Northern lllinois University

Huskie Commons

Honors Capstones Undergraduate Research & Artistry

1-1-1986

Automatic parallelization of sequential code : a simplified model

David W. Prepejchal

Follow this and additional works at: https://huskiecommons.lib.niu.edu/studentengagement-
honorscapstones

Recommended Citation

Prepejchal, David W., "Automatic parallelization of sequential code : a simplified model" (1986). Honors
Capstones. 210.

https://huskiecommons.lib.niu.edu/studentengagement-honorscapstones/210

This Dissertation/Thesis is brought to you for free and open access by the Undergraduate Research & Artistry at
Huskie Commons. It has been accepted for inclusion in Honors Capstones by an authorized administrator of
Huskie Commons. For more information, please contact jschumacher@niu.edu.

https://huskiecommons.lib.niu.edu/
https://huskiecommons.lib.niu.edu/studentengagement-honorscapstones
https://huskiecommons.lib.niu.edu/allundergraduate
https://huskiecommons.lib.niu.edu/studentengagement-honorscapstones?utm_source=huskiecommons.lib.niu.edu%2Fstudentengagement-honorscapstones%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://huskiecommons.lib.niu.edu/studentengagement-honorscapstones?utm_source=huskiecommons.lib.niu.edu%2Fstudentengagement-honorscapstones%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://huskiecommons.lib.niu.edu/studentengagement-honorscapstones/210?utm_source=huskiecommons.lib.niu.edu%2Fstudentengagement-honorscapstones%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jschumacher@niu.edu

AYTOMATIC

CODF:

PARALLELTZATION

A SIMPLIFIED

nr

SERUENTIOL

»J0fL

MAY

11986

The recent eamnphasis on pushing farth in an attempt to create a Fifth-
generation superconnuter has put aost of the offort into desiqninn t e
hardware reguired hy such a machina, Tha speeds o0f such devicesy which are
largely paralle! in their archetsacturass ara phanomenal. In comparisony
howavary thare have heen faw wid2ly acceptsd successas In the developnment
of a software structure to utilize the sower thase supercomputers offer,

At presenty a variety of succaessful eofforts in parallelization of
sequential computer code ares noted. Howevery few of them aim towards the
fully automatic execution of this tausk. Largelyy they are approached with
the premise of putting some o0f *he burden onto the programmer. In such
semi—-automatic systems, the projrammer is expected to offar a considerahbhlo
indicaton to the machine of how to go about partitioning the code into
concurrently axecutahle hlocks. It is widely felt that this awareness on
the programmer?s part is essential to maximizing the efficiency of the
rasources available, It is also felt that in the futurey efficienty fully
Automatic parallelization will make the naed for such compromises UNNeCess Ary.,

Until languages and practices designad to axploit a problem's potential for

[¥4]

parallelization are feasibley the bulk of the responsibility for maximizing

processing lies with the machinay on both hardware and software levels,

[

The purpose of this paper is not to oroduce a commercial! alternative
to the problems but *o outline s0me of the obstacles encountered and
overcome in an attampt to pnroducs i simple model of a software structurs
designed to automatically oarallelize serial computer codes in a realistic
machines, It is based on small-scale praceptsy and in no way was intended

to suggest a commercially faasihle model, [t doasy howavery introduce

solutions to various prodlems universally encounterad in designing o

tightly-couplad multinrocessor systam,

The assunantions made at the bejinning of tre project were nodest

and fall within ths range of prasent computing technoloagy. Cerftain assumptions
dealing with hardware and low-lavel system capadiliti=s were assumed feasible
These assumptons

irregardless of theilr presence or absence in actual machinas,

have provided a physical basis for this anidzly but do not apply strictly

to it.

INITIAL ASSUMPTIONS CNONCERMING THFE HARDWARE SUBSTRPUCTURE

The only assumptions concerning a hardwars structure are that the systeaw

requires a shared central memorys that thers exists a single control

|
l
|
|
processors and that there is5 at least one "pther"™ processor. The single
shared main memory has distinct advantages over local memories for each
processors. There is a marked cutdown on crnss checking for currant values ‘
of variables which are hoing accesses/updated by several processors. Nows]
under most circumstancesy only one instance of a given variable will exist
in memory at any one time., A trade—-off involved with this is that processors
requesting exclusive control over a variable still nead to check if it is
available and in the desired state at the time it is requested, however *his
situation is inherent in the problem of parallel computationy and will ba
accepted. The model to be described has been worked away from the peed for
local memories for each processory and this sesss to increass the overall
efficiency of the systen,

The single control processor which governs the work of the saveral *"slauvue"
processors is assigned the Adutias of the initial processing of the strasam of
sequential codes, As it passes over the codey it sets up the necessary control
structures and partitions tha code in such a way as to make it concurrently
processable, In this modely this first pass is done sequ=antiallyy yet it
is a logical extension to assuma that by carrying this process ogut in
parallely a notential severa hottleneck in the systam?s efficiancy could He
avoided.,

Since the control processcr partitions the code as it jenariatss pseudo-

oh ject codesy it seems that all the information nacessary for axacution is

included in the objiect forms of tha instruct ions. Tharaforey, no issunptions

T R T .

concerning direct inter~processor communications will ba made 4t the jyarde
warae level, Ideallyy the need for such communications could ho avoided by
an essentially data-driven systemy where all information raquirad at any

time is available in the shared MeMOCY

THE SIMPLE WORKING LANGUAGE TN 9F USED IN THE #0DAL

In its ultimate formy the system indicated by this model would b2 lanjuagoa
independenty, or at least modifiable towards Any common aoplication linguiage
desireds Howavery in an attempt to avoid the intricacies of handlingy any
signifigant languags in faver of demonstrating tha methods of data manipulation
in this parallel environment, a simplified, explicit language has besn craated,
It is simplified in the respect that it has basic capabilitiesy but would he
A real chore to do any serious programming ine It is explicit in that most
instructions allow for distinct “source" operands and a distinct "Hdastination®

operand, The general instruction set of this languags follows:

ADD oplenp2yop? opl = op2 + op3

SUR oplsnn22ynni opl = op?2 ~ op3

MULT oplyop?yop3 opl = op2 * op3

niy oplyop?yo0Dn3 opl = op? / op3

L0aDd oplsop? opl = op?

nn kyop240D3 DO WHILE; Kk = 2p? 1O op}
ENDD O ENDDO

cCaMe oplean? COMPARE opl AND op?

BRMCH opleCC HRANCH TO opl IF CC SATISFIED

The above languags is designed to e harely sufficiasnt for nunerical

R RIS

procassing. The hasic instruction format is indicatsd hy the fifst gqroupy
where opl represents the dastinition of tha result of flop2y0p3)s The next
group is a specializad pair of looping instructions whoss special handling

will becoma2 avident latar, The third group is basead on the assumption that

condition codes will be sat and accessible Hasad on comparisonse

In subseguent examplesy thoere is also a great deal of ambiguity with
respect to the actual form of operands. 45 a yeneralization, they may
referr to high-speed registersy actual storage locationsy or array elements
by orderad subscripts with squal ofectivenesss This discrepancy will not
cause any great problems 1f all resources are coansidered as shared among the
processorss A safe way to think of an operand is as a refference to some
location within the central shared memoryy, avoiding details which tend to
rely on 3 more datailed hardware structure. In cases where operands appear
as constant "literal™ values, these should be taken at face value, BT Ay
subscripts may be taken as aither constants or as oper ands of pravious

instructions.

CONCERNING STATIC AMN) DVYNAMIC VARI AZLE CHARACTERISTICS

The organtzation nf the general class of instructions lands itsslf to
a natural distinction between variable types. Variables, which anpear in
instructions in the form of operandsy may be considered static or dynamic
in natura, Static variables are those which miy be takan at face value by
any processor interested, Static variables have at no time previous to the

current instruction had theair values modified in any way. In this category

are those "literal constant” valuesy and as indicated by the instruction
conventionsy variables which have appeared as operands only oan the right side
of an instruction. Hencey, a variable showing up as opl will not be statice
Static variables are of a "read only"” type which are safe for use as o0p?2 or
op3 in an instruction by any processor at any time.

Dynamic variables are thos» whose values have been altered at some tiame
in a program prior *to their use in the current instructione. These variablaes
are the crux of the arbitration problem between competing processes when it
comes to a need to refference nr uvdate 3 cartain variable. 0Oynamic variables
have at some time appeared as the leftmost op=rand (opl) in an instructions
It is no longer safs for use without some foram of Further checking as to it's
status in wemory.

It is worth noting that a variable may be static up to a certain point
in a program, at whjch it is used as a left-hant operand and becomes dynamice
Thusy some overhead will be conceded For tha purpose of maintaining the truye
current status of a variabley and redundancies will b2 avoided. This updating
will occur as changes happeny rather than as the changes becoma signifigant.
For instances a variable's status will be changed froa static to dynamic as
it is used as oply rathar than later when it is requestad for use as an op? or

op 3.

The methnd for koaping track of whather 4 variable 15 currently static or
dynamic | as well as othar status information ¥ is the use of ordered dinary
tree structures for the arganization of this information, The desired node of
a particular tree is indexed by a saquence of binary digits indicating 2
traversal from the root node, A "1* in the string indicates a traversal
to the right child nodey a3 "0 the left, 5ince the method is formaliz g
as suchy a great deal of time would dbs saved in letting this be a3 hardwara
axecutable traversal., For the sake of simplicityy, it is assumed to ba as
sucha

To raference an operand is to access the key for the tree in which ifs
status indicators reside., Since there are two distinct variable typas,
there are two distinct traes; a Static Variable Tree and a Dynamic Variable
Trees, The distinction is made since the information required for a static
variable is different than for a dynamic variables S0y for a variable X with
tree location “Treeloc®™ (01001131, the string would be read right to laoft,
with the rightmost »it indicating the tree { 9 => staticy 1-> dynamic } and
the ramaining bits indicating the right-left branches to be taken in the
traversal. An n-bit Treeloc inticates a tree of depth n-=1, sinces the raot
node is not used for variabless As the number of variables in a given progran
increasey s0 increases the legnth of the Treeloc index and the size of the

raspective tree,

For exampley the Trealoc index {1011Y will raffereance node XX

T
ROOT DYNAMIC VARIABLE TREE
......... -
/ A\
) /N1
/ \
....... R
S S S
/ N\

The Static Variable Tree is structured similarly. In facty the only

distinction lies in the format of their raespective nodes.

The format of a node of the Static Variable Tree is as follows:

current value
location of last occurrance

In keeping with the updating of the treesy a variablets last use
in a program { as any operand) is noted during the control processor's
pass over the codes. AOfter this point is reached in the programy it's
node is logically deleted from the tree to cut down on unusad nodes in the

tr ee,.

The format of a node in the Dynamic Variable Tree is as fFollows:

current value
locatisn of last occurrance
location of last instance as ool

currant Pl % for last instance as opl

3 o Y ok T

o

Another distinction to be made is that of node entries wnhich zare
set up to be modified during the control processor?s first pass { ie
the location of last occurrance) as opposed to node entries which are
designed to he used and updated during executions Current value, location
of last instance as opl | relative to the current instruction) and the
current PEL 7 (relative to the current instruction -- more later) are
execution dependant node entries. Current value indicates the variable’s
present value when it is being used as an operand in the current instructicny
and location of last instance as ool indicates the most recent chanaoe of that
variable before the present instruction, The current PEL # referrs to tha
indivisable block of code which contains the instruction that updated the

variable's value,

CODE HANDLING COMYENTIONS:

Consider the following sample code;

|
\
|
1 LOAD 3,) set 1 to rero l
2 Loan Ryl set 3 to 1
I L0AD C,20 set C to 29 |
4 Loan Dy 3 set) to 3 ‘
S LOAD AyD A= 3 ‘
<) MULT A9AyC 4 = {3%29)
7 ADD N9 AsL B = [53%29)+29
R 5U8 CelyA C = 29=(3x29}1 429
Q=> sSyn DeD el D = {3-1) 1
19 MULT Nedy A D= {(3-1)41[3429)+29) l
11 5U38 DyNaC D o= (3-13 A0 {3429V 420N) ~(292=({3%x27Y+27))

.
*
»
This somewhat meaningless aexample doamonstrates a potantial characteristic
of sequential code; it is heavily sequence depandant. That isy most of the

instructions are requirnsd tn bhe exacuted in the given sagquencs in arder to

get any m2aninqgful result. In facty, thera is only ane instruction in the

example which may he axacuted 3t apy time prior to its JYacatian in tha
sequantial codey this bheing indicated by the arrows Thw= ramaining code aust
hbe executed in the given nrder since

in lina 11, D depends on lina 10 and

€ Aapends on line R

in lina 10,) dapends on line 9 and
A depsands on line 8

in line R, A depends on line 7

in line 7, 4 deponds on line 6

in lina 5, f depends on line S.

This is the problew raised by dynamic wvariables. The advantage of
static variahles becomes readily apparenty as any static variahle has
no dependancies and if an instruction has statiz op? and o0p3sy it can he
executed at any time prior to its occurrance in thea original coda seousnce.

At mosty this exampley, theny, could be executed concurrently as two
distinct hlocks of codey one hlock including line 9 and the other including
everything =2lse. Unfortunately, this speeds things up by only about 16%,
which is an insufficient return of efficiency to justify the given podel.
This brings about the point that thaere are cartain restrictions on how
much a piece of code can be altered to he executed in parallel. Ultimately,
an ideal interaction between programmer and machine would require the former
to have some knowledge of the nature of the system in order to aid in setting
up code that lends itself to concurrent processing to some degree. Howevary
in this modely that will not b» considered at the surfacay since a rvasonable
return in efficiency is gained when "tynical® sequential alcorithms are
considered,

Thusy the characteristic which makes instraction 9 so different than
the other instructions is that both of its right-hand operands are currently
static when it OCCUrTS, This hunting for static right-hand operands becomes
the main approach in handling sequential codey especially in simple sequence
forme The actual mechanism for partitioning code is discussed later. for
nowy suffice it to say that code is partitioned into the minimum possible
segment of a sequence of instructions which regquire sequential execution.

{n handling the more complicated code structures, certain tradeoffs are
taken, For conditional) cods { iey IFf =~ THEN structures), the approach used

in this model is to handle *he possible alternate segments of code as regular

saguences of instructionss Py recular progreamaing conventions
al ternative branchzs will either he used or not usedy and are t
In this lighty the contrel processor is allowed toc run right th
structuresy sectioning off blocks of code without actually know

outcome of any conmparisons esvaluated at execution tima. Fach s

y these

hereby distinct.
rough decision
ing the

anarate hlock

of conditional code will begin a new blocky and therein lies the trade-off.

If the outcome of the comparison was known during the creation
some efficiency could be gained in some casas., Howevary this d
purpose of doing this partitioning prior to execution, and in d
overall gain in efficiency is maintained.

The handling of loop structures poses more signifigant pro
structures can be broken down into two types; 1al those loops w

rely in any way upon the outcome of any previous iterationsy 1an

of these blocks,
efopats the

oing 309y the

blems. Loop
hich dn not

d (hH) thosn

loops which require the previous iteration to be completed before the present

iteration can take place, Loops of type {a) will bhe rafarred to as “"iterat-

ively independant®” and loops of type (b)) as "iterativley depend
The ideal way of handling a loop structure is to cause all
iterations to be eoxecuted simultaneouslyy thus making full use
available processing resources are at bands. Howevars loops of
de pendant nature deterr these concurrent considearations, If a
that the {(n=11th iteration he completed before thea (nith iterat
take placey these requirements must be satisfiad, Aall that can
is to take any measures possible to make the code within the lo
as possible, It would seem that itaratively dependant loops wi
be at odds with concurr=2nt processingy, and may osne day be repla
techniques more sujted tno parallelism. This is not presentiy ¢t
Iteratively indepandant loopsy on tha other handsy provide
more in the way of parallelizable onptions. Consider the code d

find the product of two {3 x 3) matrices;

D3 Kyle3
Do I91,3
LOAD SUM,0 set sum = 0
DO Jely3d
MULY ATFMP LAl Ty J1sB8UJeI1)
ann SUMySUMyATEMP
ENDDN

 rem A d w vew sy e B & o

ant.”
of its
of whatever
an iteratively
loop reguires
ion can
ha done
op as efficient
11 always
ced by
he case.,
a great deal

esignead to

.
PR R S

SNDE

ENDRD

Since the running sum SUM requires a value from the previous iteration,
the inner loop J is ineratively dependant. Howevery there is no such
restraint for the outer loop Xy which could be broken down into its
raspective iterationsy each iteration operating for a single vaue of K to
be determined at exscution time. Hencey a safe partitioning of the three

iterations of the outer loop K could be

K = 1 K = 2 K = 3
R ’—-'°_'7 [- prmem T T T
NN Tyly3 DO Ty1,3 DO Ty91y3
| * | ’ i * ‘
| . : ! | . ;
i ENDDN ENDDO J L ENDDD
________________ o e o s e o e o - e e o o o)

At this pointy the algorithm will take only 1/3 its previous execution
time. Howevery since the I loop is iteratively independant, provided it has
a value for X in it's last instructiony the I iterations can be broken down

similarly within each concurrent iteration of the K loops Thusy for Xlily

K = i
e
[=1 1= 2 I = 3

R s S s |
LOAD SUM,D LOAD SUM.D | LNAD SUMeD ‘
. . | .
. . ‘ . ;
’ . i » } » .;

{ LOAD 4%.,. J LOAD ABeee LOAD A% ews

where any refference within the body of an I iteration to the loop varidble
K would be replaced with the "hard” value of K for that K loop?s relavent
iteration. In this wayy the aljorithm now runs at 1/9 of its original tiame,
provided there are at least nine processors to nandle the iterations.

The measures which would need to be taken to enahle the inner loos
to run concurrently with its own iterations would require more overhead

than is feasihle for the situation. 1€ the yalue of 5UM could be dstermined

for each itaeration of the innermost J loop, then added with all th; other
"SUM" values from the other respective concurrent J iterations within sach
iteration of the I loopy the general speed of the algorithm could be again
squared, The cost nf such specialized measuresy howavery, maks such an
action rather awkward, and the overhead neca2ssdary to facilitate such a
design would undermine the simplicity and efficiency of the modal. Thus,
Inops will be broken down as much as possible within the conventions

demonstrated in this example,

SPECIFIC METHODS OF CODE HAMDLING

Actual considerations for the partitioning of sequential code are
now dealt with in detail., Consider tha concept of a Process Extent List
U PEL) which is defined as a pinimum block of code which must he axecuted
in its original sequence. 4s the Control Processor makas its pass over the
codey it generates the objact codes for the instructions. 4 PEL is made
up of groups of these ohject codes.

Object codes for the general set of instructions { of form NAMF oply

op2y0p3 Y are laid out as follows;

s —— — . — —— " — ——— T —— N - —————— ——— oo~ o——

where
field 1 -- op code of the instruction
field 2 —-- current PfL #
field 3 -~ pointar to Treeloc Table for opl
field 4 -= PEL # in which op? was last alterad
field 5 == pointer to Treeloc Table for op?
field 6 == PEL & in which op? was last alterad
field 7 -- pointer to treeloc table for op3

PEL's are numbered according to the their creation hasad on the
original sequence of the input code. Thereforey the current PEL # referrs
to the current PEL in which this current instruction resides. Since it
is necessary to keerp track of when an operand was last altered [if it
is a dynamic ooerdnq }y the PFL 7 referring to that instance is includad
in the object form of an instruction. Treeloc Table indéx referrs to
the table created during the first pass that associates a variable with
a Treelocy and thereby a Static or Dynamic Variable Tree node,

Two operand instructions { ie LOAD oplyop?? have similar object
code formats to three operand instructionsy and merely lack the information

concerning operand 3. The format for loop instructions is also rouuhly

equivalent ta that far standard thrae—overand instructionsy except that

-

a small flag is includad to indicate the actual loop variabla. This flag
may also reside in the ohject dascrintions af normal operands, and this
fact becomes of prime importance when the mechanisa for detaraining loop
iteration dependancy is examined.

The impor tance of introducing operands? PFL 25 in instruction codes
hacomes apparent in considerations of the axecution priorities of Ptls.
The convention is that the current instruction may not ha exected until
the PELs indicated for its operands have been complately nrocessed, This
is a result of the fact that only dynamic variable will have 2:ls indicated
in the instruction codey and dynamic variables are the primary cause of the
arbitration/priority prohblem.

The basis for creation of PElLs becomes more clearly defined when
the Control Processor®s initial pass over the saquential code i3 examined.
In the pass alqgorithmy it is sean how PFLs are createdy what conditions
are required to terminate the continuation of the current Pfly and what
criteria are to be met for a new PEL to ba createds The general rule of

thumb 1s that as so20on as a new PEL is creatabley the current PEL should

Wt

be discontinued, The emphasis is on keepin Pfls as short as possibhlo,
since each one represants an indivisahle block of saqguantial codes, For
exampley a program running within a single P26 is a saguential progranm.
The greater the number of PfLsy the greater chance that more than one
can be executed at any given timey and thus the greater the overall efficiency

of the program in exacuytion,

CONVENTIONS FOR NDETERMINING DEPENDANCIES OF NYNAMIC VARIABLES

For general sequential codey it 15 enough U as impliad by the treatment
of instruction formats) to indicate whichy if any, PFL a particular variable

depends on. Sos For qgeneral codey an operand depends on a previous PEL

if 111 it is not a new "literal® constant
12}y it is not currently static
13y it does not denend on an onl in any previous PFL5.,

The method for determining if an operand depends on an opl in any
previnous PELs throws back to the node contents of the Dynamic Variable Trea,
During execution, the last instance of that variablse as opl in any instruction
is noted and recorded in the DVYT node. Also noted is the corresponding
PEL ® for that instructiony and by refferencing thiss the PEL in which
the inspected variable last occurred as opl in an instruction is obtained.
This method allows the system to look back to only the last change of
the variable 1 "last” in the context of the original sequence of tha cade)
rather than backtracking farther than is actually naecessary,

With regard to dependancies of loop variables, the loop flag comes
into signifigance, 1In the code

nn Kylyl0
anp Trd X
MULT Ayle®

LOAD CH{AyN)
ENDDOD

K is the loop counper' and its DVYT entry has associated with it a tLoop
Variable flage Since K appears as a right-hand operand in the ADD instruction,
the variable I now depends on K. Since I appears on the right-hand side of

the MULT instructiony, A depends on I which depends on K. Since A appears as

a subscriot in the array refference on the right-hand side of the LDAD
instructiony C now depends on Ae.ses Since all 72f thase variables are
indirectly dependant upon the loop variable Ky they are all unable

to assume the roles nf independant variables within the context of

the loop K or in any subsequent l1oop residing within the K loan,

If there was no way of indicating a variablea's dapandancy upon
3 loop variabley, there would he po s5afe way of chacking for iterative
dependance or normal dep2ndance within lnops. This baing tha casasy tha
following convention is estahlished: If thare is a loop counter Ky 2
flag indicative of this is includad in its DVT entry, Fur tharmor=, iny
variable which depends on an operand with this flag set will also ~ave
its own flag set in its DVT entry. It is for this reason that the
refference to an variable’s last instance as opl in an instruction is
included with that instruction's PEL # in the DVT entry. The actual
instruction must be refferenced to chack its oparands for loop variable

dependancy.,

Before fully revealing the nature of the Control Processorts initial
pass over the sequential codey, the algorithm for handling loop structures
will be examineds This is part of axecution procedure and does not
take place during the control processor?s first pass.

Consider a system configuration with N processorsy and an instance
within the code 0of 2 loop structure consisting of n iterations. #Raforae
execution timey M is knowns, but n may or may not be, It is for this reason
that the actual loop processing takes place at execution time. The algorithe

for dealing with loop structures durinyg the execution cycle is as follows:

If instruction is of form { 0N KyAge2)
If loop is iteratively independant
n = 8B = A
Ifn >N

Treat the body of the loop sequentially
Concurrently process loop iterations {AsA+lgeseC-19C)
where 1 A < £ < 2 }
Update A4 = C + 1
fransfer control to top of execution cycle for that instruction
Else
Concurrently process loop iterations [(AsA4+lsess 3-147)
N1 = 4 = n
Transfer control to top of execution cycle for loop body with
Ml available processors.
eEndif
Else
Execute loop iterations in order
Fndif
Endif

This executions step allows for 3s wany loop iterations of an ireratively
independant loop to he executed concurrently as therae are availadle processars.
If the lnop can ba handled and processors re2main, those may be allocated
otherwises If there are two few nrocessors to handie 3all loop iterations
at oncey all orocessors are dedicated to processing the loop until tha
remaining iter ations are d2pletad, Recursinn is a suitable mathod of
implementing the transfer of command to the tan of the fetch execute

cycley a3lthough the actual method is not considered in detaila.

In as much as most everything olse regarding the partitionability of
the sequential code can be deduced prior to executiony tha Control Frocessor?s
initial pass determines all other details reqguired hy the wnodel, In this
passes? handling of loop structuresy the assumption is made that 3 loon will
be of the worst possible forme andy although notes are made of loop varianles
and their dependants in the DVYT, the code within loops is treated as basic

sequential code and handled like the rest of the proaram,.

Sincey in the case of iteratively indepandant loopsy the method of
handling ip this model is to partition the loop into as many separate itep-
atins as are possibley some consideration must be given to handling variaples
within the loops themselves, Static variablas are harmlaessy being of a
"read only" typey tha arbitration of which would he dictated by hardware.
Howevery dynamic variables changing within a loop causa problems. Moparallel
instances of a dynayic variable in a loop will create N potentially different
values for that variabley which must ultimately be resolved into one,

The case 0of a dynamic variable accumulating its valus through succossiv:
iterations of a loop will not ba a problem herey, since such a condition
constitutes an iteratively dependant loops whichy, by the above algorithmes will
not be partitioneds This siaplifies the task o handling dynanmic loop
variables tremandously.

The gen=aral mathod For hreasking up a 1oop into its iteration is to

. o

LYY . BGPTSR, T U P T T T U T S U -y

expand upon the DVT entries for dynamic variables appearing within that
loope Copies 3re made of the DVT entryy and linked outward to such an
extent as is dictated by the above algorithme. Ffor N concurrent loop
iterationsy N-1 link2d copies of th2 variable’s DVT entry will 52 creatad,
stemming from the original.

HATA) ENTRY ‘]

EXPANSION '

As indicated pefore, the lono counter's vilues for respective loop
iterations are fixad to sach itaration, The cod2 0of the loop itself is
not copied ant is hare assummed to b2 simultanesusly useable by all
available processors, Variables chosen for "duslication” must not be sub-
scripted, If a suhscripted variable appears on ,the left side of an instr-
uctiony and if that variable { with any subscript at all) appears on the
right side of an instructiony the loop is non-parallelizable, as it has
implied potential iterative deapendance. wWwhat this boils down to is that
any subscripted variable which is dynamic within the loop cannot be a right-
hand operator. This concapt of baing static/dynamic within a loop is based
on the fact that a4 dynamic variable can appear to be static if considered
only within the bounds of a lnop structure. The model exploits this fact
to wring a hit more efficiency nut of loop handlings.

The way in which the copies of the DVT antries are used is to associate
each available processor with a narticular NVT entry copys. Whenever a
processor processing 3 particular iteration refferences a particular dynaric
variable { with multiple DVY entries 1y it sees only a particular pVT-entry-
incarnation, In this manner,y, these variables may be used and altered
independantly. The manner of rasolution of final value af ter the loop
is processed is to move the status of the variadle corresponding to the

loop iteration with the highest valus [assusing no diract decrementatinn

T T T T - T e R R B R D T L T
copies are thaen deleted, The number of copios will rarely reach an
intolerable numbher since it is directly realated to the number of iterations
to be partitioned at a time, which in turn is directly ralated to the

number of processors availahle, If the size of the main memory is at

all sufficient for the neads of N processorsy this demand will not exceed the

capabilities of the system, Thuss an adequate hardware structure will
not be taxed by this methody providing that it was constructed realistically

for the number of proncessors it contains,

.|, I Y I Y PO - T B Y Y T I o

THE FIRST PASS ALGORITHM

Initialize instruction counter

Initialize Treeloc indexes as { null { DVYT and S5VT roots |
Initialize PEL # = D

look at first instruction

{top of loop}

Determine appropriate ob ject code form

Move associated op code to object form?'s first field

Move current PEL 8 to ohiect form's current PEL # Fisld
Associate operands with object form's operand entries

If 1 nO)
Examine opl
Set up a DVT entry {assuma2d to be unique and dynamic)

Move variable name to index name field
Move next tree index to Treeloc field § for OVT
Refference indicated DVT entry by Treeloc
Move lonp variable=-flay to NVY entry 1 assert flag)
Move current instr. cntr. value to last-changed-field of DVT entry

Else if { COMD)
Create a new PEL
Increment current PFL #
Move this new PEL 2 to curr. PEL # field of instruction®s obj form

Else
Fxamine op!l
If | no duplicate DYT entry exists)}
If { duplicata SVYT antry)
Nelete that SVT entry and its index
Endif
Move wvariables name to index name field
Move next tree index to Trealoc field U for DVY
Endif
Ref ference indicated DVYYT entry by Treeloc
Move currs. instre. cntes to last change fiald of DVT entry

fxamine op?
If { not already defined in HDVT
If U no duplicats SVT antry)
Set up SVT entry
Moue variabla name to SVYY index
Move naxt tree index to Treeloc field t for SVT)
tndif
Endif
Move curr. instr. cnts to last occurred field of tree entry
I1f { loop-variabhls flag is on }
Sat loop-variable flag in DVY antry for optl
Fndif

Examine op3
1f { not already dafined in DVYT)
If Ino Jduplicate S5VT entry
S5et up SYT entry

P

Mova next tree index to Treeloc Flaeld (for Sy7T)
ndif
Fndif
Move curre. instr. cnte to last occurred field of trea antry
If { loop-variable flag is on }
Set loon-variable flag in DVT entry For opnl
Endif

I€£ € op2 1 and op3) currently static)
Create a new PEL for this instruction
Increment current 9fL #
Move new current PEL % to current PEL # field of obj. foram
Sat other PEL 2 fields to 0

Flse if { op?2 {1 and op3 3} depend-on current PFL)
Move zeoro to first PFEL # field
Set other PsL & finlds to O

€lsa if { op2 { or op3) depend-on current PEL
and { op3 { or op?) are currently static)
Move ze2rno to dependant op PEL # Ffield
Sat other PEL 2 fiald to O

Else if 1 op2 t and/or op3 1 depend on a previonus PEL)
Create a new PEL for this instruction
Increasent current PEL #
Move new current PEL 8 to instruction current PEL fiald (obi form)
If { op2 dapends~on PEL K)
Move that PEL & to op?2 PEL # field
I1f 1 op3 exists and depends—on PFL K 1}
Move that PFLL 2 to op3 PEL # field
1€ U op2 (or op3)} are currently static)
Move O to that operand?s PEL # field
If (op2 { or op3) depend on current PFL)
Move zero %to that operand's PEL # field
tndif
Endif

[f op2 t and/or op3)} depend-on an instruction whose
loop—-counter flag is sat)

Sat loop-counter flag in that operand's tree entry
Fndif

Increment instruction counter according to instruction legnth
of the previous instruction
{ if END o than stop)

Sranch back up to { TOP 1}

The heart of this algorithm is the method by which dependancy i35 deter=-
rined, An operand is judged to be deapendant on a previous °FL if that
operand was most recently changad at a point in that PfL. TJo determina
if this is the casey the variable's status is odtained by reffarancing its
tree nodey whichy if dependancy exists, will be in the DVT. This checkingy
requires no special case handling, as it happens automatically for tha
checking of operands. In the DVYT nodey there has been set up a field which
indicates the last change of the variable, or its last instance as opl.
Associated with this entry is the PFL » in which this change happened.

If this PEL 4 is less than the current PEL # for the currently examined
instructiony a dependancy exists. Nowy the current instruction may not ho
executed { when execution finally does occur Y until those prerequisite P:E{'g
indicated for its ope2rands have completed execution. Implicitly shown hera
is the relationship between the use of dynamic variables and execution
efficiency., The fewer dynamic operands in use as op2 or op3y the quicker
the code may be exacuted,

The checking for whether an instruction depends on a loop variabel
is a more direct processy in that thes loop-variable flag carries directly
from variable to variable. Consider a loop counter Jy whose loop-variable
flag is set in its DVYT antry. For the first instruction in a loop structure
that depends on that loop cnuntery the loop counter itself will be either
op2 or op3 { or some subscript thereof). When that instruction*'s operandis
are being examinedt the fact that one of those right-hand operands has its
loop-variable flayg assertad is all that is required to set tha loop-varriable
fFlag in the DVTY entry for the laft-hand operand { opl).

It is ultimately the axplicit ordering of the seguential code which is
responsible for the implicit ordering of the object code creatad in the
control processor?s first passe. This ordering of blocks of coda { PEL?s)
is implied through the nasd to walt until PEL's indicated by an instructionts

operands hava heen axoecytasd, Thay must bho 2xacytad in thelir 2ntirsty since

a PEL represents a aunimal bHlock af codea which aust o exncub st scquentially.
Howavery the logical ordering of the original s2aguential algoritha is preserueg
by the first pass.

It is of som2 signifigance to note that in checking whether a variable
is static or dynamicy the only first level checking raguired is to exawmine
the rightmost bit in its Treeloc entrys The information neadod for checking
and updating tree entries requires a traversal at some point, Assumming that
hoth of these processes could be handled primarily by hardwars, efficiancy
is maintained. Assuming that the first pass will ultimately he carried out
in parallel itselfy, a great deal of speed could be gained by executing thae
necessary traversals as soon as the correct tree is detarmined. This
traversing would then normally take place while other characteristics of the
operand under inspection are being judgedy and when the tres node was neeaded,
it would already be available.

In the above algorithmy a default PEL wvalue of 0 is used to indicate
the lack of dependancy of a static wvariable. PEL wvalues begin with 1, and
a PEL N is assumed to continue until another is created, being PFL N+1,

The PEL creating logic is a fairly simple oney in that 3 new PFL is created
whenever one can he, Thisy howevery relies on the sequential nature of the

original codey and thereby is limited in its efficiency. In this model,

a PEL is continued when it can he, as opposed to discontinued when it can ba,
This method of continuing a PFfL until another one can be created may be less
efficient than a model which looks for ways to discontinue a PEL as soon as
possible. Several methods for improving the model within its own framework

are apparent but not exploited here,

SIMPLE EXAMPLES 0OF MODEL PERFNAMANCE

This model's environment is geared primarily for numerical processings

and will be illustrated in such a manner. <Consider a simple polynomial

F = 28 = 4AC written in the assumed languagey to be computed for A = 1 and
C = 6.

1 £0AD Ayl

2 LOAD Ceb

3 ADD ByRAeA

4 MUL T DefAsC

5 MULT DyDed

) Ssysg FeBeD

which should return a value of F = =22, Seguentially, this algorithm would
require 6 execution cycles to complete. B2y the control processor?s first

passy it is broken down as follows:

INSTRUCTIDN PEL # PELYs DEPENDED ON
1 1 { ’)
2 2 { *)
3 3 {1, 11
4 4 { 14 1 1
5 4 { Oy }
A 5 { 3y 4

The PEL'3 may 31] be executed spearatalyy providing that their pre-
requisites are met. Tha only PFL with mors than one instruction in it is
PEL #4y which contains two instructions which must ba exacutad in sequance.

The algotithmy then, would be processed as belos;

STaerv
VAR
cycle 1 TLOAD A, 11 (LDaD Cyps)
\ /
/ \
cycle 2 (ADD Byay A} {MULT DyAyCYH
\ /
cycle 3 {MULT DyDsd
cycle 4 (SUB Fe3end

|

N0

The instruction in cycle 3 is a member of the PFL thit containsg the
se2cond instruction in cycle 2y and as such, ndy not bha axscutad bafore it,
The model has raducad this algorithm from 6 seqiential clock cycles down
to 4y an increase in efficisncy of 332,

Consider a simple polynomial D= {1 A+8 V2 -). Yha code would be
as followsy for A4 = 5y B = 6y € = 7.

1 LOAD AyS

2 LOAD By5

3 LOAD C,7

4 ADD DgAy8

5 LOAD Ey?2

5 DIV DeDyE

7 sus DyeDyC

INSTRUCTION PEL & PEL DEPENDED ON

1 1 { ’)
2 2 { ’]
3 3 { *)
4 4 {1, 2
5 5 Lt >)
4 6 t 49 5)
7 5 t 3y 0

This effectively breaks the code down

57487
/ \
/
cycle 1 {LDAD AyS) LoD 244)
\
l
7/ \
/ \
cycle ? {ADD DefieB) {LO4D
\ /
l
cycle 3 (DIV DDy
l
cycle 4 {SUY DyeDyCY
l
FND

as fallows.

- - —

£e?2)

The model has here reduced the number of instruction cycles down from

saven to four. This is an increase of efficiency of about 42%, which seens

signifigant to deem the model nontriviale These examples are by no means

deamonstrative of any realistic programsy yvet thay do demonstrate the strong
points of the model. With a reliable software structurey this model could

he expanded upon to become more feasibles Howevery the original opurpose of

the model was intended to be that of demonstrating methods of overcoming the
problems that arise in dealing with parallelization of seguential codes in

generaly which it has fulfilled.

	Automatic parallelization of sequential code : a simplified model
	Recommended Citation

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28

