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ABSTRACT

A DEPENDENT COMPETING RISKS MODEL

Yiqing Wang, Ph.D.
Department of Mathematical Sciences

Northern Illinois University, 2018
Sanjib Basu and Nader Ebrahimi, Co-Directors

The competing risks model considers the setting where subjects or units are exposed to multiple

risks, one of which may eventually cause the occurrence of the event, such as failure or recurrence

or death. There is a substantial literature on identifiability and inference in both parametric and

nonparametric models for competing risks. In this dissertation, we propose a parametric model

for dependent competing risks that can be motivated by a frailty approach as well as by a copula

approach. We establish identifiability conditions for this proposed model. We also consider com-

peting risks regression framework and establish identifiability and methods for statistical inference

in this framework. This proposed model has been further extended to analysis of semi-competing

data while we again establish identifiability and statistical inference. The proposed models have

been illustrated in extensive simulation studies and we apply these models to analyze competing

risks data from a Tamoxifen trial on breast cancer patients and to analyze semi-competing risks

data from a trial on tuberculous pericarditis collected in eight countries in Africa.
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CHAPTER 1

INTRODUCTION

Competing risks data are usually encountered in biomedical studies. Such data arise when an

event occurs because of several simultaneous possible causes (say K causes). The occurrence of an

event due to one specific cause precludes one from observing the occurrence of events due to the

other causes. Associated with each cause j, for j = 1, ...,K, there is a latent failure time Tj, which

is the time to the occurrence of the event from cause j. In the competing risks setting, one observes

only the minimum of the latent failure times T and a variable C indicating the cause of the event.

That is, T =min(T1, ...,TK) and C = argmin(T1, . . . ,TK). In survival analysis, T is the time to death

and C is the cause of death. Such model has been discussed by David & Moeschberger (1978) and

Cox & Oakes (1984). Competing risks models are popular not only in biomedicine but also in

economics, engineering applications (reliability analysis) and actuarial sciences. In economics, T

may be the duration of unemployment and C is the index of reason for leaving unemployment, such

as getting a job or dropping out of the workforce. Flinn & Heckman (1982) applied a competing

risks model to analyze such an unemployment problem. In engineering, for instance, T can be the

lifetime of a computer and C is the cause of failure, such as failure of power source, CPU or display.

Competing risks models in reliability have been studied by Schick & Wolverton (1978). A topic

of substantial interest in competing risks literature is the identifiability issues in latent failure time

approach related to identifying the sub-distribution of latent failure times Tj’s from the distribution

of the identified minimum.

Tsiatis (1975) and Cox (1959) showed that for any joint distribution of the failure times there

exists a joint distribution with independent failure times which gives the same distribution of the

identified minimum. Crowder (1991) showed that even when the marginal distribution of risks is
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known, the joint distribution is not identifiable. This is not a desirable property of the competing

risks model and Crowder (1991) called it the “identifiability crisis in competing risks analysis.”

Several authors explored identifiability under model restrictions. A. P. Basu & Ghosh (1978)

established identifiability of competing risks in the bivariate normal and the bivariate exponential

distributions introduced in Marshall & Olkin (1967) and Gumbel (1960). Under weak assumptions

of a known censoring time and a specified hazard ratio, Slud & Rubinstein (1983) constructed

bounds on the marginal survival function. Heckman & Honoré (1989) established identifiability

within a Cox proportional hazard model structure. Abbring & Van den Berg (2003) provided

weaker conditions for a more restrictive model. Ebrahimi et al. (2003) provided identifiability

conditions involving partial derivative of the conditional survival function of the event time given

a restricted censoring time.

There is a substantial literature on modeling the dependent structure in competing risks using

a copula. Sklar (1959) provided general results on flexibility of copula in modeling dependence.

Zheng & Klein (1995) and Rivest & Wells (2001) proposed models using the Archimedean copula

to model such dependent structure and the copula graphic estimator of marginal survival function

when the dependence parameter in the copula model is known. Klein & Moeschberger (1988)

also developed a model under the hypothesis of a known copula; more specifically, they applied a

Clayton copula with known parameters.

In this dissertation, we propose a parametric modeling of the dependence between latent failure

times T1, . . . ,TK . There are several advantages of the proposed model. First, it is flexible since the

model can handle the dependent competing risks data and the independent competing risks data

as well. Second, it can be represented via a frailty approach so that the conditional independent

property can be applied. Third, it could be motivated via a copula approach as well so that the

property of copula can be put into use. Finally, we establish conditions such that the model is

identifiable.
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The rest of this dissertation is organized as follows. In Chapter 2, we provide a literature review

of competing risks models. We introduce our new dependent competing risks model including its

representations under copula approach and frailty approach in Chapter 3. In Chapter 4, we discuss

identifiability of the proposed dependent competing risks models and establish the conditions under

which these models are identifiable. We show the performance of our model via simulation and

tamoxifen data in Chapter 5 and extend the work to semi-competing risks field with associated

simulation study and application on Mycobacterium data. In Chapter 7 we conclude with future

research plan.



CHAPTER 2

COMPETING RISKS MODEL

2.1 Introduction

Competing risks is a generalization of standard survival analysis with multiple risks, any of

which may cause the occurrence of the event. These risks “compete” with each other to become the

cause of event. That is, the event of interest occurs from the risk which occurs first. One example

of competing risks is when a patient suffers from various types of diseases simultaneously and dies

from one of these diseases. There are several methods to analyze data involving competing risks;

see for example David & Moeschberger (1978), Prentice et al. (1978), Crowder (2001), Pintilie

(2006) and many others. The two primary approaches are:

1. Cause-Specific Hazard Approach

2. Latent Failure Time Approach

In general, cause-specific hazard approach models the joint distribution of failure time and

the specific cause. There is an extension of cause-specific hazard approach which is induced by

regressors and introduced by Cox (1972). The general latent failure time approach is to model

the joint distribution of all potential failure times, including dependence modeling for competing

risks. We will first introduce the formulations of cause-specific hazard and the latent failure time

approaches, followed by competing risks via copula approaches. The dependent competing risks

models via frailty approaches will be introduced in this chapter as well. Also, competing risks

model with regressors will also be discussed.
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2.2 Cause-Specific Hazard Approach

The cause-specific hazard approach has been explored by Altshuler (1970), Chiang (1970) and

Prentice et al. (1978) and developed further by Prentice & Breslow (1978), Pepe & Mori (1993)

and Kalbfleisch & Prentice (2011). It is a popular approach in biomedical applications.

Suppose failure time T is a non-negative continuous random variable and cause C takes values

in the finite set {1, ...,K}. It is assumed that a subject can fail from one and only one cause. The

joint distribution of (T,C) is fully specified by either the cause-specific hazard function, h( j, t), or

by the cumulative incidence function, F( j, t).

The cause-specific hazard function or sub-hazard function due to cause j is defined as

h( j, t) = lim
4t→0

P(T ≤ t +4t,C = j|T > t)
4t

, f or j = 1, ...,K (2.2.1)

which is a conditional probability that the event occurs from cause j at time t, given that the event

of interest has not occurred up to time t. Some people also refer to this as the marginal hazard

function. The function h( j, t) represents the instantaneous failure rate from cause j at time t in the

presence of other competing risks.

The survival function S( j, t) of cause j, also referred to as sub-survival function, is defined as

S( j, t) = P(T > t,C = j), f or j = 1, ...,K (2.2.2)

In addition, the sub-density function corresponding to cause j is given by

f ( j, t) =− d
dt

S( j, t), f or j = 1, ...,K (2.2.3)
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and the cumulative incidence function F( j, t) from cause j is defined as

F( j, t) = P(T ≤ t,C = j) =
∫ t

0
f ( j,u)du, f or j = 1, ...K (2.2.4)

which is the probability that event will occur from cause j within time t.

The overall hazard function h(t) and the overall survival function S(t) can be presented, re-

spectively, in terms of the cause-specific functions as

h(t) = lim
Mt−→0

P(t < T ≤ t+ M t|T > t)
M t

=
K

∑
j=1

h( j, t) (2.2.5)

S(t) = P(T > t) =
K

∑
j=1

P(T > t,C = j) =
K

∑
j=1

S( j, t) (2.2.6)

The fact that the event of interest has not occurred up to time t indicates that the subject has

survival from all K risks up to time t. Hence, there is a relationship among the cause-specific

hazard function, sub-density function and overall survival function, which is

h( j, t) =
f ( j, t)
S(t)

(2.2.7)

The overall cumulative hazard function H(t) from all K risks combined is expressed in terms

of the sum of all the cause-specific cumulative hazard functions:

H(t) =
K

∑
j=1

H( j, t) (2.2.8)

where H( j, t) =
∫ t

0 h( j,u)du is the cause-specific cumulative hazard function.
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Therefore, applying the commonly used survival analysis relations, the overall survival func-

tion for the competing risk model (2.2.6) can be written as

S(t) = exp[−H(t)] = exp[−
K

∑
j=1

H( j, t)] (2.2.9)

Suppose {(ti,Ci,di), f or i = 1, ...,n} are observations from n subjects, where ti is the observed

event time of ith subject, Ci is the cause of the event of subject i, and di is a censoring indicator

which takes the value one if the event occurs to ith subject and zero otherwise. We only consider

right censoring, which implies the true failure time is greater than or equal to the observed failure

time.

The likelihood function for the competing risk model is written in terms of the sub-density

function and the overall survival function as

L = ∏
i∈E1

f (Ci, ti) ∏
i∈E2

S(ti) (2.2.10)

where E1 is the set of subjects who has experienced the event and E2 is the set of subjects who has

not experienced the event up to the follow-up time ti.



8

Further, using (2.2.7), (2.2.8) and (2.2.9), we can also write the likelihood (2.2.10) as

L = ∏
i∈E1

h(Ci, ti)S(ti)·∏
i∈E2

S(ti)

= ∏
i∈E1

h(Ci, ti)exp[−H(ti)]·∏
i∈E2

exp[−H(ti)]

= ∏
i∈E1

h(Ci, ti)· ∏
E1

⋃
E2

exp[−H(ti)]

=
n

∏
i=1

[h(Ci, ti)]di·
n

∏
i=1

exp[−H(ti)]

=
n

∏
i=1

[h(Ci, ti)]di·exp[−
K

∑
j=1

∫ ti

0
h( j,u)du]

=
n

∏
i=1

(
[h(Ci, ti)]di·

K

∏
j=1

exp[−
∫ ti

0
h( j,u)du]

)
(2.2.11)

It can be seen that the likelihood function (2.2.11) is completely expressed in terms of cause-

specific function h( j, t), j = 1, ...,K. Furthermore, the likelihood function can be factored into K

separate components as

L =
K

∏
j=1

n

∏
i=1

[h( j, ti)]di j ·exp[−
∫ ti

0
h( j,u)du] (2.2.12)

where di j = I(Ci = j), j = 1, . . . ,K. Note that each likelihood component is specifically the same

as the likelihood function that would be obtained by censoring events from all other causes. Hence,

the likelihood factorization along classical survival data approaches make it clear that each h( j, t)

is identifiable. The cause-specific hazards approach was proposed by Prentice et al. (1978) and

Kalbfleisch & Prentice (1980). Statistical inference under the cause-specific model is discussed by

Crowder (2001).

The general cause-specific approach allows for dependence among the risks within a general

dependence structure but may not provide specific modeling of dependence among the risks.
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2.3 Latent Failure Time Approach

The latent failure time approach models the potential failure time of different risks or possible

causes, it has been discussed by Cox (1959), Moeschberger & David (1971) and Gail (1975). This

model is popular in engineering applications for the study of reliability of systems.

Suppose there exist K competing risks in a study and potential failure times denoted by Tj

(where j = 1, ...,K) corresponding to each cause of event. The model is often formulated in terms

of these latent failure times T1,T2, ...,TK . Each Tj, j = 1, ...,K is a non-negative random variable.

It is also assumed that the latent failure time Tj, j = 1, ...,K is continuous and no ties occur, that is,

P(Tj = Tj∗) = 0 for j = j∗. The marginal survival is

S j(t) = P(Tj > t), j = 1, ...,K (2.3.1)

and marginal hazard function is

h j(t) =−
d
dt

logS j(t), j = 1, ...,K (2.3.2)

The marginal survival functions are known as the net survival function in demographics and

actuarial terminology. The joint survival function of T1,T2, ...,TK is defined as

S(t1, ...tK) = P(T1 > t1, ...,TK > tK)

=
∫

∞

t1
· · ·

∫
∞

tK
g(s1, ...,sK)ds1 . . .dsK (2.3.3)

where g(·) is the joint density function of T1,T2, ...,TK . The actual observed failure time T and

cause C in the competing risks setting are defined as T =min(T1,T2, ...,TK) and C = argmin(T1, . . . ,TK).
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Historically, the concept of a latent failure time was developed in Cox (1959) and Moeschberger

& David (1971) in which the failure time Tj of cause j would be observed only if all failure of

causes other than j are removed from the experimental unit or subject. This is why these are

termed as latent or potential failure times. In reliability studies, this assumption is often tenable

as the competing risks are from individual components of a system. The absence or existence of

one risk may lead to different effects of other risks which has been mentioned by Cornfield (1957).

Gail (1975) introduced a model which assumes the presence of T1,T2, ...,TK on each experimental

unit or subject under certain study conditions. The joint survival function S(·) will demonstrate

the interrelationship among the risks. The relationship between risk j and risk k could be either

dependent or independent and is expressed in terms of the stochastic dependence or independence

of Tj and Tk. The survival function of Tj is defined to be the marginal survival function as S j(t) in

2.3.1.

If all risks are independent of one other, the relationship between joint survival function and

marginal survival function can be exhibited as following:

S(t1, ..., tK) =
K

∏
j=1

S j(t j) (2.3.4)

and the survival function of T is given by

S(t) = S(t, ..., t) =
K

∏
j=1

S j(t) (2.3.5)

David & Moeschberger (1978) presented forms of the likelihood functions when all failure

times are completely observed and censoring failure times are grouped. The likelihood function

and its derivatives for independent Weibull and exponential latent failure times have also been

explored in their studies.
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It is often difficult to obtain accurate information about the marginal distributions of individual

event times or the dependence structure among them given only the observed data (T,C). Both

Tsiatis (1975) and Crowder (1991) have established that one can always construct a joint survival

function with independent failure time distributions such that it has the same cause-specific hazard

function as a joint survival function with an arbitrary dependence structure among the causes of the

event. Therefore, neither the marginal survival function S j, j = 1, ...,K nor the joint survival func-

tion S is identifiable from observed competing risks data. Further, the independence assumption of

the marginal failure times cannot be tested in this general setting.

Frailty models form an important branch of survival analysis; see the book by Duchateau &

Janssen (2007). Zheng & Klein (1995) have shown that if the copula function is known, the

marginal distributions of failure times can be identified based on competing risks observations of

time and cause. Under the case of discrete failure times, competing risks with regressor models

and parametric models can make the identifiability possible. Crowder (2001) has a detailed survey

on this topic.

2.4 Dependent Competing Risks Approach

The cause-specific approach allows an implicit model of dependence among the competing

risks. Other approaches were also developed to provide explicit dependence model among the

latent failure times of the competing risks, including:

1. Dependent Competing Risks Model Using Copula

2. Frailty Models for Dependent Competing Risks
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2.4.1 A Dependent Competing Risks Model Using Copula

Copulas have been introduced in Sklar (1959) and discussed at greater length in Sklar (1973)

and Schweizer & Sklar (1974). Copulas have been defined by Schweizer & Sklar (2011) as well,

which are used to characterize the dependence between random variables, so that a multivariate

joint distribution function is linked to its univariate margins. Various copula functions and their

properties have been discussed by Joe (1997) and Nelsen (1999). Specifically, let G be a joint (two-

dimensional) distribution function of two random variables X1,X2 and let F1, F2 be their marginal

cumulative distribution functions, respectively. Then there is a continuous function C from the unit

square [0,1]× [0,1] onto the unit interval [0,1] such that for all x1,x2,

G(x1,x2) = P(X1 ≤ x1,X2 ≤ x2) =C[F1(x1),F2(x2)] (2.4.1.1)

Such a function C is called a copula. More generally, in probability theory and statistics, a function

C(x1, ...,xm) is called a copula function if it is a multivariate probability distribution for which the

marginal probability distribution of each variable is uniformly distributed on [0,1]. That is, C(x) =

P(X1 ≤ x1, ...,Xm ≤ xm), where x = (x1, ...,xm) and each random variable Xi (where i = 1, ...,m) is

uniformly distributed on [0,1].

Sklar (1959) established that any joint distribution function G with marginal distribution func-

tion F1, ...,Fm can always be described as

G(x) =C[F1(x1), ...,Fm(xm)] (2.4.1.2)

where x=(x1, ...,xm). The copula C is unique when the marginal distribution functions F1, ...Fm are

strictly monotonically increasing. Genest & Nešlehová (2007) mentioned that when one or more

marginal distribution functions are discrete, the uniqueness is no longer true. The copula model
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2.4.1.2, nevertheless, provides a model for defining a multivariate distribution function G using an

admissible copula C. If the copula C can be presented as a product, G(x) = ∏[F1(x1), ...,Fm(xm)],

then the random variables Xi, f or i = 1, ...,m are no longer dependent.

Theorem 2.4.1. Suppose X1, ...,Xm are continuous random variables, then Xi, f or i = 1, ...,m are

independent if and only if the copula function C in 2.4.1.2 is a multiplication, that is,

G(x) =C[F1(x1), ...,Fm(xm)] =
m

∏
i=1

Fi(xi)

In many applications, the random variables of interest represent the lifetime of individuals or

objects in some population. The probability of an individual living or surviving beyond time x

is given by the survival function S(x) = P(X ≤ x) = 1−F(x). Nelsen (1999) has mentioned the

survival copulas in his research. It is a copula which links the joint survival function to its univariate

margins in a manner completely analogous to the way in which a traditional copula connects the

joint distribution function to its margins. That is, the joint survival function can be written in terms

of its margins associated with a survival copula:

S(x) = S(x1, ...,xm) =C[S1(x1), ...,Sm(xm)] (2.4.1.3)

There is a wide range of families of copulas. Archimedean copulas are popular because they

allow modeling dependence in arbitrarily high dimensions via a univariate function (Table 2.1). A

copula C is called an Archimedean copula if it admits the following expression:

C(x1, ...,xm) = ψ[ψ−1(x1)+ ...+ψ
−1(xm)] (2.4.1.4)

where ψ is a generator function and ψ−1 is its inverse function.
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Table 2.1: Examples of Archimedean Copulas

name generator ψ(t) generator inverseψ−1(t) parameter

Clayton (1+θt)−1/θ 1
θ
(t−θ−1) θ ∈ [0,∞)

Gumbel exp(−tδ) (− log t)
1
δ δ ∈ (0,1]

Moreover, ψ is a continuous, strictly decreasing and convex function such that ψ(1) = 0. More

generally, the C in 2.4.1.4 yields a copula if and only if ψ is d-monotone on [0,∞). That is, it is

d−2 times differentiable and the derivatives satisfy

(−1)k
ψ
(k)(x)≥ 0

for all x≥ 0, k = 0,1, ...,d−2, and (−1)d−2ψ(d−2)(x) is non-increasing and convex.

In this section, we will first consider a bivariate dependent competing risks model under copula

and then extend the model to multivariate case. In the bivariate case, we assume there are only two

risks that may lead to the occurrence of the event: the latent failure time T1 is the event time to risk

1, and T2 is the event time to risk 2. Note that T1 and T2 are not independent. Klein & Moeschberger

(1988) and Zheng & Klein (1995) proposed a bivariate competing risks model based on copulas

that applies to a large class of copulas, and its performance has been checked for some popular

copulas, such as the Gumbel copula (Gumbel (1960)) and Clayton model (Clayton (1978)). The

model under Gumbel copula will be mainly discussed next.
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Define S j(t) (where j = 1,2) as the marginal survival function of latent failure time Tj (where

j = 1,2). The corresponding joint survival function S(t1, t2) via the Gumbel copula is written as

S(t1, t2) = P(T1 > t1,T2 > t2)

= ψ[ψ−1(S1(t1))+ψ
−1(S2(t2))]

= exp
(
−
[
(− log[S1(t1)])

1
δ +(− log[S2(t2)])

1
δ

]δ) (2.4.1.5)

where δ ∈ (0,1] represents the positive association coefficient between T1 and T2. The parameter δ

is the degree of association and provides a one-to-one correspondence to Kendalls τ. The indepen-

dence copula, corresponding to independent competing risks, is given by C(u,v) = uv. Thus, the

case δ = 1 yields independent competing risks.

In competing risks framework, one only observes the minimum between T1 and T2, namely

T = min(T1,T2) and cause C = argmin(T1,T2). Thus, the joint survival function based on the

observed data can be written as

S(t, t) = P(T ≥ t) = P(T1 ≥ t,T2 ≥ t) (2.4.1.6)

which, for the bivariate joint survival function via Gumbel copula, is given by

S(t, t) = exp
(
−
[
(− log[S1(t)])

1
δ +(− log[S2(t)])

1
δ

]δ) (2.4.1.7)
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In order to extend the model to multivariate case, the observed data would be T = min(T1, ...,TK)

and C = argmin(T1, . . . ,TK); the corresponding multivariate joint survival function via Gumbel

copula is given by

S(t, ..., t) = ψ[ψ−1(S1(t))+ ...+ψ
−1(SK(t))]

= exp
(
−
[ K

∑
j=1

(− log[S j(t)])
1
δ

]δ) (2.4.1.8)

2.4.2 Frailty Models for Dependent Competing Risks

Another class of models, known as frailty models, can be used to model dependent compet-

ing risks as well. Frailty models are based on hazard functions and have a multiplicative frailty

factor. Assume the hazard functions of K risks share a common random effect or frailty factor Z.

The frailty factor is random and therefore a frailty distribution needs to be specified in the frailty

model. For a subject, the frailty factor Z changes over the population of subjects with a distribu-

tion function D on (0,∞). Assume for a subject that the latent failure time Tj (where j = 1, ..,K)

is conditionally independent, given a positive random variable Z. That is, (T1, . . . ,TK) |Z are con-

ditionally independent and the corresponding conditional marginal survival function of Tj, given

Z = z, is

S j(t j|z) = P(Tj > t j|Z = z) = [S0 j(t j)]
z (2.4.2.1)

where S0 j(t j) is a continuous baseline survival function. Then the marginal cumulative hazard

function of Tj|Z = z, for j = 1, ...,K, equivalently, can be written as

H j(t j|z) = H0 j(t j)·z (2.4.2.2)
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and the joint survival function conditional on Z = z can be written as

S(t1, ..., tK|z) =
K

∏
j=1

S j(t j|z) (2.4.2.3)

=
K

∏
j=1

exp[−H0 j(t j)·z]

= exp
[
− z·

K

∑
j=1

H0 j(t j)

]
(2.4.2.4)

The unconditional joint survival function can be obtained by integrating over the distribution

of frailty factor Z, which is

S(t1, ..., tK) =
∫

∞

0

K

∏
j=1

[S0 j(t j)]
zdD(z)

=
∫

∞

0
exp
(
−
{ K

∑
j=1
− logS j0(t j)

}
z
)

dD(z)

= E
[

exp
(
−
{ K

∑
j=1
− logS j0(t j)

}
z
)]

(2.4.2.5)

which can also be regarded as the moment-generating function MZ(s) of the variable Z evaluated

at s =
{

∑
K
j=1 logS0 j(t j)

}
. And the joint survival function 2.4.2.5 can also be expressed in terms

of cumulative hazard function as

S(t1, ..., tK) =
∫

∞

0
exp
[
− z·

K

∑
j=1

H0 j(t j)

]
dD(z) (2.4.2.6)

which can also be regarded as the moment-generating function MZ(s) of the variable Z evaluated

at s =−∑
K
j=1 H0 j(t j).

Under the construction of the frailty model, a multivariate distribution of dependent lifetimes of

the different components, or in other words the dependent competing risks, can be obtained. Oakes
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(1989) proposed a bivariate survival model induced by frailties. See also the book by Duchateau

& Janssen (2007) that discusses gamma, positive stable and other frailty models.

2.4.2.1 Model with Gamma Frailty

If the frailty Z follows a Gamma distribution with scale parameter α and shape parameter β,

where α > 0, β > 0, then the unconditional joint distribution function is given as the moment-

generating function MZ(s) of the variable Z evaluated at s =
{

∑
K
j=1 logS0 j(t j)

}
, which is

S(t1, ..., tK) =
[

1+α

{ K

∑
j=1
− logS0 j(t j)

}]−β

(2.4.2.1.1)

for
{

∑
K
j=1 logS0 j(t j)

}
< 1

α
.

2.4.2.2 Model with Positive Stable Frailty

If the frailty factor Z follows a positive stable distribution indexed by the parameter δ with the

Laplace transform given by L(s) = E[exp(−sZ)] = exp(−sδ), where δ ∈ (0,1], then the uncon-

ditional joint survival function can be expressed as the moment-generating function MZ(s) of the

variable Z evaluated at s = ∑
K
j=1 logS0 j(t j), which is

S(t1, ..., tK) = exp
[
−
{ K

∑
j=1

logS0 j(t j)

}δ]
(2.4.2.2.1)

More details regarding the properties of the stable distribution can be found in the book by

Duchateau & Janssen (2007).
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2.5 Competing Risks Regression Approach

The widely popular proportional hazards (PH) regression model for lifetime data was proposed

by Cox (1972). It can be utilized to model effects of regression variables on cause-specific hazard

functions, see in Prentice & Breslow (1978) and Holt (1978).

Suppose the observed data for the ith subject is (ti,Ci,δi,xi), where i = 1, ...,n; ti denotes the

observed failure time to event for subject i and Ci is the corresponding cause of the event. The

indicator variable δi with value 1 implies that the observed failure time is uncensored and value

0 otherwise. The possible covariate xi is a set of explanatory variables for subject i, which repre-

sents a collection of predictor variables that is being modeled to predict a subject’s hazard. The

proportional hazards regression model for cause-specific hazard can be written as

h( j, t|x) = h0( j, t) · exp(x′ηj), f or j = 1, ...,K (2.5.1)

where h0( j, t) is the baseline hazard function of risk j only involving t and η j is the cause-specific

regression coefficient to be estimated from the data. In contrast, the exponential expression in-

volves only x, but not t. That is, the covariates x′s are time-independent variables. The observed

likelihood function 2.2.12,

L =
n

∏
i=1

K

∏
j=1

(
[h(Ci, ti|xi)]

di j · exp
[
−

∫ ti

0
h( j,u|xi)du

])

for Cox PH model can be written as

L =
n

∏
i=1

K

∏
j=1

(
[h0(Ci, ti) · exp(x′iηj)]

di jS( j, ti|xi)

)

=
n

∏
i=1

K

∏
j=1

(
[h0(Ci, ti) · exp(x′iηj)]

di j · exp
[
−

∫ ti

0
h0(Ci,u) · exp(x

′
iηj)du

])
(2.5.2)
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where di j = 1 if Ci = j and δi j = 0 otherwise. Note that no assumption is required on the inter-

relation among the causes of failure, that is, competing risks. The usual semiparametric approach

to this model leaves the baseline hazard functions as unspecified and proceeds with the analysis

based on the “partial” likelihood, which has been introduced by Cox (1975), for inference about

η j, which is derived using ordered failure times as

L∗ =
n

∏
i=1

K

∏
j=1

exp(x′i(j)ηj)

∑l∈R j exp(x′i(l)ηj)
(2.5.3)

where R j denotes the risk set at time t j, that is, the set of subjects who have not failed or been

censored by that time. xi( j) denotes the covariates’ value for the subject i failing at time t( j).

Nonparametric estimation of cause-specific baseline hazard function h0( j, t) may be obtained

by the approaches of Cox (1972), Kalbfleisch & Prentice (1973) and Breslow (1974). In particular,

Aalen (1976) has mentioned that the Kaplan-Meier estimator may be utilized to estimate the cause-

specific hazard function h( j, t) if there are no regressor variables present.

Cox PH model can be used to incorporate time-dependent covariates, but such a model no

longer satisfies the PH assumption. Alternatively, the accelerated failure (AFT) regression model

can address such a case. More general models are proposed in Wei (1992) and allow the predictors

to change over time.

2.6 Identifiability and Non-Identifiability Issues in Competing Risks

It is known that if the latent failure times T1, ...,TK are independent, then the cause-specific haz-

ard approach and latent failure time approach lead to identical statistical inference, see in Crowder

(2001) and Kalbfleisch & Prentice (2011). For any competing risks model with a joint survival

function S(t1, ..., tK) where T1, ...,TK may be dependent, there exists a different joint survival func-
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tion in which T1, ...,TK are independent such that the same set of sub-survival functions S( j, t) or

crude survival functions come into being from these two models. It is a well-known problem of

identifiability which has been discussed by Cox (1959), Tsiatis (1975), Crowder (2001) and many

others. This problem makes it impossible to differentiate the dependent model and independent

model only based on the observed data (T,C).

Specifically, Tsiatis (1975) showed that given any joint survival function with arbitrary depen-

dent competing risks, there exists a different joint survival function in which the competing risks

are independent and which leads to exactly the same sub-densities f j(t) as the former. It brings in

the following theorem.

Theorem 2.6.1 (Tsiatis, 1975). Suppose T1, ..,TK are dependent potential latent failure times with

joint survival function S(t1, ..., tK); f j(t) is the corresponding sub-density function of risk j and

can be computed by 2.7.1. Then there exists a joint survival function S∗(t1, ..., tK) = ∏
K
j=1 S∗j(t j),

where S∗j(t) = exp(−
∫ t

0 h j(s)ds) and the sub-hazard function h j(t) derives from the given f j(t).

Heckman & Honoré (1989) showed that the identification of the joint survival function S(t1, ..., tK)

may be possible from the cause-specific survival functions when there are covariates in the model

within a certain framework.

Theorem 2.6.2 (Heckman & Honoré, 1989). Suppose the joint survival function of latent failure

times T1,T2 is given by

S(t1, t2) = K[S1(t1|x),S2(t2|x)]

where S( j, t j|x) = exp[−g j(x)H j(t j)] f or j = 1,2 expressed in terms of the integrated hazard func-

tion H j(t j) and g j(x), which is usually specified as exp(xηj) (where ηj is the correlation coeffi-

cient). K is a distribution function. Then under the assumptions:

1. K is continuously differentiable and strictly increasing in [0,1]× [0,1]

2. the support of g1(x),g2(x) is (0,∞)× (0,∞)
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3. H1(1) = 1, H2(1) = 1, g1(x0) = 1 and g2(x0) = 1 for some fixed point x0 in the support of X

4. H j(t)≥ 0 and H
′
j(t) = dH j(t)/dt > 0 for all t,

the joint survival function S(t1, t2) is identified from the identified minimum of (T1,T2) and the

cause. In other words, H1, H2, g1, g2 and K are identified from the observed data (T,C).

By theorem 2.6.2, the joint survival function S(t1, t2) can be determined by the set of sub-

survival functions S j(t j).

The identifiability can also be regained under specific parametric forms, which has been men-

tioned by A. P. Basu & Ghosh (1978) and A. P. Basu & Klein (1982). Klein & Moeschberger

(2005) furnished a summary of analytic approaches for dealing with competing risks data when

the assumption of independence may not be satisfied.

2.7 Remarks

The latent failure time and the cause-specific approaches are related. For instance, the sub-

density function of risk j can be obtained from the joint survival function of the latent failure times

(Tsiatis, 1975) as

f ( j, t) =−∂S(t)
∂t j

∣∣∣∣
t=(t,..,t)

=−∂S(t1, ..., tK)
∂t j

∣∣∣∣
(t1,...,tK)=(t,..,t)

(2.7.1)

The sub-density function of risk j can also be computed by integrating the joint density function

g(·) of latent failure times T1, ...,TK over the interval (t,∞) with respect to all but the jth variable:

f ( j, t) =
∫

∞

t
...

∫
∞

t

∫
∞

t
...

∫
∞

t
g(s1, ...,sK)ds1...ds j−1ds j+1...dsK (2.7.2)



CHAPTER 3

A DEPENDENT COMPETING RISKS MODEL

3.1 Introduction

In this chapter, we provide the formulation of the proposed dependent competing risks model.

In fact, the independent competing risks problem can be handled by this model as well. In compet-

ing risks studies, one popular approach is to model the distribution of the observed minimum T and

cause C which have been introduced in Prentice et al. (1978) and Prentice & Breslow (1978). An

alternative approach is to model the joint distribution of latent failure times, seeing Cox (1959) and

Moeschberger & David (1971), which is the way to achieve the new dependent competing risks

model. The new model could be motivated via a frailty approach as well as a copula approach. We

will first introduce the formulation of the new model and then present the different representations

of the model.

Our proposed model is a parametric model using the Weibull distribution for competing risks.

It is well known that the Weibull distribution can be used to model a hazard function that is in-

creasing, decreasing or even constant. This makes it popular in studies of parametric models for

competing risks. First, we will present the general model with K competing risks. In the latter part,

we will present the special case of two competing risks.
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3.2 Model Formulation

The traditional approach, via latent failure times, assumes that there is a potential failure time

associated with each of the K competing risks to which the system is exposed. More generally,

Tj for j = 1, ...,K represents the failure time of each risk j. The smallest Tj decides the overall

system failure time T and can be observed. Another observed variable is the indicator variable

of censoring C j taking the value 0 if censored and 1 if event occurs from risk j. Thus, T =

min(T1, ...,TK) = TC j . The vector T = (T1, ...,TK) is associated with the joint survival function

S(t) = S(t1, ..., tK) = P(T1 > t1, ...,TK > tK) and the marginal survival function S j(t j) = P(Tj > t j).

In the field of actuarial science and demography, the marginal S j(t j) is also called the net survival

function. If the joint survival function S(t) of T is known, then the marginal of each Tj for j =

1, ...,K can be derived by the theorem due to Tsiatis (1975) from the book by Crowder (2001).

Theorem 3.2.1 (Tsiatis, 1975). The cause-specific sub-densities can be calculated directly from

the joint survival function of latent failure times as

f ( j, t) =−∂S(t1, ..., tK)
∂t j

∣∣∣∣
t j=t

, for j = 1, ...,K (3.2.1)

Therefore, the sub-hazards

h( j, t) =
f ( j, t)

S(t1, ..., tK)
=

∂S(t1, ..., tK)/∂t j

S(t1, ..., tK)

∣∣∣∣
t j=t

(3.2.2)

We propose a parametric model where the latent failure times are assumed to follow Weibull

distributions so that the marginal survival function of Tj for j = 1, ...,K is given by

S j(t j) = P(Tj > t j) = exp(−µ jt
β j
j ) (3.2.3)
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where µ j ∈ (0,∞) is the scale parameter of the Weibull distribution and β j ∈ (0,∞) is the shape

parameter. The hazard function is increasing for β j > 1, decreasing for β j < 1 and constant if

β j = 1.

Under the independent assumption on latent failure times Tj, for j = 1, ...,K, the joint survival

function can be expressed in terms of marginal survival functions S j(t j) as

S(t1, ..., tK) = P(T1 > t1, ...,TK > tK)

= P(T1 > t1)· ...·P(TK > tK)

=
K

∏
j=1

S j(t j)

= exp
(
−

K

∑
j=1

µ jt
β j
j

)
(3.2.4)

We propose a parametric competing risks model as

S(t1, ..., tK) = exp
(
−
[ K

∑
j=1

(µ jt
β j
j )1/δ

]δ)
(3.2.5)

where µ j ∈ (0,∞), β j ∈ (0,∞) and δ ∈ (0,1] is the dependence parameter. The boundary case of

δ = 1 yields the independent case.

For the model 3.2.5 above, it is easy to show the marginal survival function of each latent

failure time Tj for j = 1, ...,K is the same as 3.2.3.

Theorem 3.2.2. If the joint distribution of latent failure times T1, ...,TK is

S(t1, ..., tK) = exp
(
−
[ K

∑
j=1

(µ jt
β j
j )1/δ

]δ)

then the marginal distribution of each Tj f or j = 1, ..,K belongs to a Weibull distribution with

scale parameter µ j and shape parameter β j.
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Proof. Since the joint survival function of T1, ...,TK is S(t1, ..., tK) = P(T1 > t1, ...,TK > tK), it can

be expressed as S(t1, ..., tK) =
∫

∞

t1 ...
∫

∞

tK g(s1, ...,sK)ds1...dsK , where g(s1, ...,sK) is the joint density

function of T1, ...,TK . So the marginal survival function of Tj can be obtained by

S j(t j) =
∫

∞

0
...

∫
∞

0

∫
∞

0
...

∫
∞

0
g(s1, ...,sK)ds1...ds j−1ds j+1...dsK

= P(T1 > 0, ...,Tj−1 > 0,Tj > t j,Tj+1 > 0, ...TK > 0)

= S(0, ...,0, t j,0, ...0)

= exp(−µ jt
β j
j )

Thus, the marginal distribution of each latent failure time is a Weibull distribution with scale pa-

rameter µ j and shape parameter β j.

The features and properties of the proposed competing risks model 3.2.5 is discussed in the

following sections.

3.3 Representation of the Model via a Frailty Approach

In general, frailty models are used to analyze clustered survival data such as repeated measures

data and recurrent events data. Duchateau & Janssen (2007) presented detailed discussions on

frailty models. In many statistical problems arising from biomedicine, researchers have to handle

complex disease processes. For instance, a person suffers from two or more diseases which are

interacting and the deterioration of one disease could expedite the others. In such a situation,

introduction of the frailty factor in the competing risks model, as explained in Section2.4.2, would

be advisable. In fact, this kind of a frailty model, known as the Shared Frailty Model, is particularly

applicable in establishing the model of dependent competing risks. The key point of such shared

frailty approach is that the subjects who are in the same cluster all share the same frailty factor.
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For example, people who suffer from the same disease would share a common weakness or frailty

factor.

Popular frailty models include the Gamma, positive stable and inverse Gaussian frailty dis-

tributions. We consider the representation of proposed dependent competing risks model via the

positive stable frailty structure, which is discussed next. The use of positive stable distributions in

multivariate survival data analysis was considered in Hougaard (1986).

Conditionally given a random variable Z, Tj|Z are independent Weibull distribution with con-

ditional marginal survival functions,

S j(t j|Z) = exp
(
−Z·µ1/δ

j tβ j/δ

j

)
(3.3.1)

where the frailty factor Z is assumed to be a positive random variable associated with a positive

stable distribution with parameter δ∈ (0,1). Note that the positive stable density function of frailty

factor Z mentioned by Duchateau & Janssen (2007) is given by

f (z) =− 1
πz

∞

∑
k=1

Γ(kδ+1)
k!

(−z−δ)k sin(δkπ) (3.3.2)

Marginalizing over Z, we can obtain the corresponding marginal survival function of Tj as

S j(t j) =
∫

∞

0
S j(t j|Z = z)· f (z)dz

=
∫

∞

0
exp
(
− z·µ1/δ

j tβ j/δ

j

)
· f (z)dz

=
∫

∞

0
exp(−z·w)· f (z)dz

= E[exp(−z·w)] (3.3.3)
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where w = µ1/δ

j tβ j/δ

j . By applying the Laplace transform of z, E[exp(−zs)] = exp(−sδ) as in Chen

et al. (2002), the expression 3.3.3 can be simplified as

S j(t j) = exp(−wδ)

= exp[−(µ1/δ

j tβ j/δ

j )δ]

= exp(−µ jt
β j
j ) (3.3.4)

Conditional on the frailty factor, (T1, . . . ,TK)|Z are assumed to be independent. The joint sur-

vival function of T1, ...,TK can be obtained in terms of marginal survival functions as

S(t1, ..., tK) =
∫

∞

0
S(t1, ..., tK|z)· f (z)dz

=
∫

∞

0
P(T1 > t1, ...,TK > tK|z)· f (z)dz

= E[P(T1 > t1, ...,TK > tK|Z = z)]

= E[(P(T1 > t1|Z = z) · . . . ·P(TK > tK|Z = z)]

= E[S1(t1|Z)...SK(tK|Z)]

Furthermore, using the Laplace transform, the joint survival function is given by

S(t1, ..., tK) = E
[

exp(−Z(
K

∑
j=1

µ1/δ

j tβ j/δ

j ))

]

= exp
(
−
[ K

∑
j=1

µ1/δ

j tβ j/δ

j

]δ)
(3.3.5)

Therefore, the proposed dependent competing risks model in 3.2.5 can alternatively be ex-

pressed as a representation via the positive stable frailty approach.
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3.4 Representation of the Model via a Copula Approach

The copula approach has been reviewed in the previous chapter, Section 2.4.1. It helps to

demonstrate the dependent relationship among random variables. By applying such method, the

joint distribution of variables can be expressed in terms of the marginal distribution of each vari-

able. In this section, we introduce the dependent competing risks model as based on an Archimedean

copula. One of the popular Archimedean copulas is Gumbel copula (Gumbel, 1960) with the cop-

ula generator ψ(s) = exp(−sδ) and copula generator inverse ψ−1(s) = [− log(s)]1/δ.

Suppose the marginal survival functions of each latent failure time Tj for j = 1, ...K is given by

S j(t j); the joint survival function via the Gumbel copula is written as

S(t1, ..., tK) = P(T1 > t1, ...TK > tK)

= ψ[ψ−1(S1(t1))+ ...+ψ
−1(SK(tK))]

= exp
(
−
[
(− log[S1(t1)])1/δ + ...+(− log[SK(tK)])1/δ

]δ)
(3.4.1)

where δ ∈ (0,1] is the dependence parameter.

Therefore, the corresponding joint survival function of the parametric model, in which each

marginal is Weibull distribution with survival function S j(t j) = exp(−µ jt
β j
j ), under Gumbel copula

is given by

S(t1, ..., tK) = exp
(
−
[
(− log[exp(−µ1tβ1

1 )])1/δ + ...+(− log[exp(−µKtβK
K )])1/δ

]δ)
= exp

(
−
[
(µ1tβ1

1 )])1/δ + ...+(µKtβK
K )])1/δ

]δ)
= exp

(
−
[ K

∑
j=1

(µ jt
β j
j )])1/δ

]δ)
(3.4.2)
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Thus the proposed dependent competing risks model 3.2.5 can alternatively also be represented

via a copula approach.

3.5 Bivariate Weibull Survival Model

The bivariate Weibull competing risks model corresponding 3.2.5 is given by

S(t1, t2) = exp
(
− [(µ1tβ1

1 )1/δ +(µ2tβ2
2 )1/δ]δ

)
(3.5.1)

In the following chapters, we will discuss the properties of proposed competing risks model

3.2.5. In particular, we look at identifiability issues for such model in a situation involving two

competing risks.



CHAPTER 4

IDENTIFIABILITY OF PROPOSED DEPENDENT COMPETING RISKS

MODEL

4.1 Introduction

Establishing identifiability of statistical models in competing risks research is important in

understanding the behavior of models and checking the uniqueness of the obtained estimators of

model parameters. Identifiability issues in competing risks model have been explored by Tsiatis

(1975), Heckman & Honoré (1989) and Crowder (1991). Tsiatis (1975) showed that given a joint

survival function with arbitrary dependence between the competing risks, there exists a different

joint survival function in which the risks are independent and which reproduces the same sub-

densities f j(t). Heckman & Honoré (1989) established identifiability of competing risks models

under proportional hazards regression, whereas Crowder (1991) considered identifiability under

the cause-specific hazards approach. Zheng & Klein (1995) established identifiability of dependent

competing risks based on an assumed known copula.

In this chapter, we consider identifiability issues associated with our proposed model, in par-

ticular, the model with two competing risks. In the first section, we consider identifiability of the

model under equal shape parameter. In the second section, we consider identifiability conditions

of the proposed model under different shape parameters and a known dependence parameter. In

the third section, we consider conditions under which our proposed model is identifiable.



32

4.2 Identifiability Issues Under Equality of Shape Parameters

Suppose there exists two competing risks in the system, and the corresponding latent failure

times T1,T2 follow the proposed bivariate dependent competing risks model with equal shape pa-

rameters β1 = β2 = β with survival function

S(t1, t2) = exp
(
−
[
(µ1tβ

1 )
1
δ +(µ2tβ

2 )
1
δ

]δ) (4.2.1)

According to the representation via copula (in Section 3.4), the generator ψ(x) = exp(−xδ) and

generator inverse ψ−1(u) = (− logu)
1
δ . Thus S(t1, t2) can also be exhibited as

S(t1, t2) = ψ
[
ψ
−1(S1(t1))+ψ

−1(S2(t2))
]

= exp
[
−
([
− log(exp(−µ1tβ

1 ))
] 1

δ +
[
− log(exp(−µ2tβ

2 ))
] 1

δ

)δ]
(4.2.2)

with the marginal survival functions of T1 and T2 given by S1(t1) = exp(−µ1tβ

1 ) and S2(t2) =

exp(−µ2tβ

2 ). We have the following theorem.

Theorem 4.2.1. Suppose the latent failure times T1,T2 follow the joint survival function 4.2.2; then

the marginal survival function S1(t1) and S2(t2) are not identifiable based on T = min(T1,T2) and

C = argmin(T1,T2).

Proof. We define two new functions S∗1(t1) and S∗2(t2) following A. Wang et al. (2015) as follows:

S∗1(t1) = φ

[∫ t1

0

φ−1′(π(u))
ψ−1′(π(u))

dψ
−1(S1(u))

]
(4.2.3)

and

S∗2(t2) = φ

[∫ t2

0

φ−1′(π(u))
ψ−1′(π(u))

dψ
−1,(S2(u))

]
(4.2.4)
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where

π(u) = P(T1 > u,T2 > u) = S(u,u)

= ψ
[
ψ
−1(S1(u)

)
+ψ

−1(S2(u)
)]

= exp
(
−
[
(µ1uβ)

1
δ +(µ2uβ)

1
δ

]δ)
= exp

[
− (µ

1
δ

1 +µ
1
δ

2 )
δuβ
]

(4.2.5)

Since the generator ψ(x) = exp(−xδ) with ψ−1(u) = (− logu)
1
δ , it follows that

ψ
′(x) =−exp(−xδ)δxδ−1

Thus

ψ
−1[

π(u)
]
=
[
− log

(
exp[−(µ

1
δ

1 +µ
1
δ

2 )
δuβ]

)] 1
δ = (µ

1
δ

1 +µ
1
δ

2 )u
β

δ (4.2.6)

and

ψ
−1[S1(u)

]
=
[
− log

(
exp(−µ1uβ)

)] 1
δ = µ

1
δ

1 u
β

δ (4.2.7)

According to the fact that φ−1′(π(u)) =
1

φ′
(
φ−1[π(u)]

) and ψ−1′(π(u)) =
1

ψ′
(
ψ−1[π(u)]

) , it

is easy to take the inverse of ψ′
[
ψ−1(π(u))] to obtain ψ−1′(π(u)). And ψ′

[
ψ−1(π(u))] can be

written as

ψ
′[

ψ
−1(

π(u)
)]

= −exp
[
− ((µ

1
δ

1 +µ
1
δ

2 )u
β

δ )δ
]
δ
[
(µ

1
δ

1 +µ
1
δ

2 )u
β

δ

]δ−1

= −exp
[
− (µ

1
δ

1 +µ
1
δ

2 )
δuβ
]
δ(µ

1
δ

1 +µ
1
δ

2 )
δ−1uβ− β

δ (4.2.8)
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As shown in 4.2.7, the dψ−1(S1(u)
)

is given by

dψ
−1(S1(u)

)
= d(µ

1
δ

1 u
β

δ ) =
β

δ
µ

1
δ

1 u
β

δ
−1du (4.2.9)

There is another key factor to obtain S∗1(t1), which is φ−1′(π(u)). Now, let’s define φ = exp(x);

then φ−1 = logx and φ′ = exp(x), which implies

φ
−1(

π(u)
)
= log

(
exp[−(µ

1
δ

1 +µ
1
δ

2 )
δuβ]

)
=−(µ

1
δ

1 +µ
1
δ

2 )
δuβ (4.2.10)

and

φ
′[

φ
−1(

π(u)
)]

= exp
[
− (µ

1
δ

1 +µ
1
δ

2 )
δuβ
]

(4.2.11)

By applying 4.2.11, 4.2.8 and 4.2.9 into the definition of S∗1(t1) in 4.2.3, it is obvious that S∗1(t1)

could be obtained by computing φ function of
∫ t

0
φ−1′(π(u))
ψ−1′(π(u))

dψ−1(S1(u)), which is

∫ t

0

φ−1′(π(u))
ψ−1′(π(u))

dψ
−1(S1(u)) =

∫ t

0

−exp[−(µ
1
δ

1 +µ
1
δ

2 )
δuβ]δ(µ

1
δ

1 +µ
1
δ

2 )
δ−1uβ− β

δ

exp[−(µ
1
δ

1 +µ
1
δ

2 )
δuβ]

β

δ
µ

1
δ

1 u
β

δ
−1du

=
∫ t

0
−β(µ

1
δ

1 +µ
1
δ

2 )
δ−1µ

1
δ

1 uβ−1du

= −(µ
1
δ

1 +µ
1
δ

2 )
δ−1µ

1
δ

1 uβ|t0

= −(µ
1
δ

1 +µ
1
δ

2 )
δ−1µ

1
δ

1 tβ (4.2.12)
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So S∗1(t1) can be written as

S∗1(t1) = φ

[∫ t1

0

φ−1′(π(u))
ψ−1′(π(u))

dψ
−1(S1(u))

]
= φ

[
− (µ

1
δ

1 +µ
1
δ

2 )
δ−1µ

1
δ

1 tβ
]

= exp
[
− (µ

1
δ

1 +µ
1
δ

2 )
δ−1µ

1
δ

1 tβ

1
]

(4.2.13)

Similarly, we can construct S∗2(t2) via the definition 4.2.4 which is given by

S∗2(t2) = φ

[∫ t2

0

φ−1′(π(u))
ψ−1′(π(u))

dψ
−1(S2(u))

]
= exp

[
− (µ

1
δ

1 +µ
1
δ

2 )
δ−1µ

1
δ

2 tβ

2
]

(4.2.14)

Moreover, the joint distribution of T1, T2 could also be obtained by

S∗(t1, t2) = φ
[
φ
−1(S∗1(t1))+φ

−1(S∗2(t2))
]

= exp
[

log(exp[−(µ
1
δ

1 +µ
1
δ

2 )
δ−1µ

1
δ

1 tβ

1 ])+ log(exp[−(µ
1
δ

1 +µ
1
δ

2 )
δ−1µ

1
δ

2 tβ

2 ])
]

= exp
(
−
[
(µ

1
δ

1 +µ
1
δ

2 )
δ−1µ

1
δ

1 tβ

1 +(µ
1
δ

1 +µ
1
δ

2 )
δ−1µ

1
δ

2 tβ

2
])

(4.2.15)
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Therefore, the corresponding crude survival (sub-survival) functions Q1(t) from S(t1, t2) and Q∗1(t)

from S∗(t1, t2) are given by

Q1(t) = P(T1 > t,T1 < T2)

= −
∫

∞

t
P(T1 = u,T1 < T2)dS1(u)

= −
∫

∞

t
P(T1 = u,T2 > T1)dS1(u)

= −
∫

∞

t
P(T1 = u,T2 > u)dS1(u)

= −
∫

∞

t

dS(t1, t2)
dt1

∣∣∣∣∣
t1=t2=u

du (4.2.16)

where t is an arbitrary point, and

Q∗1(t) = P(T ∗1 > t,T ∗1 < T ∗2 )

= −
∫

∞

t
P(T ∗1 = u,T ∗1 < T ∗2 )dS∗1(u)

= −
∫

∞

t
P(T ∗1 = u,T ∗2 > T ∗1 )dS∗1(u)

= −
∫

∞

t
P(T ∗1 = u,T ∗2 > u)dS∗1(u)

= −
∫

∞

t

dS∗(t1, t2)
dt1

∣∣∣∣∣
t1=t2=u

du (4.2.17)

where t is an arbitrary point.

Now, we will show Q1(t) = Q∗1(t) by showing

dS(t1, t2)
dt1

∣∣∣∣∣
t1=t2=u

=
dS∗(t1, t2)

dt1

∣∣∣∣∣
t1=t2=u
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As it is known that

dS(t1, t2)
dt1

∣∣∣∣∣
t1=t2=u

=
d exp

(
−
[
(µ1tβ

1 )
1
δ +(µ2tβ

2 )
1
δ

]δ)
dt1

∣∣∣∣∣
t1=t2=u

=
d exp

(
−
[
(µ

1
δ

1 t
β

δ

1 )+(µ
1
δ

2 t
β

δ

2 )
]δ)

dt1

∣∣∣∣∣
t1=t2=u

= −exp
(
−
[
(µ

1
δ

1 t
β

δ

1 )+(µ
1
δ

2 t
β

δ

2 )
]δ)

δ
[
(µ

1
δ

1 t
β

δ

1 )+(µ
1
δ

2 t
β

δ

2 )
]δ−1

×µ
1
δ

1
β

δ
t

β

δ
−1

∣∣∣∣∣
t1=t2=u

= −exp
(
−
[
(µ

1
δ

1 u
β

δ )+(µ
1
δ

2 u
β

δ )
]δ)

δ
[
(µ

1
δ

1 u
β

δ )+(µ
1
δ

2 u
β

δ )
]δ−1µ

1
δ

1
β

δ
u

β

δ
−1

= −exp
[
−
(
µ

1
δ

1 +µ
1
δ

2
)δuβ

](
µ

1
δ

1 +µ
1
δ

2
)δ−1µ

1
δ

1 βuβ−1

and

dS∗(t1, t2)
dt1

∣∣∣∣∣
t1=t2=u

=
d exp

(
−
[
(µ

1
δ

1 +µ
1
δ

2 )
δ−1µ

1
δ

1 tβ

1 +(µ
1
δ

1 +µ
1
δ

2 )
δ−1µ

1
δ

2 tβ

2
])

dt1

∣∣∣∣∣
t1=t2=u

= −exp
(
−
[
(µ

1
δ

1 +µ
1
δ

2 )
δ−1µ

1
δ

1 tβ

1 +(µ
1
δ

1 +µ
1
δ

2 )
δ−1µ

1
δ

2 tβ

2
])

×(µ
1
δ

1 +µ
1
δ

2 )
δ−1µ

1
δ

1 βtβ−1

∣∣∣∣∣
t1=t2=u

= −exp
(
−
[
(µ

1
δ

1 +µ
1
δ

2 )
δ−1µ

1
δ

1 uβ +(µ
1
δ

1 +µ
1
δ

2 )
δ−1µ

1
δ

2 uβ
])

×(µ
1
δ

1 +µ
1
δ

2 )
δ−1µ

1
δ

1 βuβ−1

= −exp
[
− (µ

1
δ

1 +µ
1
δ

2 )
δuβ

]
(µ

1
δ

1 +µ
1
δ

2 )
δ−1µ

1
δ

1 βuβ−1

therefore, it is explicit that Q1(t) = Q∗1(t), so the crude survival functions of T1 are the same.
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Similarly, we can derive that

dS(t1, t2)
dt2

∣∣∣∣∣
t1=t2=u

=−exp
[
−
(
µ

1
δ

1 +µ
1
δ

2
)δuβ

](
µ

1
δ

1 +µ
1
δ

2
)δ−1µ

1
δ

2 βuβ−1 (4.2.18)

and

dS∗(t1, t2)
dt2

∣∣∣∣∣
t1=t2=u

=−exp
[
−
(
µ

1
δ

1 +µ
1
δ

2
)δuβ

](
µ

1
δ

1 +µ
1
δ

2
)δ−1µ

1
δ

2 βuβ−1 (4.2.19)

to show that Q2(t) = Q∗2(t), where t is an arbitrary point. Thus, the crude survival functions of T2

are the same.

We have thus established that there is an alternative joint survival function of latent failure

times T1,T2 given by S∗(t1, t2) in 4.2.15 that leads to the same crude survival function of T1, T2 as

the joint survival function S(t1, t2) in 4.2.2. This establishes that the proposed bivariate dependent

competing risks model under equal shape parameters is not identifiable.

4.3 Identifiability with Unrestricted Shape Parameters and a Known

Dependence Parameter

In a general setting, the shape parameters in the Weibull distribution of T1 and T2 usually may

not be equal. In this section, we explore identifiability of the proposed model without the equality

assumption of β1 = β2. Suppose the latent failure times T1 and T2 follow the joint survival model

S(t1, t2) = exp
(
−
[
(µ1tβ1

1 )
1
δ +(µ2tβ2

2 )
1
δ

]δ) (4.3.1)
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The marginal survival functions of T1 and T2 are given by S1(t)= exp(−µ1tβ1), S2(c)= exp(−µ2cβ2),

and the corresponding crude survival functions can be written as

Q1(t) = P(T1 > t,T1 < T2)

= −
∫

∞

t
P(T1 = u,T1 < T2)dS1(u)

= −
∫

∞

t
P(T1 = u,T2 > T1)dS1(u)

= −
∫

∞

t
P(T1 = u,T2 > u)dS1(u)

= −
∫

∞

t

dS(t1, t2)
dt1

∣∣∣∣∣
t1=t2=u

du (4.3.2)

and

Q2(t) = P(T2 > t,T2 < T1)

= −
∫

∞

t

dS(t1, t2)
dt2

∣∣∣∣∣
t1=t2=u

du (4.3.3)

We establish identifiability of the model in the following theorem.

Theorem 4.3.1. Suppose the joint survival function of T1 and T2 is given by

S(t1, t2) = exp
(
−
[
(µ1tβ1

1 )
1
δ +(µ2tβ2

2 )
1
δ

]δ)

If the dependent parameter δ is known, then the crude survival functions of T1 and T2 are identifi-

able based on T = min(T1,T2) and C = argmin(T1,T2).

Proof. The proof of the theorem can be expounded by showing that
dQ1(t|µ1,µ2,β1,β2)/dt
dQ∗1(t|µ∗1,µ∗2,β∗1,β∗2)/dt

= 1

and
dQ2(t|µ1,µ2,β1,β2)/dt
dQ∗2(t|µ∗1,µ∗2,β∗1,β∗2)/dt

= 1 are simultaneously true for ∀t > 0 if and only if µ1 = µ∗1,µ2 =

µ∗2,β1 = β∗1,β2 = β∗2.
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Since the crude survival functions of T1 and T2 are given by Q1(t) and Q2(t) in 4.3.2 and 4.3.3,

we have

dQ1(t)
dt

= −dS(t1, t2)
dt1

∣∣∣∣∣
t1=t2=t

= −
d exp

(
−
[
(µ1tβ1

1 )
1
δ +(µ2tβ2

2 )
1
δ

]δ)
dt

∣∣∣∣∣
t1=t2=t

= −exp
(
−
[
(µ1tβ1

1 )
1
δ +(µ2tβ2

2 )
1
δ

]δ)
δ
[
(µ1tβ1

1 )
1
δ +(µ2tβ2

2 )
1
δ

]δ−1µ
1
δ

1
β1

δ
t

β1
δ
−1

1

∣∣∣∣∣
t1=t2=t

= −exp
(
−
[
(µ1tβ1)

1
δ +(µ2tβ2)

1
δ

]δ)[µ 1
δ

1 +µ
1
δ

2 t
β2−β1

δ

]δ−1
β1µ

1
δ

1 tβ1−1 (4.3.4)

and

dQ2(t)
dt

= −dS(t1, t2)
dt2

∣∣∣∣∣
t1=t2=t

= −
d exp

(
−
[
(µ1tβ1

1 )
1
δ +(µ2tβ2

2 )
1
δ

]δ)
dt2

∣∣∣∣∣
t1=t2=t

= −exp
(
−
[
(µ1tβ1

1 )
1
δ +(µ2tβ2

2 )
1
δ

]δ)
δ
[
(µ1tβ1

1 )
1
δ +(µ2tβ2

2 )
1
δ

]δ−1µ
1
δ

2
β2

δ
t

β2
δ
−1

∣∣∣∣∣
t1=t2=t

= −exp
(
−
[
(µ1tβ1)

1
δ +(µ2tβ2)

1
δ

]δ)[µ 1
δ

1 t
β1−β2

δ +µ
1
δ

2
]δ−1

β2µ
1
δ

2 tβ2−1 (4.3.5)
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therefore, the expressions of
dQ1(t|µ1,µ2,β1,β2)/dt
dQ∗1(t|µ∗1,µ∗2,β∗1,β∗2)/dt

and
dQ2(t|µ1,µ2,β1,β2)/dt
dQ∗2(t|µ∗1,µ∗2,β∗1,β∗2)/dt

are written as

dQ1(t|µ1,µ2,β1,β2)/dt
dQ∗1(t|µ∗1,µ∗2,β∗1,β∗2)/dt

=
−exp

(
−
[
(µ1tβ1)

1
δ +(µ2tβ2)

1
δ

]δ)[µ 1
δ

1 +µ
1
δ

2 t
β2−β1

δ

]δ−1

−exp
(
−
[
(µ∗1tβ∗1)

1
δ +(µ∗2tβ∗2)

1
δ

]δ)[
(µ∗1)

1
δ +(µ∗2)

1
δ t

β∗2−β∗1
δ

]δ−1

×
β1µ

1
δ

1 tβ1−1

β∗1(µ
∗
1)

1
δ tβ∗1−1

=
exp
(
−
[
(µ1tβ1)

1
δ +(µ2tβ2)

1
δ

]δ)
exp
(
−
[
(µ∗1tβ∗1)

1
δ +(µ∗2tβ∗2)

1
δ

]δ)
[

µ
1
δ

1 +µ
1
δ

2 t
β2−β1

δ

(µ∗1)
1
δ +(µ∗2)

1
δ t

β∗2−β∗1
δ

]δ−1

×
[µ1

µ∗1

] 1
δ β1

β∗1
tβ1−β∗1 (4.3.6)

and

dQ2(t|µ1,µ2,β1,β2)/dt
dQ∗2(t|µ∗1,µ∗2,β∗1,β∗2)/dt

=
−exp

(
−
[
(µ1tβ1)

1
δ +(µ2tβ2)

1
δ

]δ)[µ 1
δ

1 t
β1−β2

δ +µ
1
δ

2
]δ−1

−exp
(
−
[
(µ∗1tβ∗1)

1
δ +(µ∗2tβ∗2)

1
δ

]δ)[
(µ∗1)

1
δ t

β∗1−β∗2
δ +(µ∗2)

1
δ

]δ−1

×
β2µ

1
δ

2 tβ2−1

β∗2(µ
∗
2)

1
δ tβ∗2−1

=
exp
(
−
[
(µ1tβ1)

1
δ +(µ2tβ2)

1
δ

]δ)
exp
(
−
[
(µ∗1tβ∗1)

1
δ +(µ∗2tβ∗2)

1
δ

]δ)
[

µ
1
δ

1 t
β1−β2

δ +µ
1
δ

2

(µ∗1)
1
δ t

β∗1−β∗2
δ +(µ∗2)

1
δ

]δ−1

×
[µ2

µ∗2

] 1
δ β2

β∗2
tβ2−β∗2 (4.3.7)

In order to show
dQ1(t|µ1,µ2,β1,β2)/dt
dQ∗1(t|µ∗1,µ∗2,β∗1,β∗2)/dt

= 1 and
dQ2(t|µ1,µ2,β1,β2)/dt
dQ∗2(t|µ∗1,µ∗2,β∗1,β∗2)/dt

= 1 are true simultane-

ous, equivalently, we need to show 4.3.6 and 4.3.7 equal to 1 simultaneous, that is, to show

exp
(
−
[
(µ1tβ1)

1
δ +(µ2tβ2)

1
δ

]δ)
exp
(
−
[
(µ∗1tβ∗1)

1
δ +(µ∗2tβ∗2)

1
δ

]δ)
[

µ
1
δ

1 +µ
1
δ

2 t
β2−β1

δ

(µ∗1)
1
δ +(µ∗2)

1
δ t

β∗2−β∗1
δ

]δ−1[µ1

µ∗1

] 1
δ β1

β∗1
tβ1−β∗1 = 1 (4.3.8)
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and

exp
(
−
[
(µ1tβ1)

1
δ +(µ2tβ2)

1
δ

]δ)
exp
(
−
[
(µ∗1tβ∗1)

1
δ +(µ∗2tβ∗2)

1
δ

]δ)
[

µ
1
δ

1 t
β1−β2

δ +µ
1
δ

2

(µ∗1)
1
δ t

β∗1−β∗2
δ +(µ∗2)

1
δ

]δ−1[µ2

µ∗2

] 1
δ β2

β∗2
tβ2−β∗2 = 1 (4.3.9)

are true simultaneous.

Case1: When µ1 = µ∗1,µ2 = µ∗2,β1 = β∗1,β2 = β∗2, equation 4.3.8 and equation 4.3.9 are obvious true.

Case2: When µ1 6= µ∗1,µ2 6= µ∗2,β1 6= β∗1,β2 6= β∗2, take the limit of equation 4.3.6 and equation 4.3.7,

then

lim
t−→0

dQ1(t|µ1,µ2,β1,β2)/dt
dQ∗1(t|µ∗1,µ∗2,β∗1,β∗2)/dt

= lim
t−→0

exp
(
−
[
(µ1tβ1)

1
δ +(µ2tβ2)

1
δ

]δ)
exp
(
−
[
(µ∗1tβ∗1)

1
δ +(µ∗2tβ∗2)

1
δ

]δ)
×

[
µ

1
δ

1 +µ
1
δ

2 t
β2−β1

δ

(µ∗1)
1
δ +(µ∗2)

1
δ t

β∗2−β∗1
δ

]δ−1[µ1

µ∗1

] 1
δ β1

β∗1
tβ1−β∗1

= lim
t−→0

[
µ

1
δ

1 +µ
1
δ

2 t
β2−β1

δ

(µ∗1)
1
δ +(µ∗2)

1
δ t

β∗2−β∗1
δ

]δ−1[µ1

µ∗1

] 1
δ β1

β∗1
tβ1−β∗1

∝ lim
t−→0

µ
1− 1

δ

2

(µ∗2)
1− 1

δ

β1

β∗1

(µ1

µ∗1

) 1
δ tβ1−β∗1+β2−β1−

β2−β1
δ
−β∗2+β∗1+

β∗2−β∗1
δ

= lim
t−→0

(µ2

µ∗2

)1− 1
δ

(µ1

µ∗1

) 1
δ β1

β∗1
tβ2−β∗2−

β2−β1
δ

+
β∗2−β∗1

δ (4.3.10)

a. When β2 > β1,β
∗
2 > β∗1, equation 4.3.10 =⇒

lim
t−→0

dQ1(t|µ1,µ2,β1,β2)/dt
dQ∗1(t|µ∗1,µ∗2,β∗1,β∗2)/dt

=


0, if β1 > β∗1

∞, if β1 < β∗1

b. When β2 > β1,β
∗
2 < β∗1:
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1. β2 < β∗2, equation 4.3.10 =⇒

lim
t−→0

dQ1(t|µ1,µ2,β1,β2)/dt
dQ∗1(t|µ∗1,µ∗2,β∗1,β∗2)/dt

= ∞

2. β2 > β∗2, equation 4.3.10 =⇒

lim
t−→0

dQ1(t|µ1,µ2,β1,β2)/dt
dQ∗1(t|µ∗1,µ∗2,β∗1,β∗2)/dt

=



0,

if β2−β∗2 >
β2−β1

δ
− β∗2−β∗1

δ

∞,

if β2−β∗2 <
β2−β1

δ
− β∗2−β∗1

δ(µ2

µ∗2

)1− 1
δ

(µ1

µ∗1

) 1
δ β1

β∗1
,

if β2−β∗2 =
β2−β1

δ
− β∗2−β∗1

δ

c. When β2 < β1,β
∗
2 > β∗1:

1. β2 > β∗2, equation 4.3.10 =⇒

lim
t−→0

dQ1(t|µ1,µ2,β1,β2)/dt
dQ∗1(t|µ∗1,µ∗2,β∗1,β∗2)/dt

= 0
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2. β2 < β∗2, equation 4.3.10 =⇒

lim
t−→0

dQ1(t|µ1,µ2,β1,β2)/dt
dQ∗1(t|µ∗1,µ∗2,β∗1,β∗2)/dt

=



0,

if β2−β∗2 >
β2−β1

δ
− β∗2−β∗1

δ

∞,

if β2−β∗2 <
β2−β1

δ
− β∗2−β∗1

δ(µ2

µ∗2

)1− 1
δ

(µ1

µ∗1

) 1
δ β1

β∗1
,

if β2−β∗2 =
β2−β1

δ
− β∗2−β∗1

δ

d. When β2 < β1,β
∗
2 < β∗1:

1. β2 < β∗2, equation 4.3.10 =⇒

lim
t−→0

dQ1(t|µ1,µ2,β1,β2)/dt
dQ∗1(t|µ∗1,µ∗2,β∗1,β∗2)/dt

=



0,

if β2−β∗2 +
β∗2−β∗1

δ
> β2−β1

δ

∞,

if β2−β∗2 +
β∗2−β∗1

δ
< β2−β1

δ(µ2

µ∗2

)1− 1
δ

(µ1

µ∗1

) 1
δ β1

β∗1
,

if β2−β∗2 +
β∗2−β∗1

δ
= β2−β1

δ
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2. β2 > β∗2, equation 4.3.10 =⇒

lim
t−→0

dQ1(t|µ1,µ2,β1,β2)/dt
dQ∗1(t|µ∗1,µ∗2,β∗1,β∗2)/dt

=



0,

if β2−β∗2−
β2−β1

δ
>

β∗2−β∗1
δ

∞,

if β2−β∗2−
β2−β1

δ
<

β∗2−β∗1
δ(µ2

µ∗2

)1− 1
δ

(µ1

µ∗1

) 1
δ β1

β∗1
,

if β2−β∗2−
β2−β1

δ
=

β∗2−β∗1
δ

and

lim
t−→0

dQ2(t|µ1,µ2,β1,β2)/dt
dQ∗2(t|µ∗1,µ∗2,β∗1,β∗2)/dt

= lim
t−→0

exp
(
−
[
(µ1tβ1)

1
δ +(µ2tβ2)

1
δ

]δ)
exp
(
−
[
(µ∗1tβ∗1)

1
δ +(µ∗2tβ∗2)

1
δ

]δ)
×

[
µ

1
δ

1 t
β1−β2

δ +µ
1
δ

2

(µ∗1)
1
δ t

β∗1−β∗2
δ +(µ∗2)

1
δ

]δ−1[µ2

µ∗2

] 1
δ β2

β∗2
tβ2−β∗2

= lim
t−→0

[
µ

1
δ

1 t
β1−β2

δ +µ
1
δ

2

(µ∗1)
1
δ t

β∗1−β∗2
δ +(µ∗2)

1
δ

]δ−1[µ2

µ∗2

] 1
δ β2

β∗2
tβ2−β∗2

∝ lim
t−→0

µ
1− 1

δ

1

(µ∗1)
1− 1

δ

β2

β∗2

(µ2

µ∗2

) 1
δ tβ2−β∗2+β1−β2−

β1−β2
δ
−β∗1+β∗2+

β∗1−β∗2
δ

= lim
t−→0

(µ1

µ∗1

)1− 1
δ

(µ2

µ∗2

) 1
δ β2

β∗2
tβ1−β∗1−

β1−β2
δ

+
β∗1−β∗2

δ (4.3.11)

a. When β2 > β1,β
∗
2 > β∗1,
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1. β1 < β∗1, equation 4.3.11 =⇒

lim
t−→0

dQ2(t|µ1,µ2,β1,β2)/dt
dQ∗2(t|µ∗1,µ∗2,β∗1,β∗2)/dt

=



0,

if β1−β∗1 +
β∗1−β∗2

δ
> β1−β2

δ

∞,

if β1−β∗1 +
β∗1−β∗2

δ
< β1−β2

δ(µ1

µ∗1

)1− 1
δ

(µ2

µ∗2

) 1
δ β2

β∗2
,

if β1−β∗1 +
β∗1−β∗2

δ
= β1−β2

δ

2. β1 > β∗1, equation 4.3.11 =⇒

lim
t−→0

dQ2(t|µ1,µ2,β1,β2)/dt
dQ∗2(t|µ∗1,µ∗2,β∗1,β∗2)/dt

=



0,

if β1−β∗1−
β1−β2

δ
>

β∗1−β∗2
δ

∞,

if β1−β∗1−
β1−β2

δ
<

β∗1−β∗2
δ(µ1

µ∗1

)1− 1
δ

(µ2

µ∗2

) 1
δ β2

β∗2
,

if β1−β∗1−
β1−β2

δ
=

β∗1−β∗2
δ

b. When β2 > β1,β
∗
2 < β∗1,

1. β1 > β∗1, equation 4.3.11 =⇒

lim
t−→0

dQ2(t|µ1,µ2,β1,β2)/dt
dQ∗2(t|µ∗1,µ∗2,β∗1,β∗2)/dt

= 0
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2. β1 < β∗1, equation 4.3.11 =⇒

lim
t−→0

dQ2(t|µ1,µ2,β1,β2)/dt
dQ∗2(t|µ∗1,µ∗2,β∗1,β∗2)/dt

=



0,

if β1−β∗1 >
β1−β2

δ
− β∗1−β∗2

δ

∞,

if β1−β∗1 <
β1−β2

δ
− β∗1−β∗2

δ(µ1

µ∗1

)1− 1
δ

(µ2

µ∗2

) 1
δ β2

β∗2
,

if β1−β∗1 =
β1−β2

δ
− β∗1−β∗2

δ

c. When β2 < β1,β
∗
2 > β∗1,

1. β1 < β∗1, equation 4.3.11 =⇒

lim
t−→0

dQ2(t|µ1,µ2,β1,β2)/dt
dQ∗2(t|µ∗1,µ∗2,β∗1,β∗2)/dt

= ∞

2. β1 > β∗1, equation 4.3.11 =⇒

lim
t−→0

dQ2(t|µ1,µ2,β1,β2)/dt
dQ∗2(t|µ∗1,µ∗2,β∗1,β∗2)/dt

=



0,

if β1−β∗1 >
β1−β2

δ
− β∗1−β∗2

δ

∞,

if β1−β∗1 <
β1−β2

δ
− β∗1−β∗2

δ(µ1

µ∗1

)1− 1
δ

(µ2

µ∗2

) 1
δ β2

β∗2
,

if β1−β∗1 =
β1−β2

δ
− β∗1−β∗2

δ
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d. When β2 < β1,β
∗
2 < β∗1, equation 4.3.11 =⇒

lim
t−→0

dQ2(t|µ1,µ2,β1,β2)/dt
dQ∗2(t|µ∗1,µ∗2,β∗1,β∗2)/dt

=


0, if β2 > β∗2

∞, if β2 < β∗2

For both sub-case a, when β2 > β1,β
∗
2 > β∗1, it could be true that

lim
t−→0

dQ2(t|µ1,µ2,β1,β2)/dt
dQ∗2(t|µ∗1,µ∗2,β∗1,β∗2)/dt

= 1

however,

lim
t−→0

dQ1(t|µ1,µ2,β1,β2)/dt
dQ∗1(t|µ∗1,µ∗2,β∗1,β∗2)/dt

6= 1

So, equation 4.3.8 and equation 4.3.9 cannot hold simultaneously; it is a contradiction!

For both sub-case b, when β2 > β1,β
∗
2 < β∗1, suppose it is true simultaneously that

lim
t−→0

dQ1(t|µ1,µ2,β1,β2)/dt
dQ∗1(t|µ∗1,µ∗2,β∗1,β∗2)/dt

= 1

and

lim
t−→0

dQ2(t|µ1,µ2,β1,β2)/dt
dQ∗2(t|µ∗1,µ∗2,β∗1,β∗2)/dt

= 1
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which implies

(µ2

µ∗2

)1− 1
δ

(µ1

µ∗1

) 1
δ β1

β∗1
= 1,(µ1

µ∗1

)1− 1
δ

(µ2

µ∗2

) 1
δ β2

β∗2
= 1,

β2 > β
∗
2,

β1 < β
∗
1,

β1−β
∗
1 =

β1−β2

δ
−

β∗1−β∗2
δ

, (4.3.12)

β2−β
∗
2 =

β2−β1

δ
−

β∗2−β∗1
δ

(4.3.13)

From condition 4.3.12 and condition 4.3.13 , we can gain that

β2−β
∗
2 = β

∗
1−β1 (4.3.14)

Combine condition 4.3.14 and condition 4.3.12, it is easy to obtain

(1− 1
δ
)(β2−β

∗
2) =

1
δ
(β∗1−β1)

so 1− 1
δ
= 1

δ
, which implies δ = 2; contradictions!

For both sub-case c, when β2 < β1,β
∗
2 > β∗1, we could get the same contradiction with

sub-case b.

For both sub-case d, when β2 < β1,β
∗
2 < β∗1, it is impossible to make equation 4.3.8 and

equation 4.3.9 hold simultaneously.

Therefore, when µ1 6= µ∗1,µ2 6= µ∗2,β1 6= β∗1,β2 6= β∗2, equation 4.3.8 and equation 4.3.9 cannot

hold simultaneously.
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So
dQ1(t|µ1,µ2,β1,β2)/dt
dQ∗1(t|µ∗1,µ∗2,β∗1,β∗2)/dt

= 1 and
dQ2(t|µ1,µ2,β1,β2)/dt
dQ∗2(t|µ∗1,µ∗2,β∗1,β∗2)/dt

= 1 are true simultaneous for ∀t > 0

if and only if µ1 = µ∗1,µ2 = µ∗2,β1 = β∗1,β2 = β∗2.

As a consequence, for a known dependent parameter, the crude survival functions are identifi-

able, and hence the corresponding joint survival model 4.3.1 is identifiable.

4.4 Identifiability Issues Under Unknown Dependence Parameter and a

Regression Framework

In general, the dependence parameter δ may not be known, and the identifiability of the model

with unknown δ is explored in this section. Consider the potential latent failure times of two risks

which are denoted by T1 and T2 and satisfy with the proposed bivariate competing risks model

S(t1, t2) = exp
(
−
[
(µ1tβ1

1 )
1
δ +(µ2tβ2

2 )
1
δ

]δ) (4.4.1)

which can also be represented through a copula approach as

S(t1, t2) = ψ

[
ψ
−1(S1(t1)

)
+ψ

−1(S2(t2)
)]

(4.4.2)

where generator ψ = exp(−xδ) and generator inverse ψ−1 = (− logx)
1
δ , and the marginal survival

functions are S1(t1) = exp(−µ1tβ1
1 ) and S2(t2) = exp(−µ2tβ2

2 ).

An alternative representation of the proposed bivariate model 4.4.1 is via a frailty approach.

The process of constructing the model is exhibited as follows. As remarked in Oakes (1989), that

Archimedean copula models arise spontaneous from bivariate frailty models, that is, T1 and T2 are
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conditionally independent given an unobserved frailty factor Z. T1|Z and T2|Z follow the Weibull

distribution with survival functions

S1(t1|Z) = exp
(
−µ

1
δ

1 t
β1
δ

1 Z
)

(4.4.3)

S2(t2|Z) = exp
(
−µ

1
δ

2 t
β2
δ

2 Z
)

(4.4.4)

where Z follows a positive stable distribution with parameter δ ∈ (0,1).

We consider a competing risks regression framework for a given covariate vector X under a

proportional hazards framework as

logµ
1
δ

1 = η0t1 +Xηt1 (4.4.5)

logµ
1
δ

2 = η0t2 +Xηt2 (4.4.6)

This results in

h1(t1|β1,µ1,δ,z) = −∂S1(t1|z)/∂t1
S1(t1|z)

= µ
1
δ

1
β1

δ
t

β1
δ
−1

1 z

= exp(Xηt1)︸ ︷︷ ︸·exp(η0t1)
β1

δ
t

β1
δ
−1

1︸ ︷︷ ︸·z
= g1(Xηt1)·h01(t1|β1,η0t1,δ)·z (4.4.7)

where h01(t1|β1,η0t1,δ) is the baseline hazard function of latent failure time T1.

Similarly, we have

h2(t2|β2,µ2,δ,z) = g2(Xηt2)·h02(t2|β2,η0t2,δ)·z (4.4.8)
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The corresponding cumulative hazard functions could be written as

H1(t1|z) = g1(Xηt1)·H01(t1|β1,η0t1,δ)·z (4.4.9)

H2(t2|z) = g2(Xηt2)·H02(t2|β2,η0t2,δ)·z (4.4.10)

where H01(t1|β1,η0t1 ,δ) and H02(t2|β2,η0t2,δ) are the baseline cumulative hazard functions. Note

that X is the covariates vector which is shared by T1 and T2. The frailty factor Z is a common ran-

dom variable which is also shared by T1 and T2, such that T1 and T2 are conditionally independent.

According to Abbring & Van den Berg (2003), such extended model is called mixed proportional

hazards competing risks model as well.

Therefore, the joint survival function of T1 and T2 under the known covariates vector is given

by

S(t1, t2|X) = S(t1, t2|Z,X)

= E
[
P(T1 > t1,T2 > t2)|Z,X

]
= E

[
P(T1 > t1|Z)·P(T2 > t2|Z,X)

]
= E

[
S1(t1|Z,X)·S2(t2|Z,X)

]
Based on the relationship between survival function and cumulative hazard function that S(t) =

exp[−H(t)] and 4.4.10, 4.4.10, the aforementioned joint distribution of T1 and T2 can be written as

S(t1, t2|X) = E
[

exp
(
−g1(Xηt1)·H01(t1|β1,η0t1,δ)·Z

)
·exp

(
−g2(Xηt2)·H02(t2|β2,η0t2,δ)·Z

)]
= E

[
exp
(
−
(
g1(Xηt1)·H01(t1|β1,η0t1,δ)+gC(Xηt2)·H02(t2|β2,η0c2,δ)

)
·Z
)]
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By applying the Laplace transform of Z, which is ψ(s) = E[exp(−sZ)], the aforementioned joint

distribution could be simplified as

S(t1, t2|X) = ψ

[
g1(Xηt1)·H01(t1|β1,η0t1,δ)+g2(Xηt2)·H02(t2|β2,η0c2,δ)

]
y since ψ

−1(s) =− logS
Z

= ψ

[
ψ
−1(S1(t1|X)

)
+ψ

−1(S2(t2|X)
)]

As a consequence, the following lemma can be established.

Lemma 4.4.1. Suppose the latent failure times T1 and T2 follow the mixed proportional haz-

ards competing risk model under a given covariate X in the representation via a frailty ap-

proach 4.4.7, 4.4.8, that is, h1(t1|β1,µ1,δ,z) = g1(Xηt1)·h01(t1|β1,η0t1,δ)·z, h2(t2|β2,µ2,δ,z) =

g2(Xηt2)·h02(t2|β2,η0t2,δ)·z. Then under the Laplace transform ψ(s) = E[exp(−sZ)], the joint

survival function of T1 and T2 is given by

S(t1, t2|X) = ψ

[
ψ
−1(S1(t1|X)

)
+ψ

−1(S2(t2|X)
)]

(4.4.11)

where ψ−1 is the inverse function of ψ, and S1(t1|X), S2(t2|X) are corresponding marginal survival

functions given by

S1(t1|X) = ψ[g1(Xηt1)·H01(t1|β1,η0t1,δ)] (4.4.12)

and

S2(t2|X) = ψ[g2(Xηt2)·H02(t2|β2,η0c2 ,δ)] (4.4.13)

Note that H01(t1|β1,η0t1,δ) and H02(t2|β2,η0c2 ,δ) are the baseline cumulative hazard functions

which are given by H01(t1|β1,η0t1,δ)= exp(η0t1)t
β1
δ

1 and H02(t2|β2,η0t2,δ)= exp(η0t2)t
β2
δ

2 . g1(Xηt1)
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and g2(Xηt2) are regression functions which do not involve latent failure times and are given in

4.4.7 and 4.4.8.

It is obvious from the previous lemma that (1) the regression functions g1(Xηt1) = exp(Xηt1)

and g2(Xηt2) = exp(Xηt2) are strictly convex functions; (2) the baseline cumulative hazard func-

tions H01(t1|β1,η0t1,δ)= exp(η0t1)t
β1
δ

1 and H02(t2|β2,η0c2,δ)= exp(η0t2)t
β2
δ

2 are differentiable with

respect to t1 and t2 respectively.

Furthermore, with an established set of conditions, the model 4.4.7 and 4.4.8 are identifiable.

Such conditions will be given by the following theorem.

Theorem 4.4.2. Suppose the latent failure times T1 and T2 follow the mixed proportional haz-

ards competing risk model under a given covariate X in the representation via a frailty approach

4.4.7,4.4.8, which are given by

h1(t1|β1,µ1,δ,z) = g1(Xηt1)·h01(t1|β1,η0t1 ,δ)·z

and

h2(t2|β2,µ2,δ,z) = g2(Xηt2)·h02(t2|β2,η0t2,δ)·z

Associated with the frailty distribution which has the Laplace transform ψ(s) = E[exp(−sZ)] and

the following assumptions:

1. E(Z)< ∞

2. the Laplace transforms ψ and φ belong to the same class which satisfy with φ−1′(s)/ψ−1′(s)

is a strictly monotone function of s

3. the baseline cumulative hazard functions are equal, that is, H01(t0|β1,η0t1 ,δ)=H02(t0|β2,η0t2,δ)

at some fixed time point t0
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then the competing risk model 4.4.7 and 4.4.8 are identifiable through the observed data T =

min(T1,T2), C = argmin(T1,T2) and the known covariate vector X. Thus, the corresponding joint

survival function in 4.4.11 is identifiable.

Proof. In order to show the identifiability, it is necessary to obtain the crude survival functions of

the model. Since it is known that the crude survival functions can be given by

Q1(t) = P(T1 > t,T1 < T2)

= −
∫

∞

t
P(T1 = u,T1 < T2)dS1(u)

= −
∫

∞

t
P(T1 = u,T2 > T1)dS1(u)

= −
∫

∞

t
P(T1 = u,T2 > u)dS1(u)

= −
∫

∞

t

dS(t1, t2)
dt1

∣∣∣∣∣
t1=t2=u

du

Similarly,

Q2(t) = P(T2 > t,T2 < T1)

= −
∫

∞

t

dS(t1, t2)
dt2

∣∣∣∣∣
t1=t2=u

du

so the corresponding differential of crude survival functions of T1 under the given covariate vector

X can be written as

dQ1(t|X = X1)

dt
=− dS(t1, t2|X = X1)

dt1

∣∣∣∣∣
t1=t2=t

=−ψ′
[
g1(X1ηt1)·H01(t1|β1,η0t1,δ)+g2(X1ηt2)·H02(t2|β2,η0c2 ,δ)

]
×g1(X1ηt1)h01(t1|β1,η0t1,δ) (4.4.14)
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and

dQ1(t|X = X0)

dt
=− dS(t1, t2|X = X0)

dt1

∣∣∣∣∣
t1=t2=t

=−ψ′
[
g1(X0ηt1)·H01(t1|β1,η0t1,δ)+g2(X0ηt2)·H02(t2|β2,η0t2,δ)

]
×g1(X0ηt)h01(t1|β1,η0t1,δ) (4.4.15)

Therefore, the ratio of two aforementioned equations are given by

dQ1(t|X = X1)/dt
dQ1(t|X = X0)/dt

=
−ψ′

[
g1(X1ηt1)·H01(t1|β1,η0t1,δ)+g2(X1ηt2)·H02(t2|β2,η0c2,δ)

]
−ψ′

[
g1(X0ηt1)·H01(t1|β1,η0t1,δ)+g2(X0ηt2)·H02(t2|β2,η0t2,δ)

]
× g1(X1ηt1)h01(t1|β1,η0t1,δ)

g1(X0ηt1)h01(t1|β1,η0t1,δ)

=
ψ′
[
g1(X1ηt1)·H01(t1|β1,η0t1,δ)+g2(X1ηt2)·H02(t2|β2,η0t2 ,δ)

]
ψ′
[
g1(X0ηt1)·H01(t1|β1,η0t1,δ)+g2(X0ηt2)·H02(t2|β2,η0t2 ,δ)

]
× g1(X1ηt1)

g1(X0ηt1)
(4.4.16)

Now, letting t −→ 0, then

H01(t1|β1,η0t1 ,δ) = exp(η0t1)t
β1
δ

1 −→ 0

H02(t2|β2,η0t2 ,δ) = exp(η0t2)t
β2
δ

2 −→ 0

so that the ratio 4.4.16 approaches to

dQ1(t|X = X1)/dt
dQ1(t|X = X0)/dt

−→ ψ′(0)·g1(X1ηt1)

ψ′(0)·g1(X0ηt1)
−→ g1(X1ηt1)

g1(X0ηt1)
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Since the function g(·) is given by g1(Xηt1)= exp(Xηt1) which is identified, so the ratio
g1(X1ηt1)

g1(X0ηt1)

is identified as well. Similarly,
g2(X1ηt1)

g2(X0ηt1)
can be identified. And it is known that

S1(t1|Z) = exp(−µ
1
δ

1 t
β1
δ

1 Z) = ψ
[
g1(Xηt1)·H01(t1|β1,η0t1 ,δ)

]
= S1(t1|X)

for any X1 6= X2; then it is easy to achieve

ψ
−1[S1(t1|X1)

]
= g1(X1ηt1)·H10(t1|β1,η0t1,δ) (4.4.17)

and

ψ
−1[S1(t1|X2)

]
= g1(X2ηt1)·H10(t1|β1,η0t1,δ) (4.4.18)

Since the model can be expressed via a frailty approach 3.3 as well as via a copula approach

3.4, the Laplace transform ψ can also be written as a copula ψ. In order to show 4.4.11 is iden-

tifiable by the observed data set min(T1,T2) and argmin(T1,T2), a proof by contradiction will be

introduced here. Suppose the model is not identifiable; that is, given a covariate vector X the

ψ is not identifiable only based on the distribution of min(T1,T2). In other words, S(t1, t2|X)

is not identifiable. Then there exists another Laplace transform φ which is not the same as ψ

belongs to the same class with ψ, such that S∗(t1, t2|X) = φ

[
φ−1(S1(t1)

)
+ φ−1(S2(t2)

)]
and

S∗(t1, t2|X) = S(t1, t2|X) = ψ

[
ψ−1(S1(t1)

)
+ψ−1(S2(t2)

)]
Similar to 4.4.17 and 4.4.18, for any

X1 6= X2 there exists S∗1(t1|X1), H∗01
(t1|β1,η0t1,δ) and S∗1(t1|X2), H∗01

(t1|β1,η0t1,δ) such that

φ
−1[S∗1(t1|X1)

]
= g1(X1ηt1)·H

∗
01
(t1|β1,η0t1 ,δ)
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and

φ
−1[S∗1(t1|X2)

]
= g1(X2ηt1)·H

∗
01
(t1|β1,η0t1,δ)

Since S∗(t1, t2|X) = S(t1, t2|X), the corresponding crude survival functions Q1(t) = Q∗1(t) and

Q2(t) = Q∗2(t).

According to Rivest & Wells (2001), the formula of S∗1(t1|X) is given by

S∗1(t1|X) = φ

[∫ t1

0

φ−1′(π(u))
ψ−1′

(
π(u)

)dψ
−1(S1(u|X)

)]

After taking derivate of φ−1(S∗1(t1|X)
)

with respect to t1, we will get

dφ−1(S∗1(t1|X)
)

dt1
=

φ−1′(π(t1|X)
)

ψ−1′
(
π(t1|X)

)dψ
−1(S1(t1|X)

)
/dt1

and then we can obtain for X = X1 and X = X2 respectively, so that

dφ−1(S∗1(t1|X1)
)

dt1
=

φ−1′(π(t1|X1)
)

ψ−1′
(
π(t1|X1)

)dψ
−1(S1(t1|X1)

)
/dt1 (4.4.19)

and

dφ−1(S∗1(t1|X2)
)

dt1
=

φ−1′(π(t1|X2)
)

ψ−1′
(
π(t1|X2)

)dψ
−1(S1(t1|X2)

)
/dt1 (4.4.20)

Therefore, the ratio of equation 4.4.19 and 4.4.20 is

4.4.19
4.4.20

=
dφ−1(S∗1(t1|X1)

)
/dt1

dφ−1
(
S∗1(t1|X2)

)
/dt1

=
φ−1′(π(t1|X1)

)
/ψ−1′(π(t1|X1)

)
φ−1′

(
π(t1|X2)

)
/ψ−1′

(
π(t1|X2)

) · dψ−1(S1(t1|X1)
)
/dt1

dψ−1
(
S1(t1|X2)

)
/dt1

=
φ−1′(π(t1|X1)

)
·ψ−1′(π(t1|X2)

)
ψ−1′

(
π(t1|X1)

)
·φ−1′

(
π(t1|X2)

) · dψ−1(S1(t1|X1)
)
/dt1

dψ−1
(
S1(t1|X2)

)
/dt1

(4.4.21)
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Since we know the fact that

dψ−1[S1(t1|X1)
]
/dt1

dψ−1
[
S1(t1|X2)

]
/dt1

=
g1(X1ηt1)·h01(t1|β1,η0t1,δ)

g1(X2ηt1)·h01(t1|β1,η0t1,δ)
=

g1(X1ηt1)

g1(X2ηt1)
(4.4.22)

and

dφ−1[S∗1(t1|X1)
]
/dt1

dφ−1
[
S∗1(t1|X2)

]
/dt1

=
g1(X1ηt1)·h∗01

(t1|β1,η0t1,δ)

g1(X2ηt1)·h∗01
(t1|β1,η0t ,δ)

=
g1(X1ηt1)

g1(X2ηt1)
(4.4.23)

then from equations 4.4.22 and 4.4.23 we can obtain

dψ−1[S1(t1|X1)
]
/dt1

dψ−1
[
S1(t1|X2)

]
/dt1

=
dφ−1[S1(t1|X1)

]
/dt1

dφ−1
[
S1(t1|X2)

]
/dt1

(4.4.24)

Comparing equations 4.4.21 and 4.4.24, we obtain the equation below:

φ−1′(π(t1|X1)
)
·ψ−1′(π(t1|X2)

)
ψ−1′

(
π(t1|X1)

)
·φ−1′

(
π(t1|X2)

) = 1

and also obtain the transformed equation:

φ−1′(π(t1|X1)
)

ψ−1′
(
π(t1|X1)

) = φ−1′(π(t1|X2)
)

ψ−1′
(
π(t1|X2)

) (4.4.25)

From the assumption 2 in Theorem 4.4.2 we know that φ−1′(s)/ψ−1′(s) is a strictly monotone

function of s; in order to make 4.4.25 true, we only need π(t1|X1) = π(t1|X2), which is

ψ

[
g1(X1ηt1)·H01(t1|β1,η0t1,δ)+g2(X1ηt2)·H02(t1|β2,η0t2,δ)

]
= ψ

[
g1(X2ηt1)·H01(t1|β1,η0t1,δ)+g2(X2ηt2)·H02(t1|β2,η0t2,δ)

]
(4.4.26)

Case1: When Xi is a scalar, suppose there exists x3 such that x1 < x3 < x2, and x3ηt is within the

interval (x1ηt1, x2ηt1) or (x2ηt1, x1ηt1) where ηt1 6= 0. Similarly, x3ηt2 is within the interval
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(x1ηt2, x2ηt2) or (x2ηt2, x1ηt2). Since ψ is a monotone function and x1,x2 are arbitrary,

equivalently, we can obtain the following equation from condition 4.4.26:

g1(x1ηt1)·H01(t1|β1,η0t1,δ)+g2(x1ηt1)·H02(t1|β2,η0t2,δ)

= g1(x3ηt1)·H01(t1|β1,η0t1,δ)+g2(x3ηt1)·H02(t1|β2,η0t2,δ) (4.4.27)

And since x3 6= x1 and x3 6= x2, similarly, we have

g1(x2ηt1)·H01(t1|β1,η0t1,δ)+g2(x2ηt1)·H02(t1|β2,η0t2,δ)

= g1(x3ηt1)·H01(t1|β1,η0t1,δ)+g2(x3ηt1)·H02(t1|β2,η0t2,δ) (4.4.28)

Combining equations 4.4.27 and 4.4.28 we can obtain the new equation:

2
[
g1(x3ηt1)·H01(t1|β1,η0t1,δ)+g2(x3ηt1)·H02(t1|β2,η0t2,δ)

]
=g1(x1ηt)·H01(t1|β1,η0t1 ,δ)+g2(x1ηt1)·H02(t1|β2,η0t2,δ)

+g1(x2ηt1)·H01(t1|β1,η0t1,δ)+g2(x2ηt1)·H02(t1|β2,η0t2,δ)

Moreover, take out the common factor from the right side to yield

2g1(x3ηt)·H01(t1|β1,η0t1,δ)+2g2(x3ηt1)·H02(t1|β2,η0t2,δ)

=
[
g1(x1ηt1)+g1(x2ηt1)

]
·H01(t1|β1,η0t1,δ)

+
[
g2(x1ηt1)+g2(x2ηt1)

]
·H02(t1|β2,η0t2,δ)
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By the assumption 3 in Theorem 4.4.2, H01(t0|β1,η0t1 ,δ) = H02(t0|β2,η0t2,δ) at some fixed

point t0, so the aforementioned equation can be rewritten as

2g1(x3ηt1)+2g2(x3ηt1) =
[
g1(x1ηt1)+g1(x2ηt1)

]
+
[
g2(x1ηt1)+g2(x2ηt1)

]
(4.4.29)

Since g1(xηt1) = exp(xηt1) and g2(xηt2) = exp(xηt2), which are strictly convex function, and

x1 < x3 < x2, so

2g1(x3ηt1)< g1(x1ηt1)+g1(x2ηt1)

and

2g2(x3ηt1)< g2(x1ηt1)+g2(x2ηt1)

Therefore, the sum of these two inequalities can be given by

2g1(x3ηt1)+2g2(x3ηt1)<
[
g1(x1ηt1)+g1(x2ηt1)

]
+
[
g2(x1ηt1)+g2(x2ηt1)

]

which is a contradiction compared with the result in 4.4.29.

Case2: When Xi is not a scalar, Xi = (xi1,xi2, ...,xi j...,xik), which is a covariate vector with k com-

ponents, and ηt1 = (ηt11,ηt12, ...ηt1 j, ...,ηt1k) and ηt2 = (ηt21,ηt22, ...ηt2 j, ...,ηt2k). We can

have three covariate vectors with choosing one of the components to be different and others

to be the same, that is,

X1 = (x11,x12, ...,x1 j, ...,x1k) = (x1,x2, ...,x1 j, ...,xk)

X2 = (x21,x22, ...,x2 j, ...,x2k) = (x1,x2, ...,x2 j, ...,xk)

X3 = (x31,x32, ...,x3 j, ...,x3k) = (x1,x2, ...,x3 j, ...,xk)
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And let’s suppose x1 j < x3 j < x2 j; then X3ηt1 is within the interval

(X1ηt1,X2ηt1) or (X2ηt1,X1ηt1)

where ηt1 6= 0 and also ηt1 j 6= 0. Similarly, we have X3ηt2 is within the interval

(X1ηt2,X2ηt2) or (X2ηt2 ,X1ηt2)

where ηt2 6= 0 and ηt2 j 6= 0. Then we can reach the same conclusion under Case 1, which

leads to a contradiction.

Therefore, equation 4.4.26 cannot hold, so that the copula ψ can be uniquely determined

by the distribution of min(T1,T2). Furthermore, model 4.4.11 S(t1, t2|X) = ψ

[
ψ−1(S1(t1|X)

)
+

ψ−1(S2(t2|X)
)]

is identifiable.

4.5 Remarks

Heckman & Honoré (1989) have explored a general class of models:

S(t1, t2|X) = K[S1(t1|X),S2(t2|X)] (4.5.1)

where K is the joint cumulative distribution function on [0,1]2. To identify this model, the support

of (g1(Xηt1),g2(Xηt2)) needs to be (0,∞)× (0,∞). Further, Abbring & Van den Berg (2003) have

studied a more specific model that is a mixed proportional hazards competing risks survival model.

Such a model is related to model 4.5.1 if K(u,v) =
∫

∞

0
∫

∞

0 ut1vt2dG(t1, t2). Sufficient conditions for

identifiability of this model include that the support of (g1(Xηt1),g2(Xηt2)) is a non-empty open

set. In contrast to the semi-parametric models considered in these two articles, we established
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identifiability conditions for the proposed parametric model under a regression framework. Rivest

& Wells (2001) have also marked a similar condition as assumption 3 in Theorem 4.4.2.



CHAPTER 5

NUMERICAL STUDIES

5.1 Introduction

In this section, we report on results of simulation studies assessing the performance of Bayesian

and maximum likelihood (MLE) estimators. The Bayesian estimates are approximated by Markov

chain sampling analysis of the proposed models. The MLEs are obtained by numerical optimiza-

tion of the likelihood function or, in some cases, of the profile likelihood. We conclude this section

with an application of the proposed model on real data from a Tamoxifen trial, reported in Pin-

tilie (2006). We consider analysis of the Tamoxifen data under the dependent competing risks

model as well as under a regression framework. See Ibrahim et al. (2005) for Bayesian methods in

time-to-event data and Zacks (1971) for maximum likelihood estimation.

5.2 Data Generating Model

The simulation studies primarily consider the case of two competing risks and consider differ-

ent sample sizes of n = 100, n = 500 and n = 1000, respectively. Each generated data set contains

{(ti,d ji), i = 1, ...,n; j = 1,2} with 10 iterations, which is denoted by {(tik,d jik), i = 1, ...,n; k =

1, ...,10, j = 1,2}, where tik = min(t1ik, t2ik) and n is the sample size.
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The data for the independent case are generated by the following steps: Let T1ik∼Weibull(µ1,β1)

and T2ik ∼Weibull(µ2,β2), and set Tik = min(T1ik,T2ik); the indicator d jik is defined as

d1ik =


1 if t1ik ≤ t2ik

0 otherwise

d2ik = 1−d1ik

We consider two representations for data generation in the dependent cases. The first method is

introduced by L. Lee (1979) through the following steps: Let U ∼Unif(0,1) and V =V11+MδV12

be independent, where Mδ ∼ Bern(δ), V11 ∼ Exp(1) and V12 ∼ Exp(1) are independent.

Lemma 5.2.1. Suppose the random variables T1 and T2 have joint distribution S(t1, t2) = exp
(
−[

(µ1tβ1
1 )1/δ +(µ2tβ2

2 )1/δ
]δ). Then they can be represented as T1 = (U)δ/β1(V/µ1)

1/β1 ,T2 = ([(1−

U)]δ/β2(V/µ2)
1/β2 , where U ∼ Unif(0,1), Mδ ∼ Bern(δ), V11 ∼ Exp(1) and V12 ∼ Exp(1) are

independent, and V =V11 +MδV12.

Proof. Consider the random variables X1 = (µ1T β1
1 )1/δ and X2 = (µ2T β2

2 )1/δ; then the joint distri-

bution of them is given by

S(x1,x2) = exp[−(x1 + x2)
δ] (5.2.1)

By taking derivative we can obtain the joint density function, which can be written as

f (x1,x2) =
[
(1−δ)δ(x1 + x2)

δ−2 +δ
2(x1 + x2)

2δ−2] · exp[−(x1 + x2)
δ] (5.2.2)
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Since T1 = (U)δ/β1(V/µ1)
1/β1 ,T2 = ([(1−U)]δ/β2(V/µ2)

1/β2 , solving for U and V by replacing

T1, T2 with X1, X2, then

U =
(µ1T β1

1 )1/δ

(µ1T β1
1 )1/δ +(µ2T β2

2 )1/δ
=

X1

X1 +X2
,

V =
(
(µ1T β1

1 )1/δ +(µ2T β2
2 )1/δ

)δ
= (X1 +X2)

δ

having the Jacobian J = δ(X1 +X2)
δ−2.

Because V =V11 +MδV12 where Mδ ∼ Bern(δ), V11 ∼ Exp(1) and V12 ∼ Exp(1) are indepen-

dent, then

V =


V11 if M = 0

V11 +V12 if M = 1

with f (V |M = 0)∼ Exp(1) = exp(−v) and f (V |M = 1)∼ Gamma(2,1) = vexp(−v).

Thus, f (v)= f (V |M = 0) ·P(M = 0)+ f (V |M = 1) ·P(M = 1)= (1−δ)exp(−v)+δvexp(−v),

combining with independent U ∼ Unif(0,1), then the joint distribution of V and U is given by

f (u,v) = f (u) · f (v)

= (1−δ)exp(−v)+δvexp(−v) (5.2.3)

The joint density of X1 and X2 can be written as

f (x1,x2) =
[
(1−δ)exp[−(x1 + x2)

δ]+δ(x1 + x2)
δ exp[−(x1 + x2)

δ]
]
·δ(x1 + x2)

δ−2

=
[
(1−δ)δ(x1 + x2)

δ−2 +δ
2(x1 + x2)

2δ−2] · exp[−(x1 + x2)
δ] (5.2.4)

which is the same as 5.2.2.



67

An alternative, second representation of (T1,T2) from the proposed model is as follows:

T1 = (U)δ/β1(V/µ1)
1/β1

T2 = (1−U)δ/β2(V/µ2)
1/β2

where U ∼Unif(0,1) and V = (1−Mδ)V11+MδV12 are independent, Mδ ∼Bern(δ), V11 ∼ Exp(1)

and V12 ∼ Gamma(2,1) are independent.

Lemma 5.2.2. Suppose the random variables T1 and T2 have joint distribution S(t1, t2) = exp
(
−[

(µ1tβ1
1 )1/δ +(µ2tβ2

2 )1/δ
]δ); then it can be represented in terms of independent random variables:

T1 =(U)δ/β1(V/µ1)
1/β1 ,T2 =([(1−U)]δ/β2(V/µ2)

1/β2 , where U ∼Unif(0,1) and V =(1−Mδ)V11+

MδV12 are independent, Mδ ∼ Bern(δ), V11 ∼ Exp(1) and V12 ∼ Gamma(2,1) are independent.

Proof. Similar to the proof in Lemma 5.2.1, the joint density of X1 and X2 is given by equation

5.2.2. Since V = (1−Mδ)V11+MδV12 where Mδ∼Bern(δ), V11∼ Exp(1) and V12∼Gamma(2,1)

are independent, then

V =


V11 if M = 0

V12 if M = 1

with f (V |M = 0) ∼ Exp(1) = exp(−v) and f (V |M = 1) ∼ Gamma(2,1) = vexp(−v). Thus,

f (v) = f (V |M = 0) ·P(M = 0)+ f (V |M = 1) ·P(M = 1) = (1− δ)exp(−v)+ δvexp(−v), and

combining with independent U ∼ Unif(0,1), then the joint distribution of V and U is given by

f (u,v) = f (u) · f (v)

= (1−δ)exp(−v)+δvexp(−v) (5.2.5)
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The joint of X1 and X2 can be written as

f (x1,x2) =
[
(1−δ)exp[−(x1 + x2)

δ]+δ(x1 + x2)
δ exp[−(x1 + x2)

δ]
]
·δ(x1 + x2)

δ−2

=
[
(1−δ)δ(x1 + x2)

δ−2 +δ
2(x1 + x2)

2δ−2] · exp[−(x1 + x2)
δ] (5.2.6)

which is the same as 5.2.2.

5.3 Simulation Study I

5.3.1 Bayesian Inference

Bayesian analysis of the proposed competing risks model is performed using Markov chain

sampling. S. Basu et al. (2003) considered Markov chain sampling for Bayesian analysis of com-

peting risks, whereas the book by Ibrahim et al. (2005) discusses Bayesian methods in time-to-

event data.

Bayesian inference usually involves specification of appropriate prior distributions for the pa-

rameters involved in the model and derivation of the posterior distributions for the parameters

conditional on the data. The Bayesian estimate of a parameter is usually the mean or median of

the posterior distribution. As mentioned earlier, for the ith subject, the observed data is denoted by

(ti,d1i,d2i), where ti is the observed time to event, d1i is the censoring indicator of risk 1 taking the

value 0 if censored and 1 if event occurs from risk1, and d2i is the censoring indicator of risk2 tak-

ing the value 0 if censored and 1 if event occurs from risk2. Let D = {(ti,d ji), i = 1, ..., j = 1,2}.

The parameters specified by the model can be collectively written as Ω = (µ1,µ2,β1,β2,δ). Then,

the joint probability function of the data given the parameters Ω can be written as
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P(D|Ω) =
n

∏
i=1

(
[ f1(ti)]d1i· [ f2(ti)]d2i· [S(t1, t2)]1−d1i−d2i

)

where f1(t1;µ1,β1) and f2(t2;µ2,β2) are the sub-density functions, S(t1, t2;µ1,µ2,β1,β2,δ) is the

joint survival function. Thus, the posterior distribution of Ω can be formulated by

P(Ω|D) ∝ P(D|Ω)×π(Ω) (5.3.1)

where π(Ω) is the joint prior probability distribution of the parameters that are involved in the

model.

The prior distribution of each parameter is given by

µ1 ∼ Gamma(1,1)

µ1 ∼ Gamma(1,1)

β1 ∼ Unif(0.5,2.5)

β2 ∼ Unif(0.5,2.5)

δ ∼ π ·Unif(0,1)+(1−π) ·degenerate(1)

π ∼ Unif(0,1)

We consider 10 replicated data sets generated from

S(t1, t2) = exp
(
−
[
(µ1tβ1

1 )1/δ +(µ2tβ2
2 )1/δ

]δ) (5.3.2)

In the data generating model, µ1 = 0.8, µ2 = 0.5, β1 = 1.1, β2 = 2. We further considered the

independent case (δ= 1) and dependent cases (δ= 0.8; δ= 0.3) in the simulation study.The sample
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size of each study contains 1000 observations. The Bayesian inference results reported in Table

5.1 are the posterior mean of the parameters based on 10,000 Markov chain samples after a burn-in

of 5,000. We consider 10 replicated data sets, and the results reported are the median, minimum

and maximum over these 10 replications. According to the Table 5.1, most of the estimations are

close to their true value in the data generating model. The independent case and dependent case

can be suggested in right direction.

Table 5.1: Simulation Results of Bayesian Estimation

Analysis Data Generating Model

Model δ = 1 δ = 0.8 δ = 0.3

Parameter Estimated Values: median (min,max)

µ1 0.811 (0.784, 0.839) 0.782 (0.724, 0.845) 0.790 (0.760, 0.837)

µ2 0.527 (0.495, 0.619) 0.439 (0.385, 0.576) 0.505 (0.341, 0.635)

β1 1.12 (1.057, 1.192) 1.099 (1.018, 1.134) 1.096 (1.043, 1.235)

β2 1.978 (1.89, 2.056) 2.128 (1.983, 2.185) 2.007 (1.718, 2.325)

δ 0.965 (0.866, 0.981) 0.906 (0.766, 0.991) 0.319 (0.164, 0.447)

P(δ = 1) 0.792 (0.574, 0.862) 0.651 (0.379, 0.906) 0 (0, 0)

Note: The estimation of each parameter is given by the minimum, the maximum and the median of 10

replications.

The posterior density of δ for each study is shown in Figure 5.1. According to the figure, for

data generating model with δ = 1 and δ = 0.8, most of the iterations obtain a flat likelihood over δ

such that the obtained Bayesian estimation of dependence parameter may not be close to the true

value. For the data generating model with δ = 0.3, this situation is not significant.
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Figure 5.1: The plot of posterior density of δ for data generating model with δ = 1,0.8,0.3
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5.3.2 Maximum Likelihood Estimator

Let f1(t1;µ1,β1) and f2(t2;µ2,β2) and S(t1, t2;µ1,µ2,β1,β2,δ) denote the sub-density functions

of the joint survival function of latent failure times T1, T2. The log-likelihood can then be written

as

logLT (µ1,µ2,β1,β2,δ) =
n

∑
i=1

logLi(µ1,µ2,β1,β2,δ)

=
n

∑
i=1

log
(
[ f1(ti)]d1i· [ f2(ti)]d2i· [S(t1, t2)]1−d1i−d2i

)
=

n

∑
i=1

(
d1i log f1(ti)+d2i log f2(ti)+(1−d1i−d2i) logS(t1, t2)

)

The maximum likelihood estimates are given by

(µ̂1, µ̂2, β̂1, β̂2, δ̂) = arg max
µ1,µ2,β1,β2,δ

logLT (µ1,µ2,β1,β2,δ)

We in fact consider a profile likelihood approach by first fixing the dependence parameter δ and

maximizing over the remaining parameters, followed by maximization over δ. In particular, for

given δ, let (µ̂1(δ), µ̂2(δ), β̂1(δ), β̂2(δ)) = argmaxµ1,µ2,β1,β2 logLT (µ1,µ2,β1,β2,δ). We then maxi-

mize the profile likelihood of δ to obtain

(µ̂1, µ̂2, β̂1, β̂2, δ̂) = argmax
δ

logLT (µ̂1(δ), µ̂2(δ), β̂1(δ), β̂2(δ),δ)

The results of the simulation studies based on 10 replications are shown in the following sub-

sections.
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5.3.2.1 Independent Case

The analysis results are based on data generating model with µ1 = 0.8, µ2 = 0.5, β1 = 1.1 and

β2 = 2, summarized in Table 5.2

Table 5.2: Simulation Results Under Independent Case

Analysis Data Generating Model with δ = 1

Model sample size n = 100 sample size n = 500 sample size n = 1000

Parameter Estimated Values: median (min,max)

µ1 0.860 (0.742, 1.160) 0.781 (0.725, 1.084) 0.847 (0.802, 1.128)

µ2 0.501 (0.389, 1.111) 0.549 (0.471, 1.018) 0.517 (0.471, 1.166)

β1 1.137 (0.942, 1.380) 1.116 (1.004, 1.377) 1.125 (1.035, 1.239)

β2 2.205 (1.813, 2.558) 1.915 (1.534, 2.055) 1.954 (1.440, 2.137)

δ 1 (0.28, 1) 0.99 (0.25, 1) 1 (0.18, 1)

-log(likelihood) 114.3 615.9 1229.3

Note: The estimator of each parameter is given by the minimum, the maximum and the median over 10

iterations.

The profile log-likelihood estimators are given in Table 5.2. We note that most of the estimates

are close to their true data-generating values except for the case of δ. The main reason for such

results is that the profile likelihood over δ is flat, which makes the estimation to be hard. The plots

of δ over profile log-likelihood at different sample sizes are give in Figure 5.2
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Figure 5.2: The plot of profile likelihood over delta when true delta value is 1

5.3.2.2 Dependent Case

The analysis results for the data generating model with µ1 = 0.8, µ2 = 0.5, β1 = 1.1 and β2 = 2,

summarized in Table 5.3 and Table 5.4

1. For δ = 0.8, the results are summarized in Table5.3.
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Table 5.3: Simulation Results Under Dependent Case with Dependent Parameter Equal to 0.8

Analysis Data Generating Model with δ = 0.8

Model sample size n = 100 sample size n = 500 sample size n = 1000

Parameter Estimated Values: median (min,max)

µ1 0.805 (0.595, 1.155) 0.771 (0.726, 0.937) 0.787 (0.753, 0.935)

µ2 0.587 (0.341, 1.136) 0.508 (0.355, 0.841) 0.491 (0.359, 0.729)

β1 1.058 (0.938, 1.325) 1.106 (0.992, 1.258) 1.131 (1.002, 1.205)

β2 1.902 (1.428, 2.694) 2.007 (1.698, 2.171) 2.035 (1.759, 2.293)

δ 0.915 (0.13,1) 0.805 (0.36,1) 0.83 (0.47,1)

-log(likelihood) 128.0 651.9 1285.7

Note: The estimation of each parameter is given by the minimum, the maximum and the median over

10 iterations.

The profile log-likelihood estimators are given in the Table 5.3. The estimations of all the

parameters µ1, µ2, β1 and β2 are closer to the true values. Comparatively speaking, the

larger sample size data will give the more accurate maximum likelihood estimators based on

the analysis model. One reason could be that the profile likelihood value over δ is more flat

with small sample size data according to the plot of profile log-likelihood over δ at different

sample sizes, which is given in Figure 5.3. So it is hard to obtain an accurate estimate for

most of the iteration studies.
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Figure 5.3: The plot of profile likelihood over delta when true delta value is 0.8

Next, we simulate the failure times for the dependent case with δ = 0.3.

2. For δ = 0.3, the results are summarized in Table 5.4.
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Table 5.4: Simulation Results Under Dependent Case with Dependent Parameter Equal to 0.3

Analysis Data Generating Model with δ = 0.3

Model sample size n = 100 sample size n = 500 sample size n = 1000

Parameter Estimated Values: median (min,max)

µ1 0.856 (0.596, 1.034) 0.816 (0.745, 0.874) 0.815 (0.722, 0.847)

µ2 0.508 (0.071, 0.988) 0.437 (0.306, 0.648) 0.514 (0.425, 0.669)

β1 1.115 (1.028, 1.296) 1.068 (1.000, 1.144) 1.141 (1.044, 1.189)

β2 1.977 (1.311, 3.456) 2.194 (1.736, 2.409) 1.989 (1.693, 2.202)

δ 0.38 (0.06,1) 0.36 (0.17,0.55) 0.27 (0.17,0.36)

-log(likelihood) 125.7 634.7 1284.9

Note: The estimation of each parameter is given by the minimum, the maximum and the median over

10 iterations.

The profile log-likelihood estimators are given in the Table 5.4. The estimations of all the

parameters µ1, µ2, β1 and β2 are closer to the true values. In particular, along with the growth

of sample size, the profile maximum likelihood estimators are closer to the true values in data

generating model. The main reason for such results is that the profile likelihood value over

δ is more flat with small sample size data. It is hard to obtain an accurate estimator for most

of the iteration studies. The plots of profile log-likelihood over δ at different sample sizes

are given in Figure5.4.
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Figure 5.4: The plot of profile likelihood over delta when true delta value is 0.3

The summary of simulation study based on sample size n = 1000 with different delta values

for profile maximum likelihood estimator is given in the Table 5.5.
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Table 5.5: Simulation Results Under Sample Size 1000

Data Generating Model with Sample Size N = 1000

Analysis µ1 = 0.8,µ2 = 0.5,β1 = 1.1,β2 = 2

Model δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.5

Parameter Estimated Values: median (min,max)

µ1 0.77 (0.75, 0.84) 0.81 (0.77, 0.84) 0.80 (0.76, 0.83) 0.81 (0.73, 0.83) 0.81 (0.72, 0.89)

µ2 0.50 (0.44, 0.55) 0.53 (0.35, 0.60) 0.52 (0.40, 0.65) 0.47 (0.37, 0.56) 0.52 (0.17, 0.79)

β1 1.13 (1.02, 1.23) 1.11 (1.03, 1.16) 1.11 (0.98 1.16) 1.12 (1.08, 1.24) 1.08 (1.02, 1.15)

β2 1.97 (1.59, 2.86) 1.97 (1.93, 2.13) 1.99 (1.79, 2.36) 1.96 (1.81, 2.16) 2.06 (1.93, 2.27)

δ 0.47 (0.19, 1) 0.10 (0.08, 0.13) 0.19 (0.14, 0.33) 0.30 (0.17,0.39) 0.43 (0.31, 0.57)

δ = 0.6 δ = 0.7 δ = 0.8 δ = 0.9 δ = 1

Parameter Estimated Values: median (min,max)

µ1 0.74 (0.70, 0.87) 0.81 (0.76, 0.92) 0.81 (0.73, 0.95) 0.80 (0.72, 1.01) 0.80 (0.74, 0.96)

µ2 0.46 (0.25, 0.66) 0.50 (0.28, 0.83) 0.52 (0.33, 0.78) 0.46 (0.42, 1.00) 0.52 (0.44, 0.94)

β1 1.09 (1.02, 1.13) 1.08 (1.03, 1.23) 1.09 (0.97, 1.21) 1.10 (1.06, 1.31) 1.11 (1.06, 1,19)

β2 2.14 (1.74, 2.42) 1.98 (1.63, 2.38) 2.03 (1.63, 2.26) 2.05 (1.64, 2.15) 1.95 (1.70, 2.12)

δ 0.57 (0.39, 1) 0.73 (0.31, 1) 0.77 (0.51,1) 0.91 (0.29, 1) 1 (0.47, 1)

Note: The estimation of each parameter is given by the minimum, the maximum and the median of 10 iterations.

5.4 Simulation Study II: Regression Framework

We established identifiability of the proposed model in Theorem 4.4.2 under regression frame-

works in 4.4.7 and 4.4.8. In this section, we illustrate the identifiability issues in a simulation
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study. We consider the proposed model 5.3.2: S(t1, t2) = exp
(
−
[
(µ1tβ1

1 )1/δ +(µ2tβ2
2 )1/δ

]δ) with

regression models given by

log(µ1/δ

1 ) = η10 +η11x1 +η12x2 (5.4.1)

log(µ1/δ

2 ) = η20 +η21x1 +η22x2

In the data generating model, we consider a continuous and a binary x variables:

x1 ∼ N(0,σ2)

x2 ∼ Bern(p)

In particular, we have considered x2 ∼ Bern(0.5) and x1 ∼ N(0,0.1), N(0,0.5), N(0,1) respec-

tively. For each data set with sample size N = 1000, we obtain the result under analysis model

via the profile maximum likelihood estimator, which is summarized in Tables 5.6 − 5.8, and the

estimation of each parameter is given by the minimum, maximum and median over 10 iterations.

According to the tables with different data generating models below, most of the estimation are

close to their true value, which brings the identifiability to be achieved in these studies. The shape

parameter β can also be estimated accurately via frequentist way. Although the estimation of co-

efficient of covariates may not be close to their true values for some of the cases, it is because the

given MLE is the median (minimum, maximum) of 10 iterations. The larger number of repetitions

will give more accuracy.
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Table 5.6: Simulation Result 1 Under Model with Regression on µ

Data Generating Model with x1 ∼ N(0,0.1), x2 ∼ Bern(0.5)

η10 =−2.5, η11 = 0.5, η12 = 1.3, η20 =−2, η21 = 0.4, η22 = 1.8, β1 = 1.1, β2 = 2

Analysis δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.5

Model Estimated Values: median (min,max)

η10 -2.3 (-3.5, -1.5) -2.5 (-3.1, -2.0) -2.5 (-3.4, -2.3) -2.5 (-3.3, -1.9) -2.6 (-4.1, -2.1)

η11 0.87 (-1.6, 1.35) 0.45 (-0.9, 1.15) 0.47 (-1.3, 1.32) 0.52 (-1.7, 1.91) 0.44 (-1.3, 2.28)

η12 0.97 (0.09, 3.97) 1.21 (0.62, 1.82) 1.19 (0.97, 2.26) 1.32 (0.67, 1.93) 1.52 (1.08, 2.75)

η20 -1.7 (-2.9, -1.0) -2.0 (-2.6, -1.7) -2.0 (-2.6, -1.8) -2.1 (-2.7, -1.6) -2.0 (-3.4, -1.7)

η21 0.39 (-0.7, 1.84) 0.62 (-1.8, 1.37) 0.36 (-1.7, 0.98) 0.54 (-1.0, 1.49) 0.43 (-0.8, 1.01)

η22 1.52 (0.64, 4.27) 1.53 (1.36, 2.47) 1.83 (1.67, 2.60) 1.82 (1.20, 2.65) 1.83 (1.36, 3.40)

β1 1.06 (1.01, 1.13) 1.09 (1.03, 1.17) 1.12 (1.07, 1.22) 1.13 (1.03, 1.28) 1.14 (0.98, 1.40)

β2 2.05 (1.89, 2.22) 2.01 (1.91, 2.25) 1.99 (1.88, 2.27) 2.05 (1.99, 2.45) 1.98 (1.82, 2.11)

δ 0.11 (0.08, 0.14) 0.20 (0.17, 0.28) 0.29 (0.23,0.38) 0.40 (0.27, 0.59) 0.47 (0.25, 0.65)

Analysis δ = 0.6 δ = 0.7 δ = 0.8 δ = 0.9 δ = 1

Model Estimated Values: median (min,max)

η10 -2.7 (-3.8, -2.0) -2.4 (-2.8, -2.0) -2.7 (-3.7, -2.1) -2.4 (-3.8, -2.3) -2.5 (-4.7, -2.3)

η11 0.51 (-1.0, 1.90) 0.65 (-0.8, 1.56) 0.47 (-1.2, 0.86) 0.47 (-0.2, 1.65) 0.45 (-0.5, 1.61)

η12 1.55 (1.08, 2.48) 1.25 (0.86, 1.51) 1.41 (0.82, 2.47) 1.26 (1.08, 2.82) 1.34 (1.11, 3.35)

η20 -2.1 (-3.0, -1.7) -2.0 (-2.3, -1.8) -2.1 (-3.1, -1.7) -2.0 (-3.1, -1.8) -2.1 (-4.1, -2.0)

η21 0.59 (-0.2, 1.06) 0.38 (-0.3, 1.77) 0.40 (-0.5, 0.81) 0.39 (-0.3, 0.98) 0.37 (-0.0, 0.77)

η22 2.00 (1.35, 3.00) 1.83 (1.47, 2.18) 1.98 (1.51, 3.11) 1.80 (1.54, 3.16) 1.87 (1.77, 4.16)

β1 1.11 (1.00, 1.28) 1.10 (1.04, 1.23) 1.14 (1.01, 1.32) 1.10 (0.97, 1.29) 1.12 (1.02, 1.42)

β2 1.95 (1.77, 2.14) 2.03 (1.90, 2.21) 2.00 (1.81, 2.12) 2.01 (1.84, 2.12) 1.97 (1.82, 2.12)

δ 0.62 (0.37, 0.85) 0.73 (0.58, 0.89) 0.76 (0.46, 1) 0.90 (0.51, 1) 1 (0.39, 1)
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Table 5.7: Simulation Result 2 Under Model with Regression on µ

Data Generating Model with x1 ∼ N(0,0.5), x2 ∼ Bern(0.5)

η10 =−2.5, η11 = 0.5, η12 = 1.3, η20 =−2, η21 = 0.4, η22 = 1.8, β1 = 1.1, β2 = 2

Analysis δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.5

Model Estimated Values: median (min,max)

η10 -2.5 (-4.0, -1.8) -2.5 (-2.8, -2.3) -2.4 (-3.3, -2.1) -2.4 (-3.0, -2.0) -2.6 (-3.5, -1.9)

η11 0.44 (-0.5, 1.54) 0.59 (-0.0, 1.30) 0.48 (-0.2, 0.88) 0.60 (0.25, 0.88) 0.48 (0.32, 0.87)

η12 0.99 (0.01, 2.82) 1.24 (0.82, 1.63) 1.22 (0.93, 2.00) 1.17 (0.99, 2.03) 1.50 (1.03, 2.34)

η20 -2.1 (-3.3, -0.9) -2.0 (-2.3, -1.6) -1.9 (-2.6, -1.6) -1.9 (-2.5, -1.6) -2.0 (-2.9, -1.6)

η21 0.47 (-0.9, 1.50) 0.35 (-0.1, 0.74) 0.47 (0.03, 0.77) 0.41 (0.07, 0.56) 0.39 (0.23, 0.82)

η22 1.77 (0.14, 3.17) 1.76 (1.20, 1.95) 1.70 (1.30, 2.41) 1.78 (1.29, 2.52) 1.90 (1.28, 2.76)

β1 1.09 (1.04, 1.22) 1.12 (1.05, 1.14) 1.09 (1.00, 1.22) 1.08 (0.97, 1.17) 1.12 (0.98, 1.28)

β2 2.01 (1.92, 2.15) 2.00 (1.92, 2.23) 2.01 (1.84, 2.06) 1.96 (1.90, 2.24) 1.96 (1.90, 2.20)

δ 0.10 (0.08, 0.12) 0.20 (0.18, 0.24) 0.30 (0.20,0.35) 0.39 (0.3, 0.63) 0.51 (0.33, 0.73)

Analysis δ = 0.6 δ = 0.7 δ = 0.8 δ = 0.9 δ = 1

Model Estimated Values: median (min,max)

η10 -2.4 (-3.1, -2.0) -2.6 (-6.1, -1.9) -2.6 (-3.2, -2.0) -2.4 (-3.5, -2.2) -2.6 (-3.6, -2.6)

η11 0.47 (0.14, 0.72) 0.41 (0.18, 0.99) 0.56 (0.22, 0.78) 0.51 (0.21, 0.82) 0.50 (0.29, 0.83)

η12 1.28 (0.76, 1.85) 1.37 (0.73, 4.76) 1.43 (0.79, 1.89) 1.28 (1.00, 2.17) 1.38 (1.22, 2.35)

η20 -2.0 (-2.4, -1.8) -2.1 (-5.0, -1.6) -2.1 (-2.7, -1.7) -1.9 (-2.6, -1.7) -2.1 (-2.8, -1.9)

η21 0.33 (0.15, 0.58) 0.37 (0.18, 0.94) 0.42 (0.21, 0.58) 0.39 (0.14, 0.62) 0.37 (0.25, 0.72)

η22 1.77 (1.53, 2.24) 1.86 (1.29, 5.14) 1.90 (1.35, 2.51) 1.71 (1.50, 2.49) 1.91 (1.68, 2.80)

β1 1.08 (0.95, 1.21) 1.12 (0.89, 1.52) 1.11 (0.95, 1.32) 1.10 (1.05, 1.33) 1.14 (1.06, 1.27)

β2 2.05 (1.90, 2.18) 1.97 (1.83, 2.10) 2.04 (1.82, 2.08) 2.00 (1.91, 2.13) 2.01 (1.86, 2.04)

δ 0.65 (0.45, 0.78) 0.72 (0.23, 1) 0.80 (0.52, 1) 0.93 (0.63, 1) 1 (0.59, 1)
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Table 5.8: Simulation Result 3 Under Model with Regression on µ

Data Generating Model with x1 ∼ N(0,1), x2 ∼ Bern(0.5)

η10 =−2.5, η11 = 0.5, η12 = 1.3, η20 =−2, η21 = 0.4, η22 = 1.8, β1 = 1.1, β2 = 2

Analysis δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.5

Model Estimated Values: median (min,max)

η10 -2.4 (-3.2, -2.0) -2.4 (-3.1, -2.1) -2.5 (-3.4, -2.3) -2.6 (-3.9, -2.2) -2.4 (-3.0, -2.1)

η11 0.53 (-0.1, 0.99) 0.48 (0.14, 0.78) 0.42 (0.22, 0.74) 0.48 (0.38, 0.89) 0.53 (0.37, 0.67)

η12 1.20 (0.37, 1.66) 1.24 (0.06, 1.89) 1.32 (1.10, 2.65) 1.34 (0.72, 2.75) 1.31 (0.90, 1.84)

η20 -2.1 (-2.8, -1.6) -2.0 (-2.5, -1.7) -2.0 (-2.6, -1.8) -2.1 (-3.2, -1.7) -1.9 (-2.3, -1.7)

η21 0.36 (0.04, 0.76) 0.43 (0.11, 0.72) 0.37 (0.18, 0.78) 0.38 (0.18, 0.75) 0.40 (0.27, 0.54)

η22 1.75 (1.08, 2.17) 1.79 (0.77, 2.16) 1.83 (1.51, 3.03) 1.90 (1.42, 3.26) 1.77 (1.44, 2.28)

β1 1.09 (1.02, 1.16) 1.08 (1.04, 1.14) 1.10 (1.03, 1.28) 1.12 (0.96, 1.34) 1.12 (1.00, 1.25)

β2 2.07 (1.88, 2.31) 2.02 (1.85, 2.12) 2.03 (1.91, 2.13) 1.99 (1.87, 2.18) 1.99 (1.87, 2.17)

δ 0.11 (0.09, 0.14) 0.20 (0.15, 0.23) 0.30 (0.19,0.36) 0.38 (0.23,0.49) 0.50 (0.35, 0.62)

Analysis δ = 0.6 δ = 0.7 δ = 0.8 δ = 0.9 δ = 1

Model Estimated Values: median (min,max)

η10 -2.3 (-2.8, -2.0) -2.6 (-3.9, -1.9) -2.4 (-4.8, -2.1) -2.5 (-3.5, -2.2) -2.5 (-3.8, -2.5)

η11 0.47 (0.28, 0.60) 0.54 (0.34, 0.84) 0.50 (0.33, 1.06) 0.50 (0.37, 0.79) 0.51 (0.36, 0.88)

η12 1.26 (0.75, 1.50) 1.33 (0.79, 2.51) 1.23 (0.82, 3.65) 1.34 (0.99, 2.35) 1.36 (1.18, 2.31)

η20 -1.9 (-2.1, -1.7) -2.1 (-3.4, -1.6) -1.9 (-3.9, -1.7) -2.1 (-2.7, -1.8) -2.0 (-3.0, -1.8)

η21 0.36 (0.26, 0.50) 0.40 (0.28, 0.85) 0.39 (0.30, 0.94) 0.43 (0.25, 0.76) 0.41 (0.38, 0.65)

η22 1.81 (1.39, 2.03) 1.91 (1.29, 3.51) 1.83 (1.41, 3.94) 1.79 (1.51, 2.73) 1.84 (1.65, 2.85)

β1 1.08 (1.01, 1.21) 1.09 (0.93, 1.27) 1.08 (0.98, 1.46) 1.15 (1.00, 1.30) 1.15 (1.06, 1.30)

β2 2.04 (1.94, 2.20) 1.93 (1.81, 2.24) 2.06 (1.86, 2.13) 1.98 (1.83, 2.02) 1.98 (1.83, 2.08)

δ 0.61 (0.54, 0.79) 0.68 (0.34, 0.99) 0.83 (0.37, 1) 0.89 (0.56, 1) 1 (0.55, 1)
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5.5 Simulation Study III: Regression on the Dependence Parameter δ

In this section, we will use the simulation study to illuminate the identifiability issues under

the proposed model 5.3.2: S(t1, t2) = exp
(
−
[
(µ1tβ1

1 )1/δ + (µ2tβ2
2 )1/δ

]δ) with regression on the

dependence parameter δ given by

logit [δ(x)] = η0 +η1x1 +η2x2 (5.5.1)

As before, we consider continuous and binary x variables. In the data generating model, the x

variables are generated from

x1 ∼ N(0,σ2)

x2 ∼ Bern(p)

In this simulation study, we have simulated the data sets with covariates x1 ∼ N(0,0.5) and x2 ∼

Bern(0.5). The sample size is N = 1000; we obtain the result under analysis model via the profile

maximum likelihood estimator, which is summarized in Table 5.9, and the estimation of each pa-

rameter is given by the minimum, maximum and median over 10 iterations. Most of the estimation

of shape (β) and location (µ) parameters are close to their true values, which are used in data gen-

erating model. The MLE of coefficients bring in much larger error, especially in intercept. Setting

regression on δ makes each individual obtain one dependence. It leads the estimation to getting a

bigger variance.
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Table 5.9: Simulation Results Under Model with Regression on δ

Data Generating Model with x1 ∼ N(0,0.5) and x2 ∼ Bern(0.5)

Analysis η0 =−0.5, η1 = 3.5, η2 = 1, β1 = 2, β2 = 1.3

Model µ1 = µ2 = 0.3 µ1 = 0.8, µ2 = 0.5

Parameter Estimated Values median, (min,max)

η0 -0.370 (-0.898, -0.071) -0.639 (-1.051, 0.115)

η1 3.501 (2.998, 4.111) 3.344 (3.163 5.005)

η2 0.939 (0.510, 1.226) 1.011 (0.456, 1.622)

µ1 0.301 (0.256, 0.315) 0.810 (0.752 0.875)

µ2 0.308 (0.257, 0.312) 0.493 (0.436, 0.558)

β1 2.010 (1.952, 2.117) 1.994 (1.873 2.093)

β2 1.317 (1.194, 1.370) 1.302 (1.169, 1.403)

5.6 Applications on Tamoxifen Trial Data

Tamoxifen is the most common hormone treatment for female breast cancer. It is currently

used for the treatment of both early and advanced estrogen receptor-positive breast cancer in pre-

menopausal and post-menopausal women. According to FDA, Tamoxifen can prevent breast can-

cer in women at high risk of developing the disease. In December 1992, a multicenter randomized

clinical trial for patients with node-negative breast cancer began accruing subjects. This trial lasted

almost 10 years from 1992 to the summer of 2002. A total of 769 women were randomized in the

study; there are 383 women in the Tamoxifen-alone arm and 386 in the combined radiation and
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Tamoxifen arm. In our study, we only include those patients who accrued at a single contributor

institution, i.e., there are 321 patients in the Tamoxifen-alone arm and 320 in the other arm.

The original design of Tamoxifen trial was for an equivalence study with disease-free survival

as the main endpoint. The events recorded were local relapse, axillary relapse, distant relapse,

second malignancy of any type, and death. The time of the first occurrence of each type of event

was documented. For instance, if a patient experienced distant relapse at 1 year, another distant

relapse at 2 years and a local relapse at 3 years, then the only events recorded are the distant relapse

at 1 year and the local relapse at 3 years. Because distant relapse at 2 years is the second relapse of

the same type, so it was not recorded. There is a censoring variable for each type of event to indicate

whether the event occurred or not. For each patient in the study, there are seven demographic

covariates which contain age, trt (randomized treatment), hgb (haemoglobin), hrlevel (hormone

receptor level), hist (histology), pathsize (size of the tumor) and nodediss (whether axillary node

dissection was done). The clinical aspects of the study and more details of the original analysis

can be found in Fyles et al. (2004).

5.6.1 Data Description

The data set we analyzed involved 641 women at age 50 or older with early breast cancer. We

considered T1 as the time of first relapse; that is, T1 = min(T11,T12,T13,T14) where T11 is time to

local relapse, T12 is time to axillary relapse, T13 is time to distant relapse and T14 is time to second

malignancy of any type. The competing risk of first relapse that we consider is death and T2 is time

to death without any of these events. The observed time is T = min(T1,T2) and censoring indicator

di is 1 when Ti is observed and 0 for censored. The survival time (in years) and cause of death

information are classified in Table 5.10.
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Table 5.10: Six Hundred Forty-One Patients with Early Breast Cancer

Type of Event Number of Events

Death 12

Relapse 126

Censored 503

The Kaplan-Meier plots for cause-specific survival from each risk, relapse and death, are shown

in Figure 5.5.
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Figure 5.5: The Kaplan-Meier plot for Tamoxifen trial data
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5.6.2 Dependent Competing Risks Model

For dependent competing risks model (DCR model), we used the complete cause of death

information which included cancer, other causes and censored. The two competing risks factors

are cancer and other causes. The dependent parametric competing risks model we considered can

be written as

S(t1, t2) = exp
(
−
[
(µ1tβ1

1 )1/δ +(µ2tβ2
2 )1/δ

]δ)
Based on the MLE estimators, the plot of cumulative incidence function for Tamoxifen trial data

is shown in Figure 5.6 and the corresponding estimators are given by Table 5.11.

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CIF plot via Estimation of DCR model

Years

C
IF

CIF of Relapse
CIF of Death from Cancer

Figure 5.6: The estimated survival plot with MLE estimator for Tamoxifen trial data
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Table 5.11: Maximum Likelihood Estimates under DCR Model for Tamoxifen Trial Data

Parameter µ1 µ2 β1 β2 δ -logLikelihood

mean 0.037 0.034 1.074 1.084 0.03 614.05

In Figure 5.6, the dot blue line is always above the red solid line. It is obvious that patients

have higher chance to relapse than death from the cancer according to this Tamoxifen trail data.

We also consider a parallel Bayesian analysis of the data with the following prior distri-

butions: µ1 ∼ Gam(1,1), µ2 ∼ Gam(1,1), β1 ∼ Gam(0.01,2.5), β2 ∼ Gam(0.01,2.5) and δ ∼

π ·Unif(0,1)+ (1−π) · degenerate(1) with π ∼ Unif(0,1). We ran 60000 MCMC iterations and

the posterior means of µ1,µ2,β1,β2 and δ which are computed from the last 50000 iterations,

shown in Table 5.12. The estimates from maximum likelihood and Bayesian analysis are similar

besides the estimate of δ. The posterior mean deviance is 1232, based on which we obtain posterior

mean -log(Likelihood) = 616.

Table 5.12: Posterior Estimation Under DCR Model for Tamocifen Trial Data

Parameter µ1 µ2 β1 β2 δ

mean 0.037 0.006 1.048 1.222 0.813

median 0.036 0.004 1.046 1.195 1

95% CI (0.026, 0.051) (8e-4, 0.022) (0.886, 1.219) (0.742, 1.835) (0, 1)

The posterior density of δ is given by Figure 5.7. It shows that the likelihood may be flat due

to density of δ is flat, which could lead the estimation to be hardly obtained accurately.
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Figure 5.7: The posterior density of δ of DCR model for Tamocifen trial data

5.6.3 Dependent Competing Risks Regression Model

We next analyzed the same data in a regression framework including covariate information.

The dependent competing risks model with regression on location parameter (DCRR model) has

been considered, which is given by S(t1, t2)= exp
(
−
[
(µ1tβ1

1 )1/δ+(µ2tβ2
2 )1/δ

]δ), where log(µ1/δ

j )=

Xη and j = 1,2. The covariates that have been used for analysis contain age, pathsize (size of the

tumor), hgb (haemoglobin), trt (wether randomized treatment is tamoxifen alone), hrlevelPOS

(whether hormone receptor level is positive), dissection (whether axillary node dissection was

done) and hist (histology) with five categories. Therefore, the dependent competing risks regres-
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sion model involves 10 covariates: age, pathsize, hgb, trt, hrlevelPOS, dissection, DUL, LOB,

MED and MIX. The MLE estimates are given by Table 5.13.

Table 5.13: Maximum Likelihood Estimation Under DCRR Model for Tamoxifen Trial Data

Parameter β1 β2 δ intercept1 age1 pathsize1 hgb1

mean 1.018 1.040 0.04 -0.05 -0.047 -0.033 -0.555

Parameter trt1 hrlevelPOS1 dissection1 DUL1 LOB1 MED1 MIX1

mean -0.404 -0.832 0.264 0.607 0.053 0.785 0.578

Parameter intercept2 age2 pathsize2 hgb2 trt2 hrlevelPOS2 dissection2

mean 0.497 -0.059 0.492 -0.607 0.085 0.902 0.587

Parameter DUL2 LOB2 MED2 MIX2 -logL

mean 0.590 0.612 0.608 1.462 -336.5

We again consider a parallel Bayesian analysis with prior distributions as η
′
1s∼ Normal(0,5),

η
′
2s ∼ Normal(0,5), β1 ∼ Gam(0.01,2.5), β2 ∼ Gam(0.01,2.5) and δ ∼ π ·Unif(0,1)+ (1−π) ·

degenerate(1) with π∼ Unif(0,1). After specifying the prior distributions, we ran 60000 MCMC

iterations and looked at posterior means calculated from the last 50000 iterations of the respective

parameters involved in the model. The posterior estimates of β1, β2, δ and η
′
s are shown in Table

5.14.
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Table 5.14: Posterior Estimation Under DCRR Model for Tamoxifen Trial Data

Parameter β1 β2 δ intercept1 age1

mean 1.078 1.148 0.204 -0.584 -0.073

95% CI (0.92, 1.24) (0.93, 1.40) (0.08, 0.37) (-4.67, 3.51) (-0.17, 0.02)

Parameter pathsize1 hgb1 trt1 hrlevelPOS1 dissection1

mean 2.535 -0.111 1.621 -2.78 -1.27

95% CI (1.16, 4.78) (-0.28, -0.01) (0.06, 3.57) (-5.26, -0.69) (-3.19, 0.70)

Parameter DUL1 LOB1 MED1 MIX1 intercept2

mean 0.450 0.829 -0.198 0.107 -1.334

95% CI (-1.84, 2.49) (-2.07, 3.85) (-3.89, 3.55) (-2.19, 2.35) (-5.49, 2.81)

Parameter age2 pathsize2 hgb2 trt2 hrlevelPOS2

mean -0.022 2.297 -0.171 0.648 0.226

95% CI (-0.13, 0.09) (0.71, 4.54) (-0.34, -0.07) (-1.26, 2.77) (-2.91, 3.56)

Parameter dissection2 DUL2 LOB2 MED2 MIX2

mean -0.530 0.381 -1.405 -0.379 -0.421

95% CI (-2.82, 1.92) (-2.07, 2.84) (-5.14, 1.98) (-4.59, 3.59) (-3.02, 2.12)

According to the posterior mean of deviance, which is -660, we can compute -log(Likelihood)=

−330. From the Table 5.14, the credible intervals corresponding to pathsize, hgb trt and hrlevel-

POS do not contain zero and hence can be termed as having “significant” influence on the nonter-

minal event of relapse and only variable pathsize and hgb are “significant” for the terminal event

of death. More specifically, the size of tumor and the haemoglobin level of patient will affect both

relapse and death. The larger size of tumor leads to worse survival and the higher haemoglobin
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brings better survival. The treatment effect influences relapse. Since the correlation of treatment

with Tamoxifen only is positive, which means the worse survival, the patients who use Tamoxifen

and radiation together as treatment have lower chance to suffer relapse. The hormone receptor

level impacts the relapse as well and the positive level will bring the patients to better relapse-

free survival. With advances in treatment, early stage breast cancer is less aggressive with longer

survival, which may explain the non-significant effects for the terminal event of death.

Figure 5.8 gives comparison between two treatment groups; there is a significant difference

between blue solid line and green dot line. That is, the treatment affects the chance to relapse;

there is a high probability to suffer relapse if the patient used Tamoxifen only as the treatment.

Additionally, Figure 5.9 shows comparison between two treatment groups with different hormone

receptor levels. The positive hormone receptor level will lead to a better relapse-free survival and

using Tamoxifen combined with radiation as treatment could even achieve a much better relapse-

free survival.
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Figure 5.8: CIF plot under DCRR model for Tamoxifen trial data by treatment
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CHAPTER 6

SEMI-COMPETING RISKS AND APPLICATION

6.1 Introduction

The terminology of semi-competing risks was introduced in Fine et al. (2001) to describe the

situation in which the data arise when the observed event time of some non-terminal event is

subject to some terminal event. For instance, we can observe both relapse (non-terminal) and

death (terminal) from the same cancer. And it is known by Fine et al. (2001) that a terminal event

censors a non-terminal event but not vice versa. Methods in the literature have been developed

to deal with this type of data usually belong to one of two groups. The first strategy focuses on

setting up conditional models for the hazard functions of the non-terminal and terminal events via

illness-death model, such as Ye et al. (2007), Xu et al. (2010), K. H. Lee et al. (2015) and K. H. Lee

et al. (2017). The other approach considers models which describe the joint distribution of T1 and

T2 and either model the dependence between T1 and T2 via a copula, such as Day et al. (1997), Fine

et al. (2001), W. Wang (2003), Ghosh (2006), Peng & Fine (2007), Hsieh et al. (2008) and H. Fu

et al. (2013); or make the dependence arbitrary, such as Cook & Lawless (1997) and Ghosh & Lin

(2000). In addition, Jiang et al. (2005) have extended the approach to truncated semi-competing

risks.

In this chapter, we propose a parametric joint distribution model to the non-terminal and ter-

minal events via a copula. In particular, we will show the identifiability issues associated with this

proposed model on semi-competing risks data. We also illustrate the difference between competing

risks and semi-competing risks analyses in real data applications.
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6.2 Semi-Competing Risks Models

Semi-competing risks data are mainly to study participants being able to experience a non-

terminal event (such as relapse), a terminal event (such as death), and possibly both. Let T1 and

T2 be the failure times and possibly dependent with the joint survival function S(t1, t2) = P(T1 >

t1,T2 > t2). The random variable T2 may censor T1, but not vice versa; as an illustration, T2 is death

from any cause and T1 is relapse. The marginal survival function of T1 is given by S1(t1) = P(T1 >

t1) and the corresponding marginal survival function of T2 can be written as S2(t2) = S(0, t2) =

P(T2 > t2). Let C be a censoring time independent of both T1 and T2 (for example, administrative

loss to follow-up). We observe the variables Y1 = min(T1,T2,C), d1 = I(T1 ≤ min(T2,C)), Y2 =

min(T2,C) and d2 = I(T2 ≤ C), where I(·) is the indicator function. In particular, (Y1,Y2) are

observed on the restricted domain Y1 ≤ Y2 and when terminal event occurs first, we have Y1 = Y2.

Thus, the observed data are n independent and identically distributed replications of (Y1,Y2,d1,d2),

which is denoted by {(Y1i,Y2i,d1i,d2i), i = 1, . . . ,n}.

6.2.1 The Illness-Death Model

One of the approaches to handle semi-competing risks data is considering the illness-death

model, which is a special case of the multi-state modeling framework, such as Xu et al. (2010),

K. H. Lee et al. (2015) and K. H. Lee et al. (2017)).

Relapse

On Study Death

h3(t2|t1)h1(t1)

h2(t2)
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Illustrate the situation with three nodes labeled on study for the beginning of study, relapse for

the occurrence of nonterminal event, death for the occurrence of terminal event. The hazard or

transition rates are defined as:

h1(t1) = lim
4→0

P(t1 ≤ T1 < t1 +4|T1 ≥ t1,T2 ≥ t1)/4, t1 > 0 (6.2.1)

h2(t2) = lim
4→0

P(t2 ≤ T2 < t2 +4|T1 ≥ t2,T2 ≥ t2)/4, t2 > 0 (6.2.2)

h3(t2|t1) = lim
4→0

P(t2 ≤ T2 < t2 +4|T1 = t1,T2 ≥ t2)/4, t2 > t1 > 0 (6.2.3)

When either terminal or non-terminal event occurs first, equations 6.2.1 and 6.2.2, which are the

cause-specific hazard function or crude hazard function for the competing risks part of the model,

will be observed. The equation 6.2.3 defines the hazard rate of terminal event which follows the

occurrence of the non-terminal event. Generally speaking, h3(t2|t1) depends on both event times

t1 and t2. According to a Markov process, the hazard rate h3(t2|t1) = h3(t2) only depends on t2.

Alternatively, in a semi-Markov model, it is specified that the hazard rate h3(t2|t1) = h3(t2− t1)

depends only on the difference between t1 and t2. An illness-death model via a copula framework

has been considered in by Xu et al. (2010). K. H. Lee et al. (2015) considered a Bayesian approach

and K. H. Lee et al. (2017) considered an accelerated failure time model in this setting.

6.2.2 Joint Distribution Model with Dependence via a Frailty

An alternative approach to semi-competing risks data considers model for the joint analysis of

event times based on frailties. Fine et al. (2001) models the correlated events via a Gamma frailty,
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which can be referred to Clayton (1978) and Hougaard (1986), defined on the upper wedge, given

by

S(t1, t2) = [S1(t1)1−θ +S2(t2)1−θ−1]1/(1−θ) (6.2.1)

where S1(·) and S2(·) are survival functions. θ is the shared frailty parameter, when θ = 1, T1 and

T2 are independent on the upper wedge and S1(t1) = P(T1 > t1|T2 > t1). Since S(t1, t2) may not

follow the model 6.2.1 on the lower wedge, θ may not be related to Kendall’s τ and hence may not

satisfy

τ = (θ−1)/(θ+1) (6.2.2)

The joint density on the upper wedge can be written as

ft1≤t2(t1, t2) = θ
[
S1(t1)1−θ +S2(t2)1−θ−1

] 2θ−1
θ−1 S1(t1)−θS2(t2)−θ f1(t1) f2(t2) (6.2.3)

where f j(t j) = −∂S(t1, t2)/∂t j for j = 1,2. The joint density ft2<t1(t1, t2) on the lower wedge is

unspecified but satisfies the condition

S(t1, t2) =
∫

∞

t2

∫ v

t1
ft1≤t2(u,v)dudv +

∫
∞

t2

∫
∞

v
ft2<t1(u,v)dudv (6.2.4)

Both Genest et al. (1995) and Shih & Louis (1995) have shown that maximization of a pseudo-

likelihood derived from consistent estimators of S1(t1) and S2(t2) gives a consistent estimator of

θ. However, for semi-competing risks data, Fine et al. (2001) have pointed out that a consistent

estimator for S1(·) may not exist without an estimator for θ and provided a robust estimator θ̂ based

on the joint density on upper wedge.
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6.2.3 A Dependent Parametric Semi-Competing Risks Model

According to Day et al. (1997) and Fine et al. (2001), the joint survival function S(t1, t2) is only

identifiable when t1 ≤ t2. In this section, we examine the identifiability of a parametric model on

semi-competing risks data. In the setup we only specify the model on the upper wedge, that is, the

region T1 ≤ T2. The dependence structure can be formulated via the Gumbel copula which also

originates in a positive stable frailty (refer to Chapter 3). That is, for δ ∈ (0,1] and 0≤ t1 ≤ t2 ≤∞,

the joint survival function S(t1, t2) can be written as

S(t1, t2) =


exp
(
− [(logS1(t1))1/δ +(logS2(t2))1/δ]δ

)
, δ ∈ (0,1)

S1(t1)·S2(t2), δ = 1
(6.2.1)

when δ = 1, T1 and T2 are independent on the upper wedge and S1(t1) = P(T1 > t1|T2 > t1). δ

represents the dependence between T1 and T2. More specifically, the joint survival function S(t1, t2)

with Weibull marginal is given by

S(t1, t2) = ψ
[
ψ
−1(S1(t1))+ψ

−1(S2(t2))
]

= exp
[
−
([
− log(exp(−µ1tβ1

1 ))
] 1

δ +
[
− log(exp(−µ2tβ2

2 ))
] 1

δ

)δ]
= exp

(
−
[
(µ1tβ1

1 )
1
δ +(µ2tβ2

2 )
1
δ

]δ)
(6.2.2)

where ψ(·) is the generator function and ψ−1(·) is the generator inverse function of Gumbel copula.
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6.2.3.1 Likelihood Function

Suppose T1 and T2 are the failure times to non-terminal event and terminal event respectively.

The joint survival function of T1 and T2 can be written in terms of S(t1, t2), which is given by

equation 6.2.2. Since the semi-competing risk problem can be described as below,

Relapse

On Study Death

the observed data set{(Y1i,d1i,Y2i,d2i), i = 1, . . . ,n} can be shown in the Table 6.1.

Table 6.1: Observed Data Information

Observed Data Set

(Y1,Y2) (d1,d2)

Relapse and censored prior to death (T1i,Ci) (1,0)

Dead following relapse (T1i,T2i) (1,1)

Dead without relapse (T2i,T2i) (0,1)

Censored prior to relapse or death (Ci,Ci) (0,0)

To obtain the likelihood function, we have the following four cases where independent censor-

ing is assumed.
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Case1: d1 = 1,d2 = 0

P(Y1 = T1,Y2 =C) = Pr(T1 = t1,T2 > t1) ·Pr(T2 > c|T1 = t1,T2 > t1)

= Pr(T1 = t1,T2 > t1,T2 > c)

= Pr(T1 = t1,T2 > c)

=
−∂S(t1, t2)

∂t1

∣∣∣∣
t2=c

(6.2.1)

Case2: d1 = 1,d2 = 1

P(Y1 = T1,Y2 = T2) = Pr(T1 = t1,T2 > t1) ·Pr(T2 = t2|T1 = t1,T2 > t1)

= Pr(T1 = t1,T2 > t1,T2 = t2)

= Pr(T1 = t1,T2 = t2)

= f (t1, t2) (6.2.2)

Case3: d1 = 0,d2 = 1

P(Y1 = T2,Y2 = T2) = Pr(T1 > t2,T2 = t2)

=
−∂S(t1, t2)

∂t2

∣∣∣∣
t1=t2

(6.2.3)

Case4: d1 = 0,d2 = 0

P(Y1 =C,Y2 =C) = Pr(T1 > c,T2 > c)

= S(t1, t2)
∣∣
t1=t2=c (6.2.4)
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According to W. Wang (2003) and H. Fu et al. (2013), the joint likelihood function can be given

by:

L = ∏
n
i=1 P(Y1i = T1i,Y2i =Ci)

d1i(1−d2i) ·P(Y1i = T1i,Y2i = T2i)
d1id2i

× P(Y1i = T2i,Y2i = T2i)
(1−d1i)d2i ·P(Y1i =Ci,Y2i =Ci)

(1−d1i)(1−d2i)

= ∏
n
i=1 f (t1i, t2i)

d1id2i ·S
′
1(t1i, t2i)

d1i(1−d2i) ·S
′
2(ti, ti)

(1−d1i)d2i ·S(ti, ti)(1−d1i)(1−d2i) (6.2.5)

where (t1i, t2i) is the observed event times from case 1 and case 2; instead of using (t1i, t2i), we

use ti as the observed failure time for case3 and case4 since only a signal time point is available in

these two cases. f (·) is the joint density function and S(·) is the joint survival function of (T1,T2),

and the notation S
′
j(·) for j = 1,2 is given by

S
′
j(t1, t2) =

−∂S(t1, t2)
∂t j

6.3 Identifiability Issues Under Equality of Shape Parameters

The nonparametric estimator for the predictive hazard ratio with bivariate right-censored data

has been introduced by Oakes (1989), from which the dependence parameter can be obtained.

Hougaard (1986) has also proposed a way to estimate the dependence parameter in which to esti-

mate the integrated hazards in the marginal distributions by using the generalization of Nelson’s

method first and then restricting the marginal distribution to MLE of dependence parameter. Ac-

cording to Fine et al. (2001), in the fully nonparametric setting, S2(t2) is fully identified from

semi-competing risks data, and S(t1, t2) is completely identified only in the upper wedge of the

support of (T1,T2), that is, the region (0 < t1 ≤ t2). Moreover, S1(t1) is not identified without ad-

ditional assumptions. Jiang et al. (2003) has showed the identifiability of a semiparametric model
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with a parameterized association (via the Clayton copula) and unspecified marginal distributions

on semi-competing risks data.

In Theorem 4.2.1 in Section 4.2 we showed that our proposed parametric model with the

restriction of equality of shape parameters is not identifiable in the setting of competing risks.

Semi-competing risks data provide an additional level of information (time to terminal event fol-

lowing the non-terminal event) or that when observe T1 we additionally observe min(T2,C) and

d2 = I(T2 ≤C). The joint density f (t1, t2) on the upper wedge which is denoted by P(T1 = t1,T2 =

t2,T2 ≥ T1) can be obtained via

P(T2 = t2|T1 = t1,T2 ≥ T1) =
P(T1 = t1,T2 = t2,T2 ≥ T1)

P(T1 = t1,T2 ≥ T1)

where P(T1 = t1,T2 ≥ T1) and P(T2 = t2|T1 = t1,T2 ≥ T1) can be obtained from the observed data

directly. As long as we can show f (t1, t2) is identifiable for ∀ 0≤ t1≤ t2≤∞, then the identifiability

property is established according to the semi-competing risks data.

Theorem 6.3.1. Suppose the latent failure times (T1, T2) follow the joint survival function 6.2.2;

then the joint density function f (t1, t2) is identifiable from the observed semi-competing data

(Y1,Y2,d1,d2).

Proof. Since the S(t1, t2) is defined on the upper wedge for semi-competing risks data, P(T1 =

t1,T2 = t2,T2 ≥ T1) = P(T1 = t1,T2 = t2) = f (t1, t2), to show f (t1, t2) is identifiable on the upper

wedge, which is equivalent to show that

f (t1, t2|θ) = f (t1, t2|θ∗) or
f (t1, t2|θ)
f (t1, t2|θ∗)

= 1 (6.3.1)
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for ∀ 0 ≤ t1 ≤ t2 ≤ ∞ if and only if θ = θ∗. According to 6.2.2, the joint survival function under

same shape parameter structure is given by

S(t1, t2) = exp
(
−
[
(µ1tβ

1 )
1
δ +(µ2tβ

2 )
1
δ

]δ)

The joint density function f (t1, t2) can be attained by taking the second derivative of S(t1, t2) with

respect to t1, t2:

f (t1, t2) =
∂2(1−S(t1, t2))

∂t1∂t2

=exp
(
−
[
µ

1
δ

1 t
β

δ

1 +µ
1
δ

2 t
β

δ

2
]δ) · [µ 1

δ

1 t
β

δ

1 +µ
1
δ

2 t
β

δ

2
]δ−2 · (µ1µ2)

1
δ ·β2

× (t1t2)
β

δ
−1 ·
(

δ−1
δ
−
[
µ

1
δ

1 t
β

δ

1 +µ
1
δ

2 t
β

δ

2
]δ) (6.3.2)

Case1: When µ1 = µ∗1,µ2 = µ∗2,β = β∗, equation 6.3.1 is obviously satisfied.

Case2: When µ1 6= µ∗1,µ2 6= µ∗2,β 6= β∗, assume that equation 6.3.1 is true for ∀ 0≤ t1 ≤ t2 ≤∞, then

take the limit of equation 6.3.1 with respect to t2→ 0, that is:

lim
t2−→0

f (t1, t2|µ1,µ2,β)

f (t1, t2|µ∗1,µ∗2,β∗)
= lim

t2−→0

exp
(
−
[
µ

1
δ

1 t
β

δ

1 +µ
1
δ

2 t
β

δ

2
]δ)

exp
(
−
[
(µ∗1)

1
δ t

β∗
δ

1 +(µ∗2)
1
δ t

β∗
δ

2
]δ) · (t1t2)

β

δ
−1

(t1t2)
β∗
δ
−1

×
[
µ

1
δ

1 t
β

δ

1 +µ
1
δ

2 t
β

δ

2
]δ−2[

(µ∗1)
1
δ t

β∗
δ

1 +(µ∗2)
1
δ t

β∗
δ

2
]δ−2

· (µ1µ2)
1
δ ·β2

(µ∗1µ∗2)
1
δ · (β∗)2

×

(
δ−1

δ
−
[
µ

1
δ

1 t
β

δ

1 +µ
1
δ

2 t
β

δ

2
]δ)(

δ−1
δ
−
[
(µ∗1)

1
δ t

β∗
δ

1 +(µ∗2)
1
δ t

β∗
δ

2
]δ) (6.3.3)
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since T1 ≤ T2, when t2→ 0, it is obvious t1→ 0 as well. Thus, the limit of equation 6.3.1

can also be written as

lim
t2−→0

f (t1, t2|µ1,µ2,β)

f (t1, t2|µ∗1,µ∗2,β∗)
= lim

t2−→0

[
µ

1
δ

1 t
β

δ

1 +µ
1
δ

2 t
β

δ

2

(µ∗1)
1
δ t

β∗
δ

1 +(µ∗2)
1
δ t

β∗
δ

2

]δ−2

·
(

µ1µ2

µ∗1µ∗2

) 1
δ

×·
(

β

β∗

)2

· (t1t2)
β−β∗

δ

= lim
t2−→0

[
µ

1
δ

1 +µ
1
δ

2
( t2

t1

) β

δ

(µ∗1)
1
δ +(µ∗2)

1
δ

( t2
t1

) β∗
δ

]δ−2

·
(

µ1µ2

µ∗1µ∗2

) 1
δ

×·
(

β

β∗

)2

·
(

t2
t1

) β−β∗
δ

· tβ−β∗

1 (6.3.4)

because β 6= β∗ and
t2
t1
≥ 1; the limit of equation 6.3.1 can be simplified as

lim
t2−→0

f (t1, t2|µ1,µ2,β)

f (t1, t2|µ∗1,µ∗2,β∗)
=


0, if β > β∗

∞, if β < β∗
(6.3.5)

which is a contradiction!

When µ1 6= µ∗1,µ2 6= µ∗2,β 6= β∗, the equation 6.3.1 is not true for ∀ 0≤ t1 ≤ t2 ≤ ∞.

Therefore, the equation 6.3.1 holds for ∀ 0≤ t1 ≤ t2 ≤ ∞ if and only if µ1 = µ∗1,µ2 = µ∗2,β = β∗.

6.4 Identifiability Issues Under Others Cases

Identifiability issues under unequal shape parameters and a known dependence parameter for

a competing risks model has been shown in Chapter 4 as well as the identifiability issues un-
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der different shape parameters when the dependence parameter is not known. In this section,

we are showing these identifiability issues can be established under semi-competing risks data

simultaneously. Based on the competing risk data we can obtain the crude survival functions

Q1(t1) = P(T1 > t1,T1 ≤ T2) and Q2(t2) = (T2 > t2,T2 ≤ T1); by contrast in semi-competing risks

scenario, we can observe P(T1 > t1,T2 > t2,T1 ≤ T2) and P(T2 > t2,T2 ≤ T1). In the other words, as

long as t2−→∞ both crude survival functions Q1(t1) and Q2(t2) that are defined in competing risks

can be maintained under semi-competing risks data. Since the proposed model is a parametric one,

therefore the identifiability issues under different shape parameters and either a known dependence

or an unknown dependence parameter can both be set up in semi-competing risks field.

6.5 Simulation Studies

The simulation studies only contain two competing risks with sample sizes n = 1000. The

generated data set contains {(t1i,d1i, t2i,d2i), i = 1, ...,n} with 10 repetitions, which is denoted

by {(t1ik,d1ik, t2ik,d2ik), i = 1, ...,n; k = 1, ...,10}, where t1ik, t2ik are the latent failure times to

non-terminal and terminal events respectively and d jik represents the indicator for censoring. Ac-

cording to Lemma 5.2.1, we generate the data as following: T1 = (U)δ/β1(V/µ1)
1/β1 ,T2 = ([(1−

U)]δ/β2(V/µ2)
1/β2 , where U ∼ Unif(0,1), Mδ ∼ Bern(δ), V11 ∼ Exp(1) and V12 ∼ Exp(1) are in-

dependent, and V = V11 +MδV12. In this simulation study, there is no censoring involved. The

results of simulation study based on 10 replications are shown in the following subsections.
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6.5.1 Model with Equal Shape Parameters

Simulation results from analysis model with same shape parameters

S(t1, t2) = exp
(
−
[
(µ1tβ

1 )
1
δ +(µ2tβ

2 )
1
δ

]δ)

based on data generating model with µ1 = 0.8,µ2 = 0.5,β1 = 2,β2 = 2 and dependence parameters

respectively equal to 0.3, 0.8 and 1 are summarized in Table 6.2.

Table 6.2: Simulation Results Under Models with Equal Shape Parameters

Analysis Data Generating Model with µ1 = 0.8,µ2 = 0.5,β1 = 2,β2 = 2

Model δ = 0.3 δ = 0.8 δ = 1

Parameter Estimated Values: median (min,max)

µ1 0.760 (0.744, 0.822) 0.691 (0.638, 0.744) 0.759 (0.709, 0.785)

µ2 0.486 (0.472, 0.537) 0.482 (0.457, 0.536) 0.505 (0.479, 0.549)

β1 1.953 (1.905, 2.024) 1.952 (1.889, 2.091) 1.901 (1.842, 1.984)

β2 1.979 (1.904, 2.028) 2.028 (1.951, 2.111) 1.971 (1.913, 2.074)

δ 0.34 (0.31,0.36) 0.845 (0.83,0.97) 1 (1,1)

-log(likelihood) 1151.6 1762.3 1793.5

Note: The estimation of each parameter is given by the minimum, the maximum and the median over 10

iterations.

According to Table 6.2, the dependent and independent case can be identified via the analysis

model with same shape parameter, although there is some acceptable error with the MLE of shape

and location parameters. The range of each parameter is narrow and close to its true value. The plot
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of profile likelihood of delta is given by Figure 6.1, which indicates distinct identifiable minimum

-(likelihood) to identify dependent and independent cases.
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Figure 6.1: The profile likelihood plot for model with equal shape parameter
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6.5.2 Model with Unequal Shape Parameters

Simulation results from analysis model with different shape parameters S(t1, t2) = exp
(
−[

(µ1tβ1
1 )

1
δ +(µ2tβ2

2 )
1
δ

]δ)
based on data generating model with µ1 = 0.8,µ2 = 0.5,β1 = 1.1,β2 = 2

and dependence parameters respectively equal to 0.3, 0.8 and 1 are summarized in Table 6.3.

Table 6.3: Simulation Results Under Models with Unequal Shape Parameters

Analysis Data Generating Model with unequal shape parameter

Model δ = 0.3 δ = 0.8 δ = 1

Parameter Estimated Values: median (min,max)

µ1 0.704 (0.653, 0.737) 0.786 (0.759, 0.809) 0.743 (0.716, 0.784)

µ2 0.506 (0.465, 0.539) 0.493 (0.450, 0.510) 0.506 (0.469, 0.526)

β1 1.057 (1.021, 1.100) 1.026 (1.006, 1.053) 1.066 (1.032, 1.103)

β2 1.934 (1.893, 2.009) 2.005 (1.978, 2.052) 2.020 (1.964, 2.079)

δ 0.33 (0.31,0.35) 0.78 (0.77,0.82) 1 (1,1)

-log(likelihood) 1340.5 1877.9 1891.4

Note: The estimation of each parameter is given by the minimum, the maximum and the median over

10 iterations.

According to Table 6.3, the dependent and independent case can be identified via the analysis

model with unequal shape parameters. The range of each parameter is close to its true value,

although there is some acceptable error, especially associated with the MLE of µ1,β1. The plot

of profile likelihood of delta is given by Figure 6.2, which indicates distinct identifiable minimum

-(likelihood) to identify dependent and independent cases.
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Figure 6.2: The profile likelihood plot for model with unequal shape parameter

6.6 Applications on Semi-Competing Risks

It is known that tuberculous pericarditis is associated with high morbidity and mortality even

if antituberculosis therapy is administered. Mayosi et al. (2014) have evaluated the effects of

adjunctive glucocorticoid therapy and Mycobacterium indicus pranii immunotherapy in patients

with tuberculous pericarditis through a 2-by-2 factorial design. The data coordinating center for
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this study was the Population Health Research Institute at Hamilton Health Sciences and McMaster

University, Canada. The data we used for the analysis in this section is a subset of the full data

set in Mayosi et al. (2014). It is well known that tuberculous pericarditis is a common cause of

pericardial effusion, cardiac tamponade, and constrictive pericarditis in sub-Saharan Africa and

parts of Asia. This trial data was collected in eight countries in Africa. It was conducted from

January 2009 through February 2014 at 19 hospitals. All together, 1400 patients were enrolled

for the comparison of prednisolone with placebo; 694 of them were assigned to receive placebo

and 706 were in the group to receive prednisolone. In total, there were 1250 patients enrolled for

comparison of Mycobacterium indicus pranii with placebo: half of the patients were assigned to

the group to receive Mycobacterium indicus pranii and others were assigned to receive placebo.

6.6.1 Data Description

There are 443 eligible patients in the data subset we analyzed. The two treatments prednisolone

(yes/no) and Mycobacterium indicus pranii (yes/no) were administered in a 2×2 factorial design

in which the patients were randomized. The original hypotheses were there would be an overall

benefit of adjunctive prednisolone for patients, and that intradermal Mycobacterium indicus pranii

could be effective in suppressing inflammation and its sequela in patients with tuberculous peri-

carditis. The analysis in Mayosi et al. (2014) considered the first occurrence of any event without

considering the aspect of competing risks. We consider a competing risk analysis of these data.

We consider the first of tamponade and constriction as the non-terminal event time T1 and time to

death as latent failure time T2. The corresponding censoring indicators are d1 and d2, where d j = 0

means censoring and d j = 1 for otherwise. The summary of demographic variables from this data

is given in Table 6.4. The observed data set {(Y1i,d1i,Y2i,d2i), i = 1, . . . ,n} is summarized in the

Table 6.5.
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Table 6.4: Characteristics of the Patients for Mycobacterium Data

Variable Description

Age(yr) 38.36±13.36

Gender 180(F)/263(M)

Weight(kg) 58.82±13.01

Treatment = pred 212(Y)/231(N)

Treatment = myco 207(Y)/236(N)

Table 6.5: Mycobacterium Data Information

Observed Data Set

(Y1,Y2) (d1,d2) N

Constric/Tampo and censored prior to death (T1i,Ci) (1,0) 28

Dead following Constric/Tampo (T1i,T2i) (1,1) 20

Dead without Constric/Tampo (T2i,T2i) (0,1) 71

Censored prior to Constric/Tampo or death (Ci,Ci) (0,0) 325

6.6.2 Data Analysis

We analyze the data using both a semi-competing risks model (DSCR model) and a competing

risks model (DCR model). We further consider regression analysis under each of these models.
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6.6.2.1 Semi-Competing Risks Model

According to the semi-competing risks model 6.2.2, the likelihood function has been derived

in equation 6.2.5 as

L = ∏
n
i=1 f (t1i, t2i)

d1id2i ·S
′
1(t1i, t2i)

d1i(1−d2i) ·S
′
2(ti, ti)

(1−d1i)d2i ·S(ti, ti)(1−d1i)(1−d2i)

and we will use the same competing risks model as we proposed in Chapter 3 as expression (3.5.1)

to obtain the log-likelihood function, which is given by

logL =
n

∑
i=1

(
d1i log f1(ti)+d2i log f2(ti)+(1−d1i−d2i) logS(ti, ti)

)

The maximum likelihood estimator for semi-competing risks model and competing risks model

are given in Tables 6.6 and 6.7 as below.

Table 6.6: MLE Under DSCR Model for Mycobacterium Data

Parameter µ1 µ2 β1 β2 δ -log(Likelihood)

mean 0.115 0.160 0.388 0.495 0.7 389.727

Table 6.7: MLE Under DCR Model for Mycobacterium Data

Parameter µ1 µ2 β1 β2 δ -log(Likelihood)

mean 0.224 0.226 0.452 0.456 0.01 356.943

Note that the data used to obtain MLEs under DCR model and DSCR model are different.

The former one uses the data as competing risks, whereas we only obtain the minimum. The data
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for DSCR model contains additional information which includes the observations for death after

relapse; i.e., if relapse occurs first to the patient, we will continue the observation on him/her.

We also conduct a parallel Bayesian analysis on the same data with prior distributions µ1 ∼

Gam(1,1), µ2 ∼ Gam(1,1), β1 ∼ Gam(0.01,2.5), β2 ∼ Gam(0.01,2.5) and δ ∼ π ·Unif(0,1)+

(1−π) ·degenerate(1) with π∼Unif(0,1). We ran 60000 MCMC iterations respectively for semi-

competing risks model and competing risks model and the posterior means of µ1, µ2, β1, β2 and

δ which were computed from the last 50000 iterations as shown in Tables 6.8 and 6.9.

Table 6.8: Posterior Estimation Under DSCR Model for Mycobacterium Data

Parameter µ1 µ2 β1 β2 δ

mean 0.116 0.161 0.392 0.498 0.709

median 0.115 0.160 0.390 0.496 0.708

95% CI (0.086, 0.151) (0.128, 0.198) (0.301, 0.490) (0.408, 0.599) (0.589, 0.828)

Table 6.9: Posterior Estimation Under DCR Model for Mycobacterium Data

Parameter µ1 µ2 β1 β2 δ

mean 0.122 0.159 0.384 0.514 0.718

median 0.112 0.152 0.393 0.510 1

95% CI (0.074, 0.205) (0.107, 0.234) (0.298, 0.495) (0.417, 0.630) (0, 1)

The estimates from maximum likelihood and Bayesian approaches are similar for semi-competing

risks model and similar for competing risks model except for the estimator of δ. The posterior

mean of deviance for DSCR model is 784.5, and we can compute -log(Likelihood) = 392.25.

The posterior mean of deviance for DCR model is 723.2 and we can obtain the corresponding
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-log(Likelihood) = 361.6. We note here that the semi-competing risks model utilizes an additional

level of data (time to terminal event following non-terminal event) and hence the log-likelihoods of

the two models are not directly comparable. Figure 6.3 shows the posterior density of δ for DCR

model using Mycobacterium data. According to the density plot, the likelihood seems to be flat,

which could be the reason why the MLE and Bayesian estimation of δ are different in DCR model.
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Figure 6.3: The posterior density of δ for DCR model by using Mycobacterium data

The Figure 6.4 gives the plot of cumulative incidence functions for dependent semi-competing

risks and dependent competing risks models. Compared with DCR model, the DSCR model

presents not only CIF of Constric/Tampo first or death first, but also the CIF of death after Con-

stric/Tampo, which is shown in red solid line.
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Figure 6.4: CIF Plot for DSCR Model and DCR Model

6.6.2.2 Semi-Competing Risks Regression Model

We next analyzed the same data in regression framework including covariate information. The

regression structure is introduced as log(µ1/δ

j ) = Xη j for j = 1,2 in semi-competing risks model

(DSCRR) and similarly in the competing risks model (DCRR model). The covariates which have

been used for analysis contain age, gender, weight, pred (whether treatment prednisolone is used

or not) and myco (whether treatment Mycobacterium is used or not). The MLE of DSCRR is given

by Table 6.10.
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Table 6.10: MLE Under DSCRR Model for Mycobacterium Data

Parameter β1 β2 δ intercept1 age1 gender1

mean 0.401 0.492 0.69 -0.288 -0.01 -0.781

Parameter weight1 pred1 myco1 pred1*myco1 intercept2 age2

mean -0.356 -0.089 -0.114 -0.525 -0.540 -0.006

Parameter gender2 weight2 pred2 myco2 pred2*myco2 -logL

mean 0.077 -0.302 0.020 -0.243 -0.055 191.15

We again consider a parallel Bayesian analysis with prior distributions that have been assigned

as η
′
1s ∼ Normal(0,5), η

′
2s ∼ Normal(0,5), β1 ∼ Gam(0.01,2.5), β2 ∼ Gam(0.01,2.5) and δ ∼

π ·Unif(0,1)+(1−π) ·degenerate(1) with π∼Unif(0,1). After specifying the prior distributions,

we ran 60000 MCMC iterations and looked at posterior means calculated from the last 50000

iterations of the respective parameters involved in the model. The posterior estimates of β1, β2, δ

and η
′
s are shown in Table 6.11; the posterior mean of deviance is 391.
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Table 6.11: Posterior Estimation Under DSCRR Model for Mycobacterium Data

Parameter β1 β2 δ intercept1 age1

mean 0.392 0.488 0.66 -2.063 0.010

95% CI (0.30, 0.49) (0.40, 0.59) (0.54, 0.79) (-3.93, 0.34) (-0.02, 0.04)

Parameter gender1 weight1 pred1 myco1 pred1*myco1

mean -0.927 -0.187 -0.577 0.286 -0.402

95% CI (-1.77, -0.12) (-0.48, -0.10) (-1.57, 0.37) (-0.59, 1.19) (-1.81, 1.01)

Parameter intercept2 age2 gender2 weight2 pred2

mean -1.438 0.005 0.091 -2.62 0.051

95% CI (-3.11, 0.23) (-0.02, 0.03) (-0.54, 0.72) (-0.54, -0.004) (-0.72, 0.83)

Parameter myco2 pred2*myco2

mean -0.144 -0.303

95% CI (-0.95, 0.64) (-1.50, 0.83)

According to Table 6.11, weight of the patient impacts the event Constric/Tampo and death.

The credible intervals corresponding to weight does not contain zero and hence can be termed as

having “significant” influence on the event Constric/Tampo and death. Heavier weight leads to

better survival. And gender is a “significant” difference for Constric/Tampo; females have higher

chance to get remission of Constric/Tampo. Figure 6.5 shows the cumulative incidence functions of

DSCRR model by gender; there is significant difference between blue solid line (Constric/Tampo

in females) and orange dot line (Constric/Tampo in males). The chance to relapse in males is much

higher than it in females.
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Figure 6.5: CIF of DSCRR model for Mycobacterium data by gender

Tables 6.12 and 6.13 present the estimation from frequentist inference and Bayesian approach

of DCRR model; the posterior mean of deviance is 709.

Table 6.12: MLE Under DCRR Model for Mycobacterium Data

Parameter β1 β2 δ intercept1 age1 gender1

mean 0.486 0.498 0.02 3.480 -0.772 3.415

Parameter weight1 pred1 myco1 pred1*myco1 intercept2 age2

mean -8.165 3.426 -2.073 2.463 4.104 -0.778

Parameter gender2 weight2 pred2 myco2 pred2*myco2 -log

mean 5.347 -8.068 3.135 1.086 3.837 351.95
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Table 6.13: Posterior Estimation Under DCRR Model for Mycobacterium Data

Parameter β1 β2 δ intercept1 age1

mean 0.435 0.446 0.024 -0.968 -1.171

95% CI (0.36, 0.51) (0.37, 0.52) (0.017, 0.035) (-4.21, 2.17) (-1.44, -0.91)

Parameter gender1 weight1 pred1 myco1 pred1*myco1

mean -1.146 -2.65 -0.858 -0.313 -0.735

95% CI (-4.24, 2.04) (-5.34, -0.87) (-3.94, 2.23) (-3.53, 2.82) (-3.75, 2.39)

Parameter intercept2 age2 gender2 weight2 pred2

mean -0.543 -1.172 -0.024 -2.581 -0.397

95% CI (-3.61, 2.68) (-1.45, -0.91) (-3.12, 3.13) (-5.27, -0.78) (-3.56, 2.64)

Parameter myco2 pred2*myco2

mean -0.878 -0.558

95% CI (-4.02, 2.26) (-3.64, 2.49)

According to Table 6.13, the credible intervals corresponding to weight and age do not contain

zero and hence can be termed as having “significant” influence on the non-terminal event Con-

stric/Tampo and terminal event death. Heavier weight and older age lead the patient to better sur-

vival. There is no evidence to show that treatments prednisolone and Mycobacterium indicus pranii

are effective to the patients. Note that the data used to obtain MLE under DCRR model and DSCRR

model are different. The former one uses the data as competing risks, whereas we only observe the

minimum. The data for DSCRR model contains additional information that includes the observa-

tions for death after Constric/Tampo; i.e., if Constric/Tampo occurs first, we could observe death

after that as well.



CHAPTER 7

FUTURE EXTENSIONS AND CONCLUSIONS

7.1 Introduction

Interval censoring in the context of competing risks has been receiving increasing attention

in the literature; see Sun (2007) and Mao et al. (2016). Another important question is variable

selection in the context of competing risks. We describe our proposed future research directions in

these two important areas in this chapter. In addition, goodness-of-fit of the proposed model could

be conducted as well as the model validation.

7.2 Interval-Censored Failure Time in Competing Risks

Interval censoring is a common feature in the study of failure time data. Interval censoring

occurs when the failure time of interest is not observed continuously, and as a consequence, the

failure time is not observed exactly. Instead, only an interval within which the event of interest

occurred is observed. For example, it is common to have pre-specified regular visit schedule for

a patient and a changed status may be observed in one such visit. It is obvious that the true event

time is greater than the last observation time at which the change has not occurred and less than

or equal to the first observation time at which the change has been observed to occur. That is, the

interval contains the real but unobserved time of occurrence of the event.

Another special case of interval-censored data is called current status data, see Jewell & van der

Laan (1996) and Sun & Kalbfleisch (1993). For this type of censoring, the status of the occurrence
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of the event of interest is observed only once for each subject. That is, although the failure time

is not observed directly, the information on occurrence of the event of interest at the observation

time is known. Thus, the failure time is either left censored or right censored.

Suppose a study that involves n independent subjects and every subject may experience the

event of interest whose time is denoted as T and it is not observed. Instead, we know that T

lies in an interval if the subject experiences the event of interest during the study period (i.e., if

the subject experiences a failure) or that T lies somewhere beyond the largest observation time

if the subject does not experience the event during the study period (i.e., if the subject is right

censored). Specifically, let J denote the random number of observation times for a subject, and let

U1 <U2 < ... <UJ denote a random sequence of the observation times. Set U0 = 0 and UJ+1 = ∞.

Define a vector of indicators for a subject, ∆ = (M1, ...,MJ), which contains the information about

the specific interval in which the subject experienced the event, where M j ( j = 1, ...,J) is given by

M j=


1 if U j−1 < T ≤U j

0 o/w

and the indicator ∆J+1 gives the information whether the subject is right censored or not, which is

defined as

∆J+1 = 1−
J

∑
j=1

M j

In addition, we assume that there exists K competing risks in the studies and T1, ...,TK denote the

latent failure times. The unobserved failure time T = min(T1, ...,TK). Let d j( j = 1, ...,K) indicate,

by the values 1 versus 0, whether or not the failure is caused by risk j. Then the observed data

for a random sample of n subjects consist of {(Ji,Ui,∆i,di j), for i = 1, ...,n; j = 1, ...,K}, where

Ui = (Ui0,Ui1, ...,UiJi) and ∆i = (Mi1, ...,MiJi).
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Mao et al. (2016) has derived the likelihood of a general class of semiparametric regression

models for interval-censored competing risks with potentially time-varying covariates, which is

given by

Ln(β,Λ) =
n

∏
i=1

[
Ji

∏
j=1

K

∏
k=1

(
exp
[
−Gk

{∫ Ui j−1

0
exp(βT

k Zi(t))dΛk(t)
}]

− exp
[
−Gk

{∫ Ui j

0
exp(βT

k Zi(t))dΛk(t)
}])I(di j=1,Mi j=1)

×
{ K

∑
k=1

(
exp
[
−Gk

{∫ Ui j−1

0
exp(βT

k Zi(t))dΛk(t)
}]

− exp
[
−Gk

{∫ Ui j

0
exp(βT

k Zi(t))dΛk(t)
}])}I(di j=0,Mi j=1)

×
( K

∑
k=1

exp
[
−Gk

{∫ UiJi

0
exp(βT

k Zi(t))dΛk(t)
}]
−K +1

)I(∆i=0)
]

where Gk(·) is a known increasing function, βk is a set of regression parameters, Λk(·) is an arbi-

trary increasing function with Λk(0) = 0, I(·) is the indicator function and Z(·) denotes a p-vector

of possibly time-varying external covariates. The nonparametric maximum likelihood estimation

is given in the numerical algorithm section.

Instead of using a general class of semiparametric regression models for competing risks,

we propose to consider the proposed parametric dependent competing risks model for interval-

censored data and propose to develop likelihood and Bayesian inference for this model in future

work.

7.3 Variable Selection on Competing Risks Models

Variable selection remains an important problem in competing risks regression modeling. We

will discuss the non-Bayesian way to achieve variable selection in this section.
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7.3.1 Penalized Variable Selection in Competing Risks

Penalized variable selection methods for Cox’s proportional hazards model and frailty model

have been developed by Fan & Li (2002). It is known that penalization method cannot be directly

applied to general competing risks model; instead, the proportional hazards model with covariate

can be estimated through such methods. Z. Fu et al. (2016) have also proposed a penalization

method for variable selection and model estimation of the proportional subdistribution hazards

(PSH) model.

Consider the proposed parametric model in Chapter3:

S(t1, t2) = exp
(
−
[
(µ1tβ1

1 )1/δ +(µ2tβ2
2 )1/δ

]δ)
(7.3.1.1)

After setting up the regression structure with using X, the model can be expressed as a mixed

proportional hazards competing risk model under a given covariate X in the representation via a

frailty approach 4.4.7,4.4.8, that is,

h1(t1|β1,µ1,δ,z) = g1(X
′
ηt1)·h01(t1|β1,η0t1 ,δ)·z

h2(t2|β2,µ2,δ,z) = g2(X
′
ηt2)·h02(t2|β2,η0t2,δ)·z

Then under the Laplace transform ψ(s) = E[exp(−sZ)], the joint survival function of T1 and T2 is

given by

S(t1, t2|X) = ψ

[
ψ
−1(S1(t1|X)

)
+ψ

−1(S2(t2|X)
)]

(7.3.1.2)
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where ψ−1 is the inverse function of ψ, and S1(t1|X), S2(t2|X) are corresponding marginal survival

functions, which are given by

S1(t1|X) = ψ[g1(X
′
ηt1)·H01(t1|β1,η0t1,δ)] (7.3.1.3)

and

S2(t2|X) = ψ[g2(X
′
ηt2)·H02(t2|β2,η0c2 ,δ)] (7.3.1.4)

The penalized log-likelihood function is

n

∑
i=1

di1 ∗ f1(ti|xi)+di2 ∗ f2(ti|xi)+(1−di1−di2)∗S(ti, ti|xi)−n
2d

∑
k=1

pλ(|ηk|) (7.3.1.5)

where ηk is one of η = (η0t1,η1t1, ...,ηdt1,η0t2,η1t2 , ...,ηdt2); the marginal density can be obtained

from f j(t j|x) =
∂S j(t j|x)

∂t j
, and pλ(|ηk|) is the penalty function. λ is a tuning parameter that con-

trols the complexity of select models. Maximizing 7.3.1.5 with respect to (β1,β2,δ,η) yields the

maximum penalized likelihood estimator. Various penalty functions pλ(|ηk|) have been proposed,

such as LASSO which refers to Tibshirani (1996), SCAD which refers to Fan & Li (2001) and

ALASSO which refers to Zou (2006). The estimators may vary for different penalty functions.

Another way to obtain the penalized likelihood estimator is to maximize the penalized log-

likelihood function with components of partial likelihood function, instead of a complete likelihood

function in 7.3.1.5, and penalty functions with respect to (β1,β2,δ,η). This approach is considered

in Fan & Li (2002).
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7.4 Conclusions

In this dissertation, we have proposed a model for dependent competing risks. This model

could be motivated via a frailty approach as well as a copula approach. We have provided a

detailed review of the literature on statistical methods for competing risks data. We have proposed a

dependent competing risks model and its identifiability properties have been discussed. In Chapter

4, we have shown that our proposed dependent competing risks model is identifiable under different

shape parameters and a known dependence parameter. In addition, the identifiability property of

the model for unknown dependence parameter has also been explored.

This proposed model can be extended to incorporate covariates while maintaining its identifi-

ability properties. We have considered extensive simulation studies under this model. Statistical

inference for this model is obtained via maximum likelihood and via Markov chain sampling within

a Bayesian framework. We have applied the proposed dependent competing risks model, both with

and without a regression structure, to analyze competing risks data of breast cancer patients treated

with Tamoxifen.

In addition, we have extended the proposed model to the case of semi-competing risks data.

Compared with competing risks data, the semi-competing risks data contains additional informa-

tion on survival status of the patients, as the terminal event could be observed after the occurrence

of the non-terminal event. In Chapter 6, we have shown the identifiability properties under semi-

competing risks data. We applied the proposed approach to a semi-competing risks data collected

in Africa by the Population Health Research Institute (PHRI).
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