
Northern Illinois University Northern Illinois University

Huskie Commons Huskie Commons

Honors Capstones Undergraduate Research & Artistry

1-1-1986

Automatic parallelization of sequential code : a simplified model Automatic parallelization of sequential code : a simplified model

David W. Prepejchal

Follow this and additional works at: https://huskiecommons.lib.niu.edu/studentengagement-

honorscapstones

Recommended Citation Recommended Citation
Prepejchal, David W., "Automatic parallelization of sequential code : a simplified model" (1986). Honors
Capstones. 210.
https://huskiecommons.lib.niu.edu/studentengagement-honorscapstones/210

This Dissertation/Thesis is brought to you for free and open access by the Undergraduate Research & Artistry at
Huskie Commons. It has been accepted for inclusion in Honors Capstones by an authorized administrator of
Huskie Commons. For more information, please contact jschumacher@niu.edu.

https://huskiecommons.lib.niu.edu/
https://huskiecommons.lib.niu.edu/studentengagement-honorscapstones
https://huskiecommons.lib.niu.edu/allundergraduate
https://huskiecommons.lib.niu.edu/studentengagement-honorscapstones?utm_source=huskiecommons.lib.niu.edu%2Fstudentengagement-honorscapstones%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://huskiecommons.lib.niu.edu/studentengagement-honorscapstones?utm_source=huskiecommons.lib.niu.edu%2Fstudentengagement-honorscapstones%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://huskiecommons.lib.niu.edu/studentengagement-honorscapstones/210?utm_source=huskiecommons.lib.niu.edu%2Fstudentengagement-honorscapstones%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jschumacher@niu.edu

AUTn~ATIC PARALlELIZATIO~ a~ SEgUE~rIOL

A SI~PL[FIEO MOOfL

c S C I 4) f) H

MAY 1 1986

l

hardwarp requirad by such ~ mac~in~. n,,~ speeds of such devices, which aft'

In comparison,

however, th~re hdve heen fgw wij~ly 3ccept?1 successes in t~e development

of d softwara <;tructur~ to uti lilt> thf> ,)O\,"'~r these supercomputers offer.

At present, it v<3ri"!ty Gf 5uccf>5:.rul <;>fforts in parallelization of

sequential co~puter code 3r~ noted. Howevf>r, few of them aim toward~; th'~

fully automatic execution of this task. Largely, they are approached with

the premise of putting snmp of thp burden onto the programmer. In such

semi-automatic systems, the pr01rammer is expected to offer a considerahl>

indicaton to the machine of how to go ahout partitioning the code into

con cur r e n t 1.., e x e cut", hie b I ac k s . £t is ioIidely ft>lt that trds awareness on

the program~pr's part is f>5senti~1 to m~ximizing the efficiency of the

r~sources av,.ti 12101<>. It is also fplt that In the future, efficient, fully

automatic p'lrall",lizFltion will ",dkf.~ thp noed for such compromises unneC,~55Iry.

Until languages and practicAs de5i~ned to @xploit d problem's potential for

par"llelization ar(.~fe.'lsiblf" the bulk: of the responsibility for mdximizilq

processing lies with th~ ~dchin~, on hoth hardware and software levels.

Th@ Durpose of this pdper i~ not to produce a commercia! alternative

to the probl~m, but to outline som~ of the obstacles encountered and

0" e r com e i nl n d t t f' ,II P .. to fJrod u c e d <;imp Ie model I) f as;) f t w .cJr ~ 5 t rue t LIft'

designed to dutolll,'\tic.'lily aarallell.li> serial computer codes in a realistic

machine. It i 5 basPj on small-scale pn~cepts, and in no way ,,,,,is intend~\d

to suggest ~ commercially f2dsible model. It does, howev~r, introduc~

solutions to various pro~lp~s universally encount0r~d in de5i;nin~ d

ti ghtly-cOLJPl::>(j i11ultiprocpssor <;yst.~m.

and fall within th'" ran,,\~ of pr?sl:'nt computirq t'~chnolOQY. Certclin .:!ssul11ptions

d@dling with h~rdw~r~ and low-level system capd~iliti~s were dSSUffied feasible

irregardless of their presencE' or~h5€'nce in actual !!!)chin,:>'.;. r hi:' <;i' d <;sum p ton s

have provided a physical basis for this model, but do not ~pply strictly

to it.

INITIAL ASSUMPTIONS Cn~CFRNING THE HA~DWARf SUBSTRUCTURE

The only assumptions concerning ~ hardware structure are that the system

requir~s a shared c~ntral memory. that there exists a single control

processor, and that th,"re is at least one "other" processor. The single

shared main memory has distinct advantages over local memories for each

processor. There is a marked cutdown on cross checking for current values

of variables which are bein0 accesses/updated by several processors.

under most circumstanc...s, only one instance of a givf>n variable will edst

in memory at anyone time. A trade-off involved with this is that processors

requestinq exclusive control over a variable still need to check if it is

aVailabl~ and in the desired st'lte at the time it is requested, howevf'rt-hi~;

situation is inherent in the proble", of parallel cOlllpuL,tion, and '.Ii11 bi~

accepted. The model to be described has been worked away from the ne~~ for

local memories for each processor, and this seelJlsto inCrl"aS'~ the overall

efficiency of the system.

The sinqle control processor which governs the work of the s~veral Hslavp'"

processors is assigned the ~uties of the initial proc~ssing of the 5tr~d. of

sequential code. As it ~aS5?5 over the code, it sets up the i'H'CC55dry control

structures and D~rtitions the code in such d way dS to make it concurrently

procE:'ssable. Tn this model, this first pass is done sequGntially, yet it

is it logical eKtension to dssume that by carrying this process out in

parallel, a Dot,~ntial 5ev\~r'! hottJeneci< in thf! system's efficiency could he

avoided.

o hj e c t cod e <;, it <;e e r~ <; th ,~t d lIt h ,~ i n f ()
r" d t ion n ~ c <?'> 5 a r y f () r »

)(

"
cut i,)n is

includ€'d in thf-' ot)j...ct form; of the instruc'ion:;.

ADO opl.,op2,op~ opt = op2 + ap)

SUB o~)l,opl,l}p) opl = o p2 0-;)3

MUL T op1,op2,opS OD I = op2 * op3

f)IV op1'0f>2,OD) op 1 = op2 / OJ)3

LOAD o;>l,op? opt = op2

ware level.

an essentially dat"!-drlven ">yst,,,m, whp.re all information r~quir"i at an'{

time is available In the shared memory.

THE SrM~LE WO~KING LANGUnG~ TO BE USEn IN THE MaO~L

In its ul timatp form, th", system indicat@d by this model would j~ l~nyudg~

independent, or at lE'dst l!lo1ifiable towards any commo" .10plication l)f)..JU.1F'

desired. How,:>vpr, in dn}ttempt to avoid the intricacies of hMldl in, any

signifigant lanqudq~ in favor of demonstrating th". lJIethch1s of d-3ta m.lnipul;stion

in this pdr~llel ~nvironrnent, d simplified, explicit lan;Jua':Je has be::>n CL~dt{'d.

It is simplif1~d in th,:> r,:>spect that it has basic cdPJbilitif!s, but wouH be

a reat chore to do any serious programming in. It 15 el(pl lei t In thdt m05t

instructions allow for distinct "source" operands and d distinct tfj"!stlnation"

0:>er an d. The general Instruction set of this l~nguag~ follows:

DO WHllEi k = ,>p? TO op')

E~[)D a ENOOO

COM P opl,op? COM!3ARt: opt ANO op!

BRNCH opl,CC ARANCH rn op1 IF CC 5AT[SFr~D

proc,:>ssinq. rhf' hasic in-;tructinn Format is in1icat~j hy the first group,

wher~ opt r""Dr(~Sent5 th"'i,"'stinltion of th,-' result of ffop2,opH. The ne)(t

group is a sDecialil~d oair of looping instructions whos~ special hdndling

wi 11 hecome ,-'vident lat",r. The third group is based on the assumption that

con d I t ion cod e <; w ill b I" set and d c c ? S sib 1e h a <;,.d ()n com p d r Iso n s .

In subs!"quent o)(ampIes, thore is also -'! "reat deal of amhi')uity with

respect to the actual form of operands. As d ~enerdlil3tion, they may

referr to high-speed registers, actU31 storage locations, or drray elements

hV ordered subscripts with ?qu~l efectlveness. This discrepancy will not

cause any great problems if all resources are c)nsidered as shared amonq the

processors. A safe way to think of an operand is as d refference to some

location within the central shared ~emory, avoiding detdils which tend to

r~ly on a more detailed hardwar~ structure. In cases where operands appedr

as constant "literal" values, these should be taken at face value.

subscripts may he tak~n ~s ~ither constants or as operands of pr~viou5

instruct ions.

The orgdnization of the gen~ral class of instructions lpnds itself to

3 natural distinction hetween v~riable types. Variables, which dppear in

instructions in thp form of operands, may be considered static or dynamic

in nature. static variables ar~ those which mdV be takan at face value by

any processor intereste,1. Static variahles have at no tim~ previous to the

curr",nt instructio" harl their values modified in any way. In t hi,> c d t eg or y

are thoSf> "literal const,)nttt values, and as indicated by th,> instruction

conventions, variables which havp appeared as o~erands only on the right side

of an instruct ion. Hence, /l vari",ble showing up as oDl Ioo/i 11 not be static.

Static variables are of a "read only" type which are safe for use dS apZ or

op] in an instruction hy any processor at any time.

Dynamic variables ~rp tho5~ whose values have been alter~d at some time

i~ a program prior to th~ir us~ in the current instruction.

are the cru~ of the 3rbitr~tion problem between competing processes when it

comes to a need to reff~rpnce or update a certain variable. Oynamic variables

hdve at Some time appeared as thp. leftmost ooerand (opl) in an instruction.

It is no longer safe for use without some for~ of further checking as to it's

status in memory.

It is worth noting that ,') variahle may be ;tatic up to d certain point

in a program, at which it is used .j5 a left-han;! operand ,,,nd becomes dynamic.

Thus, some overhead will be conceded for the purpose of maint'Jininq the true

current status of a variable, and redundancies will b~ avoided. This updating

wi 11 occur as changes happen, r'fther thdn as the ch,1ngeS become signifigant.

F(}r instance, a variable's status ..,ill Df' charqed fro.. static to dynamic d5

it is used as opl, r3th",r than later when it is r~quested for us~~ d5 dn op? or

of)3.

The method f~r k~~pin~ track of wh~ther d vdriahlp is currently static or

dvnamic (~s "",,1135 oth",r st<itus i~ft)rmdtion) is the use of or\1i'>reJ binary

tree structures for the orq~nilltion of this information. The desired node of

a particular tree is indexed by a sequence of bindry digits injtc~ting]

traversal from the root nod~. ~ "1" in the string indicdt~s d traversdl

to the right child node, i Ua" the left. Since the m..th~d is formdlil~d

dS such, a gr..at deal of time would os;» saved in letting this he a hdrdwdr,~

~xecutable traversal. For the sake of simplicity, it is dssume,1 to tJ.> 'I'>

SlJch.

To reference an operand is to access the key for the tree in I./hich its

status indicators reside. since there ~re two distinct variable types,

there are two distinct tr~",s; it Static Variable free anti d Dynd:T!ic Vdridbl,~

r r ee. The distinction is made since the information required for 3 5t~tie

variable is di fferent thln for 3 dynamic variable. So, for ?I varidbl.,. ;(..lith

tree location «Tre~loc" (0100110), the string would be read right to l~ft,

wi th th~ rightmost ~it indicatinq the tree (0 -> static, 1-> dYl1amic md

t~e remaini~q bits indicating the right-left branches to be taken in the

traversal. An n-hi t Treeloc inHcates a tree of depth n-l, s inee th,:> root

nGde is not used for v~ridbl~s. As the number of v3ridblf"s ill .~ given progr.Bl

increase, so increases the legnth of the Treeloc: index'lnd the sizp. of th0

respective tree.

For eKJmDle, th? Tre@loc inde~ (1011' will r~fference nod~ XX.

r i
i
i

ROOT DYNAMIC VARIA8lE TRE~

i

1

/
J /

/
l

/
() /

1
I__-I

\
\ 1

\

/ \
o / \ 1

,
I

J

etc.

The stati c Variable Tree is structured simi larly. In f~ct, the only

distinction lies in the format of their respective nodes.

The format of d nod? of the Static Variable Tree is as follows:

current value
location of last occurrance

In keeping with the updating of the trees, d variable's last use

in a program' as any operand) is noted during thQ control processor's

pass over the code. Aft e r t his pol n tis rea c h ed i nth e f}r 0 g r a fR, It' 5

node is logically deleted from the tree to cut down on unLJsQj nodes in the

tree.

The format of a node in the pynamic Variahl@ Tree is as follows:

current value
]ocatlo!"\ of last occurrance
location of 1~5t instance as oDl
curr,,,nt P:::l !:+ for last instanc,,, as op1

~_k_'t-"'- ..-1

...
1 LO,(1) LI,O

." La"'!) 8,1
'5 La At) C,29
4 LOAD 1) ,5

'j LOAD A,O
6 MULT ~,A,C
7 ADD 'hAt C
.~ SUB c, C, i:\

9-') SU :~ 0,0,')

10 MULT 1),'),'\
11 5U3 o,n,c...

set .~ to n~ro
set 8 to 1
set C to 2
~~set J to 3

A := 3
i\ = (3'-';:>QJ
q := (3*2?'''Z9
C = 29-(3*29)+29

[)
= (3-1'

fI := f 3-1) *f (3*2'7)+29,
I)

= f 3-1' *(f3*29'+??'-(ZQ-(f S*?;?t +-In ,

Another distinction to be m~dp is that of node ~ntrie5 wnich arp

set UP to be modifiE'd during th'" control processor's first pass f ie

the location of last occurr'3nce) as opposed to node entries which dre

designed to he used and updated during execution. Current value, location

of last instance as opl relative to the current instruction' and the

ClIrrf>nt PEL It
(relative "0 the currE'nt instruction -- l1Iore later 'HI~

execution dependant node entries. Current value indicates the varidble's

present value when it is being used as an operand in the current instruction,

and location of last instanc@ as opl indicates the most recent chanqp of that

variable before thf" present instructiof\. The cur r en t PEL # ref err 5 tot h ~

indivisable block of code which contains the instruction that updated the

variable's value.

CODE HANDLING CONVENTIONS:

Consider the follo~inq sdmpl~ cod~;

This somewhat m~~nin91p5~ ex~mple demonstr~tes a pot~ntlal ch~rdcteri5tic

of sequential code; it is heavily sequence 1eo'''1dant.

get dny '1IerlninC)ful rt!suU.

h~ executed in the 9 iven ()r1~r since

in lini'"11, D dppends on 1in~ 10 i)nd
C 1~pends on line

~in 1in F' 10, f) d~p~nds on 1ine Q a nrl
A d". P

j>nd s on 1in? '3
in Ii ne ,~ , i~ de!)pnds on 1 ine 7
jn 1 in f,"7, L\ dpppnds on 1 in.. 6
in 1 in',>6, A d ,..

P fA f)d <; on 1 ine ') .

The> r ';3 ITIn i n j
",j C <)d t,~ il1 U 5 t

~)(am DIe w hie h m ,Iy h
" "

\(>r:u ~ ;~ rj
.1 t !n y t i PIe p r i i)r t 0 it';) ()C "It i

()
n i nth e

This is thi'> probl!>" raised by dynamic vari3bles. The advantage of

static: variahles b(>comps r~adily apparent, as d:)Y static variable h~s

no dependanci es and if)f) instruction has stdti: opZ3nd op3, it can rH"

execut!?d at any ti!1lp prior to its occurrance in th? oriqindl code'" seOUN1CP.

At most, this example, then, could be execJted concurrently as two

distinct blocks of code, one hlock including line 9 dnd the other including

everything else. Unfortunately, this speeds things up by only about Ib~,

which is an insufficient return of efficiency to justify the given model.

This brings about the point that there are certain restrictions on how

much a pi~ce of code can be altered to he executed in parallel. Ultimately,

an ideal interaction between proqrammer and mdc~inp would require the former

to have somp knowlp.j(1? of tht> n'1ture of the system in ord~r to aid in settin':J

up code that lends itself tf) concurrent procf'ssi n9 to <;om!~ deqree. HOlo/ever,

in this model, that will not he considered at the surface, since d reasonable

return inefficiency is gained whpn "typical" sequential algorithms are

considered.

Thus, the characteristic which makes instrJction 9 50 different than

the other instructions is that both of its right-hand opp.rands are currently

static whf>n it occurrs. This hunting for static right-hand operands becomes

the lIain approach in handling sequential code, especially in simple sequence

fo rill. The actual mechanism for partH ionin9 code is discussed later. foe

now, suffice it to say that code is partitioned into the minimum possible

seQm!?nt of a sequef'ce of instructions which reqJire sequel1tial e)(ecution.

In handling the more complicated code structures, certain trad~offs dr0

taken. For condi ti Of'l<1J code f ie, If THEN structures t, th~ appro~ch use~

in this mod~l is to handlp .he possible alternate segments of code as regul~r

st>quenCi>S of instructions. Qy rcc~ul-H progr"d'IJ11 in(; conventions, these

alternative branches will either b~ used or not used, and are th@reby distinct.

In this li9ht, th,~ control procpssor is allo\oled to fun riqht throu9h decision

structures, sectioning off hlocks of code ~ithout actually knowing the

outcome of any comparisons evaluated at execution tim~. Fach seDdrate block

of conditional code will begin d new block, and therein lies the trade-off.

If the outcome of th~ co~parison WdS known during the crp~tlon Of thesp blocks,

some efficiency coul~ be gained In some cases. However, this def?dts the

purpose of doing this partitioning prior to exe:ution,'Ind in doin,) '.>0, the

overall gain in efficiency is maintained.

The handl ing of loop structures poses more si'Jnifi(]]flt probleffls. Loo p

structures can he broken down into two types; (a' thosl.' loops which do not

rely in .any way upon the outcome of any previous iterations, '!nd (b) t.h05i~

loops which require the previous iteration to be compl~ted beFore th~ present

iteration can take place. Loops of type (a' will he rf>f'~rred to as "iterdt-

ively independant" and loops of type (b) as "iterativley dependant."

The id~al way of handling a loop structure is to cause all of its

iterations to he executed simultaneously, thus making full use of whatever

available processing resources are at hand. Howevf.>r, loops of an iteratively

dependitnt naturt;' det..~rr these concurrent considf.>rations. If ~ loop requires

that the In-lJ th iteration he completed bf' fore thiO' (nJth iteration can

tdke placp, these requirements must be satisfied. 'H 1 th,.:tt Cdn h~ done

is to take any measures possible to make the code within the loop as efficient

It would' See'" that it~ratively dependant loops will alloldVs

b~ at odds with concurrQnt processing, and may one day be replaced by

techniques moro suited to pardll~li5m. This is not presently the Cdse.

Iteratively indeDenrtant loops, on th~ other hand, Drovide d great deal

more in the way of parallelildbl~ oations. Consider the code designed to

find the product of two (3 x 3) matrices;

DO K,1,3
DO I,1,3

LOAD SUM,O
DO J,1,3

r~Ul T ATFMP ,A' I,JI,B(J,I'
ADO SUM,SUM,ATEMP

ENODO

set sum = 0

c ~mD'}
~'r'l[)i)n

Since the running sum su~ requires a value from the pr~vious iteration,

the inner loop J is iner,'!tively dependant. However, there is no such

restraint for the outer loop K, which co~td be broken down into its

respectivp it",ration5, f>lch iteration operdtin9 for ~ sinqlf' VCiue of K to

be determined at execution time. Hence, a safe partitioning of the t~ree

iterations of the outer loo~ K could be

K = 1 K = 2

r :DO 1,1,3

K = 3

r 1
DO I,1,~ '

00 1,1,3 I

.

. . .

L _::~~~~___m J

. .

fN001

At this point, the algorithm will take onlv 1/3 its previous p~pcuti0n

time. Howpver, since the I loop is iteratively independant, provi1t>d it hJS

a value for K in it's Idst instruction, the I iterations Cdn bE' brok.:,n dO\.ln

5i milarly within each concurrent iteration of the K loop. Thus, for K(ih

K = i

l

I = 1 I = 2 I = ~
r--------------
, Lr};\ D 51.1'1, q

I

·

---------------- ----------------
LOAD SUM,!) LOAD SUM,O I

I

I

' · · Ii.

I

. ,
· :

I

' ·

i . LOAD Ag...
I

LOAf) Mi... LOAO ACe...
ii,

I

J
hu u ,

J

. .

where any refference within the bOdy of an I iterdtion to the loop v~ridble

K would he rpplaced with the "hard" value of K for th~t K loop's reldvent

iter at ion. In this way, the alGorithm now runs at II? of its origindl tiMe,

provided there are at least nine processors to 1andle the iterations.

The measures which wnuld neRd to hE' t,]ken to en~ble the inner loop

to run concurrently '.Ii th its own itec'Jtions wouL1 n~quirl" mor'~ ov»rhi:'].J

than Is faasih]p for tho situdtion.

for e~ch iterdtion of th~ inner~ost J loop, than ~di~rl with dll the other

"SUM" values from the other respective concurrent J iterations within each

iteration of the I loop, the general speed of t~~ Jlqarithm could be again

squared. Thp cost of such specialized measuras, howpvpr, make such an

action rather awkward, and the overhead necessary to facilitate such d

design would undermine the slmplicitv and efficiency of the mod~l. Thu5,

loops will be broken down as much as possible wi thin the conventions

demonstrated in this example.

SOfCIfIC METHODS OF cno'" HANDLING

t)ctual consil1~rr)tions for the p,ntitioninq of 5f'qu,>ntLd codl:' dre

now dealt with in d~tdil. Con5id<>r th~ concept of a Proc"ss Extent List

PEL , \0/h i chi s d E'fin e d ii S
"

mi n i 111U!II b I 0 c k 0 f c 0 (j e 101hie h mu s t tH' If>JCe cut e d

in its original sequence. As the Control Processor miik~s its pass over the

code, it ~pnerates the object codes for the instructions. :, t'f.l is made

up of groups of thpsf' ohject codes.

Object codes for the gener~l set of instructions « of form NAME opl,

op2,op3 1 are laid out as follows;

~

.

T ~

\
1

1
2

\

,~

I

4
\

5
I

6
\

7
I~ ------------------------------------

ioI here

fi el d 1
field '2
field :S

field 4
field 5
field 6
field 7

op code of the instruction
current PEL n
pointer to Treeloc
PEL n in which op2
pointer to Treeloc
PEL U in which op3
pointer to tree lac

Table for opl
was last altered
Tab 1f~ for 0 \)?

was last altered
table for OP)

PEL's dre numbered according to the their creation haspd on the

original seqUE'nce of the input codE'. TherE-fore, the current PEL It refE:>rrs

to the current PEL in w~ich this current instruction rpsides. Since it

is necessary to kt"f'P track of when an operand WdS last dlterE'd if it

is a dynamic operand 1, the Pfl . referring to that instance is included

in the object form of an instruction. Treeloc Table index referrs to

t~e table created during the first pass that associates a variable with

d Treeloc, "Ind thf"rebv d Static or Dynamic Variable Tree node.

Two operand instructions ie lOAD opl,op2J have simi lar object

code formats to three operand instructions, dnd merely lack the information

concerning operand 3. The format for loop instructions is also rou(Jhl.y

may ~lso re~idp in th~ object dpscriptions 0f n~rrnal operands, and this

fact becomes of prime importance ~hen the mechanism for rleter~ining loop

The impor tancp of intro,jucin9 operands' PEL its in instruct ion COdf'5

hf'comes apparent il')consid;:>rations of the e)(ecut ion priori tips of PELs.

The convention is that the current instruction :nay not he exected until

the PELs indicated for its operands have been complAtely rrocessed. This

is a result of the fact that only dynamic variahle will h~ve 0fls inJicatp,J

in the instruction code, and dynal1lic variables Clre th," Dritnary CrllJSE' of the

arbitration/priority prohlem.

The basis for creation of PELs becomes more clearly defined when

the Control Processor's initial pass over the sequential code is examined.

In the Dass alqorithm, it is seen how PF:l5 "tee created, what conditions

are required to terminate the continuation of the current PEL, and wh3t

criteria are to be mpt for a new PEL to b~ cre3tpd. The general rul~ ot

thu!1lb is that as soon dS a new PEL is creatable, the current ~i=.L should

be discontinued. Th? emphasis is on keepin DELs as short ~5 possih10,

since each one represents an indivisable hlock of sequential code. For

example, a program running within d single DEL is a s~quentidl proqrarn.

T~e greater the numh'~r of PELs, the greater chance that more than onl"

cdn be executed at any qiv(~n time, and thus the yredter the ovprall efficiency

of the progra~ in e~ecution.

CONVENTIONS FOR nCTERMINING OEPENDANCIES OF ~YN~MIC V~RIARLES

for general spqu(.>nti.:Jl code, it is enouqh dS implip1 by the treatment

of instruction for~at5) to indicat~ which, if ~ny. PEL ~ particular vdridble

d e pen d 5 on. So. for general cod@, an operan1 d?pends on a prpvious PEL

if fl)
f ;>)

13'

it is not a new "literal" constant
it is not currently st~tic
it does not dep~nd on ~n opl in any previous PEls.

The method for :1etermining if an operand depends on an ()fd in any

previous P~Ls thro~s hack to the node contents of the Oyn3mic Variablp free.

Ourinq execution, the last instance of that vari iihlf' is opt in'lny instruction

is noted and recorded in the OVT node. Also noted i5 t!w correspondinq

PEL Ii for that instruction, and by refferE'ncinq this, th? P;:L in which

the inspected vari:Jhl~ last occurred as OD 1 in an instruct ion is :>btai ned.

This method allows the system to look back to only th~ last chdng~ of

the variable f "last" in thf> context of the original sequ~nce of the:> c()d(~

rather th~n backtracking farther than is actually neces5~ry.

With regard to dependancies of loop variahles. the loop fla<J com'''s

into signifigance. In the code

DO K,l,lO
I\DD I,J,K
MULr A, I , R

LOAO C,'-t(A,NJ
ENOOO

K is the loop counter, and its f)VT entry h a5 dSS oc iated wi th ita Loop

Variable flag. Since K appPdrs as a right-hand operand in the ADD instruction,

the variable I now depends on K. since I appE'ars on the right-hand side of

the MUlT instruction, A depends on I which depends on K. Since A appears as

a subscriot in the array refference on the right-hand side of the LOAD

instruction, C now d~PQnds on A.... Since all 1f th~se variables dre

indirectly dependant upon the lOaD variable K, they are all unable

to assume th~ roles of ind~pend.nt v~riables within the context of

exec uti 0 n time,
"4 is known, but n mdY or may not be. It is for this r edson

that the ilctudl loop processi no takes pLKe at execution time. The algorithm

the loop K or in any subsequent loop resiiinq wlt~in the K loop.

If there was no way of indicating 3 v~ridble'5 1i:'p,-,rviar,cyupon

a loop variable, there would he no safe way of ch~cklnq for iterative

dependance or normal dep~ndance within loops. fllis ')ein(J th? C:lS2, th",

following convention is established: If th~re is d 1000 countr'r K, 'I

flag indicative of tbis is included in its OVT entry. Furth"'rmor", Jny

variable which depends on an operand with this flag set will also ~ave

its own flag set in its OVT entry. It is for this reason that the

refference to an variable's last instance is opt in an instruction is

included with that instruction's PEL I in the DVT entry. The 3ctudl

if1structian must be refferenced to ch~ck its op~r.3nds for loop vdriable

dependancy.

Before fully revealing the nature of the Control Processor's initial

p'tss over the sequential co,1e, the alqorithm for handling loop structures

will be examined. This is part of execution procedure and does not

take placp during the control processor's first pass.

Considpr a system configuration ~ith N processars, and an instance

within the code of a loop structure consisting of n iterations. He for e

for dealing with loop structurf's during the execution cycle is as follows:

If instruction is of form (DO K,A,8)
If loop is iteratively independant
n = 8 - A
If n > N

Treat the body of thp loop sequentially
Con cur r e'n t 1y pro c e s s I 00 pit era t ion 5 (A, A+1, . . . C-1 , CJ

wh er e (A < C < '3 J
Upd",teA :; C + 1
Transfer control to top of execution cycle for that instruction

Elst"
Concurrently process 100D iterations (A,A+l,...B-l,3)
"11 = N - n
Transfer control to top of execution cycle for loop body with

~1 available processors.
Endif

Else
Execute loop iterations in order

Endi f
Endif

i
" dE' pen d'! n t loop t O'H' <")(e cut ",j c ()n cur r

'"
n t 1 y d 5 t h p r "! are -3v~ i 1 a t>1 e ;:.roc ,~:. .~) r'..

If the loop can b~ hlnd!erl and prOC~5S0r5 r0~ain, those may ~e ~llocdtAd

otherwise. If there are two fp.. t)roc~<;<;or5 to 'JndiE" all loo~) itt'rdti0ns

at once, all processors are df'diclted to proce55inq the loor until th,?

remaining iterations are d~pleted. Recur5io~ is a suitable m~thDj of

implementing the transfer of command to the tOD of the fetch execute

cycle, although th~ actual mA'thorl is not con';id~r~'d in detail.

In as much as 1I10st pverythi ny ,~ls€ re;nrdinq th;> rHrt it ionaoi 1 i ty of

the sequentird cod" can be cfeducf'd prior to t>xe::ution, the Control FrOCE'ssorh,>

initial pass determines all oth~r details rf'quired hy the model. In this

passE's' handlinC) of loop structurl>s, thp assumption is l1Iad~ that i 100;) '-Jil)

b@ of the worst possible form, anrl, Jlthou1h nates ~re made Df loop varia~les

and their dependants in the nvr, the code within loops is treated ~5 b~sic

sequential code dnd handled like the rest of the pro1ram.

Since, in the c~se of iteratively injep~nJ3nt loops, the method ot

handling In this model is to partition the 100D into as many 5epdr~te itor-

atins as are possihle, some co~sideration must he liven to handling variaDI~s

wi thin thE' loops themselves. Static v3riabl~s are harml?ss, being of a

"read only" type, the arbitration of which would be dictated by hardware.

However, dynamic variables changing within a loo~ cause problems.

instances of a dynamic variable in 3 loop wi 11 create N pot~ntially different

values for that v3riable, which must ultimately be resolved into one.

The CdSP of d ~yn~mic vari~hle accu~uldtin) its value throuJh 5UCC~55iv

iterations of a loap will not b~ d problem hf>r(~, sinc~ such" condition

constitutes an iteratively dependant loop, which, by the above algorithm, will

n3t be partitione1. This simplifies the t::~5k of handlin~ dyn~ndc loop

variables tremandously.

The qpn~r 11 mptho1 for brelking UP a loo~ into its iteration is to

expand upon th~ OVT entries for dynamic v3ri~bl~s apP@dring within t~at

loop. Copies dre m~~p of the OVT entry, dnd linked outward to such dn

e~tent as is dictated hy the above ~lqorithm. For N concurrent loop

iterations, N-l link~d copies of th~ variable's nVT entry will b~ Cfpdte1,

5te~ming from the origin~l.

DVT PHHV

I
----.--.---

~s indicat~J DPfore, the loop counter's v31ues for respective loop

iterations are fi~ed to each it~rdtion. Tht' code of the loop itself is

nat copied1n1 is here assumilled t() t>.~simult3n~c)u5Iv useable hv <tll

available processors. Variables chosen for "du~lication" must not be sub-

scripted. If a sut)scripted vari"1bl'~ .dppears on. the left side of an instr-

uction, and if th3t variahl@ (with any subscript at all' appears on the

right side of an instruction, U,e l()op is non-parallelizable, as it has

i IIIP li e d Dot e n t i :) 1 i t e r d t i v e d ,3p ~ d a nee . \J h d t
t" i s b 0 i I s d ow n t 0 i s t h d t

dnV subscripted variable which is dynamic withi, the loop cannot be d right-

hand operator. This concept of b~ing static/dynamic within d loop is based

on the fact that d dyn3mic vari~ble Cdn ~PDear to be static if considered

only within the boun15 of ~ loo~ structure. The model exploits this fdct

to wring a hit. l1Iore effici~ncy I'}ut of loop handling.

The way in which the copies of the DVT entries are used is to associdte

each available processor with a ?drticular ~Vf entry copy. Whenever d

processor processing a particular iterdt ion refferences a oarticulariynamic

variable { with multiple ovr entries J, it sees only d particular DVT-entry-

incarnat ion. In this m~nner, these variables ffl3Y be u5ed and altered

in dependant ly. The fIIannerof p'solution of fin'}l value after the loop

is procE'sse1 is to move thE' status of the varia:>le corr""sDondinq to the

loop iteration with the highest vilup

&a_ _" ...k 1 _._

copies ~re th~n delet@rl. The numher of copies ~tll firoly reach 3n

intolerable number sincE' it is 1irectly related to the nUmh?f of iterations

to be partitioned at;] time, which in turn is directly f,:"'Jdtejto the

n u m b P.r 0 f pro c
I':'

s S 0 r 5:1 v c1 i I a hie . If the size of the ')lain'II\~mory is at

all sufficient for the needs of N processors, this dem~nd will not exceed the

capahi Ii ties of th'" system. Thus, an adequate hardware structure will

nat be taxed by this method, providing that it WdS construct~d redlistically

for the number of processors it contains.

THE fIRST PASS ALGORITHM

Initialize instruction counter
Initialize Treeloc indexes ~s (null' f DVT and SVT roots J
Initialize PEL ~ = 0
look at first instruction
(top of loop)
Determine appropri~te object code form
Move associated op code to object form's first field
Move current PEL a to ohject form's current PEL # field
Associate operands ~ith obj~ct form's operand entries

If (DO)

Examine opt
Set up a OVT entry (assumed to be unique and dynamic)

Move variable name to index name field
Move next tree index to rreeloc field { for DVT ,

Refference indicated nVT entry by Treeloc
~ove loop variabie-flal to nVT entry (assert flag)
f'1ovecurrent instr. cntr. value to ldst-changed-field of OVT entry

F 1s e if f CONO}
Create a new PEL

Increment current
Move this new PEL

PEL It
':J;to curr. PEL ~ field of instructionfs obj form

Else
/:x3I11in<:> opl

If (no duplicatp Dvr ~ntry exists)
If (duplicdt~ svr entry)

Delete that SVT entry dnd its index
fndif

~ove vari3hl@ name to ind?x name field
Move next tree index to Treeloc field « for OIlT ,

fndif
Refference indicated OVT entry by Treeloc
~ove curr. instr. cnt. to last chanqe field af DIIT entry

EXi3",ine op?
If (not dlready defined in OVT .

If (no duplicdt~ SVT entry)
Set up SVT entry

Move variahle ndm~ to SliT index
Move next tree index to Treeloc field (for SVT)

Endif
Endif
Move curr. instr. cnt. to l~st occurr@d field of tree entry
If « loop-vi1ridbl~ fId'] is on J

Set loop-varidble flag in DVT entry for opl
fndif

f: x ami n e 0 p>
If (not alre:-1'1y definec1 in !)Vr

If (no iuplic~te SVT ~ntry ,
Set up svr pf)trll

'1ov," next tr~<;> if1dex to Treeloc fie 1<1 (for 5VT)

",nr1if

Fndif
'10 v eo cur r. ins t r . en t. t () I iJS t oc cur r ~d f i .?1j of t r p ee n try
If (loop-variahle f13q is on)

Set IODo-variable flaQ in DVT ~ntry for opt
fndif

If (op2 and op3) curr@ntly static}
Create a new PEL for this instruction

Increment current PEL I
Move new current PEL fl to current PEL It field of ()I)j. forul
Set ot~er PEL a fields to 0

Flse if { op?' (-Inriop_~ , depend-on current PEL'
i'1ove .lr~ro to first PEL U field
Set other PEL ~ fir~lds to 0

Els@ if (op? f or op]) depend-on current PEL
And f op3 f or op? » are currently stat ie)

~ove z~ro to dependant op PEL # field
Set oth~r PEL ~ field to 0

Else if rap? (and/or op3 , depend on a previous PEL)
Create d new PEL for this instruction

Incre~ent current PEL #
Move new current PEL # to instruction current PEL field (obj food
If (op,~ depe nds-on PEL K)

Move that PEL tJ to op2 PEL It fi eld
If (OP) edsts and depends-on PEL K)

Mov~ that PEL u to op3 PEL # fi~ld
If f ap? (or op3) are currently static

Move 0 to that operand's PEL # field
If (op? (or op~ , depend on current PEL'

Move lero to that operand's PEL 4 field
f nd i f

fndif

If (op2 (and/or op3) depend-on an instruct ion whose
loo~-counter flaq is set)

Set loop-counter flag in that operand's tree entry
F.ndif

Increment instruction counter according to instruction legnth
of the previous instruction
if END, then stop)

9ranch back up to TOP

The heart of this ,~lqorithm is the mE'thod ~v which d""penddncy t';:, df'ter-

An oDPrand is judq~d to be d".pendant on d previt)us i>EL if th;lt

operand was most recently chdng@d at a point in that PEL. To determin,'>

if this is the Cdse, thp variable's status is o~tained by refferencinq its

tree node, which, if1epeondancy exists, will be in the DVT. This ch~ci<inJ

requires no special Cdse handling, as it happens automatically for the

checking of op~ran1s. In the nVT node, there has been set up d field which

indicates the last change of the variable, or its last instance as op1

Associat@d with this entry is the PEL. in whic~ this change happened.

If this PEL I is less than the current PEL ~ for the currently examined

instruction, a dependancy exists. Now, the cur r en tin s t r u c t ion may not h ~~

executed f when expcution findlly does occur' until those prerequisiti:!PEL's

indicated for its op~rands have completed execution. Implicitly shown h~re

is the relationship between the U5~ of dynamic variables and execution

efficiency. rhe f~wer dynamic operands in use 3S op2 or opJ, the Quicker

the code may be executed.

The checking for whether an instruction depends on a loop variabel

is a !lore direct process, in th~t th,:,loop-variable flag carries directly

from variable to vuiable. Consider a 1000 counter J, whose loop-variaDle

flaq is set in its DVT pntry. For the first instruction in a loop structur.;>

t hat de pen d son t hat I 00 p c ou n t ~r , the 1 00 p c 0 un t e r it s elf will bee i the r

opZ or op3 f or 50m" subscript thereof J. When that instruction-s operdnJs

are being eXd~ined, the fact th~t one of those right-hand op~rdnds has its

loop-variable flag dss",rted is all that is required to set th", loop-v,trridblt'

flag in the DVT entry for thf> l,.>ft-handoperand f opl).

It is ultimately the explicit ordering of the sequential code which is

responsible for the implicit ordering of the object e,)de created in the

control processor's first pass. This ordering of blocks of codf> PEL's

is implied thro~Jyh the n~?!j to w,dt until PFL's indic.tte>d by in instruction's

by th~ first ~dSS.

It Is of som~ signiflgance to note that In checkinq whether d variable

is static or dynamic, the only first level checking r~quir~d is to eXdmine

the riqhtmost bit in its Treeloc entry. Thf> Information ne",(1<'ctfor checking

and updating tree entries requires a traversal 3t some point. ;C\s':;ummin'Jthat

hoth of these processes could be handled primarily by har:1war"" efficiency

I '5 m", I n t a i ne d. Assuming that the first pass will ultimJtelv bp carried out

in parallel Itself, a great deal of speed could be gained by executinq the

necessary traversals as soon as the correct tree is determin?d. rhis

traversing would then normally take place while other characteristics of the

operand under inspection are being judged, and wh~n the tree node was needed,

it would already be availahle.

In the above algorithm, a default PEL value OF 0 is used to indicate

the lack of dependancy of a static variable. PEL values heqin with 1, and

a PEL N is assumed to continue until another is created, bein9 PEL N+l.

The PEL creating logic is d fairly simple one, in that a new PEL is credted

whenever one can be. This, how~ver, relies on the sequential nature of the

original code, and thereby is limited in its efficiency.

a PEL is continued when it c~n he, dS opposed to discontinued when it Cdn be.

This method of continuing a PEL until another one Cdn he created may he less

efficient than a model which looks for ways to Jiscontinue d PEL as 500n as

possible. Several methods for improving the model withi~ it5 own framework

are apparent but not exploited here.

F = ?A 4AC

C = 6.

1
2
3
4
5
6

INSTRUCTION PEL it PEL's OEPENDED ON

1 1 t ,)

2 ? (,)

3 3 (1 , 1 J
4 4 (1 , 1)

5 4 (0,)
6 5 f :3, 4)

The PEL's may 311 bf> executed spearately, providing tha t their pre-

SIt'1PLE EXAMPLES OF ~'1Of)EL PERFORM,(\NCf

This model's environment is g..ared prirnaril.y for numi>ricdl [)rocessinq,

and will he illustrated in such a mdnner. Consider a sil'lpl", polynomial

written in the assumed language, to be computed for A = 1 and

LOAD
LOAD
ADD
MULT
MUl T
SUB

A,1
C,6
3,A,A
D,A,C
0,0,4
f,8,D

which should return d valuE" of F = -22. Sequentially, this algorithm would

require 6 execution cycles to complete. By the control proce;sor's first

PdSS, it is broken down as follows:

requisites dre met. The only PEL with mor~ than one instruction in it is

PEL #4, which contains t~o instructions which must b.. executed in sequence.

T~e algotithm, then, would b? processed as heloJ;

c yc leI

STA()T

l \
flO,QD ~,1) (lOtiO C,6)

\ I

cycle?
I

(ADO 13,1\, A)

\

\
L"1Ulf O,A,C)

!

cycle J « ~~ul T
\
D, D ,4)

\
F , '3 , D

)

\
cycle 4 (SUB

INSTRUCT!()N PEL It PEL f)E?E~JDfD DN

1 1 (, J
2 2 (, 1
3 3 (,)
4 4 I 1 , ?)
5 5 (,)
6 6 (4, ') ,
7 6 f 3, 0 J

The instruction in cycle '3 is a mel11D<>r of th~ Pi:l thlt cont:1ins till:'

second instruction in cycl~), and as such, ~dY not be ~w@cut@d before it.

The model h~s r~duc@d this ilgorithm from 6 seqJential clock cycles down

to 4, an incrpase in effici~ncy of 33%.

Consider a si'l1ple polynollial 0 = II JHR 1/2 - C J. Th~ code would be

as follows, for A = 5, B = 6, C = 7.

1
?
3
4
')
6
7

LOAD
LOAD
LOAD
ADD
LOAD
OIV
SUR

A,S
A,6
C,7
D,A,S
E,2
O,O,E
O,O,C

This effectively brpaks thp code down as f31lows.

START
/ \

---------- ----_.__._----

cycle 1
/

(lOAD A,S'
\

(LOAD P,61
\

(LOAD C,7J

/

cycle?

I
/ \

/ \
IADD n,A,8) (LOAD E,n

\ /

I
cycle 3

cycle 4

(!1IV D,11,O
I

f5UQ O,n,CJ
I

END

The model has herp reduced the number of instruction cycles down fro~

s"ven to four. This is an incr~dse of efficiency of about 42~, which seems

s j
9 n i f I '~d n t t 0 d e e m t h p

mod p. 1 non t r I v I a 1 . These examples are by no means

demonstrative of any realistic programs, yet th~y do demonstrate the strong

points of the model. With a reliable software structure, this model could

be expanded upon to become more feasible. However, the original purpose of

the model was Intended to be that of demonstratlny methods of overcoming the

problems that arise in de,;)ling with parallelization of sequential codes in

general. which it has fulfilled.

	Automatic parallelization of sequential code : a simplified model
	Recommended Citation

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28

