computed from one complex m/4-dimensional FFT.

Proof. According to the splitting equation (2.2), for k = 0, 1, . . . , m/2− 1,

Yk =

m/4−1
∑

j=0

y2j e
−2πjki/(m/4) + e−2πki/(m/2)

m/4−1
∑

j=0

y2j+1 e
−2πjki/(m/4). (6.5)
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The symmetry in y described in Proposition 6.3ii is such that y2j+1 = −ωym/2−2j−2 for

k = 0, 1, . . . , m/4− 1. Therefore, for k = 0, 1, . . . , m/4− 1, the splitting equation becomes

Yk =

m/4−1
∑

j=0

y2j e
−2πjki/(m/4) − ωe−2πki/(m/2)

m/4−1
∑

j=0

ym/2−2j−2 e
−2πjki/(m/4).

Reversing the order of summation in the second sum gives

Yk =

m/4−1
∑

j=0

y2j e
−2πjki/(m/4) − ωe−2πki/(m/2)

m/4−1
∑

j=0

y2j e
−2π(m/4−1−j)ki/(m/4).

Simplifying this expression results in

Yk =

m/4−1
∑

j=0

y2j e
−2πjki/(m/4) − ωe4πki/m

m/4−1
∑

j=0

y2j e
2πjki/(m/4).

After recognizing that

Zk =

m/4−1
∑

j=0

y2j e
−2πjki/(m/4),

the equation above takes the form

Yk = Zk − ωe4πki/mZk; k = 0, 1, . . . , m/4− 1.
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Since the summations in the original splitting equation (6.5) are periodic in k with period

m/4 and since e4π(k+m/4)i/m = −e4πki/m, it follows that

Yk+m/4 = Zk + ωe4πki/mZk; k = 0, 1, . . . , m/4− 1.

In the next two sections, the general zero-padding strategies described above will be

applied to the specific symmetric vectors processed by the DCSSA.

6.2.2 Zero Padding u̇m and q̇m

In this section, a detailed procedure for zero padding and transforming the vectors u̇m

and q̇m will be described. Because these vectors have similar properties, i.e., they are m-

dimensional and RQE symmetric, they both require the same steps for zero padding and

transforming. The procedure will be described for only u̇m, but it applies identically to q̇m.

Suppose m is a fixed positive integer divisible by four. Let n = 2m, ω = e−2πi/n, and, for

any positive integer k,Wk = diag([ωj]k−1
j=0). Assume that them-dimensional, RQE-symmetric

vector u̇m and its m-dimensional DFT Ωmu̇m are given. The following steps describe an

efficient, FFT-based procedure for computing the DFT of the zero-padded u̇m. In steps

where arithmetic operations are required, the count is given in brackets. The particular

FFT algorithms referred to below were summarized at the end of Section 2.1.2.
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1. Let a and b be m/2-dimensional vectors such that

u̇m =







a

b






.

2. With y = Wm/2(a − bi), compute the even-indexed part of y: ye = [y2j ]
m/4−1
j=0 . Since

ω0 = 1, no work is required to compute y0. [(
m
4
− 1)µC]

3. Use CFFTF to compute Z = Ωm/4ye. [ψ1(
m
4
)]

4. Use Proposition 6.5 to obtain Y = Ωm/2y. [
m
4
µC + m

2
αC]

5. Form the vector 





Y

Jm/2Y






.

It follows from equation (6.4) and Proposition 6.2 that this vector is the even/odd

permutation of ΩmWmu̇m.

6. Permute the vector above to form ΩmWmu̇m.

7. Form the n-dimensional vector







Ωmu̇m

ΩmWmu̇m






.

According to equation (6.2), this vector is the even/odd permutation of DFT of the

zero-padded u̇m.
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8. Permute the vector above to form

Ωn







u̇m

0m






.

The procedure described above applies only when m ≥ 4. In such a case, the total

numbers of arithmetic operations are

(m

2
− 1
)

µC +
m

2
αC + ψ1(m/4) =

(
m

4
log2m+

3m

4

)

µR +

(
3m

4
log2m−

m

4
+ 2

)

αR.

For the cases in which m = 1 or m = 2, the DFT of the zero-padded vector can be ob-

tained from the original vector and its DFT by direct computation involving no additional

arithmetic operations.

6.2.3 Zero Padding v̇m and ṗm

In this section, a detailed procedure for zero padding and transforming the vectors v̇m and

ṗm will be described. In contrast to u̇m and q̇m, the vectors v̇m and ṗm are RE symmetric.

Several of the steps in the zero-padding procedure are significantly different than those

described in the previous section. Nonetheless, the procedures for v̇m and ṗm are identical,

so they will be described for only v̇m.
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Suppose m is divisible by four, and let n = 2m, ω = e−2πi/n, and Wk = diag([ωj]k−1
j=0).

Assume that them-dimensional, RE-symmetric vector v̇m and itsm-dimensional DFT Ωmv̇m

are given. The following steps describe an efficient, FFT-based procedure for computing the

DFT of the zero-padded v̇m. In steps where arithmetic operations are required, the count is

given in brackets. The particular FFT algorithms referred to below were summarized at the

end of Section 2.1.2.

1. Let a and b be m/2-dimensional vectors such that

v̇m =







a

b






.

2. Compute y = Wm/2(a− bi). By Proposition 6.3, y is completely determined by its first

m/4 + 1 elements. Since ω0 = 1, no work is required to compute y0. Furthermore,

since v̇m is RE symmetric, am/4 = bm/4. It follows that ym/4 = −i
√
2am/4 can be

computed with one real multiplication. The remaining m/4− 1 elements each require

one complex multiplication. [(m
4
− 1)µC + 1µR]

3. Let y = a0 e0 +O + Ei as in Proposition 6.4.

(a) Use RDSTF to compute the purely imaginary, odd-symmetric vector Ωm/2O.

[ψ6(
m
2
)]

(b) Use RDCTF to compute the RE-symmetric vector Ωm/2E. [ψ4(
m
2
)]
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(c) Add the purely imaginary vectors Ωm/2O and Ωm/2Ei. Since Ωm/2O is odd sym-

metric, its 0- and m/4-elements are zero. [(m
2
− 2)αR]

(d) Form Y = Ωm/2y:

Y =











ao

...

ao











+ Ωm/2(O + Ei).

If this procedure is being applied to v̇m, then a0 = vm(0) = 0. On the other hand,

if it is being applied to ṗm. then a0 = pm(0). [No additional operations]

4. Form the vector 





Y

Jm/2Y






.

It follows from equation (6.4) and Proposition 6.2 that this vector is the even/odd

permutation of ΩmWmv̇m.

5. Permute the vector above to form ΩmWmv̇m.

6. Form the n-dimensional vector







Ωmv̇m

ΩmWmv̇m






.

According to equation (6.2), this vector is the even/odd permutation of DFT of the

zero-padded v̇m.



122

7. Permute the vector above to form

Ωn







v̇m

0m






.

This procedure results in a transform whose even-indexed elements are purely real and

whose odd-indexed elements are complex with constant real part. (That constant is either

vm(0) = 0 or pm(0) depending on which vector is being processed.) The procedure applies

only when m ≥ 4. The total numbers of arithmetic operations are

(m

4
− 1
)

µC + 1µR +
(m

2
− 2
)

αR + ψ4(m/2) + ψ6(m/2)

=

(
m

4
log2m+

3m

8
+ 1

)

µR +

(
3m

4
log2m+

m

8

)

αR.

As in the previous section, the cases for m = 1 or m = 2 can be handled with no additional

arithmetic operations.

6.2.4 Coefficient Vectors of pm and qm

The modified polynomials u̇m(z), v̇m(z), ṗm(z) and q̇m(z) were defined in such a way

that their coefficient vectors could be processed with power-of-two FFTs. Unfortunately,

steps 1 and 3 of Algorithm 5.1 require the original polynomials, not their modifications.

Since um = u̇m and vm = v̇m, these polynomials present no problem. However, a method
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must be developed by which the DFTs of the zero-padded coefficient vectors of pm(z) =

ṗm(z) + pm(0)z
m and qm(z) = zq̇m(z) are obtained from the DFTs of ṗm and q̇m. The next

two propositions pave the way for such a method.

Proposition 6.6. Suppose x is a vector of length 2m. Define X and Y by

X = Ω2mx and Y = Ω2m(x+ tem),

where t ∈ R and em (indexed from zero) is the (m + 1)st column of I2m. Then for k =

0, 1, . . . , 2m− 1,

Yk = Xk + (−1)kt.

Proof. The (m+1)st column of the 2m-dimensional Fourier matrix, Ω2m, is the 2m-dimensional

vector

[1,−1, 1,−1, . . . , 1,−1]T .

The result follows immediately from the linearity of the DFT.

Proposition 6.7. Suppose x is an RQE symmetric vector of length m. Define X and Y by

X = Ω2m







x

0m







and Y = Ω2m











0

x

0m−1











.
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Then Ye = Xe and Yo = −Xo, where the e- and o-subscripts denote the even-indexed and

odd-indexed parts.

Proof. Let n = 2m and ω = e−2πi/n. By equation (2.1a),

Xk =

m/2−1
∑

j=0

xjω
jk +

m/2−1
∑

j=0

xm/2+jω
(m/2+j)k; k = 0, 1, . . . , n− 1.

Since x is RQE symmetric, xm/2+j = xm/2−1−j . Using this symmetry and the fact that

ωm/2 = −i, the expression above is equivalent to

Xk =

m/2−1
∑

j=0

xjω
jk + (−i)k

m/2−1
∑

j=0

xm/2−1−jω
jk.

After reversing the order of summation of the second sum, Xk is given by

Xk =

m/2−1
∑

j=0

xj [ω
jk + (−i)kω(m/2−1−j)k],

and this reduces to

Xk =

m/2−1
∑

j=0

xj [ω
jk + (−1)kω(j+1)k].

Using the same reasoning, Yk is given by

Yk =

m/2−1
∑

j=0

xjω
kωjk +

m/2−1
∑

j=0

xm/2+jω
kω(m/2+j)k; k = 0, 1, . . . , n− 1,
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which reduces to

Yk =

m/2−1
∑

j=0

xj [ω
(j+1)k + (−1)kωjk].

Now, if k is even, (−1)k = 1 and Xk = Y k. On the other hand, if k is odd, (−1)k = −1

and Xk = −Y k.

Using Proposition 6.6, the DFT of the zero-padded coefficient vector of pm can be easily

obtained from that of ṗm:

Ω2m







pm

0m−1






= Ω2m







ṗm

0m






+



















pm(0)

−pm(0)
...

pm(0)

−pm(0)



















. (6.6)

As a consequence of the symmetry in the DFT of the zero-padded ṗm, which was described in

Section 6.2.3, the vector expressed by equation (6.6) has a purely real even-indexed part and

a purely imaginary odd-indexed part. Therefore, only an additional m/2 + 1 real additions

are required in using (6.6) to obtain the DFT on the left from the DFT of the zero-padded

ṗm. (In the case when m = 1, two real additions are required.)
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Using Proposition 6.7, the DFT of the zero-padded coefficient vector of qm,

Ω2m







qm

0m−1






= Ω2m











0

q̇m

0m−1











,

can be obtained from that of q̇m by simply negating the imaginary parts of the even-indexed

elements and negating the real parts of the odd-indexed elements. These steps require no

additional arithmetic operations.

6.3 Split Schur Functions

The preceding sections focused on preparing the symmetric polynomials for processing

in the superfast DCSSA. In this section, the focus is on the actual implementation of step 1

of Algorithm 5.1. This step applies equations (5.9),

h(m)
m (z) = first m terms of

p0,m(z)h
(2m)
0 (z)− u0,m(z)h(2m)

−1 (z)

zm

and

h
(m)
m−1(z) = first m terms of

v0,m(z)h
(2m)
−1 (z)− q0,m(z)h(2m)

0 (z)

zm
,

in which m terms of the split Schur functions hm−1(z) and hm(z) are computed from 2m

terms of h−1(z) and h0(z). Notice that the double subscript notation is once again being
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used for the symmetric polynomials. As observed in Chapter 5, the formulas above indicate

that the coefficients of h
(m)
m−1 and h

(m)
m are, in fact, the coefficients of the terms of degree m

through 2m− 1 of

v0,m(z)h
(2m)
−1 (z)− q0,m(z)h(2m)

0 (z) (6.7)

and

p0,m(z)h
(2m)
0 (z)− u0,m(z)h(2m)

−1 (z), (6.8)

respectively. Normally, the products in these expressions would be computed as convolutions

of vectors padded with zeros to length 3m. However, since only certain terms are required,

it turns out that convolutions of 2m-dimensional vectors will suffice.

Proposition 6.8. Suppose f(z) =
∑m

j=0 fjz
j and g(z) =

∑2m−1
j=0 gjz

j are polynomials of

degrees no greater than m and 2m−1, respectively. Let C be the circulant matrix whose first

column is

[f0, f1, . . . , fm, 0, 0, . . . , 0
︸ ︷︷ ︸

m−1 zeros

]T ,

and let

x = [g0, g1, . . . , g2m−1]
T .

Then the coefficients of the terms of f(z)g(z) of degrees m through 2m − 1 are the last m

elements of the matrix-vector product Cx.
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Proof. Let C ′ be the circulant matrix whose first column is

[f0, f1, . . . , fm, 0, 0, . . . , 0
︸ ︷︷ ︸

2m−1 zeros

]T ,

and let

y = [g0, g1, . . . , g2m−1, 0, 0, . . . , 0
︸ ︷︷ ︸

m zeros

]T .

The coefficients of f(z)g(z) are given by C ′y.

Now if the circulant matrix C is written in the block form

C =







C1 C2

C2 C1






,

then C ′ has the form

C ′ =











C1 0 C2

C2 C1 0

0 C2 C1











,

where the blocks are m×m matrices. Partition x into the two m-dimensional vectors a and

b. Notice that

Cx =







C1 C2

C2 C1













a

b






=







C1a+ C2b

C2a+ C1b






,
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while

C ′y =











C1 0 C2

C2 C1 0

0 C2 C1





















a

b

0m











=











C1a

C2a + C1b

C2a











.

Therefore, the middle one-third of C ′y is the last one-half of Cx.

By using Proposition 6.8, h
(m)
m−1 and h

(m)
m can be computed with 2m-dimensional vectors—

zero padding is required for the symmetric vectors, but not for h
(2m)
−1 and h

(2m)
0 . The pro-

cedures for computing the coefficients of h
(m)
m−1(z) and h

(m)
m (z) are described next. As usual,

the split Schur functions will be identified with their coefficient vectors using the notation

h
(m)
m−1(z)←→ h

(m)
m−1 and h(m)

m (z)←→ h(m)
m .

6.3.1 Computing h
(m)
m−1

In terms of the modified symmetric polynomials, expression (6.7) takes the form

v̇0,m(z)h
(2m)
−1 (z)− zq̇0,m(z)h(2m)

0 (z).
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It follows that h
(m)
m−1 is given by the last m elements of







v̇0,m

0m






∗ h(2m)

−1 −











0

q̇0,m

0m−1











∗ h(2m)
0 ,

which will be computed with DFTs:

1

2m
Ω∗

2m






Ω2m







v̇0,m

0m






⋆ Ω2mh

(2m)
−1 − Ω2m







q0,m

0m−1






⋆ Ω2mh

(2m)
0






. (6.9)

Assuming that the DFTs of the zero-padded vectors are given, the following steps describe

the computation of h
(m)
m−1. When arithmetic operations are required, the count is given in

brackets at the end of the step.

1. Use RFFTF to compute the vector Ω2mh
(2m)
−1 . [ψ2(2m)]

2. Compute the Schur product of the DFTs:

Ω2m







v̇0,m

0m






⋆ Ω2mh

(2m)
−1 .

Since this involves the DFTs of real vectors, the result is conjugate symmetric. There-

fore, only the first m+1 elements must be computed. Since v(0) = 0, the procedure for

zero-padding and transforming v̇0,m, which was described in Section 6.2.3, results in a



131

vector whose even-indexed elements are purely real and whose odd-indexed elements

are purely imaginary.

(a) The 0- and m-indexed elements of both DFTs are real. Each requires a single real

multiplication. [2µR]

(b) The elements indexed 1, 3, . . . , m− 1 each require an imaginary-by-complex mul-

tiplication. [mµR]

(c) The elements indexed 2, 4, . . . , m−2 each require a real-by-complex multiplication.

[(m− 2)µR]

3. Use RFFTF to compute the vector Ω2mh
(2m)
0 . [ψ2(2m)]

4. Compute the Schur product of the DFTs:

Ω2m







q0,m

0m−1






⋆ Ω2mh

(2m)
0 .

As in step 2, the result is conjugate symmetric, and only the first m+1 elements must

be computed.

(a) The 0-indexed elements of both DFTs are real. [1µR]

(b) The m-indexed element of the transform of the zero-padded q0,m is zero (when

m ≥ 2). No work is required for element m.

(c) The elements indexed 1 through m − 1 each require a complex multiplication.

[(m− 1)µC]
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5. Compute the difference of the Schur products. By symmetry, only the first m + 1

elements are required.

(a) The 0-indexed elements are real. [1αR]

(b) No work is required for the m-indexed element (see step 4(b)).

(c) The elements indexed 1 through m − 1 each require a complex addition. [(m −

1)αC]

6. Use RFFTB to compute the 2m-dimensional inverse transform. [ψ3(2m)]

7. h
(m)
m−1 is obtained from the last m elements of the inverse transform.

The total numbers of arithmetic operations required by the procedure described above

are

2ψ2(2m) + ψ3(2m) + (2m+ 1)µR + (m− 1)µC + (m− 1)αC + 1αR

= (3m log2m+ 3)µR + (9m log2m− 2m+ 9)αR + 2mδR.

This count is valid when m ≥ 2. When m = 1, h
(m)
m−1 can be computed directly with 4 real

additions and 2 divisions.
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6.3.2 Computing h
(m)
m

In terms of the modified symmetric polynomials, expression (6.8) takes the form

[ṗ0,m(z) + p0,m(0)z
m]h

(2m)
0 (z)− u̇0,m(z)h(2m)

−1 (z).

It follows that h
(m)
m is given by the last m elements of







p0,m

0m−1






∗ h(2m)

0 −







u̇0,m

0m






∗ h(2m)

−1 ,

which will be computed with DFTs:

1

2m
Ω∗

2m






Ω2m







p0,m

0m−1






⋆ Ω2mh

(2m)
0 − Ω2m







u̇0,m

0m






⋆ Ω2mh

(2m)
−1






. (6.10)

Assuming that all of the DFTs are given, the following steps describe the computation

of h
(m)
m . When arithmetic operations are required, the count is given in brackets at the end

of the step.

1. Compute the Schur product of the DFTs:

Ω2m







p0,m

0m−1






⋆ Ω2mh

(2m)
0 .
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Because this involves the DFTs of real vectors, the result is conjugate symmetric.

Therefore, only the first m + 1 elements must be computed. The procedure for com-

puting the DFT of the zero-padded p0,m, which was described in Sections 6.2.3 and

6.2.4, results in a vector whose even-indexed elements are purely real and whose odd-

indexed elements are purely imaginary.

(a) The 0- and m-indexed elements of both DFTs are real. Each requires a single real

multiplication. [2µR]

(b) The elements indexed 2, 4, . . . , m−2 each require a real-by-complex multiplication.

[(m− 2)µR]

(c) The elements indexed 1, 3, . . . , m− 1 each require an imaginary-by-complex mul-

tiplication. [mµR]

2. Compute the Schur product of the DFTs:

Ω2m







u̇0,m

0m






⋆ Ω2mh

(2m)
−1 .

As in step 1, the result is conjugate symmetric. Therefore, only the first m+1 elements

must be computed.

(a) The 0-indexed elements of both DFTs are real. [1µR]

(b) The m-indexed element of the transform of the zero-padded u̇m is zero (when

m ≥ 2). No work is required for element m.
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(c) The elements indexed 1 through m − 1 each require a complex multiplication.

[(m− 1)µC]

3. Compute the difference of the Schur products. By symmetry, only the first m + 1

elements are required.

(a) The 0-indexed elements are real. [1αR]

(b) No work is required for the m-indexed element (see step 2(b)).

(c) The elements indexed 1 through m − 1 each require a complex addition. [(m −

1)αC]

4. Use RFFTB to compute the 2m-dimensional inverse transform. [ψ3(2m)]

5. h
(m)
m is obtained from the last m elements of the inverse transform.

The total numbers of arithmetic operations required by the procedure described above

are

ψ3(2m) + (2m+ 1)µR + (m− 1)µC + (m− 1)αC + 1αR

= (m log2m+ 4m− 1)µR + (3m log2m+ 2m+ 1)αR + 2mδR.

This count is valid when m ≥ 2. When m = 1, h
(m)
m can be computed, assuming the DFTs

are given, with 1 real multiplication, 3 real additions, and 2 divisions.
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6.4 Compositions of Symmetric Polynomials

In this section, procedures for implementing step 3 of Algorithm 5.1 will be described.

Step 3 is the composition step in which the (0, m)-polynomials and the (m,m)-polynomials

are composed to form the (0, 2m)-polynomials. These compositions follow from equations

(5.8) and are given by

u0,2m(z) = u0,m(z)pm,m(z) + v0,m(z)um,m(z) (6.11a)

v0,2m(z) = u0,m(z)qm,m(z) + v0,m(z)vm,m(z) (6.11b)

p0,2m(z) = p0,m(z)pm,m(z) + q0,m(z)um,m(z) (6.11c)

q0,2m(z) = p0,m(z)qm,m(z) + q0,m(z)vm,m(z). (6.11d)

Because there are subtle differences in the implementations of the equations, each will be

considered in its own subsection. It is assumed that the DFTs of the zero-padded coefficient

vectors of the symmetric polynomials have been pre-computed according to the techniques

described in Section 6.2. Since these DFTs and their Schur products are conjugate symmet-

ric, the computations will only involve that first m+ 1 elements of these vectors.
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6.4.1 Computing the DFT of u̇0,2m

In terms of the modified symmetric polynomials, equation (6.11a) takes the form

u̇0,2m(z) = u̇0,m(z)[ṗm,m(z) + pm,m(0)z
m] + v̇0,m(z)u̇m,m(z).

It follows that the DFT of u̇0,2m is given by

Ω2mu̇0,2m = Ω2m







u̇0,m

0m






⋆ Ω2m







pm,m

0m−1







+ Ω2m







v̇0,m

0m






⋆ Ω2m







u̇m,m

0m






.

Because the m-indexed element of the DFT of u̇0,2m is zero, only elements 0 through m− 1

must be computed.

1. Compute the Schur product of the DFTs:

Ω2m







u̇0,m

0m






⋆ Ω2m







pm,m

0m−1






.

The DFT of the zero-padded pm,m is a vector whose even-indexed elements are purely

real and whose odd-indexed elements are purely imaginary.

(a) The 0-indexed elements of both DFTs are real. [1µR]
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(b) The elements indexed 2, 4, . . . , m−2 each require a complex-by-real multiplication.

[(m− 2)µR]

(c) The elements indexed 1, 3, . . . , m− 1 each require an complex-by-imaginary mul-

tiplication. [mµR]

2. Compute the Schur product of the DFTs:

Ω2m







v̇0,m

0m






⋆ Ω2m







u̇m,m

0m






.

The DFT of the zero-padded v̇0,m is a vector whose even-indexed elements are purely

real and whose odd-indexed elements are purely imaginary.

(a) The 0-indexed elements of both DFTs are real. [1µR]

(b) The elements indexed 2, 4, . . . , m−2 each require a real-by-complex multiplication.

[(m− 2)µR]

(c) The elements indexed 1, 3, . . . , m− 1 each require an imaginary-by-complex mul-

tiplication. [mµR]

3. Compute the sum of the Schur products.

(a) The 0-indexed elements are real. [1αR]

(b) The elements indexed 1 through m − 1 each require a complex addition. [(m −

1)αC]
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The numbers of arithmetic operations required by the procedure described above are

(4m− 2)µR + (2m− 1)αR.

These counts apply when m ≥ 2. If m = 1, the computation of Ω2mu̇0,2m requires no

operations.

6.4.2 Computing the DFT of v̇0,2m

In terms of the modified symmetric polynomials, equation (6.11b) takes the form

v̇0,2m(z) = u̇0,m(z)zq̇m,m(z) + v̇0,m(z)v̇m,m(z).

It follows that the DFT of v̇0,2m is given by

Ω2mv̇0,2m = Ω2m







u̇0,m

0m






⋆ Ω2m







qm,m

0m−1







+ Ω2m







v̇0,m

0m






⋆ Ω2m







v̇m,m

0m






.

Since v̇0,2m is RE symmetric, its DFT is also RE symmetric. Therefore, only the real parts

of the elements indexed 0 through m must be computed.
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1. Compute the real parts of the Schur product of the DFTs:

Ω2m







u̇0,m

0m






⋆ Ω2m







qm,m

0m−1






.

(a) The 0-indexed elements of both DFTs are real. [1µR]

(b) The elements indexed 1 through m − 1 each require the real part of a complex

multiplication. [(2m− 2)µR + (m− 1)αR]

(c) The m-indexed element is zero. No work is required.

2. Compute the (purely real) Schur product of the DFTs:

Ω2m







v̇0,m

0m






⋆ Ω2m







v̇m,m

0m






.

These DFTs are vectors whose whose even-indexed elements are purely real and whose

odd-indexed elements are purely imaginary. Each element of the Schur product requires

1 real multiplication. [(m+ 1)µR]

3. Compute the sum of the real parts of the Schur products.

(a) The m-indexed element requires no work.

(b) The elements indexed 0 through m− 1 each require 1 real addition. [mαR]



141

The numbers of arithmetic operations required by the procedure described above are

3mµR + (2m− 1)αR.

These counts apply when m ≥ 2. If m = 1, the computation of Ω2mv̇0,2m requires no

operations.

6.4.3 Computing the DFT of ṗ0,2m

In terms of the modified symmetric polynomials, equation (6.11c) takes the form

ṗ0,2m(z) + p0,2m(0)z
2m = [ṗ0,m(z) + p0,m(0)z

m][ṗm,m(z) + pm,m(0)z
m] + zq̇0,m(z)u̇m,m(z),

which reduces to

ṗ0,2m(z) = ṗ0,m[ṗm,m(z) + pm,m(0)z
m] + p0,m(0)z

mṗm,m + zq̇0,m(z)u̇m,m(z).
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It follows that the DFT of ṗ0,2m is given by Ω2mṗ0,2m =

Ω2m







ṗ0,m

0m






⋆Ω2m







pm,m

0m−1






+



















p0,m(0)

−p0,m(0)
...

p0,m(0)

−p0,m(0)



















⋆Ω2m







ṗm,m

0m






+ Ω2m







q0,m

0m−1






⋆Ω2m







u̇m,m

0m






.

Since ṗ0,2m is RE symmetric, its DFT is also RE symmetric. Therefore, only the real parts

of the elements indexed 0 through m must be computed.

1. Compute the real parts of the Schur product of the DFTs:

Ω2m







ṗ0,m

0m






⋆ Ω2m







pm,m

0m−1






.

The first DFT has purely real even-indexed elements and complex odd-indexed ele-

ments with constant real part. The second DFT has purely real even-indexed elements

and purely imaginary odd-indexed elements. The real parts of the Schur product re-

quire 1 real multiplication per element. [(m+ 1)µR]
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2. Compute the real parts of the Schur product:



















p0,m(0)

−p0,m(0)
...

p0,m(0)

−p0,m(0)



















⋆ Ω2m







ṗm,m

0m






.

As above, the DFT on the right has purely real even-indexed elements and complex

odd-indexed elements with constant real part.

(a) The elements indexed 0, 2, . . . , m are each require 1 real multiplication. [(m
2
+

1)µR]

(b) Because the real parts of the odd-indexed elements of the DFT of the zero-padded

ṗm,m are constant, the elements indexed 1, 3, . . . , m − 1 are constant and only

require a single real multiplication. [1µR]

3. Compute the real parts of the Schur product of the DFTs:

Ω2m







q0,m

0m−1






⋆ Ω2m







u̇m,m

0m






.

(a) The 0-indexed elements of both DFTs are real. [1µR]



144

(b) The elements indexed 1 through m − 1 each require the real part of a complex

multiplication. [(2m− 2)µR + (m− 1)αR]

(c) The m-indexed element is zero. No work is required.

4. Add the real parts of the Schur products. This requires 1 real addition for the m-

indexed element and 2 real additions for each of the elements indexed 0 through m−1.

[(2m+ 1)αR]

The numbers of arithmetic operations required by the procedure described above are

(
7m

2
+ 2

)

µR + 3mαR.

These counts apply when m ≥ 2. If m = 1, the computation of Ω2mṗ0,2m requires 2 multi-

plications and 3 additions.

6.4.4 Computing the DFT of q̇0,2m

In terms of the modified symmetric polynomials, equation (6.11d) takes the form

zq̇0,2m(z) = [ṗ0,m(z) + p0,m(0)z
m]zq̇m,m(z) + zq̇0,m(z)v̇m,m(z),

which reduces to

q̇0,2m(z) = [ṗ0,m(z) + p0,m(0)z
m]q̇m,m(z) + q̇0,m(z)v̇m,m(z).
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It follows that the DFT of q̇0,2m is given by

Ω2mq̇0,2m = Ω2m







p0,m

0m−1






⋆ Ω2m







q̇m,m

0m







+ Ω2m







q̇0,m

0m






⋆ Ω2m







v̇m,m

0m






.

Since the m-indexed element of the DFT of q̇0,2m is zero, only elements 0 through m − 1

must be computed.

1. Compute the Schur product of the DFTs:

Ω2m







p0,m

0m−1






⋆ Ω2m







q̇m,m

0m






.

The DFT of the zero-padded p0,m, is a vector whose even-indexed elements are purely

real and whose odd-indexed elements are purely imaginary.

(a) The 0-indexed elements of both DFTs are real. [1µR]

(b) The elements indexed 2, 4, . . . , m−2 each require a real-by-complex multiplication.

[(m− 2)µR]

(c) The elements indexed 1, 3, . . . , m− 1 each require an imaginary-by-complex mul-

tiplication. [mµR]
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2. Compute the Schur product of the DFTs:

Ω2m







q̇0,m

0m






⋆ Ω2m







v̇m,m

0m






.

The DFT of the zero-padded vm,m, is a vector whose even-indexed elements are purely

real and whose odd-indexed elements are purely imaginary.

(a) The 0-indexed elements of both DFTs are real. [1µR]

(b) The elements indexed 2, 4, . . . , m−2 each require a complex-by-real multiplication.

[(m− 2)µR]

(c) The elements indexed 1, 3, . . . , m− 1 each require an complex-by-imaginary mul-

tiplication. [mµR]

3. Compute the sum of the Schur products.

(a) The 0-indexed elements are real. [1αR]

(b) The elements indexed 1 through m − 1 each require a complex addition. [(m −

1)αC]

The numbers of arithmetic operations required by the procedure described above are

(4m− 2)µR + (2m− 1)αR.
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These counts apply when m ≥ 2. If m = 1, the computation of Ω2mq̇0,2m requires no

operations.

6.5 The Implementation

In the preceding sections, the details of the individual steps of an FFT-based implemen-

tation of the DCSSA were described. In this section, the overall implementation is described

and its operation count is derived. The following technical lemma will be required in the

derivation of the operation count.

Lemma 6.1. Suppose n and n0 are powers of two. If ψ is a function such that ψ(n) =

2ψ(n/2) + 2an log2 n + bn + c for n > n0, then

ψ(n) = an(log2 n)
2 + (a+ b)n log2 n + dn− c,

where d is determined by the initial value ψ(n0).

Proof. The lemma is easily verified by induction or derived from the first-order linear differ-

ence equation for ψν = ψ(2ν).

As presented in Chapter 5, Algorithm 5.1 is initialized with the one-term truncated split

Schur functions h
(1)
−1 and h

(1)
0 and the (0, 1)-polynomials p0,1, q0,1, u0,1, and v0,1. Because

several of the operation counts for the individual steps described above are valid only for

vectors of length 4 or greater, it makes sense to rewrite the initialization stage so that the
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algorithm is initialized with four-term truncated split Schur functions and (0, 4)-polynomials.

This has the additional benefit of improving the algorithm’s efficiency.

The following procedure describes a superfast implementation of Algorithm 5.1. At each

step, maximum operation counts are given in brackets. Ψ(m) represents the number of

floating-point operations required to obtain the (·, m)-symmetric polynomials. A formula

for Ψ(m) will be derived below.

Initialization

The four-step initialization stage proceeds follows. The first initialization coincides with

k = 0.

Step 1: Starting with the four-term split Schur functions h
(4)
k−1 and h

(4)
k , use the split Schur

algorithm to compute the qC-parameters ζk, ζk+1, ζk+2, and ζk+3. Specifically,

ζk = h
(1)
k−1/h

(1)
k

and

h
(3)
k+1(z) = ζkh

(3)
k (z) + 1

z

[

ζkh
(4)
k (z)− h(4)k−1(z)

]

, ζk+1 = h
(1)
k /h

(1)
k+1

h
(2)
k+2(z) = ζk+1h

(2)
k+1(z) +

1
z

[

ζk+1h
(3)
k+1(z)− h

(3)
k (z)

]

, ζk+2 = h
(1)
k+1/h

(1)
k+2

h
(1)
k+3(z) = ζk+2h

(1)
k+2(z) +

1
z

[

ζk+2h
(2)
k+2(z)− h

(2)
k+1(z)

]

, ζk+3 = h
(1)
k+2/h

(1)
k+3.

[6µR + 12αR + 4 δR]
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Step 2: Use recurrence relations (5.1) to obtain pk,4, qk,4, uk,4 and vk,4, and thereby obtain

ṗk,4, q̇k,4, u̇k,4, and v̇k,4. It is tedious, but easy to verify that the recurrence relations

give

ṗk,4 =















ζk ζk+1 ζk+2 ζk+3

4 ζk ζk+1 ζk+2 ζk+3 − ζk+2 ζk+3 − ζk ζk+3 − ζk ζk+1

6 ζk ζk+1 ζk+2 ζk+3 − 2 ζk+2 ζk+3 − 2 ζk ζk+3 − 2 ζk ζk+1 + 1

4 ζk ζk+1 ζk+2 ζk+3 − ζk+2 ζk+3 − ζk ζk+3 − ζk ζk+1















,

q̇k,4 =















−ζk ζk+1 ζk+2

−3 ζk ζk+1 ζk+2 + ζk+2 + ζk

−3 ζk ζk+1 ζk+2 + ζk+2 + ζk

−ζk ζk+1 ζk+2















,

u̇k,4 =















ζk+1 ζk+2 ζk+3

3 ζk+1 ζk+2 ζk+3 − ζk+3 − ζk+1

3 ζk+1 ζk+2 ζk+3 − ζk+3 − ζk+1

ζk+1 ζk+2 ζk+3















,

and

v̇k,4 =















0

−ζk+1 ζk+2

−2 ζk+1 ζk+2 + 1

−ζk+1 ζk+2















.
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These symmetric vectors can be computed directly from the formulas above in far fewer

operations than required by the recurrence relations, especially if certain products are

temporarily stored rather than recomputed. [13µR + 10αR]

Step 3: Use matrix multiplication to directly compute the DFT of each symmetric vector

above. [4µR + 10αR]

Step 4: Increment the counter, k, by four after each initialization: k = k + 4

The total numbers of arithmetic operations required by the initialization stage are

23µR + 32αR + 4 δR.

Therefore 59 flops are required for the four-step initialization, i.e., Ψ(4) = 59.

Main loop

After the four-step initialization stage, the main loop of the algorithm proceeds with

m = 4, 8, 16, . . . , 2N−1.

Step 0: Form ≥ 4, assume that the DFTs of u̇0,m, v̇0,m, ṗ0,m, and q̇0,m have been computed.

[Ψ(m)]

Step 1: Compute the h
(m)
m−1 and h

(m)
m from h

(2m)
−1 and h

(2m)
0 .

a.) Obtain the symmetric vectors u̇0,m, v̇0,m, ṗ0,m, and q̇0,m by computing the inverse

transforms of the DFTs in Step 0. This requires 2 RDCTBs and 2 RQETBs of

length m. [2ψ5(m) + 2ψ7(m)]
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b.) Zero pad each symmetric to length 2m and compute the DFTs. (See Sections

6.2.2 and 6.2.3.) [(6m− 14)µR + (6m− 12)αR + 2ψ1(
m
4
) + 2ψ4(

m
2
) + 2ψ6(

m
2
)]

c.) Obtain the DFTs of the zero-padded p0,m and q0,m from those of ṗ0,m and q̇0,m.

(See Section 6.2.4.) [(m
2
+ 1)αR]

d.) Use expressions (6.9) and (6.10) to obtain h
(m)
m−1 and h

(m)
m . (See Sections 6.3.1 and

6.3.2.) [(12m− 6)µR + (8m− 6)αR + 2ψ2(2m) + 2ψ3(2m)]

Step 2: Using h
(m)
m−1 and h

(m)
m as a new set of initial split Schur functions, compute the DFTs

of u̇m,m, v̇m,m, ṗm,m, and q̇m,m from h
(m)
m−1 and h

(m)
m just as u̇0,m, v̇0,m, ṗ0,m, and q̇0,m

were computed from h
(m)
−1 and h

(m)
0 . [Ψ(m)]

Step 3: Compute the DFTs of u̇0,2m, v̇0,2m, ṗ0,2m, and q̇0,2m.

a.) Obtain the symmetric vectors u̇m,m, v̇m,m, ṗm,m, and q̇m,m by computing the

inverse transforms of the DFTs in Step 2. This requires 2 RDCTBs and 2 RQETBs

of length m. [2ψ5(m) + 2ψ7(m)]

b.) Zero pad each symmetric to length 2m and compute the DFTs. (See Sections

6.2.2 and 6.2.3.) [(6m− 14)µR + (6m− 12)αR + 2ψ1(
m
4
) + 2ψ4(

m
2
) + 2ψ6(

m
2
)]

c.) Obtain the DFTs of the zero-padded pm,m and qm,m from those of ṗm,m and q̇m,m.

(See Section 6.2.4.) [(m
2
+ 1)αR]

d.) Use the techniques outlined in Section 6.4 to compute Ω2mu̇0,2m, Ω2mv̇0,2m, Ω2mṗ0,2m,

and Ω2mq̇0,2m. [(
29m
2
− 2)µR + (9m− 3)αR]
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The total numbers of arithmetic operations required by one step of the main loop are

2Ψ(m) + 4ψ1

(m

4

)

+ 2ψ2(2m) + 2ψ3(2m) + 4ψ4

(m

2

)

+ 4ψ5(m)

+4ψ6

(m

2

)

+ 4ψ7(m) +

(
77m

2
− 36

)

µR + (30m− 31)αR.

These counts reduce to

2Ψ(m) + (8m log2m+ 26m− 4)µR +

(

24m log2m+
19m

2
+ 9

)

αR + (8m+ 4) δR

= 2Ψ(m) + 32m log2m+
87m

2
+ 9.

After traversing the main loop, the (0, 2m)-symmetric polynomials have been computed

from the (0, m)- and (m,m)-polynomials. Therefore

Ψ(2m) = 2Ψ(m) + 32m log2m+
87m

2
+ 9.

It follows from Lemma 6.1 and the initial condition Ψ(4) = 59 that

Ψ(m) = 8m (log2m)2 +
55m

4
log2m−

115m

4
− 9.

The operation count given above is for the computations of Ωmu̇0,m, Ωmv̇0,m, Ωmṗ0,m,

and Ωmq̇0,m and the qC-parameters ζ0, ζ1, . . . , ζm−1. When the main loop terminates, these

have been computed for m = 2N .
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At this point, ṗ0,m and q̇0,m must be obtained from inverse transforms (1 RDCTB and 1

RQEBT) at a cost of

ψ5(m) + ψ7(m) =

(
m

2
logm+

3m

4
− 2

)

µR +

(
3m

2
− 2

)

αR + (m+ 1) δR

or (2m log2m−7m/4−3) flops. Finally, several more operations are required to recover the

sequence of Schur parameters, the final Szegő polynomial, and the final prediction error. The

recovery of these quantities is described in Algorithm 5.3. In a real-valued implementation

of Algorithm 5.3, ρm−1, δm−1, and γ1, γ2, . . . , γm−1 can be obtained from p0,m q0,m, and

ζ0, ζ1, . . . , ζm−1 in

3mµR + (4m− 3)αR + 3mδR = 10m− 3 flops.

(Here the polynomial division by z− 1 is counted as m− 1 additions via synthetic division.)

Notice that u0,m and v0,m are not required for the computation of the Szegő polynomial

ρm−1. Thus, in the last iteration of the main loop of Algorithm 5.1, the computations of

Ωmu̇0,m and Ωmv̇0,m can be skipped, saving a total of 11m/2 − 4 operations (see Sections

6.4.1 and 6.4.2).

The observations and flop counts above lead to the following result.

Theorem 6.1. Suppose n is a power of two with n > 4 and Mn is a symmetric positive

definite Toeplitz matrix. Using the divide-and-conquer Split Schur algorithm, the computation
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of the corresponding Schur parameters, final Szegő polynomial, and final prediction error

requires at most

8n (log2 n)
2 + 15.75n log2 n− 26n− 11

real arithmetic operations.

6.6 A Faster Implementation

The flop count of the superfast implementation described above can be significantly

reduced by taking advantage of the determinant formula (5.6):

vk,m(z)pk,m(z)− uk,m(z)qk,m(z) = zm.

This equation defines pk,m in terms of the other symmetric polynomials via the formula

pk,m(z) =
zm + uk,m(z)qk,m(z)

vk,m(z)
.

Written in terms of the modified symmetric polynomials, the formula takes the form

ṗk,m(z) + pk,m(0)z
m =

zm + u̇k,m(z)zq̇k,m(z)

v̇k,m(z)
. (6.12)

The polynomial division required by (6.12) is equivalent to the solution of a circulant sys-

tem or a vector deconvolution (see Section 2.1.2). Thus, the computation can be carried out
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in the transform domain using only element-by-element division. In practice, this provides

the significant advantage of eliminating two length-m FFTs and four length-m/2 FFTs per

step through the algorithm’s main loop, while only adding the O(m) flops associated with

the use (6.12) in the transform domain. Of course, any one of the symmetric polynomials

could be computed from the other three. In practice, however, there is a benefit to dividing

by v̇k,m—as described in Section 6.2.3, the DFT of the zero-padded coefficient vector of v̇k,m

has purely real even-indexed elements and purely imaginary odd-indexed elements.

In order to derive a flop count for the determinant formula, first notice that the formula

can be rearranged,transformed, and written in terms of convolutions to give the following:

Ω2m







v̇k,m

0m






⋆ Ω2m







pk,m

0m−1







=



















1

−1
...

1

−1



















+ Ω2m







u̇k,m

0m






⋆ Ω2m







qk,m

0m−1






.

The DFT of the zero-padded pk,m has purely real even-indexed elements and complex odd-

indexed elements whose real parts are constant. It can be obtained by first computing the

right-hand side of the equation above and then performing deconvolution with element-wise

division. Because the DFT is conjugate symmetric, only elements 0 through m must be

computed.
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Assuming that the DFTs of the zero-padded symmetric vectors have been computed, the

following steps describe the computation of the the transform of the zero-padded pk,m.

1. Compute the 0-indexed element. Because the 0-indexed elements of the DFTs are

real, this requires one real multiplication, one real addition by 1, and one real division.

[1µR + 1αR + 1 δR]

2. Compute the m-indexed element. For m > 2, this is simply the reciprocal of the

m-indexed element of the DFT of the zero-padded v̇k,m. [1 δR]

3. Compute the elements indexed 2, 4, . . . , m− 2. These are purely real, and the compu-

tation of each requires the real part of a complex multiplication, a real addition by 1,

and a real division. [(m− 2)µR + (m− 2)αR + 1
2
(m− 2) δR]

4. Compute the real parts of the elements indexed 1, 3, . . . , m− 1. Because the real parts

of the odd-indexed elements have the same (constant) value, these can be computed,

once and for all, from the imaginary part of a single complex multiplication, followed

by a purely imaginary division. [2µR + 1αR + 1 δR]

5. Compute the imaginary parts of the elements indexed 1, 3, . . . , m−1. The computation

of each requires the real part of a complex multiplication, a real addition by 1, and a

purely imaginary division. [mµR +mαR + m
2
δR]

The numbers of arithmetic operations required by this procedure are

(2m+ 1)µR + 2mαR + (m+ 2) δR.
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Thus, the transform of the zero-padded pk,m can be obtained from the transforms of the

other vectors in 5m+3 operations. By reversing the procedure described in Section 6.2.4, an

additional m/2+1 real subtractions are required to obtain the transform of the zero-padded

ṗk,m.

At this point, the faster DCSSA implementation can be described and its operation count

derived.

Initialization

The four-step initialization stage proceeds exactly as described in Section 6.5 with the

exception that ṗk,4 and its transform need not be computed. The total numbers of arithmetic

operations required by the new, streamlined initialization stage are

15µR + 23αR + 4 δR.

Therefore 42 flops are required for the initialization, i.e., Ψ(4) = 42.

Main loop

After the four-step initialization stage, the main loop of the algorithm proceeds with

m = 4, 8, 16, . . . , 2N−1.

Step 0: For m ≥ 4, assume that the DFTs of u̇0,m, v̇0,m, and q̇0,m have been computed.

[Ψ(m)]

Step 1: Compute the h
(m)
m−1 and h

(m)
m from h

(2m)
−1 and h

(2m)
0 .
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a.) Obtain the symmetric vectors u̇0,m, v̇0,m, and q̇0,m by computing the inverse trans-

forms of the DFTs in Step 0. This requires 1 RDCTB and 2 RQETBs of length

m. [ψ5(m) + 2ψ7(m)]

b.) Zero pad each symmetric vector to length 2m and compute the DFTs. (See

Sections 6.2.2 and 6.2.3.) [(5m−11)µR+(5m−8)αR+2ψ1(
m
4
)+ψ4(

m
2
)+ψ6(

m
2
)]

c.) Obtain the DFT of the zero-padded q0,m from that of q̇0,m. (See Section 6.2.4.)

No work is required.

d.) Use the determinant formula in the transform domain to compute the DFT of the

zero-padded p0,m. [(2m+ 1)µR + 2mαR + (m+ 2) δR]

e.) Obtain the DFT of the zero-padded ṗ0,m from that of p0,m. (See Section 6.2.4.)

[(m
2
+ 1)αR]

f.) Use expressions (6.9) and (6.10) to obtain h
(m)
m−1 and h

(m)
m . (See Sections 6.3.1 and

6.3.2.) [(12m− 6)µR + (8m− 6)αR + 2ψ2(2m) + 2ψ3(2m)]

Step 2: Using h
(m)
m−1 and h

(m)
m as a new set of initial split Schur functions, compute the DFTs

of u̇m,m, v̇m,m, and q̇m,m from h
(m)
m−1 and h

(m)
m just as u̇0,m, v̇0,m, and q̇0,m were computed

from h
(m)
−1 and h

(m)
0 . [Ψ(m)]

Step 3: Compute the DFTs of u̇0,2m, v̇0,2m, and q̇0,2m.

a.) Obtain the symmetric vectors u̇m,m, v̇m,m, and q̇m,m by computing the inverse

transforms of the DFTs in Step 2. This requires 1 RDCTB and 2 RQETBs of

length m. [ψ5(m) + 2ψ7(m)]
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b.) Zero pad each symmetric vector to length 2m and compute the DFTs. (See

Sections 6.2.2 and 6.2.3.) [(5m−11)µR+(5m−8)αR+2ψ1(
m
4
)+ψ4(

m
2
)+ψ6(

m
2
)]

c.) Obtain the DFT of the zero-padded qm,m from that of q̇m,m. (See Section 6.2.4.)

No work is required.

d.) Use the determinant formula in the transform domain to compute the DFT of the

zero-padded pm,m. [(2m+ 1)µR + 2mαR + (m+ 2) δR]

e.) Obtain the DFT of the zero-padded ṗm,m from that of pm,m. (See Section 6.2.4.)

[(m
2
+ 1)αR]

f.) Use the techniques outlined in Section 6.4 to compute Ω2mu̇0,2m, Ω2mv̇0,2m, and

Ω2mq̇0,2m. [(11m− 4)µR + (6m− 3)αR]

The total numbers of arithmetic operations required by one step of the main loop are

2Ψ(m) + 4ψ1

(m

4

)

+ 2ψ2(2m) + 2ψ3(2m) + 2ψ4

(m

2

)

+ 2ψ5(m)

+2ψ6

(m

2

)

+ 4ψ7(m) + (37m− 30)µR + (29m− 23)αR + (2m+ 4) δR.

These counts reduce to

2Ψ(m) + (7m log2m+
105m

4
− 8)µR +

(

21m log2m+
41m

4
+ 7

)

αR + (9m+ 6) δR

= 2Ψ(m) + 28m log2m+
91m

2
+ 5.
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After one step through the main loop, the (0, 2m)-symmetric polynomials have been

computed. Therefore

Ψ(2m) = 2Ψ(m) + 28m log2m+
91m

2
+ 5.

It follows from Lemma 6.1 and the initial condition Ψ(4) = 42 that

Ψ(m) = 7m (log2m)2 +
63

4
m log2m−

201m

4
+ 5.

The operation count given above is for the computations of Ωmu̇0,m, Ωmv̇0,m, and Ωmq̇0,m,

and the qC-parameters ζ0, ζ1, . . . , ζm−1. When the main loop terminates, these have been

computed for m = 2N . However, the remaining vector, Ωmṗ0,m (with m = 2N), has not yet

been computed. It can be obtained by using the techniques described in Section 6.4.3 with

an operation count of
(
7m

4
+ 2

)

µR +
3m

2
αR.

From this point, the implementation mirrors that given in Section 6.5. Inverse transforms,

Schur parameters, and the final Szegő polynomial must be computed at a total cost of

2m log2m+33m/4−6 flops, while the computations of Ωmu̇0,m and Ωmv̇0,m can be eliminated

at a savings of 11m/2 − 4 flops. These observations and flop counts lead to the following

result.
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Theorem 6.2. Suppose n is a power of two with n > 4 and Mn is a symmetric posi-

tive definite Toeplitz matrix. Using the divide-and-conquer Split Schur algorithm with the

determinant formula, the computation of the corresponding Schur parameters, final Szegő

polynomial, and final prediction error requires at most

7n (log2 n)
2 + 17.75n log2 n− 44.25n+ 5

real arithmetic operations.

A final caveat is in order. Although the determinant formula uniquely defines one poly-

nomial in terms of the others, the element-by-element division associated with its use in

the transform domain can be problematic. At any stage of the computation, if any one of

the elements of the DFT of the zero-padded v̇k,m is zero or numerically small, the division

could be catastrophic. A practical implementation of the algorithm should guard against this

failure. As v̇k,m is computed, zero-padded, and transformed, the magnitude of its elements

should be compared against a lower threshold. If an unacceptably small element is found,

the determinant formula should not be used at that particular step of the process. In this

case, a work-around should be developed to directly compute ṗk,m. The resulting hybrid

algorithm would have a flop count somewhere between those given by Theorems 6.1 and 6.2.



CHAPTER 7

NUMERICAL TESTS

In the previous chapter, a superfast implementation of the divide-and-conquer split Schur

algorithm (DCSSA) was presented. The original implementation (version A) requires approx-

imately 8n (log2 n)
2 flops, while the modified version (version B) makes use of the determinant

formula (5.6) to reduce the flop count to approximately 7n (log2 n)
2. These implementations

have been coded in the C++ programming language1. The coded versions use the double

precision, double, data type, in which floating-point numbers are stored in 8 bytes and the

machine epsilon is approximately 2.22× 10−16. The results of several numerical experiments

are presented in this chapter.

Numerical experiments involving four different test matrices are described below. Each

test matrix is a real symmetric positive definite Toeplitz matrix whose order is a power of

two. In each test, the accuracy of the algorithm is measured in a number of different ways.

First, the Yule-Walker residual is computed. If ρ̃n(z) =
∑n

j=0 r̃j,nz
j denotes the computed

1A slower, non-FFT, implementation was also coded and tested in the computer algebra system Maxima.
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nth Szegő polynomial associated with the (n+1)× (n+ 1) Toeplitz matrix Mn+1, then this

residual vector is given by

Resid =Mn















r̃0,n

r̃1,n

...

r̃n−1,n















+















mn

mn−1

...

m1















.

Also computed in each test are the errors in the computed Szegő polynomials, Schur pa-

rameters, split Levinson polynomials, and qC-parameters. In some cases, the computed

values are compared to known exact values. In other cases, “exact” values are obtained

from other algorithms using the extended precision, long double, data type (floating point

numbers are stored in 16 bytes and the machine epsilon is approximately 1.08× 10−19, com-

pliant with IEEE 754). In these cases, “exact” Szegő polynomials and Schur parameters

are obtained from an extended-precision implementation of the Levinson-Durbin algorithm

(Algorithm 2.1). The “exact” split Levinson polynomials are obtained via formulas (3.10)

and (5.3) from the Szegő polynomials. Finally, the “exact” qC-parameters are obtained from

an extended precision implementation of the split Schur algorithm (SSA) (Algorithm 4.2).

All “computed” values in all tests are obtained from the double-precision implementations,

version A or version B, of the DCSSA (Algorithm 5.3).
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The accuracy tests use the vector 1-norm to measure the magnitude of the residual and

error vectors. Recall that for x = [x1, x2, . . . , xn]
T , the 1-norm is given by

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|.

In the tables that follow, the norms of the Yule-Walker residual, the errors in the coefficients

of the final Szegő and split Levinson polynomials, and the errors in the Schur and qC-

parameters are displayed. The tilde is used to denote a computed value. All numerical tests

were conducted on an ASUS CM6850 Series PC with an Intel Core i5–2320 CPU. C++ code

was compiled with the 64-bit TDM-GCC compiler (version 4.8.1).

7.1 Test Matrix 1

In the first set of tests, the test matrix is a random, strictly diagonally dominant, sym-

metric Toeplitz matrix of order K = 2n with 1’s along the main diagonal. The elements of

the first column are given by

mj =







1, j = 0

rand(−0.999
K−1

, 0.999
K−1

), j = 1, 2, . . . , K − 1,

where rand(a, b) denotes a random number from the uniform distribution on (a, b).
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It is well known that strictly diagonally dominant, symmetric matrices with positive

diagonal elements are positive definite [38]. It is also likely that these matrices are well

conditioned—the off-diagonal elements are such that the deleted row sums should be ap-

proximately 1/2 and subsequently, Geršgorin discs would put the eigenvalues between 1/2

and 3/2, resulting in a 2-norm condition number of less than 3.

The first test used only version A (without the determinant formula) of the DCSSA. The

results are summarized in Table 7.1. For the sake of comparison, the split Levinson algorithm

(SLA) (Algorithm 3.1) was also tested. Some corresponding errors in the double-precision

SLA are summarized in Table 7.2.

Table 7.1: Errors in DCSSA (version A) associated with test matrix 1

Order, K ‖Resid‖ ‖γ̃ − γ‖ ‖ρ̃K − ρK‖ ‖p̃K+1 − pK+1‖ ‖ζ̃ − ζ‖
8 5.76e-15 1.34e-15 7.18e-15 1.42e-15 1.67e-15
16 4.43e-14 6.80e-15 4.50e-14 4.11e-14 5.00e-15
32 9.99e-14 1.80e-14 1.07e-13 3.71e-14 1.32e-14
64 3.96e-12 6.12e-14 4.17e-12 9.68e-13 1.45e-13
128 1.22e-11 2.67e-13 7.38e-11 1.22e-11 2.55e-13
256 5.43e-11 1.42e-12 2.12e-10 5.43e-11 7.92e-13
512 1.63e-10 4.60e-12 9.12e-10 1.63e-10 1.49e-11
1024 4.76e-10 1.86e-11 6.22e-09 4.76e-10 4.90e-11
2048 1.82e-08 1.04e-10 4.77e-08 1.82e-08 1.89e-10
4096 3.90e-07 1.55e-09 3.36e-07 3.90e-07 6.24e-10
8192 8.81e-07 5.47e-09 3.78e-06 8.81e-07 1.63e-08
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Table 7.2: Errors in SLA associated with test matrix 1

Order, K ‖p̃K+1 − pK+1‖ ‖ζ̃ − ζ‖
8 1.85e-15 1.44e-15
16 2.42e-15 5.66e-15
32 7.84e-15 1.47e-14
64 4.93e-14 8.43e-14
128 8.33e-14 5.77e-13
256 6.17e-13 2.96e-12
512 1.26e-12 9.66e-12
1024 1.53e-12 2.40e-11
2048 4.81e-12 2.77e-10
4096 2.89e-11 1.12e-09
8192 3.74e-11 7.39e-09

7.2 Test Matrix 2

The matrices for test 2 are obtained from the Fourier coefficients of the positive, even

function f(x) = x2 + 1 on [−π, π]. Specifically, the elements of the first column of the test

matrix MK are given by

m0 =
1

2π

∫ π

−π

f(x) dx =
π2 + 3

3
,

mj =
1

2π

∫ π

−π

f(x) cos(jx) dx =
2(−1)j
j2

, j = 1, 2, . . . , K − 1.

It is known that the eigenvalues of such matrices are bounded by the minimum and maximum

values of f [35]. Thus, for any K, MK is well conditioned, with its 2-norm condition number

not exceeding π2 + 1.

The results from DCSSA version A are summarized in Table 7.3. Those from DCSSA

version B (with determinant formula) are summarized in Table 7.4. Recall that the use of
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the determinant formula in version B requires division by the elements of the DFT of the

zero-padded v̇k,m. The minimum divisor encountered in this division is listed in Table 7.4.

Table 7.3: Errors in DCSSA (version A) associated with test matrix 2

Order, K ‖Resid‖ ‖γ̃ − γ‖ ‖ρ̃K − ρK‖ ‖p̃K+1 − pK+1‖ ‖ζ̃ − ζ‖
8 6.61e-15 8.21e-16 3.80e-15 1.72e-15 2.75e-15
16 9.56e-14 2.72e-15 7.99e-14 1.20e-14 9.05e-15
32 1.70e-12 7.89e-15 1.56e-12 1.35e-13 4.03e-14
64 1.51e-11 7.09e-14 1.45e-11 4.57e-12 1.86e-13
128 2.00e-11 1.93e-13 1.98e-11 2.65e-11 7.26e-13
256 3.72e-10 1.12e-12 3.68e-10 8.90e-11 2.10e-12
512 7.47e-10 8.41e-12 7.44e-10 4.29e-10 1.85e-11
1024 1.11e-08 1.39e-11 1.11e-08 2.24e-09 1.69e-10
2048 5.19e-08 1.54e-10 5.18e-08 1.08e-08 5.06e-10
4096 1.62e-06 8.74e-10 1.62e-06 1.09e-07 2.94e-09
8192 1.23e-05 2.69e-10 1.22e-06 6.03e-06 1.93e-08

Table 7.4: Errors in DCSSA (version B) associated with test matrix 2

Order, K ‖Resid‖ ‖γ̃ − γ‖ ‖ρ̃K − ρK‖ ‖p̃K+1 − pK+1‖ ‖ζ̃ − ζ‖ Min divisor

8 1.53e-14 8.01e-16 1.09e-14 1.85e-15 3.64e-15 0.422
16 6.07e-14 6.07e-15 5.29e-14 4.28e-14 1.92e-14 0.163
32 3.63e-13 2.13e-14 3.25e-13 2.68e-13 3.21e-13 0.101
64 5.62e-12 3.51e-13 5.62e-12 5.25e-13 2.51e-11 0.0501
128 2.07e-10 1.06e-11 2.09e-11 1.80e-11 1.75e-09 0.0254
256 3.38e-08 1.87e-09 3.16e-09 2.20e-09 6.48e-07 0.0127
512 5.96e-06 3.29e-07 5.53e-07 3.76e-07 2.29e-04 0.00635



168

7.3 Test Matrix 3

The elements of the first column of matrix 3 are given by

mj = θj
2

, j = 0, 1, . . . , K − 1,

where θ ∈ (−1, 1). These test matrices are numerically banded, with the band width deter-

mined by the choice of θ and the machine precision. The exact forms of the Schur parameters

and the Szegő polynomials are known [34]. In fact, the Schur parameters satisfy

γj = (−θ)j , j = 1, 2, . . . , K − 1.

It follows that the matrices are positive definite, and by Cybenko’s inequality (2.18), they

are fairly well conditioned for small θ. Because the exact values of the Schur parameters are

known, the exact values of the qC-parameters can be computed recursively from formulas

(4.5). Beginning with ζ0 = 1 and λ0 =∞,

λj+1 = 2ζj −
1

λj
, ζj+1 =

1

λj+1(1− (−θ)j+1)
; j = 0, 1, . . . , K − 2.

Tests were performed with θ = −0.5. Estimates computed with Scilab (version 5.3.3)

indicate that the tested matrices have condition numbers less than 18. The results from

DCSSA version A are summarized in Table 7.5. At the most basic level, the split algorithms
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can be thought of as methods for computing the qC-parameters. After all, it is this set

of parameters that gives rise to the split Levinson polynomials and the Schur parameters.

A direct comparison of the DCSSA, SLA, and SSA is given in Table 7.6. This table gives

the errors in the qC-parameters, compared to their exact values, when the different split

algorithms are applied in double precision. As can be seen, the accuracy of DCSSA version

B deteriorates rapidly.

Table 7.5: Errors in DCSSA (version A) associated with test matrix 3 with θ = −0.5

Order, K ‖Resid‖ ‖γ̃ − γ‖ ‖ρ̃K − ρK‖ ‖p̃K+1 − pK+1‖ ‖ζ̃ − ζ‖
8 2.04e-15 1.67e-15 6.45e-15 7.24e-15 9.99e-16
16 7.22e-15 1.42e-14 1.73e-14 5.15e-14 2.11e-15
32 3.86e-14 2.89e-14 2.49e-13 1.31e-13 1.21e-14
64 2.47e-13 1.09e-13 1.85e-12 7.49e-13 3.39e-14
128 8.77e-13 6.31e-13 6.88e-12 3.95e-12 1.20e-13
256 7.97e-12 1.71e-12 6.44e-11 1.69e-11 2.65e-12
512 2.27e-10 7.21e-12 1.85e-09 2.17e-10 1.08e-11
1024 2.46e-09 6.26e-11 2.02e-08 8.15e-09 3.39e-11
2048 3.98e-08 1.86e-10 3.27e-07 2.94e-08 9.92e-11
4096 2.07e-07 6.05e-10 1.71e-06 7.42e-07 3.64e-10
8192 1.46e-07 2.49e-09 1.21e-06 1.94e-06 1.54e-09
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Table 7.6: Errors in qC-parameters, ‖ζ̃ − ζ‖, from DCSSA (versions A and B), SLA, and
SSA (Test matrix 3 with θ = −0.5)

Order, K DCSSA(A) DCSSA(B) SLA SSA

8 1.20e-15 4.34e-16 1.14e-15 2.92e-16
16 2.28e-15 8.05e-15 4.21e-15 7.01e-16
32 1.21e-14 4.72e-13 9.53e-15 4.58e-15
64 3.38e-14 1.65e-11 6.10e-14 1.69e-14
128 1.19e-13 2.52e-09 2.08e-13 4.64e-14
256 2.65e-12 5.18e-07 5.01e-13 1.05e-13
512 1.08e-11 2.16e-04 1.09e-12 2.23e-13
1024 3.39e-11 1.82e-01 2.26e-12 4.59e-13
2048 9.93e-11 **** 4.61e-12 9.32e-13
4096 3.64e-10 **** 9.31e-12 1.88e-12
8192 1.54e-09 **** 1.87e-11 3.76e-12

7.4 Test Matrix 4

The final test matrices have 2’s along the main diagonal and 1’s elsewhere. Their first

columns have the form

[2, 1, 1, . . . , 1]T .

These matrices have some very nice properties as summarized in the following proposition.

Proposition 7.1. Let Mn be the symmetric Toeplitz matrix whose 1st column is the n-

dimensional vector [2, 1, 1, . . . , 1]T .

i.) The eigenvalues of Mn are n + 1, with multiplicity 1, and 1, with multiplicity n − 1.

Consequently, the 2-norm condition number is n+ 1.
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ii.) The split Levinson polynomials and qC-parameters are given by

pk(x) =
(−1)k−1 + 3

4(k + 1)

[

kxk −
k−1∑

j=1

2xj + k

]

, k = 1, 2, . . . , n,

ζk =
2(−1)k(k + 1)2

k(k + 2)
, k = 1, 2, . . . , n− 1.

iii.) The Szegő polynomials, prediction errors, and Schur parameters are given by

ρk(x) = xk −
k−1∑

j=0

xj

k + 1
, k = 0, 1, . . . , n− 1,

δk =
k + 2

k + 1
, k = 0, 1, . . . , n− 1,

γk = −
1

k + 1
, k = 1, 2, . . . , n− 1.

Proof. For part (i), notice that Mn is a circulant matrix. Therefore its eigenvalues can be

obtained from the DFT of its first column. Direct computation using (2.1a) gives

Ωn















2

1

...

1















=















n+ 1

1

...

1















.

The condition number is the ratio of greatest to least eigenvalues.
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Part (ii) is straightforward to establish by induction using Algorithm 3.1. It helps to

establish along the way that

νk =
(−1)k−1 + 3

4

(
k + 2

k + 1

)

.

Part (iii) also follows readily by induction using formulas (2.10).

As is clear from the proposition, these matrices are poorly conditioned for large n.

Nonetheless, the knowledge of their exact polynomials and parameters makes them con-

venient for testing purposes.

The results from DCSSA version A are summarized in Table 7.7. Results in this table

are based on comparison with exact values, rather than extended precision computed values.

Table 7.8 gives the errors in the qC-parameters, compared to their exact values, when the

different split algorithms are applied in double precision. Once again, the accuracy of DCSSA

version B deteriorates rapidly.
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Table 7.7: Errors in DCSSA (version A) associated with test matrix 4

Order, K ‖Resid‖ ‖γ̃ − γ‖ ‖ρ̃K − ρK‖ ‖p̃K+1 − pK+1‖ ‖ζ̃ − ζ‖
8 1.04e-14 7.91e-15 8.65e-15 8.33e-16 1.89e-15
16 1.23e-13 5.69e-14 8.07e-14 2.37e-15 6.22e-15
32 9.64e-13 4.47e-13 6.28e-13 4.86e-14 8.06e-14
64 4.44e-12 3.02e-12 4.15e-12 1.91e-13 7.11e-13
128 8.62e-11 1.78e-11 2.82e-11 2.03e-12 5.36e-12
256 3.71e-10 1.88e-10 2.33e-10 1.59e-11 1.37e-11
512 6.59e-09 1.01e-09 1.31e-09 1.90e-10 3.18e-10
1024 4.67e-08 2.45e-09 3.27e-09 3.16e-09 1.14e-08
2048 4.72e-07 1.94e-08 2.82e-08 1.69e-08 1.52e-07
4096 5.68e-06 5.69e-07 7.95e-07 2.37e-07 1.65e-06
8192 6.31e-06 5.01e-06 6.31e-06 1.16e-06 5.38e-05

Table 7.8: Errors in qC-parameters, ‖ζ̃ − ζ‖, from DCSSA (versions A and B), SLA, and
SSA (Test matrix 4)

Order, K DCSSA(A) DCSSA(B) SLA SSA

8 1.89e-15 3.44e-15 3.11e-15 2.11e-15
16 6.22e-15 1.27e-14 1.69e-14 5.00e-15
32 8.06e-14 2.11e-13 5.84e-14 5.88e-15
64 7.11e-13 1.79e-12 1.50e-13 1.82e-14
128 5.36e-12 6.98e-11 3.25e-13 5.47e-14
256 1.37e-11 4.06e-09 3.05e-12 9.38e-14
512 3.18e-10 1.73e-06 6.54e-12 5.78e-13
1024 1.14e-08 **** 3.42e-11 2.11e-12
2048 1.52e-07 **** 1.21e-10 4.59e-12
4096 1.65e-06 **** 9.34e-10 6.17e-12
8192 5.38e-05 **** 3.32e-09 1.58e-11
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The DCCSA version A was also tested with matrix 4 using the computer algebra sys-

tem Maxima (version 5.25.1). This tested implementation is a slower implementation with

computational complexity O(n2), which uses direct polynomial multiplication rather than

FFT techniques. This test was carried out for two reasons: to assess the impact of the

FFT techniques on accuracy and to experiment with different levels of precision. The results

corresponding to matrix 4 with order 1024 are shown in Table 7.9.

Table 7.9: Errors in Maxima DCSSA (version A) associated with test matrix 4 of order 1024

d-digit arithmetic ‖Resid‖ ‖p̃K+1 − pK+1‖ ‖ζ̃ − ζ‖
d = 10 2.08e-02 3.93e-05 1.35e-06
d = 15 3.07e-07 3.57e-09 3.54e-11
d = 20 2.59e-12 3.57e-14 1.12e-16
d = 25 2.00e-17 2.43e-19 1.32e-21

7.5 Discussion of Test Results

It is clear from Tables 7.4, 7.6, and 7.8 that the DCSSA version B (the implementation

making use of the determinant formula) performs very poorly as the matrix order increases.

Of course, division by small quantities is an ever-present concern in the version B implemen-

tation. While the minimum divisor was monitored in one of the tests (Table 7.4), no efforts

were made to restrict or work around the division. A hybrid algorithm, such as described at
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the end of Section 6.6, was not implemented. Based on the numerical tests, it appears that

the direct implementation of the determinant formula in version B is problematic.

Focusing on the DCSSA version A, all of the test results show a consistent steady decrease

in accuracy as the order of the matrix increases. For the most part, it appears that these

decreases in accuracy cannot be explained by the matrix conditioning. Matrices 1 and 2, for

instance, have small, bounded condition numbers, while the condition number of matrix 4

increases linearly with order. Nonetheless, the accuracy results for these matrices are very

similar.

Nearly all tests of version A show a loss of about three digits of accuracy per ten-fold

increase in the order of the matrix. This is not inconsistent with the split Levinson algorithm

residual bound, inequality (3.18), given by Krishna and Wang [45]. However, as shown in

Tables 7.2, 7.6, and 7.8, the split Levinson and split Schur algorithms tend to outperform

the DCSSA.

The decrease in accuracy does not appear to be related to the FFT-based polynomial

multiplication. This conclusion is drawn from Table 7.9, where the results associated with

slow, standard polynomial multiplication are given. With the test matrix of order 1024, the

results in this table, corresponding to d = 15, are similar to those in the appropriate row of

Table 7.7.

Table 7.9 shows that the DCSSA performs with increased accuracy when the algorithm

is implemented within increased precision. This, of course, is expected of any numerically

reliable algorithm. It does not indicate the stability of the DCSSA, but it does indicate
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that the algorithm can produce accurate results. In general, the numerical stability of the

algorithm remains questionable.



CHAPTER 8

SUMMARY AND CONCLUSIONS

This dissertation has been concerned with the direct numerical solution of Hermitian

positive definite Toeplitz systems. The contributions of this work are summarized in this

chapter. In addition, a number of related research problems are proposed for future investi-

gation.

8.1 Contributions

The most significant contributions of the research described in this dissertation are the

development and implementation of a new superfast Toeplitz solver. The divide-and-conquer

split Schur algorithm (DCSSA) is a doubling procedure applied to a continued fraction

representation of a quasi-Carathéodory function. When implemented with FFT techniques,

the new algorithm requires approximately 8n (log2 n)
2 arithmetic operations to compute the

final Szegő polynomial and all Schur parameters associated with an n × n real symmetric

positive definite Toeplitz matrix. By taking advantage of a redundancy present in some of

the intermediate quantities, the operation count can be further reduced to 7n (log2 n)
2. This

appears to be the smallest operation count of all known direct Toeplitz solvers.
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The implementation of the DCSSA requires a number of new or relatively unknown

results concerning discrete Fourier transforms (DFTs) of symmetric vectors. In particular,

the descriptions of the symmetries in the transforms of zero-padded real quarter-even and

real even vectors do not appear to be well known. Consequently, the techniques described for

exploiting the symmetry of the original vector in the computation of the DFT after padding

with zeros are new. These results are contained in Propositions 6.3–6.7.

While the split Schur algorithm has been thoroughly described in the literature, the

derivation given in Chapter 4 is unique. This derivation is based on splitting Schur functions

into their numerators and denominators, forming linear combinations, called split Schur

functions, and then processing the split Schur functions. Ratios of the split Schur functions

are called quasi-Carathéodory (qC-) functions. Viewed in light of these functions, the split

Schur algorithm is a recursive procedure for generating qC-functions, just as Schur’s classical

algorithm generates Schur functions. In this context, the qC-parameters defined in Chapter

4 are the analogs of the Schur parameters.

8.2 Future Research

While the current research has closed some doors, it has opened many others. The

following problems are left for the future.

1. Competitiveness and stability of the algorithm
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The numerical stability of the algorithm remains in question. While the weak stability

of the DCSSA version A is not ruled out by numerical tests, the rate at which its accuracy

decreases is disturbing. The accuracy comparisons with the split Levinson and split Schur

algorithms, described in Chapter 7, indicate that the DCSSA falls rather short. Similarly,

the numerical tests of Ammar and Gragg’s superfast generalized Schur algorithm [8] suggest

that in its current form, the DCSSA is not competitive with other algorithms. Future work

is required to assess the stability of the algorithm and optimize its performance.

2. Effective use of the determinant formula

It is clear from the numerical tests of the DCSSA version B that serious problems arise

with the naive use of the determinant formula (5.6) to accelerate the algorithm. Questions

abound as to how to apply the formula effectively. For instance,

a.) Which symmetric polynomial should be solved for?

b.) Could division by zero be encountered? If so, can effective work-arounds be imple-

mented?

c.) What is the best way to implement the polynomial division required by the use of the

determinant formula?

d.) Are there other (better) ways to take advantage of the redundancies implied by the

determinant formula?
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In general, a deeper understanding of the relationships and redundancies among the split

Levinson polynomials is required. (Some work along these lines has been accomplished by

Delsarte and Genin [26, 27, 28].)

3. Properties of qC-functions and qC-parameters

Schur’s classical algorithm [51], described in Section 2.2.4, provides a constructive proof

of the Carathéodory-Toeplitz theorem [1]. The split Schur algorithm provides a similar proof.

However, the properties and applications of the qC-functions and parameters that arise in

the split Schur algorithm are not well studied. The qC-parameters and Jacobi parameters

characterize the positive definite nature of a Toeplitz matrix. They can also be used to

compute Cybenko’s bounds on the condition number of a Toeplitz matrix. Are there other

useful properties and applications of the qC-functions and parameters?

4. Further properties of the DFTs of zero-padded symmetric vectors

Many applications call for the zero padding of vectors before their discrete Fourier trans-

forms are computed [14]. There are well-known techniques for exploiting symmetry in the

computation of DFTs. However, after vectors are padded with zeros, their original sym-

metry is destroyed. There appears to be little in the literature concerning the exploitation

of symmetry in zero-padding. A thorough investigation of this issue, and the subsequent

development of state-of-the-art routines, could be very useful.
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