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1. VARIANCE AND RENYI SPECTRA OF INFORMATION

1.1 Introduction

In many scientific disciplines, variance as a measure of uncertainty is prevalent. The 

general computational simplicity contributes to the popularity of this measure in roles such as 

evaluating dispersion of data and goodness of fit, and the assessment and ranking of random 

variables.  While there is no question that variance is successful and plays an important part in 

these roles, many works in recent decades as discussed in Ebrahimi et al. (1999, 2010) suggest 

there are other superior measures of information, particularly the entropy classes found in 

Information Theory.

The area of Information Theory was first popularized by Claude Shannon with “A 

Mathematical Theory of Communication” (1948). Since that publication many areas of study, 

including statistics, have adapted uses for information theoretic measures, with one such measure

being entropy, or the measure of uncertainty in some state. 

1.2 Variance and Entropy

 There are a few intuitive similarities and differences between variance and entropy to 

discuss. They are both measures of concentration or dispersion under some state. An important 

distinction between the two is that variance is a measure centered only around the density mean, 

while entropy is a measure which is irrespective of its locations within the density.  Another 

difference is that entropy measures the divergence of a density from the uniform distribution, 

which holds maximum uncertainty, while variance is an average of distances from the mean of 

its own distribution. This can be rationalized as the entropy of a distribution always having a 

consistent baseline irregardless of the distribution, where variance is dependent of its own 

distribution. 
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Aside from the intuitive relationship between variance and entropy, there are many 

mathematical properties that can be used to describe both. For a discrete random variable, both 

variance and entropy are non-negative, but only entropy is invariant under one-to-one 

transformations. For a continuous random variable, entropy can take values across the real line 

while variance is still non-negative. Neither are invariant under one-to-one transformations in 

this case. 

For continuous random variables,   , but the converse may 

not hold. Shannon proposed a comparison between the entropy and variance of a continuous 

random variable,

, (1)

where equality holds if and only if the random variable X is normal. This is known as the entropy

power fraction and shows an early emphasis into the relationship between variance and entropy. 

While there are notable differences between entropy and variance, the overall similarity 

in their measure of uncertainty within a density is enough to warrant further investigation into 

their relationship.

1.3 Renyi Spectra of Information

There are many entropy measures that have been developed since Shannon’s original 

publication, with one such measure being the Spectrum of Renyi Information of Order , or 

Renyi’s entropy. 

Let X be a continuous (discrete) random variable on  with probability density (mass) 

function p(x), then differential Renyi entropy is defined as: 

( 2)
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and the Renyi entropy for discrete random variables is defined as:

( 3)

where . The value  can be interpreted as a leveraging point, which can give 

different weights to different probabilities. As , all events, regardless of their respective 

probabilities, are weighed more equally. As , the entropy becomes more dependent on the

events with highest probabilities. 

The well known result for  is, 

( 4)

which is the widely used differential Shannon entropy. The same result follows for the discrete 

case. Therefore, Renyi’s entropy is the known generalization of Shannon entropy. Having the 

logarithm on the outside of the integral as with Renyi’s measure as opposed to Shannon’s leads 

to some unique results that will be discussed further on.

While there are many properties of entropy, Shannon stated four important requirements, 

or axioms:

1) Continuity:  is continuous in 

2) Symmetry:  is invariant under permutations of 

3) Monotonicity:  is a monotonically increasing function

4) Partition Invariance: For a pair of random variables with joint pdf  ,

( 5)

Alfred Renyi (1961) proposed an alternative condition to axiom 4, which is the weaker additivity

under independence

( 6)
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Axiom 4 clearly results in this condition under independence and this alternative leads to the 

Spectrum of Renyi Information of Order . The remainder of this research will focus on this 

measure of entropy.

1.4 Discussion

This research will expand on Ebrahimi et al. (1999), which looked at the ordering of 

many popular continuous and discrete distributions by variance and Shannon entropy to try to 

establish patterns between the two measures. In Section 2, we will look at the natural extension 

of that paper by repeating their process using the generalization of Shannon’s measure, Renyi’s 

entropy, to explore where the previously established results agree or if any disagreements arise. 

Following that in Section 3, we will develop a Renyi entropy based variable selection and 

discuss its implications to machine learning, as well as compare this concept to other selection 

methods. Overall conclusions will follow in Section 4.



2. PARAMETRIC COMPARISON OF VARIANCE AND ENTROPY

2.1  Distribution Ordering by Variance and Entropy

In this section, we will look at sixteen continuous parametric families and four discrete 

distributions and tabulate their variance and Renyi’s entropy, along with a directional 

relationship between the two measures with respect to  and their familial parameters .

The continuous parametric families are separated into the same groups as presented in Ebrahimi 

et al.. These four family groups are: Location-scale families; Shape-scale families; Student t, F, 

and Beta families; and Discrete Distributions. 

2.2 Notation

The notation used in this section will follow from Ebrahimi et al.(1999). Let   represent 

the class of probability distributions for which the variance and entropy are under consideration. 

For two random variables  and  with distributions  and , respectively, the 

variances and entropies of the distributions will be denoted as  and . 

Let  represent a class of distributions indexed by parameter . We will denote 

when variance, in which , is increasing (decreasing) in  as  ( ). We 

will denote when entropy, in which , is increasing (decreasing) in  as  

( ). Also for entropy, we will look at the effect the constant  has on the ordering. Since

, we will be interested when  and when . When the two measures order 

similarly, we will use  or .

2.3 Location-scale Families

For any distribution with density in the form of:
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Table 1: Variance and Renyi’s Entropy Ordering for Location-scale Families

with location parameter  and scale parameter , this distribution is said to be in the location-

scale family. For the results presented in Table 1, all of the densities have been parameterized 

such that the location parameter is  and the scale parameter is .

Well-known location-scale families of distributions were selected: Gaussian and 

continuous Uniform for their overall importance and common use; Gumbel for its use in 

analyzing maximum sample values; Laplace for its use in Bayesian regression and machine 

learning; and Logistic for its usefulness for modeling categorical data. 

As mentioned in Ebrahimi et. al.(1999), variance and entropy for all location-scale 

distributions are independent of the location parameter , which can be seen in the results from 

Table 1. A continuous random variable X from a location-scale distribution can be written as

. Therefore, the variance and entropy for random variable X is:
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and 

where  and  are constants independent of  and . From this and the results presented

show that  for a fixed . For a fixed , when  and ,  

decreases as  increase .

For location-scale families of distributions, we can see that some distinct patterns emerge.

Both variance and entropy are independent from the location parameter  and increase in  for 

any fixed . The last observation for a fixed  is interesting for the entropy. Given a fixed value 

of , in order to minimize the loss of information for location-scale distributions, all that is 

necessary is to increasingly adjust the weight parameter .  

2.4 Shape-scale Families

For any distribution with density of the form:

with shape parameter  and scale parameter , this distribution is said to be in the shape-scale 

family. For the results presented in Table 2, all of the densities have been parameterized such that

the shape parameter is  and the scale parameter is .

Some well-known and widely used shape-scale families of distributions were selected. 

The Gamma distribution, along with its special cases the Exponential and Chi-Squared 

distributions, are widely used amongst multiple disciplines. The Log-normal distribution is 

widely used for describing natural growth and is therefore applicable in many fields dealing with

human biology and behavior. The Pareto distribution is applicable for situations dealing with 

extreme differences, such as economics and income dispersion, internet traffic, and natural 
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Table 2: Variance and Renyi’s Entropy Ordering For Scale-shape Families
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where ** is the Incomplete Gamma function:     

disaster assessment. The Weibull distribution has application in areas where describing a “time to

failure” is important, such as survival analysis and reliability control. 

Along with these important scale-shape families, some lesser used distributional families 

were also selected. The Triangular distribution applies to a population in situations where limited

data is available, using a maximum and minimum. The Generalized-normal is of interest when 

the special case of both high value concentration around the mean and tail behavior are being 

considered. The Inverse Gamma has applications in Bayesian analysis, and finally the Inverse 

Generalized-normal has use in describing tendencies in Brownian motion.

From the results in Table 2, it is apparent that the Renyi’s entropy for these Scale-shape 

distributions are complicated functions with little distinct patterns between them. The results in 

Ebrahimi et al.(1999) still hold for most of these families for a portion of the spectrum of , but 

generally not for all . For example, Gamma was found to both increase in  and  for both 

variance and Shannon entropy. For Renyi’s entropy though,  , but decreases

. 

When  is analyzed around the limit though, the parameters for all presented families 

begin to coincide with the previous results. The Generalized-normal and Log-normal 

distributions demonstrate identical behavior of both the variance and entropy across all , which 

is understandable given their descriptive relation to each other. An interesting behavior of the 

Inverse Generalized-normal when  is that the directions of the variance and entropy reverse

given the parameters. The Inverse Gamma, Pareto, Triangular, and Weibull distributions do not 
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depend on the value of  and behave similarly to previous results for most values of the 

parameters, so defaulting to Shannon entropy for computational simplicity is acceptable. 

While there are no simple generalizing formulations in order to write the variance and 

Renyi entropies for these scale-shape families as there was with the presented location-scale 

families, having these measures expressed in a concise table will hopefully be beneficial to those 

in fields where these distributions are useful.

2.5 Student t, F, and Beta Families

This section will look at three well known and important continuous distributions, which 

would not directly fall into the previously discussed families. Table 3 parameterizes these 

distributions in the same previously used   notation.

The important observation to make for these distributions is that with Renyi’s measure 

results in significantly less complicated functions when compared to Shannon’s measure found in

Ebrahimi et al.(1999). This is most noticable with the Beta distribution, whose Shannon entropy 

resulted in an ordering that required multiple planes in a three dimensional space to explain the 

behavior of the parameters. In our case here, the scaling factor  in Renyi’s measure greatly 

simplifies the expression and helps explain the overall direction the entropy exhibits despite the 

disruption that occurs at the limit . 

The remaining distributions in Table 3 exhibit another interesting effects when observing 

the spectra of . For the student t distribution, the behavior of the variance and Shannon entropy

 correspond to the results in Table 3 when , but entropy increases for

. The converse of this is true for the F distribution in regards to Shannon entropy. The 

behavior of the variance and Shannon entropy corresponds for , but
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Table 3: Variance and Renyi’s Entropy Ordering For Student t, F, and Beta Distributions

 entropy decreases when . Both entropy measures behave the same with respect to the 

parameter . When observing at the limit, there is an opposition in the behavior of the entropy, 

but it can be seen that the student t and F distributions demonstrate the same behavior for 

variance and Renyi’s entropy in regards to the parameter . 

While with close examination of all the previous distributions in this research, the 

relationship of the behavior between the two measures can be observed, the distributions in Table

3 are important within the scope of this research to quickly visualize and interpret the ability of 
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Renyi’s measure to detect the true nature of the entropy of a distribution and the “disruption” that

occurs when . 

2.6 Discrete Distributions

This section explores the relationship between the discrete Binomial, Geometric, Poisson,

and Uniform distributions. While in the previous sections we were implementing the differential 

Renyi’s entropy formula (2) to compute our functions, here we will use formula (3) to compute 

our functions for these discrete distributions. The typical lexicon for these distribution’s 

parameters is used in Table 4. 

For the Geometric and Poisson distributions we see similar entropic behavior between 

Shannon and Renyi’s measures as was observed in the previous section. The variance and 

Renyi’s entropy of the Geometric and Poisson distribution correspond with the results for 

Shannon’s entropy described in Ebrahimi et al.(1999) for , but the entropy changes 

direction for . In these examples, one could describe the relationship of Shannon and 

Renyi’s entropy for the Geometric and Poisson distributions as:

.

The Binomial distribution is known to be symmetric around , and this is apparent with the 

variance which is increasing (decreasing) for  . When examining the 

Shannon entropy for the Binomial, this symmetry is also apparent with the entropy and variance 

corresponding in ordering. The Renyi entropy does not depend on this symmetry, and only the 
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Table 4: Variance and Renyi Entropy Ordering for Discrete Distributions

position of . The Renyi entropy also provides a closed and more concise function as compared 

to Shannon’s measure.
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The ordering and Renyi entropy of the discrete Uniform distribution is equivalent to the 

continuous interpretation in Table 1 given the respective parameters and is also equivalent to the 

respective Shannon entropy functions. This is a natural conclusion since the uniform holds the 

maximum uncertainty of any distribution, and is “considered the global reference distribution for

quantifying information in terms of predictability” (Ebrahimi, Soofi, & Soyer, 2010). Therefore, 

it should be consistent across all entropy measures in both discrete and continuous cases, 

regardless of any parameters such as the scaling factor in Renyi’s measure. 

2.7 Discussion

This chapter examined connections between the variance and entropy of twenty 

continuous and discrete families of distributions, focusing on Renyi’s measure of entropy and, in 

some cases, comparing the directional behavior in regards to Shannon’s measure of entropy. 

The variance and entropy of Location-scale families of distributions can be expressed in 

distinct generalize functions. Patterns for Shape-scale families of distributions, as a whole, are 

much harder to express, and any distinctions can usually only be determined between two or 

more certain distributions. Tables 3 and 4 demonstrates how the spectra of Renyi’s scaling factor

 helps to compare Renyi’s measure to Shannon’s. From this, we were able to simplify these 

functions of entropy and interpret the true entropic behavior for these distributions when 

This chapter also presents a comprehensive and concise collection of variance and Renyi 

entropy functions for the multiple families of distributions. Having a collection of these 

expressions for the presented distributions should be beneficial for researchers across many 

disciplines. 



3. NONPARAMETRIC COMPARISON OF VARIANCE AND ENTROPY

3.1 Information Theoretic Learning

The areas of data mining and machine learning have become increasingly researched and 

implemented across most major scientific and social disciplines in recent years. While these 

large areas of research are well developed through typical statistical methods, a growing number 

of researchers, including Jose C. Principe and colleagues, are applying information theoretic 

methods in lieu of more accepted variance based measures. 

“Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives” (Jose C. 

Principe, 2010) collects and presents many information theory methods while comparing them to

the more traditional supervised and unsupervised learning algorithms.

The remainder of this research will set up the framework for Information Theoretic 

Learning using Renyi’s entropy, apply this framework to a variable selection algorithm in terms 

of data compression, and then compare the performance to the Lasso and Backward/Forward 

variable selection.

3.2 ITL Framework

The ITL framework presented in [2] begins with Renyi’s Quadratic Entropy ( ):

                   

      (7)

The expectation of the PDF (PMF in the discrete case) is referred to as the information potential 

in the literature, and will be denoted as . 
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In most cases, one is left to estimate entropy directly from the data nonparametrically. 

Instead of estimating the PDF first and then calculating the entropy, when using Renyi’s 

Quadratic Entropy, one just has to estimate the scalar . 

Suppose for a continuous random variable X, we have N independent and identically 

distributed samples { }. The well-known estimate of the PDF with an arbitrary 

kernal  is given by

(8)

where  is the bandwidth parameter. 

From here we can assume a Gaussian kernel to find our estimate for our quadratic 

entropy:

                                              

                                           

                   

                  (9)

Principe (2010) states that this framework provides the most convenient expression for 

this entropy estimate, although other positive definite kernels that peak around the origin can still

be used. 
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Now we are just estimating the information potential of Renyi’s quadratic entropy 

directly using the data instead of the PDF. While this is similar to estimating the sample mean 

and variance to understand the shape of the distribution, the information potential still has the 

bandwidth parameter to estimate within the function. Principe (2010) suggests that a sufficient 

estimate for the bandwidth here follows “Silverman’s Rule”:

(10)

where N is the number of samples,  is the data standard deviation, and d is the dimensionality 

of the data.

3.3 Variable Selection Algorithm

The last concept outside the ITL framework to review before describing our variable 

selection algorithm is mutual information. Mutual information (MI) measures the mutual 

dependence of two variables, while entropy is a measure of uncertainty for a single random 

variable (C.T. Liu et al, 2010). 

Given two random variables, X and Y, their mutual information is defined in terms of 

their PDF’s p(x), p(y) and p(x,y) as:

(11)

Mutual information holds the following nice relationships with entropy:

(12)

where  is the conditional entropy. 
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This application will utilize the mRMR or “minimum redundancy maximum relevance” 

(Peng et al, 2006) algorithm. This method computes MI using Shannon’s entropy estimates. 

Principe (2010) states that this is computationally expensive compared to using Renyi’s quadratic

entropy estimate in equation (9),  to , respectively. 

Therefore, this research will use the following algorithm developed by C.T. Liu and B.G. 

Hu (2010), replacing Shannon’s entropy with Renyi’s.

Given the input data , with samples of variables ={ }, and the 

target variable C, then the complete algorithm is:

1) Set =”full input variable set” and =”empty set”

2) , compute 

3) Find the input variable  that maximizes , set  ,  

4) Repeat steps a and b until desired number of  of input variables are selected

a) Compute MI between variables for all pairs of variables  with  , 

b) Choose the input variable  that maximizes 

(13)

5) Output the subset  containing  significant input variables
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3.4 Dataset

The “Hitters” dataset from the ISLR library in R was used. After cleaning for NA data 

values and removal of strictly categorical variables, this dataset contained 263 discrete 

observations ( ), 16 input variables ( ), with . The variable names 

were 'AtBat' , 'Hits', 'HmRun', 'Runs', 'RBI', 'Walks', 'Years', 'CAtBat', 'CHits', 'CHmRun', 

'Cruns', 'CRBI', 'Cwalks', ‘PutOuts', 'Assists', and 'Errors'. 

3.5 Entropy Estimation for Variable Selection

A complete function in R was developed, which for each  input variable and , 

computed  following equation (10) and then estimated  using the quadratic Gaussian 

kernel presented in equation (9). This function is presented in Appendix A. Finally  

was calculated for each variable, which is our estimate for quadratic Renyi entropy  

in equation (8). 

Next,  was computed following the equations presented in (12) while substituting

Renyi’s measure for :

. (14)

This resulted in CAtBat to be the most informative significant input variable.

Finally, following equation (13), the order of variables, from most informative to least in 

terms of , was determined to be: ‘CAtBat’, ‘CHits’, ‘CRuns’, ‘CWalks’, ‘CRBI’, 

‘PutOuts’, ‘AtBat’, ‘Assists’, ‘CHmRun’, ‘Hits’, ‘RBI’, ‘Runs’, ‘Walks’, ‘HmRun’, ‘Errors’, 

‘Years’.
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At this point, the number of significant variables were not determined. Only the ordering 

was of concern here.

3.6 Methods of Comparison

The first method of comparison was the Lasso method for variable selection . The well-

known advantage of the Lasso is that it it forces some coefficients to go towards exactly zero due

to the use of an  penalty, instead of an  penalty. The reasoning behind selecting this method 

is that the Lasso is a variance-based measure (through the mean squared error (MSE)) to preform

variable selection.

Preforming the Lasso on the “Hitters” data resulted in the following variables being 

selected: ‘Hits’, ‘Walks’, ‘CHmRun’, ‘CRuns’, ‘CRBI’, ‘PutOuts’, with a test 

and . The rest of the variables were forced to zero.

The second method of comparison was the use of Backward/Forward selection on the full

“Hitters” data. In R, both methods can be ran simultaneously to ensure an accurate result. This is 

a popular method of variable selection that uses Akaike Information Criterion (AIC) to determine

the best combination of variables using the information-theoretic concept of entropy 

maximization. 

The results of the “Hitters” data model generalized linear negative-binomial 

Backward/Forward selection model in R were: ‘AtBat’, ‘Hits’, ‘HmRun’, ‘Walks’, ‘CRuns’, 

‘CWalks’, ‘PutOuts’, ‘Assists’, ‘Errors’. 

These two methods are presented and compared to the Renyi Quadratic Entropy method 

of variable selection for very obvious, yet distinctive, reasons. The Lasso is a strong and popular 
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variance-based method of variable selection, while Backward/Forward selection is another 

information-theoretic measure that is extremely popular. The comparison between these methods

and the Renyi quadratic entropy estimation mRMR algorithm will be presented in the next 

section.

3.7 Results

From the results in section 3.5, we obtained the ordering of the input variables that 

contained the most information with respect to the target variable, Salary, from the most 

informative (‘CAtBat’) to the least informative (‘Years’). With this in mind, multiple models 

were developed, each adding in the next ordered variable. These models were then compared to 

the model developed by the Lasso method which selected six input variables (‘Hits’, ‘Walks’, 

‘CHmRun’, ‘CRuns’, ‘CRBI’, ‘PutOuts’), and the Backward/Forward model which selected nine 

input variables (‘AtBat’, ‘Hits’, ‘HmRun’, ‘Walks’, ‘CRuns’, ‘CWalks’, ‘PutOuts’, ‘Assists’, 

‘Errors’).  Performance results are presented in Table 5. 

Table 5: Method Statistics

The mRMR model that performed the best, based on AIC and the neighborhood of 

correct prediction, included the first ten ordered input variables (‘CAtBat’, ‘CHits’, ‘CRuns’, 

‘CWalks’, ‘CRBI’, ‘PutOuts’, ‘AtBat’, ‘Assists’, ‘CHmRun’, ‘Hits’). We will refer to this model 

as the Most Informative Model (MIM) henceforth. The Backward/Forward selection model had 

the lowest AIC (3650.1), but had the worst prediction accuracy in regards to the target variable, 
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especially in regards to extreme low (under 100) and high (over 1000) values. The individual 

comparisons of the model response densities are recorded in Figure 1.

Figure 1: Density of Target Prediction Accuracy 

The Lasso model had the 

highest AIC (3667.6). 

This model had better 

prediction accuracy than 

the Backward/Forward 

Selection Model, but also 

suffered with extreme 

values. The MIM fell in 

between these two models

for AIC (3662.6), which 

was also close to the Full 

Model AIC  (3661.5). 

This method was also more consistent with recognizing the extreme values than the other 

methods. This is easily recognized with the standard deviation and multiple range values (range, 

IQR, and density range based on 3SD using Chebychev’s Rule) being closest to the true target 

density.

Comparison output based on individual ranked observations between the true target 

values and the model estimations is provided in Figure 2.
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Figure 2: Comparison Between the True Target Response and Method Estimations

3.8 Discussion

 The presented results demonstrate how the MIM developed through the Renyi quadratic 

entropy estimation mRMR algorithm was capable at preforming comparably well with more 

widely used methods for variable selection, and in some instances, better. 

The MIM model was the only method that detected the input variables ‘CAtBat’ and 

‘CHits’, which this algorithm determined were the two most informative input variables. This 

implies that other variance or information theoretic based methods might inherently skip target-

informative input variables by design. This model also appeared to narrow in on key components

of the target variable, such as outliers, better than the other methods tested.

 A couple downsides to this method was the complexity of the design and the selection of 

the most input variables to reach the conclusion, but the interpretation of this model is 

straightforward (the model contains the  input variables that contain the most relevant 

information in regards to the target variable).

There are further considerations and concerns regarding this research. While a sample 

size of 263 observations is considered large, in the scope of machine learning this would be 
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considered small. Since this dataset was quite skewed, further research would be required to 

determine how the MIM’s developed using the mRMR with Renyi Quadratic Entropy Estimation

would compare to these presented methods and others using a much larger dataset. It appears a 

MIM based model was quicker at ackowledging the characteristics of the target variable, but 

replication would be required to conclude this issue.

 Another issue that arose is whether comparing information-based selection models 

(Backward/Forward Selection model and the MIM) using information criteria (AIC) acceptable, 

such as was done in this research. A standard method of comparison between these types of 

models may need to be explored. 

While there are some questions that arose in the process of comparison, for this easy 

application it appears that the MIM method is at least a relevant alternative to modern variable 

selection techniques. While the area of Information Theoretic Learning is a still young field, this 

application provides a small insight into the implications the area has on many disciplines, 

including statistics. 



4. CONCLUSION

This research explored the information-theoretic measure of the Renyi Spectra of 

Information from both a parametric and non-parametric perspective. In section 2, Renyi’s 

measure was computed for twenty discrete and continuous univariate parametric families, and 

the behavior of their entropy and variance functions were evaluated for distinct similarities and 

disagreements to assist in relating the two uncertainty measures. In section 3, a variable selection

algorithm that incorporates the non-parametric kernel estimation of Renyi’s Quadratic Entropy 

was presented and compared to popular variance-based (the Lasso) and information-theoretic 

(Backward/Forward selection) methods for variable selection, with respectable results. 

The goal of this paper is to discuss Renyi’s entropy and other information-theoretic 

measures from a statistical perspective. Section 2 provides comprehensive lists and discussions 

that can be applicable across many different disciplines, while section 3 provides an alternative 

approach to machine learning (Information Theoretic Learning) with an application in the 

important and much discussed area of variable selection.

Further extensions of this research include exploration into the behavior of Renyi’s 

measure and variance for multivariate distributions and comparisons of other variable selection 

methods using the Renyi quadratic entropy estimation mRMR algoithm. 
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APPENDIX A
RENYI’S QUADRATIC ENTROPY KERNEL DENSITY ESTIMATION R CODE
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renEst <- function(x,i){
    
    sdopt <- function(x,i){
        for(i in 1:dim(x)[2]){   
    i = as.character(names(x))
    sdopt <- (diag(sqrt(abs(var(x[i])))*(((4/dim(x)[1])/(2*dim(x)[2] + 1))^(1/(dim(x)[2] + 
4)))))/sqrt(2)
       } 
    return(sdopt[i])
    }
    
    sd <- sdopt(x,i)
    
    Est <- function(x,i){
    
    efx <- try(density(as.numeric(unlist(x[i])), kernel = "gaussian", bw = as.numeric(sd)[i],
            adjust=1), silent=TRUE)
    return(efx)
    }
    results <- Est(x,i)
    return(results)
    }



APPENDIX B
ORDERING EXAMPLE R CODE
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Generalized-normal:

alp = 1
bet = 5
lambda = seq(1,2,length=10)
x=2
y = (1/(1-lambda))*(-lambda*log(2*bet*gamma(alp/2))) + 
((-alp*lambda + lambda - 1)/2)*log((bet*lambda)/2) +
log(pgamma((lambda*x^(2))/bet^2,((alp+1)*lambda + 1)/2, lower = 
TRUE)*gamma(((alp+1)*lambda + 1)/2))

alp
bet
y


