
NORTHERN ILLINOIS UNIVERSITY

Automated Brewing Process

A Thesis Subm itted to the

University Honors Program

In Partial Fulfillm ent o f the

Requirements of the Baccalaureate Degree

With Upper Division Honors

Departm ent O f

Mechanical Engineering

By

Joshua Berger

DeKalb, Illinois

May 11 ,2013

University Honors Program

Capstone Approval Page

Capstone Title (print or type)
Automated Brewing Process

Student Name (print or type) Joshua Berger______

Faculty Supervisor (print or type) Nicholas Pohlman

Faculty Approval Signature ,

Department of (print or type) Mechanical Engineering

Date of Approval (print or type) 3 / bl ip_______

Honors Thesis Abstract

There are few automated gas control systems that incorporate anything more

than proportional control. This thesis will look at the process of making beer at home

with a three kettle setup, the possible parts that would need to be incorporated in the

system to allow proportional integral derivative control, and how the control theory may

work. The research required will look into the basics of control laws. A design hurdle

that will need to be met is a control valve that is within the weekend home brewers price

range. With a truly robust control system, a home brewer would save money and time.

The final conclusion that was approached is that there is room for the product, but the

product is not currently producible.

W

3

HONORS THESIS ABSTRACT
w THESIS SUBMISSION FORM

AUTHOR: Joshua Berger

THESIS TITLE: Automated Brewing Process

ADVISOR: Nicholas Pohlman

ADVISOR’S DEPARTMENT: Mechanical Engineering

DISCIPLINE: Mechanical Engineering YEAR: Senior

PAGE LENGTHS

BIBLIOGRAPHY: Yes

ILLUSTRATED: Yes

^ PUBLISHED (YES OR NO): No

LIST PUBLICATION: None

COPIES AVAILABLE (HARD COPY, MICROFILM, DISKETTE): Hard Copy

ABSTRACT (100-200 WORDS):

4

Automated Brewing Process

Making beer is an art. Fermented beverages have been around for millennia, and

it is thought that beer has been around for over six millennia (Hornsey). At times, it was

used as a substitute for the poor water supplies, due to the act of heating the water

involved to above 175°F. The heating kills most of the bacteria and microorganisms that

could live in non-clean water supplies. In modern times, it has become big business,

with many beer companies turning out over one million gallons of beer every day

(Brewer's Association). These companies have perfected the automated processes that

can allow that figure. On the other hand, there are many people around the world that

produce their own beer. This can be as little as a gallon at a time or as much as 100

gallons at a time. Many home brewers rely on their own hands to make sure these

gallons come together. This is something that our senior design group is working to

overcome. W e have designed an automated home brew system, along with an

associated process. This would allow a person to have the machine repeatability of the

larger brewing companies, without having to leave their garage. This paper is in addition

to the work done on the engineering senior capstone in a group with Humza

Shamsuddin and Nick Skuban. The appendix shows the work completed to finish the

requirements in Mechanical Engineering. This system is intended to be a secondary

control device, and is only a theoretical review.

The system involves three kettles, a stand, two burners, a heat exchanger, some

piping, some wiring, and a processor. The mechanical portion will be very

straightforward, and the computerized side will be controlled by an Arduino, a small,

low-cost processor that has a simple coding language. Of the two portions that I had the

most interaction with, the heat exchanger in the plumbing and the gas system, I will be

focusing this paper on the gas system. I will start by looking at what we have, and how

this system works, and then I will go into a discussion of what could be done in the

future to make the system better.

It takes time and energy to boil water. W e have initially chosen liquid propane

(LP) to be our energy source. LP is commercially available, has a good amount of

energy stored in it, and has a wide array of products on the market to use for transfer.

The LP comes in a pressurized vessel that comes in at around 145 psi. The connection

to the tank generally brings it down to an operating range of around 30 psi. This is near

what is used on motor homes, gas grills, and the like. From there, it will be further

regulated down to a final operating range of less than one-half psi, or less than

11 inches water column. This is an industry switch that threw me for a loop at first, but

the water column measurement is used when the measurements get to be smaller than

one psi. It helps to further delineate small measurements, and meets and industry

standard for home appliances fed off of natural gas.

At this point, the gas has been regulated down to one-half psi. It is then piped

into a manifold, so as to split the gas between the two burners in an even manner. From

here both sides mirror each other so I will only explain it once. There is an automated

valve. This valve is generally used in the home heating industry on automatic or semi

automatic heating systems. It takes a signal from a controller to do its job, so there must

be a separate control system that is installed with the valve. This valve serves two

purposes; it controls the gas to the burner, and it also controls the gas to the pilot for the

burner. This is somewhat important, as it allows for a simpler control system. From this

valve, the gas then either flows to the pilot or to the burner. The pilot is also used in the

home heating industry. It is the type that has both the igniter and the thermocouple built

into it, so it will ignite the gas and then sense whether there is a constant flame. The

burner does the job it sounds like it does; it takes the energy trapped in the gas and

turns it into a form that can be used for heating the water. The burner is directly fed from

the automatic valve. The final piece of the puzzle is the automatic controller for the

automatic valve and the pilot. This is designed to work with both, and will perform the

operations independent of our controller. The only interaction that will be needed is the

signals back and forth over when heat is/is not needed.

The system will be rather simple, and only work in an on/off manner. An

explanation is as follows. To start the process, water will be added to kettle one. Once

the thermocouple installed senses the water temperature, the Arduino will send a signal

to the gas control system. The controller will interpret the signal and send a signal to the

automatic valve to release gas to the pilot. After the pilot has gas, it will try to ignite.

Following ignition, the pilot will then heat up, showing there is a constant gas flow.

When the pilot is warm enough, a signal will go back to the controller. This signal will be

interpreted and a different signal will be sent to the automatic valve to open. When the

valve opens, the pilot will ignite the gas that is flowing to the burner. Once the water has

gained enough energy, and the thermocouple says so, the controller will send a signal

to stop the flow of gas. This will extinguish the flame to the pilot and the burner. This

process is similar to those in natural gas ovens and furnaces around the country.

This is ultimately where the system is at its weakest. There are essentially two

conditions, on and off. There is no in between to maintain a constant gas flow at a lower

value. This would allow for less overall temperature fluctuation, and would potentially

lead to less gas being used. There will be two parts to this: mechanical and control

logic.

The mechanical portion of the system would allow a user to control the amount of

gas flowing to the burner. This isn’t so important during an initial warm up where the

water starts out at room temperature and is going up to 170°F. During most of this heat

up period, a mechanical controller, such as a throttle valve, would be wide open

allowing full gas flow. Where it would come into play is getting near that 170°F

threshold. A conservative person might say that never going over 170°F would be a

good thing, so they would cut back the gas flow a bit early, and as temperature climbs

slower and slower, they would constantly throttle back. This could be done either by

hand, or by a motor operated valve, controlled by a computer with the appropriate logic.

Another person might just let the overshoot happen, let the temperature go past 170°F,

but on its way down, allow the gas flow to come on in a slow manner. This would allow

for an overshoot, and then a controlled descent back to the control level. These are

some of the ideas that I will be looking at.

A throttle valve, an orifice, or a restrictor, are ways that flow in a liquid or gas

system can be held up. The control method for each is essentially the same; the

passage of the flowing fluid is made smaller than the surrounding piping, leading to less

flow reaching the intended source. This is used every day in flood gates, turbine

systems, automobiles, and any other area where less can be more. For this application,

I would prefer to use a throttle vale, as they can be both motor and hand controlled,

w '
There is also the possibility of using a membrane and bladder or spring to control, but

they are generally better in high volume, high flow situations. This low flow situation

could lead to some damaging situations where gas flow could be messed up and

someone could get seriously hurt.

A slightly different way to go would be a valve with an electro-mechanical

restrictor. This would have to be completely designed from the ground up. The manner I

am speaking of would have an elastic membrane inside the valve, and a motor driven

manner for constricting a loop that is in the valve. This would have the effect of

essentially tying a rope around a fire hose. As you pull tighter on the rope, the fire hose

would emit less and less water. The reason I make this suggestion is that many throttle

valves do not have a good linear manner for restricting flow. As a standard gate valve

^ closes, it takes approximate 40% closure to see any appreciable effect on flow, and

then is essentially closed at near 20% open. This leads to sudden, jerky changes in the

flow through the system. If the constriction of the flow were to happen in a more linear

manner, the system would have less oscillation, meaning there could be a more

accurate flow, allowing for better use of the energy in the system.

The second portion of this control system is the logic that is used. As Dr. Coller

said in his class “Designing control systems is an art (Coller).” After seeing a control

system for a coal-fired boiler this past summer, this view was reinforced. The control

systems we played with in class had us control an inverted pendulum and move a craft

through space. All of these control systems had something in common; there were

many ways to make them ultimately work. No two students in the control systems class

9

had the same numbers, and the boiler was always being tinkered with. Unless there

was something that went wrong, as long as a person was on the right path, they could

make a system work. Some solutions could make for some interesting moments, but

more than likely if you could make your system to Dr. Goner’s “robust” standards, then

there was very little chance of failure.

The system that I have in mind would start by finding out how much energy

would be transferred from the burner to the kettle at any given time. This would consist

of many differing heating’s from ambient to boiling. By repeating this step more and

more, a better data set, and ultimately a better solution could be found for seeing how

much energy, time, and gas it takes to heat up an amount of water to a specific value.

This would then be intertwined with other ambient factors, such as temperature, wind

speed, and humidity, to find a real world value for the amount of energy necessary for

the heating of the water. The outside factors would then be programmed into the logic to

affect how the system looks at the heating of a kettle.

The other part of the heat up testing that would be performed would be an

overshoot test. This would test both how long after removal of heat that the water takes

to cool and how far over a set point that the temperature goes in a kettle. The second

part of this will again change with differing ambient conditions, so it would need to be

researched in many different times of the year. By getting all of this, once the control

programming is in place, a person could set the amount of overshoot that they want to

see, or even look at the overshoot in comparison to what was predicted by the

controlling system. If things seem to be off, a change could be made to bring the system

10

more in line with what the real world dictates, as there is no real way to cover every

situation that is out there (Coder).

Once the data has been taken and analyzed, it would be time to work on process

implementation. There is already a system available to piggyback off of to build the

signals for the valve. It would be writing the programming to make it all work that would

be the hard part. It would start with a look at how the kettles react to the energy being

expended to make the water within warmer. After the experimentation, there should be

an equation that was fit to the data (Pohlman). This equation would be the characteristic

equation, which could end up being long and scary with non-real portions. It would be

used to work on the programming. Once the characteristic equation has been found, it

will be manipulated in a manner to find out where its roots are. Once these roots are

found, one can determine how everything will act when it is applied to the programming

by using a method called root locus. Once the behavior has been mapped via root

locus, and the programming is done, it will be to test the control system thoroughly to

determine if it is robust enough (Coller). This can be as simple as turning on the system

and seeing things go awry, or it could be as difficult as fifteen runs to duplicate that

small misstep that is causing things to spiral in only precise conditions. This is the

portion where being a well-disciplined artist can be helpful. By understanding the

system, how it works, and how it is supposed to react, one can see errors when they

are getting ready to occur, and change the course for less rocky waters.

The project that this is based off of will more than likely never receive a true

control system for the purposes of heating. At this point, it is too expensive and

unwieldy. It would take much more experience at building control systems, and much

more ability to control the amount of gas being used. It would also take a rework of the

burners, which are already not being used in the proper manner. They are designed to

work at near 30 psi. The use of the furnace components at one-half psi means a

different orifice is used to connect the piping to the burner. There is still a small matter

of understanding what this nozzle does that would have to be overcome, along with the

ability to change the system on the fly that will not exist when we are done. The control

system that was talked about in the paper was strictly designed for a true test of what

has been taught/learned over the last four years of my education. I would love to have

the time and ability to sit down and build this control system from the ground up, but I

fear that will not happen until I have more time and money available, if at all. The

theoretical design that was discussed relied heavily upon the testing of the burner

system, and a thorough knowledge of its particulars. The ultimate challenge that arises

from trying to make a control system is fully understanding the components that are in

the system, and how they interact, not only with each other, but with the entire system.

12

References
Brewer's Association. Brewers Association \ Facts. 1 April 2013. website. 2 April 2013.

Coller, Brianno . "Dynamic Systems and Controls 1." DeKalb, 3 May 2012. Class.

Hornsey, Ian S. A History o f Beer and Brewing. Cambridge: The Royal Society of

Chemistry, 2003. Book.

Pohlman, Nicholas. "Experimental Methods in Mechanical Engineering." DeKalb, 1

December 2012. Cass.

W

13

MEE482 Project Report:

Automated
Brewing
Process

Group 13

Josh Berger
Humza Shamsuddin
NickSkuban

Dr. Nicholas Pohlman, Ph. D.
Dr. Jenn-Terng Gau, Ph.D.

May 4, 2013

Abstract

Good beer is hard to find; it is also becoming more expensive when found. There

are companies out there that are willing to either sell their recipes for good beer to

anyone that is willing to put in the time. Using a number of standard components, and

designing our own where necessary, we designed an automated process to go

alongside the components necessary to create a batch of home-brewed beer. This

project encompassed most all aspects of mechanical engineering, specifically

highlighting: fluids, static structures, control systems, design of experiments, and

programming. The design of the heat exchanger and the programming are unique to the

design, but could be manipulated for many other areas. The system uses gas

components that are shared with the heating industry, and could be adapted to use for

cooking. The system is essentially stand alone, and would be a great addition to any

home brewers garage.

2

Contents

Abstract... 2

List of Figures and Tables.. 5

Acknowledgement...6

Chapter 1 Introduction..7

1.1 Introduction..7

1.2 Background for Brewing Process.. 8

1.3 Initial Thoughts... 10

1.4 Professional Responsibilities... 11

1.5 Individual Contributions... 14

Chapter 2 Design Specifications, Concept Generation, and Evaluation............................17

2.1 Design Specifications..17

2.2 Concept Generation...20

2.3 Project Evaluation.. 21

Chapter 3 Cost/Market Analysis and Patentability... 22

3.1 Cost Analysis.. 22

3.1.1 Frame..22

3.1.2 Plumbing.. 23

3.1.3 Electrical... 24

3.1.4 Ignition System... 26

3.1.5 Brewing System..26

3.1.6 Heat Exchanger..27

3.2 Marketing.. 27

3.3 Patentability...29

Chapter 4 Fram e...31

Chapter 5 Plumbing System... 34

Chapter 6 Gas System.. 36

6.1 Components... 36

6.1.1 Gas Choice..36

6.1.2 Burner...37

6.1.3 Pilot... 38

6.1.4 Automatic Gas Valve... 38

6.1.5 Ignition System Control...39

6.1.6 Valve and Orifice.. 40

6.1.7 Regulator.. 41

6.1.8 Piping and Wiring... 41

6.2 Operation... 42

Chapter 7 Electrical.. 44

7.1 Introduction.. 44

7.2 Processing...44

7.3 Automation Inputs.. 45

7.4 Automation Outputs...46

7.5 Circuitry...48

Chapter 8 Programming and Controls.. 52

8.1 Introduction..52

8.2 Functional Units..52

8.3 Logical Units... 53

8.4 Process Sequence... 54

Chapter 9 Heat Exchanger..55

9.1 Design...55

9.2 Testing..57

Chapter 10 Discussion and Conclusions..59

References... 60

Appendix...61

Appendix 1..61

Appendix 2 ..62

Appendix 3 ..63

Appendix 4 ..64

Appendix 5 ..65

Appendix 6 ..87

4

31
31
33
35
37
38
39
40
40
41
44
45
46
47
47
48
49
50
50
50
56
58

22
23
24
26
26
27
27
33
61
62

5

List of Figures and Tables

Figure 1: Stack frame design...
Figure 2: Horizontal frame design.................................
Figure 3: Deflection Plot of 16 gage 1.5” square tube
Figure 4: Plumbing diagram..
Figure 5 Bayou Classic Banjo Burner B G 14...............
Figure 6 Pilot Burner for Low Pressure Gas................
Figure 7 Standard Dual Intermittent Pilot Gas Valve..
Figure 8 Intermittent Pilot Control..................................
Figure 9 LP Orifice for High Pressure Burner..............
Figure 10 Two Stage Pressure Regulator....................
Figure 11: Arduino M ega...
Figure 12: DS18B20 Digital Temperature Sensor.......
Figure 13: MPX5010DP Differential Pressure Sensor
Figure 14: Chugger Stainless Steel Inline Pump........
Figure 15: KLD20S Series Liquid Valve.......................
Figure 16: Circuit Board Variation 1...............................
Figure 17: 3-D Circuit Board Traces..............:..............
Figure 18: PCB Board Following Etching.....................
Figure 19: Wiring Electrical Circuits...............................
Figure 20: Customizing the Enclosure..........................
Figure 21 Bottom (left) and Top of Heat Exchanger...
Figure 22 Test Data for the Chiller at 3.6 GPM

Table 1 Total Costs...
Table 2 Frame Costs..
Table 3 Piping Costs...
Table 4 Electrical Costs..
Table 5 Ignition Costs...
Table 6 Brewing Costs..
Table 7 Heat Exchanger Cost...
Table 8 Weight per bracing arm......................................
Table 9 Gantt Chart..
Table 10 House of Quality...

Acknowledgement
W

We would like start by acknowledging Nick Skuban. This was initially his idea,

and he is the primary financial contributor of this project. In addition, Humza

Shamsuddin and Josh Berger have contributed additional financial support. We would

next like to thank Dr. Nicholas Pohlman and Dr. Jenn-Terng Gau for the advising and

direction we received throughout the past two semesters. Our family members have

sacrificed countless hours without us throughout this project. A special thanks goes to

DeKalb Mechanical, as they made a small donation to the system. We would also like to

thank all of our professors through our time in school, whether it is high school, college,

or the real world. Without these individuals, we would not have the opportunity for this

^ project.

W

6

Chapter 1 Introduction

1.1 Introduction

Beer has been around much longer than consistently clean water supplies. It

helped get people through hard times, and has grown into a multi-billion dollar

worldwide industry. There are any number of grains and types of hops that go together

to make anything from a wheat lager to a rye stout to a soy pale ale. Each brewer, each

beer has its own combination of brew times, fermentation schedules, and bottling

procedures. These combinations have proven to create a wide array of tastes that are

suited to any number of individuals.

As of late, money-thrifty people have chosen to brew their own beers in the

comfort of their own house to save some money, and get a little bit of exercise. This

process can be done in a kitchen with a big kettle and a bucket, but who wants to deal

with possibly getting beer all over their kitchen. This has given way to people getting

used kegs, opening them up, and using them as the kettles for bigger productions. This

is getting more advanced as there are companies that see this and are taking

advantage of this situation.

This advantage needs to be capitalized on by pre-packaging a system for each

brewer to use for their own homes. It should take an existing system, and make it even

better. We are taking a three keg system with burners under each keg, and automating

it. By automating, we are not completely automating it, but that would be something to

look at in the future. We will be taking the moving of the liquids, the turning on and off of

the burners, and a timer for telling a person when to do things and automating them to

v > the point where the only time a person works is to initially add water, add the grains, add

7

the hops, add the cooling liquid, and adding the yeast to the fermentation bucket. This

should help with making the batches more consistent.

The making of beer consists of four major parts: water, grains, hops, and yeast.

The water is the base for the entire process. This is something that will not go away.

The grains are normally barley, but can also be rye, wheat, soy, etc. This will affect the

flavor and alcoholic content of the beer. The hops are what contribute the smell and the

bitterness to the beer. The yeast takes the sugars that come from the grains, and

converts them to the alcohol that is the ultimate end game.

1.2 Background for Brewing Process

The process takes around three to three and one-half hours to complete from

adding the water to the placing the wort in the fermentation vat, and adding the yeast.

This will be discussed below.

To start, five and one-half gallons of water is added to kettle one and the heat is

turned on. The burner will now be on until the temperature reaches 170 F. Once the

water reaches temperature, four gallons is transferred over to the second kettle, and the

grains are added. The first kettle will be maintained at 170 F, and the second kettle will

be maintained at 155 F. While maintaining these temperatures, the liquid in the second

kettle will be circulated for an hour (or as specified for the grains from the supplier)

through the second kettle. After this is complete, the liquid in kettle two will slowly be

transferred to the third kettle, while the remaining liquid in kettle one will rinse the grains

in the second kettle. All of the liquid, which at this point is wort, is now in the third kettle,

and the heaters for the first two kettles have been turned off, while the third heaters has

been turned on. With the heat being on, the wort is taken to boiling, and the hops are

added at the rate recommended by the supplier. This will be taking place while the

heater is maintaining a boiling condition, most likely taking about an hour. Once this is

done, the heat will be removed, and the wort will be cooled to 70 F. This will be done via

a cooling coil and some ice water that has been placed in kettle one. This will be

recirculated through the coil. Once the wort is at 70 F, the cooled wort will be transferred

to the storage vat, and the yeast will be added. Once the yeast is added, clean-up will

take place, and the wort with yeast will store for the amount of time that the

supplier/producer chooses.

This is right now a heavily man-power intensive project, as the kettles with the

liquid in them are rather heavy, and they are also very warm. This is very dangerous,

and errors can easily exist. By adding in the pumps, along with some relatively solid

plumbed pipes, this lifting of the liquid, along with the necessity of potentially burning

ones-self, goes away. The next step is to know when the amount of heat applies to the

kettles is enough. By adding thermocouples to the process, we move from having to

hold a thermometer over the process or look at a thermometer less than two feet from

an open flame, to being able to set-up a remote display that takes the person away from

the heat. These thermocouples will be hooked up to a computer, that will allow us to run

these temperatures to a solenoid valve on the burners, allowing the burners to be

placed in an intermittent state. This will save on the amount of gas used, and also

prevent a person from having to possibly light a burner a number of times to keep the

temperature constant. The final portion to look at is potential pressure gauges. These,

along with the computer, could give a final specific gravity of the liquid. This is

somewhat critical in knowing when the wort is done, and how the beer should taste after

the fermentation process is done.

1.3 Initial Thoughts

This project is a serious challenge with the amount of work that is necessary.

There are six major components that make up the system: frame, plumbing, ignition,

brewing, electrical and the heat exchanger. Each of these systems can be broken into

subsystems, which will be discussed in much more detail later. The quickest thing to get

done is the frame. We know what we need, which is something to hold the kettles

(three), the pumps, the valves, the piping, the heat exchanger, the electrical

components, and the gas system. This was made out of steel on site, using the

machine shop.

The next step is to get the water side plumbing done. The biggest choice was

stainless steel vs. copper vs. silicon tubing. There was a compromise in the end for

maintenance ability.

The gas system was next to follow, as it will be allowing for the heating of the

kettles throughout the process. By getting something that is pre designed, we do not

need to rely on more programming, and we know that is will work as designed.

The process as we designed it needed a heat exchanger that could serve the

entire system. This was done to help reduce the gas system cost, and allow for an extra

design element. The heat exchanger is a new design, and will take time to ensure it

operates as expected.

The valves will need to allow for more than one position, otherwise it will be

extremely hard to get the water moved around as we find necessary. We would also like

10

them to be operated by the programming, as to allow for a better automation, and for

better timing of the system.

The electrical components will end up being the biggest challenge. We walked in

knowing we would use the Arduino to control the system, but we were completely

unsure how everything would go from there. There will need to be connections for all of

the valves, the gas system, the temperature and pressure sensors, and a way to power

everything. There will also need to be a specialized circuit for this system, as there is

nothing on the market that satisfies the requirement we have.

1.4 Professional Responsibilities

As a small group of engineers, we must consider our responsibilities not only to

other human beings, but also to the environment. There are also the questions hanging

over head if the project will be profitable, will it be manufacture able, will it cause health
W

concerns, and does it fall within societal norms for what everyone expects? These

questions should be weighed by all engineers. Without the ability for the engineer in

design to see where the project could cause issues, there could be may long nights

spent doing unnecessary redesigns that could have been skipped with the appropriate

thoughts out of the gate.

The first thing we will look at is the economic component. As with any project,

unless there is someone willing to pay more than it is worth, it will need to make a profit.

For our project, this may be a small challenge as it will be a customer driven job. We will

take orders and customize the system to each customer’s specifications. This will cause

many headaches during our start-up period, as we cannot expect each customer to

want the same thing. There may be components or systems that we decide should be

11

the same for each customer, but that will take time to see what each customer wants

when the system is ordered. There is also the question of how much time will it take to

start making money. We will need an amount of capital to ensure we can make each

unit in house. As we make more, we can look at what parts we can’t replicate on site,

and figure out where we will make future purchases.

The environment is something that all people should be able to enjoy for years to

come. If we create a product that will harm the environment, then is the harm to the

environment ultimately worth it? With our design, our two biggest visible environmental

challenges will be a reuse of water, and the burning of a fossil fuel. The water will be a

challenge, as there is a need for upwards of 30 gallons per batch, and about half of that

will be used to cool the other half. If this water is dumped to the environment, how can

we be sure that we are not dumping something that is harmful? If there is nothing

harmful, why do we not recycle this water? It would be more economical and better for

the water challenged future. There are also a few smaller less slightly issues in the

materials used and abused to make the system. The steel has to come from

somewhere, so we would like to source a recycled product as much as possible. We are

not choosing special steel, so this should be rather easy. It will also help our bottom line,

along with our customer’s pocketbooks. The other material that will be in high used is

silicon. This is starting to become a precious resource with the amount of computer

systems it is used in, so if there becomes a different way to make the circuits, we should

hop on that to help the environment. There is also a large amount of copper in use. This

has become more valuable recently, so if there is a better choice for materials out there,

we may want to research it. By using recyclable materials, we are helping with the

sustainability of both our industry, and our product. With the sustainability going up, we

can use this as a sales point to help with our futures. There also becomes a chance to

find new materials that we can pass on to the industry. By doing this, we can make the

entire industry a better servant for the future of the Earth.

The manufacturability and reparability of any product should be weighed by any

engineer before a product is made. If there is a brand new design, but it can’t be put

together due to the intricacy, then what use is it? If something is meant to be put

together once and never fixed, what happens when a part on it breaks? This is why

engineers should evaluate the project from both perspectives. It is our responsibility to

ensure that our customers are happy, so if we design something that is useful and can

be fixed simply, they will be more willing to buy a better product from us than shop

elsewhere.

To look at ethics, politics, and health and safety, we need to look at them as a

whole. There is no single part of any of those that doesn’t rely on any other part. The

ethics of making beer is tricky, as the alcohol involved can make people act in ways that

they shouldn’t. If a person that buys our product, and they get drunk off of their beer

from our product, does that make us the ultimately responsible party? We would like to

think not, but that is not ultimately for us to decide. It involves and amount of politics that

are beyond our level/pay grade. By ensuring that we are selling to a mature audience,

we can take some of the youthful exuberance out of the equation, but it still remains that

beer can make a smart person stupid, and an experienced person into a novice. The

politics involved are straight-forward from a government level, as we will need patents,

lawyers, and the ability to operate a business. There is then the human level of politics;

13

do we want to infringe upon a field that can get tricky, or should we market ourselves as

something different? If we make our own market, how will that impact both our

suppliers, and the competition? Being that we will be producing our systems in house to

start, how will the metal cutting, welding, and machine work affect our health? This isn’t

the only health concern, as alcohol is a poison, as have been made illegal in the past. If

we build this system and then sell the beer, this would be a much bigger problem, but

we feel that if a person is willing to put the time into brewing a batch of beer, and then

waiting for fermentation, they are willing to accept the risk that comes with the alcohol

they are about to ingest. As long as we keep the product floor safe, the outside health

concerns will take care of themselves.

1.5 Individual Contributions

The group split the work into areas where an individual’s knowledge could be the

most utilized. This allowed Nick to be our fabrication specialist, Josh to do a majority of

the design elements, and Humza to knock the electrical system out of the park.

Josh Berger worked on all parts of the build, as he was willing to help anyone out

to get things done. The major parts that he handled were the gas system and the heat

exchanger. The gas system required finding a series of components that fit the design

requirements of automation, and that could be purchased and put together will minimal

challenges. The use of heating system components for most of the gas system was

fortunate, as they have been designed and proven useful over time. They also allowed

for us to find the parts in many different locations, allowing for simple replacement if

something should go wrong. The heat exchanger was the next challenge, as we felt the

available ones were no the best for our system. The design was done in SolidWorks,

14

and then a simple flow analysis was also done there. It showed that the sudden

changes of direction would be the biggest problem. The problem is that the heat

exchanger was not simulated using the plumbing, so there was no way to see if there

would be any restrictions until after the entire system was put together. As for assisting

others, Josh helped Nick with the building of the gas system after the components were

received, ensuring the heat exchanger was cut in the proper manner, the installation of

the heat exchanger, part of the redesign of the plumbing, the installation of the mounting

hardware, and the final preparations before painting. Josh helped Humza with the wiring

process, the use of SolidWorks to design the electrical, the setup of the wiring

component box, and the testing of part of the electrical system. The final portion that

Josh took care of was the writing of the papers, ensuring that all worked on it when

necessary.

Humza designed the electrical system from the ground up and programmed the

entire system. With previous experience in working on stereos and lighting for vehicles,

this was up his alley. The programming was the first challenge. This was a different sort

of challenge due to learning a new programming language. There was some fortune

involved, as the language is a simple modification of the C++ programming language,

which is taught to all engineers. He also found that the methods taught by Dr. Coller in

the Numerical Methods using Computer Programming class could be applied, this

allowed for many small codes that came together in the main body of the programming,

allowing for each portion to be tested individually, and then the entire system could be

hammered out as we all say fit. The biggest challenge that he had was getting the

component electrical requirements down, since the last components did not come in

15

until April. The next step in his design became the connections for all of the components

to the Arduino. This became a process that had to be reworked a couple times, until a

self-designed circuit board was settled upon. At this point the traces were done, and he

soldered everything onto the board. He performed the initial testing, repaired the small

mistakes, and then started to put everything together. Once the circuit board was put

together, it was time for final assembly. He assembled as much of the electronics as

possible. After this was done, Humza and Nick worked together to design a sample

process for demonstration after the presentation.

Nick was the man behind the money and the person who wanted the system. His

biggest design portion was the frame. This was done early in the process, and was

modified late to help with electrical support. He did the design and got help with the FEA

from Josh. After the design, he submitted the work order to the College’s machine shop,

where he completed the frame build on shop time. After this, he brought in the kettles

and started designing the plumbing. This was done next, as could mostly be done with

what was on hand. After it was finished, he worked on the posters, and was the main

contributor for the large poster and worked with Humza to finish the small one. After

Josh had the heat exchanger designed, Humza purchased the aluminum, and Nick did

all of the machining. It took some time, as the pieces purchased barely fit in any of the

machines in the shop. After this, Nick and Josh installed the connections for the heat

exchanger, and hooked in the plumbing. He then took to getting the frame ready for

paint, by getting all of the support pieces in place, and rolling beads in the pans for

stiffness and to channel any spills away from electrical components. After this, he

worked on the presentation.

16

Chapter 2 Design Specifications, Concept Generation, and Evaluation

2.1 Design Specifications

Our design is to automate the home brew process. This will involve all of the

system operating from a single controller. There will be built in safety points, allowing

the operator to isolate the system for maintenance or cleaning. W e are expecting the

system to cost less than $2,000 out-of-pocket, while increasing the reliability of the

process, decreasing the amount of time to make a batch, ensuring the system follows

procedure for food safety and can later be certified, and is mobile for the home brewer.

The automating of brewing is not new. Many international companies are fully

automated from the initial water addition to the end of the bottling process. This hasn’t

translated down the line to a person who wants to make their own beer at home. To this

end, we took a standard progression for the home brewer, and we applied the amount

of automation we felt was necessary: an Arduino for the programming, electronically

controlled liquid valves that allow us to move the water/wort to the next step of the

process, a gas system control module that controls the entire gas system with a simple

input from the Arduino, and temperature and pressure sensors. All of this adds up to a

system that can tell you how much water is where, how warm it is, heat it up, move it

around, tell you the specific gravity (important to alcohol creation) and then cool the wort

down. The amount of automation is not complete, as there is no direct connection to a

water supply, the grains, hops, and ice must be added, the fermentation is done by

calendar, and the bottling is still by hand. The extra amount of automation necessary for

all of this is beyond the time given for this project. The grain and hops additions are

possible for the near future, along with a graphical user interface to allow the brewer to

see where they are in the process, how things are moving along, and to change an

input as necessary.

The next design specification is to decrease the brewing time by 30%. This time

decrease is in reference to a manual batch done with one or two kettles, one burner,

and one person. The time reduction can be broken down into a precision timing issue

and a human factor issue. The timing used in the manual process is based on the

brewer following a schedule. They must set a number of alarms for when to put the next

step into play, generally after setting the alarm after completing the previous step. The

error in these times will add up quickly, and make it so a quick three hour batch can go

five hours. With a timer integral to the circuit, and know cycle times for valves, we can

reduce the error involved. The biggest variable that the circuit cannot account for is the

boil time, which is based on the gas system, which will be discussed later. The other

part of the brew time is the human element. During a manual process, there can delays

when trying to move liquid, light a burner, add the grains, etc. This is essentially

eliminated in the automation process, as almost every step is done by the computer.

Short of the system breaking down, or a brewer not adding the hops at the right time,

the brew will be done at a set time. With future automation additions, these possible

misses could also be eliminated, so just the water at the beginning and the chilled water

at the end would be on the brewer,.

In keeping the beer free of contaminants, we chose to follow the NSF food safe

requirements, with the possibility of gaining food safe certification at a later date. This is

huge, as it ensures that what we do will not affect any of the brews in a manner that

could harm a customer, and spoil our name. Keeping food safe will also allow for the

potential of selling craft beers in the future. This is not a sure thing, but if we maintain

safety and a good head for creating beer, it is definitely a possibility in a long term

scenario.

We understand that not all brewers will have a solid, solitary area for their

brewing, so we are making the system so it can move around. This was done using

casters on the four legs of the frame. This is important for when the water will not reach

the product, or if there is need to store it in an area where it cannot be used. Also using

the casters allows a brewer to move it into areas that the stand could be used for non

brewing things. We would like to think that the system could be used for making coffee,

tea, and sarsaparilla, and it was brought to our attention that it could double as a turkey

cooker or a stove with the amount of energy that is tied into the gas system being sent

out at any time. This would make it necessary for us to bypass some of the coding, but

it shouldn’t be too hard to create a simple program that allows for the gas system to be

on or off.

The system ultimately needs to be affordable for the home brewer and profitable

for our potential investment. This is why we chose to keep the system under $2,000. We

achieved this goal by about $50. The biggest costs incurred were in the gas system and

the plumbing. The gas system utilizes furnace technology, but the fully integrated

system for a single furnace would still be over $200, and with two halves, the costs

increase rapidly. The plumbing, which is a mix of copper and silicon tubing, also ran

high. This is due to the high cost of copper and the high cost of the machined

connectors (barbs) for the silicon tubes. This could be cut for the future with a different

set of tubes, but there is a low possibility due to the food safety requirements.
W

19

2.2 Concept Generation

W

Brewing at home is growing in the US, with over 1 million home brewers, so there

is a growing market for a product like this. However, many home brewers have either

fully manual or partial manual control of their systems. While this does offer a more

intimate setting, and a better chance at getting a really good beer, it can eliminate an

entire day that some people can ill afford to lose. This brings us to a fully automated

system. With the right situation, and a brewer who is experienced, it can be a fully

advantageous situation. Imagine waking up on Saturday morning, going outside,

starting the brewing process, mowing the lawn, grilling out, and finishing up the brewing

process. This sounds like a perfect situation for someone who is short on time. With that

in mind, we set out to make the system as simple for the average use as possible.

The easier the system is to operate, the more likely the average American is to

use it. W e will need to ensure that the interface is simple and elegant in its usage, and

that the interface is easy to use. To this, we can allow the brewer to input the times

necessary for the proper addition of the materials, and then have an alarm when the

brewer needs to take action. The only real challenges at that point are to hook up the

gas and add the water to start the process.

The last concept we tried to bring to front is that there hasn’t been a good heat

exchanger designed for the home brewer. There are a couple different types of chillers

on the market: the tube-in-tube, the plate type, and an immersion chiller. They all have

their pros and cons, but we felt that each one would have more drawbacks than

necessary. This is why we started brainstorming a new chiller. This new chiller would

need to maximize the heat transfer surface area while minimizing the amount of space

20

used. The other thing we wanted to ensure was that it would be food safe. This means

that we want a chiller that can be cleaned rather easily, and can come apart if

necessary. By being able to take it apart, we can add even more surface area,

increasing the amount of heat being transferred.

2.3 Project Evaluation

This project could be considered a breath of fresh air into a stale market. There is

room for growth in the home brew market we feel we can capture. By designing a

simple system that anyone can run, can be easily maintained, and makes a very

delicious final product, we think that this would be a high potential market.

This project also looks to take advantage of many of the courses that are

explored in mechanical engineering. Because of the breadth of the course work in

mechanical engineering, we could be considered a jack of all trades. This allows us to

work in manner different areas, including fluids, thermodynamics, programming, statics

structures, electronics, chemistry, and manufacturing. Every one of these topics was

covered in detail in this project. This gives us as students a chance to see not only

where we excel, but also where we are deficient. This is a good thing, as it gives us a

chance to work on things as we progress in our lives and careers.

21

Chapter 3 Cost/Market Analysis and Patentability

3.1 Cost Analysis

We set out to make an automated home brewery for less than $2,000. This

amount was chosen by Nick due to monetary restrictions that he had, as he would be

the main support for this project. We also chose this number because it is a low enough

number that a customer would be willing to purchase it, but not be willing to go home

and try to copy it. This number was an out of pocket number, as we understood that any

labor we incurred would be free until we have graduated and no longer have the

universities facilities available to our disposal. The cost of production will be discussed

later. For now we will get into the cost of the system. The total cost of the system is

under our $2,000 goal. The total is shown in Table 1. The shipping cost will not be

discussed, as it can change based on sourcing of the materials and time for shipment.

Table 1 Total Costs

System Cost ($)
Frame 124.87

Plumbing 614.40
Burner 596.75

Brewing 69.85
Shipping 90.03
Electrical 285.99

H. E. 180.00
Cost $1,961.89

3.1.1 Frame

The frame is the backbone of the structure. It involves square steel tubing,

arranged in a manner to support all everything off the ground, except for the gas tank.

22

The frame material was mainly supplied by DIMCO in DeKalb. The costs will be show in

Table 2 below. The casters and drip trays were supplied from the spare stock the

university has on hand.

Table 2 Frame Costs

Frame Qty. Cost Supplier
VAX1% 16 Gage Steel 60' $124.87 DIMCO
Casters 4 CEET
11 Gage Steel 24"X12" CEET

3.1.2 Plumbing

The plumbing made up of the piping that carries the water/wort, the valves that

change the flow patterns and the pumps that move the water. This was all purchased

with no spare stock being used from the university. A portion of the parts were locally

sourced from a Menards, while the rest comes from specialty stores online. Brewers

W Hardware and Chugger specialize in helping home brewers with specially designed

parts that meet the needs of the average brewer. The costs associated are shown in

Table 3 below.

23

Table 3 Piping Costs

Plumbing Qty Cost ($) Supplier
1/2" X10' Copper Pipe 2 18.18 Menards
1/2" Dielectric Union 6 23.94 Menards
1/2" Close Brass Nipple 5 9.45 Menards
1/2" Red Brass Union FXF 1 10.49 Menards
1/2" Xl-1/2 Brass Nipple 1 2.29 Menards
1/2" Copper Tee 2 1.18 Menards
1/2" Threaded Barb 3 23.85 Brewers Hardware
1/2" SS 90° Elbow 3 12.00 Brewers Hardware
1/2" 90° Elbow 20 5.80 Menards
Paste Flux 1 1.69 Menards
Safe Flow Solder 1 8.69 Menards
1/2" Copper Brush 1 0.99 Menards
1/2" FPT Full Coupler 3 11.85 Brewers Hardware
1/2" SS Tube 2 16.00 Brewers Hardware
3-Way SST Valve 1 51.90 KLD
3-Way SSL Valve 2 99.00 KLD
2-Way SS Valve 1 37.10 KLD
Chugger Pump 2 280.00 Chugger

3.1.3 Electrical

The electrical system was purchased by both Humza and Nick. The biggest

reason for this was Humza doing the electrical design; it was easier for him to specify

what he needed when he needed it. Many of the parts could be purchased at the local

Radio Shack, making it easy to find them in most areas. The sensors that are included

came from Brewers Hardware again, due to the specific nature of the product. All

purchase costs are shown in

Table 4.

Table 4 Electrical Costs

Electrical Qty Cost ($) Supplier
Temp Sensor 3 51.00 Brewers Hardware
Arduino Mega 1 59.99 Radio Shack
Control box 1 35.00 Menards
Power Supply 1 25.00 MicroCenter
Transformer 1 15.00 Menards
Wire 1 25.00 Open Source Controls Systems
Ground 1 5.00 Menards
Circuit board 1 5.00 Radio Shack
Etchant 1 5.00 Radio Shack
Pressure Sensor 4 60.00 Open Source Controls Systems

3.1.4 Ignition System

The ignition system was almost exclusively purchased online. This was from the

research that was all done online. There is a possibility that the right area would have

access to all but the specialty parts. This is due to the use of commonly found parts for

W heating systems in the home and regulation for campers. Costs are shown in Table 5

Table 5 Ignition Costs

Burner Qty Cost ($) Supplier
Valve Orfice 2 14.00 Brewers Hardware
Two Stage Regulator 1 33.99 Amazon
Pilot BCR-18 2 41.90 PexSupply
Pilot Controller 2 174.98 PexSupply
Furnace Valve 2 167.90 PexSupply
Banjo Burner 2 163.98 Northern Brewer

3.1.5 Brewing System

The brewing system is small, as it is just the kettles and the thermowells for the

thermocouples in the kettles. All were found online, but with the right contacts, the

kettles could become a local find. The costs are in Table 6.

W

26

Table 6 Brewing Costs

Brewing Qty Cost ($) Supplier
Thermowell 3 29.85 Brewers Hardware
1/2 Barrel Keg 3 40.00 Craigslist

3.1.6 Heat Exchanger

The heat exchanger, being of a unique design, receives its own section. The

6061 Aluminum was sourced online, as there was a healthy competition in the price of

the metal. It can be found locally for a slightly higher price.. The cost is listed below in

Table 7.

Table 7 Heat Exchanger Cost

Heat Exchanger Qty Cost ($) Supplier
13"OD X 0.75" 6061 Alum 2 90.00

3.2 Marketing

The marketing of the system will be multi-faceted project. The key elements that

we will look at are product, price, promotion, place, and people. We aim to have a low

cost system that works better than anything on the market. It will be seen in trade

magazines and in social media, while also being promoted by local friends of the

company. We will aim at those who want to brew at home, with a secondary market of

those who are looking at a simpler system that they can modify to their liking.

The product we have is high quality. W e have chosen materials that will

withstand the test of time. The frame is made of steel and will be sealed from the

elements by either paint or powder coat. Either way the arms that support the kettles will

need a high temp paint to manage the temps from the burners when the flame is dialed

in to its operating condition of over 1,000°F. The product we build is smaller in size than

our competitors, meaning that less space will be taken up in storage, and there is less

27

material being used in the construction of the product This will also allow for more

systems being built from a similar amount of material compared to the rivals. As we

have more time and money into the system, we can refine the materials used until we

have reached an optimum cost vs. quality point. We also plan to have options to change

the system to a brewer’s choice. This can include a gas tank stand, different color

schemes, different piping paths, less automation, and possibly the ability to use

materials other than gas to provide the energy to make the water warm.

As for the price point, we feel that we can be 67% of the cost of the competitor,

who is at $7,000. This would put us at $4,700 price. This is beyond what we expect the

system to cost, and if it is beyond what the market allows, we can be flexible. We will

also target the audience that doesn’t want full automation. For them, we can offer a

frame, a manual gas system, and the piping. There is also the possibility to offer a three

burner system with an immersion chiller. This would eliminate the cost of the heat

exchanger, but add in burner cost, so essentially a non-change in cost. The cost of

$4,700 would allow for rapid recovery of our initial investment into the company, with

hopes of being out of debt in two years at most, and six months at the least. Beyond

that, and we will need to be a full time business, where we expect to start as a part time

venture.

For the promotion of the system, we will use social media to start. Facebook,

Linkedln, and Twitter will allow us to spread out message the fastest. Beyond these, we

will also target local brew shops and microbreweries to share our message. If we can

get the word out there, where people gather, that would be a huge boon to our future.

There is also the possibility of advertising in industry magazines. This would get our

28

word out to a larger demographic, and could be picked up by any John Q. Public to see

a well engineering product that would allow him to stop going to pick up beer at the local

store.

When we talk about where we would want to do things, at first it would be out of

a garage. This would allow us to build on our own time, and then move the product

locally until we were in the black. Once this point hits, we can work into a larger location,

and possibly take the business full-time. This would be a huge undertaking, and is still

years down the road. It would also require a large amount of capital, along with the

support of our families, friends, and local beer aficionados. Once we work up to a

regional presence, we would start researching national ties. This could possibly involve

selling off to a company that sees this as a great idea, becoming a subsidiary of another

company, or turning into a national powerhouse in the home brew industry. If we reach

that point, everything would be beyond our wildest dreams.

All of the ideas we have would require the assistance of many people around us.

Throughout this process, we all talked about knowing someone that is very interested in

this idea. If we can get a foot in the door with our friends, and maybe one or two other

small pubs, we can get a small movement going. This could also be supported by local

winemakers and other artisans in any field. As we grow, we cannot forget the people

that made us a success.

3.3 Patentability

We have a unique product in a unique market. We have already made inquiries

with people as to hoe the patent process would go. While parts of the system already

29

have patents, and other parts are commonly used designs, there are two parts that are

not currently available to the public: the heat exchanger and the circuitry.

The heat exchanger will be described in much more detail later. It utilizes square

tubing to achieve four wall heat transfer, and Aluminum to allow for a good amount of

heat transfer. We chose a material that we are well versed in, in the 6061 Aluminum, but

we feel that there are better conductors of heat out there, and the will be part of the

focus of our future pans. The heat exchanger also uses both parallel and cross flow

elements, allowing for an even greater amount of heat being transferred; this intern

allows for a more rapid descent from near boiling wort to the 70°F necessary for the

proper addition of the yeast. This rapid descent helps lessen the possibility of bacteria

entering the brew, making it bad.

The circuitry is patentable due to the unique design. The circuit is designed to fit

onto a single circuit board, allowing multiple power groups to work in unison without

disrupting each other. There is also the idea that we have the design. The use of the

components in a manner that hasn’t been done before makes it different than all other

competitors out there. W e also have the programming to think about. It isn’t that the

coding is so much different than what is available, it’s that it has never been put together

in the manner we have. The code will allow for a number of different inputs, allowing the

brewer to brew any number of different recipes. These different recipes will be on the

brewer to input, so there will be no claim to that property.

W

30

The entire system needs to support not only all the components but also the

maximum volume of water that can be used. The design of the frame to support these

large demands of weight will need to also be in a well-organized fashion to allow ease

of use for the brewer. Initially, two main designs were considered: horizontal (Figure 2)

and stack (Figure 1)

Since liquid must be transferred from

kettle to kettle, the stack design would only

require one pump. This decrease in plumbing

costs is an advantage of the stack design, but

the total height of the design proves to be

dangerous as the liquid in the top kettle will

reach 170°F. If the top kettle were to tip over,

severely

dangerous

burns could potentially occur to the brewer.

While the horizontal design has a higher cost and

larger footprint then the stack, the increased safety

makes this design far superior. After Nick narrowed

down to the two designs and presented them to the

group, a decision of the horizontal design was agreed

upon. Now that the frame design was chosen, the actual

design process was to begin. To utilize software offered

Chapter 4 Frame

KEG

BURNER

KEG

BURNER

KEG

BURNER

Figure 1: Stack frame design

w

KEG KEG KEG

BURNER BURNER BURNER

Figure 2: Horizontal frame design

31

to students and is commonly found in industry, Solid Works was chosen. This software

is a user friendly program that was preferred by all the members of the group and allows

the simplistic use of simulation later used in the design process. Measurements of total

kettle height were measured by placing the kettles on boxes of various heights and

emulating stirring of the liquids inside was performed until a comfortable height was

found for a 6’3” user. Setting a constraint of this total height in Solid Works made the

design ergonomically comfortable for the brewer as stirring is a common function

performed.

Another consideration in the total size of the system was the location it was going

to be stored and commonly used; the garage. The device was to be similar size of

storage units as not to be difficult to store in the limited confines of a common garage.

The frame’s total footprint was set at 26” deep and 64” wide which is a similar size of a
'v

workbench. Now that the main size restrictions were defined with constraints the

supporting structure and geometry of the frame were to be defined. To be able to

support both the kettles and burners, located below the kettles, 4 diagonal horizontal

braces were positioned perpendicular to the kettles. These braces were then welded to

the heat shield that would support the burners. These bracing members were located

evenly across the frame to accommodate the three kettles necessary for the brewing

process.

The lower shelf will support the plumbing system in addition to the electrical

system that would be mounted below the plumbing. To reduce the risk of electrocution

in the event of spillage, a horizontal splash guard was designed on the lower shelf. This

shelf would need to be supported properly in addition to mounting the pumps. Two
W

32

supports were located such that the pump heads were symmetrically between two
W

Table 8 Weight per bracing arm

Barley Wine @ 1.100

Item Lbs/gal Gallons
Total
(Lbs)

Wort 8.35 10 83.5
Grains 40

Keg 28.6

Burner 13.8
Burner

Ring 3.5

Total (Lbs) 169.4

FOS (3) 508.2
Lbs Per

Arm 127.05

kettles. The splash guard was to be

attached to these members.

The frame needed to be made to

sufficiently hold the weight of full volume

kettles safely with a factor of safety of 3.

To calculate the amount of weight each

kettle would amount to, the following

weights were summed; 10 gallons of

wort (1.100SG), keg, grains/barley,

Figure 3: Deflection Plot of 16 gage 1.5" square tube

burner, and heat shield (Table 8).

Using Solid Works force

simulation software and 127.05 lbs

per arm were used to analyze the

deflection of the frame that was to

be made of 1.5”x1.5”x0.60” mild

steel square tube (Figure 3). This

material was chosen primarily

because of the cost to weight ratio.

We compared 12,14, and 16 gage

material and 16 gage proved to be the best.

33

w

During the brewing process a series of liquid movements must be achieved in

order to properly make the fermentable wort. This process includes initially filling kettle

1, transferring liquid to kettle 2, recirculating kettle 2, transferring from kettle 2 to kettle 3

while transferring kettle 1 to kettle 2, recirculating kettle 3 while recirculating kettle 1 to

chill the liquid, finally, emptying kettle 3 into the fermenting bucket. This process can be

very difficult not only to understand but to design a system that allows all these

requirements to be achieved.

The use of a multi-purpose heat exchanger allowed the brewer to chill in addition

to eliminating the need for a 3rd burner located under the second kettle. This not only

reduces the total cost but also prevents the risk of scorching the wort that is due to

applying localized heat on the bottom of the second kettle. Using the heat exchanger

while recirculating kettle 2 and kettle 1, which has higher water inside, will increase the

temperature in kettle 2 to allow proper starch to fermentable sugar conversion without

scorching. This heat exchanger will also be used to chill the wort in one of the final

processes of brewing by recirculating kettle 3 and kettle 1, which will then have ice

water inside.

Another consideration in reducing the total cost of the system is the reduction of

valves and pumps need in the plumbing system. The Chugger Pumps will move the

liquid at a maximum flow rate of 7.0 gpm and are operated on common 110VAC current.

The stainless steel motorized ball valves were found overseas to further decrease cost.

One of the primary objectives for the project was to use food grade safe products in

which both the valves and pumps achieve. Revisions of the plumbing system allowed

Chapter 5 Plumbing System

34

the reduction of the valves

and pumps to (3) 3-way and

(1) 2-way valves and 2

pumps to be used Figure 4

As the plumbing

system was installed,

consideration of disassembly

and maintenance was

thoroughly thought of. The

user may need to make improvements, fixes, or a deep cleaning maintenance. Unions,

quick disconnects, and removable pump heads were used to insure that ability of full

disassembly. Full diagrams of the flow patterns can be found in the appendix.

w
Rear

3-Way

Front

Figure 4: Plumbing diagram

35

To properly make a batch of home brew, water must be heated up to a near boil

at least twice. This requires a substantive energy addition system. This could be a

simple fire from wood, an electric heater, gasoline or another flammable liquid, or it

could be a flammable gas. W e chose the flammable gas route, as it is widely used and

commercially available. This choice then populated all of our other choices within the

gas system. We chose a system that is simple, elegant, and easily produced.

6.1 Components

6.1.1 Gas Choice

In a common home in the northern Illinois area, the main heat source is natural

gas. In recent years it has become highly available and relatively cheap. There is

already a supply network in place that allows residents nearby to hook into the system.

This is only a dream for more remote families, who rely on liquid propane (LP) for their

home heating. It is delivered in large trucks to stationary tanks in the yard, and piped

into the house for heating purposes only due to higher costs. LP is also available in

portable, refillable tanks that are available in many locations for either gas grills or

mobile homes. There is also a small population of people who use kerosene for heating.

This was deemed a moot choice, as there is very little available on the market for

kerosene.

The choice fell to LP due to the existing use by Nick in previous home brewing

experience. It has a higher energy profile than natural gas, and it fits the mobility value

Chapter 6 Gas System

we have espoused from the beginning. Also by choosing LP, we could find many retail

locations that carried parts for our use, if necessary.

6.1.2 Burner

The burner we chose was the Bayou Classic BG 14 Burner. Nick had already

purchased one for his own home brew sessions, so after we decided on a two burner

setup, he purchased the second. They are cast iron, making them extremely heavy.

The design has a single %” NPT inlet with an air adjustment port to help control

the 0 2 levels for the flame. It has four mount holes that approximately 90 degrees apart.

This allowed us to build mounts into the arms of the assembly, along with the shields

necessary to prevent wayward fires. The burner surface comes with two hole patterns.

The first is two circles that circle the outside of the burner. The second is two lines of

holes that go inward along the six arms, stopping just short of the center. The center

has no holes, as this is where the gas and air are allowed to mix before being ejected

through the holed pattern on the top. Figure 5 [1] shows the setup, and we have

modified it so the air inlet is much larger.

Figure 5 Bayou Classic Banjo Burner BG14 37

6.1.3 Pilot

The pilot is an essential part of creating an automatic gas system. If the pilot

goes out, and gas is stopped, the burn can stop, creating a chance for wasted batch. By

finding a good pilot that could be paired with an automatic valve, the system could be

made near fool-proof.

The pilot chosen for this system was the Honeywell Q345A1313. This particular

model came with a gas inlet and a combination thermocouple/igniter. This choice was

made due to cost, control, and size. The pilot is small enough to attach to the burner

without creating an extra hole to allow escaping gas, and is low enough in cost that

future mass production would not be overly expensive.

The control of this pilot will be discussed in more detail

shortly; however, we can note that it allows for

intermittent operations. This means that if we are trying

to maintain a two to four degree temperature band on a

kettle, we can shut the gas off and turn it on as needed

with the pilot lighting up every time we need gas. The

pilot is shown in Figure 6 [5].

6.1.4 Automatic Gas Valve

With the desires to have a fully automated system, we looked at a number of

different references for a good, simple solution. We needed something that would be

fully automatic, work well with our pilot, fail shut in an emergency, and require almost no

interface with the person controlling the system. This is how we stumbled up the

Honeywell Standard Dual Intermittent Pilot Gas Valve.

38

This valve has the distinction of allowing gas to

mu
flow through to the pilot separate from the burner. It is

desire to go fully automatic made the cost go up, well

automatic state. There are two drawbacks, though. The

lightweight, compact, and it will also act in a fully

above the expected range. This is a trade-off for the

Figure 7 standard Dual ability to go fully automatic. The other problem is the
Intermittent Pilot Gas Valve

operating pressure of less than one-half psi of gas. This

was an unforeseen problem that caused us more headaches and purchases. There is a

bonus; it allows us to switch back and forth between LP and natural gas in a few short

minutes. There is a regulating spring installed in the valve. Depending on the gas type

that is encountered, a different spring is put in place. When this is done, the brewer has

the choice of gas types. The valve is shown in Figure 7 Standard Dual Intermittent Pilot

Gas Valve [6].

6.1.5 Ignition System Control

The pilots and the automatic valves must be controlled in order to make the

system work. This could be done by the Arduino (detailed later), but this would create

an inordinate amount of work, especially since there is already a control module for

these components.

Because the pilot and valve are both made by Honeywell, it stands to reason that

Honeywell also make a control module. This control module works in unison with the

other components to allow the burner to operate. The controller takes an input from the

Arduino (acting as a thermostat). It then sends out a signal to the valve to open the pilot

39

line. This allows gas to the pilot, which then gets

an ignition signal from the controller, telling it to

ignite. When the thermocouple senses the right

temperature, it sends a signal to the controller.

This signal is read and then starts another

command. This command goes to the automatic

valve, allowing it to open. When the control module

receives a signal saying that the liquid is warm enough, it will relay the signal to the

valve, which shuts both the pilot and main valves. The control module is shown in

Figure 8 [4].

6.1.6 Valve and Orifice

Because the burner is not designed to be operated at low pressures, there is a

need to ensure that the burner receives enough fuel to ensure proper operation. For

this, there is a hand operated control valve with an orifice. The orifice uses the pressure

of the gas, and restricts its movement. By creating a small backpressure, the orifice

causes the gas exiting to come out at a very high velocity. This helps to ensure that the

burner is getting fed well enough for normal operation. The valve portion, along with the

air restrictor on the burner, creates a very good control for the size and temperature of

the flame at the burner. By having a good, tight flame,

the amount of gas used and wasted can be minimized,

helping the brewer enjoy a few more beers for the same

price. Figure 9 [3] shows the setup, with gas flowing from

left to right.

Figure 8 Intermittent Pilot Control

40

6.1.7 Regulator

It was mentioned in the automatic valve section that the

valve had a pressure rating one one-half psi. This is a challenge

when the pressure out of an LP tank is ~30 psi. To fix this, a two-

stage regulator was found. By using a two-stage regulator, the

gas flow out can be more linear with changes in the inlet

conditions. It also has an installed vent, so if an overpressure

condition occurs, it does not act as a bomb. The regulator was

initially designed for motorhome use. Due to our use of the

same energy source, we felt it would be a welcome addition to

keep us safe. It is shown in Figure 10 [2].

6.1.8 Piping and Wiring

There is a minor component that normally gets overlooked, the connections

between components. While the electrical system will be discussed in detail later, and

the plumbing was already discussed, the components specific to this system will be

described now.

The hard lines for the gas system will be made out of black iron, as it is the

standard of the industry. A local hardware store was kind enough to assist with the

threading, since it was slow and tedious by hand. After this was done, and all

connections were purchased, the system was put together. Gas system tape was used

to help prevent leaks. A problem arose when taking out the burners to install the pilots:

the burners had a height adjustment the gas system didn’t. A trip to the local hardware

store for flexible gas connections was made, and the problem was solved. The soft lines

Figure 10 Two Stage
Pressure Regulator

41

were next. They connected the automatic valve to the pilot. This was rather simple work,

as the copper lines were soft and flexible, and the connections were compression

fittings that came with the parts.

The electrical was a more challenging part. After receiving the control modules

and the pilots, we realized there was no wiring attached. With the spade connections,

this wasn’t so bad, as the female ends can be found at many hardware stores. The

connection for the spark line to the pilot was not found in stores. At this time, we would

like to graciously thank DeKalb Mechanical for the donation of the connection wires.

They are valued at $25/piece, so this was never included in the total cost.

6.2 Operation

The gas system is a very linear mechanism. It takes multiple inputs and turns

them into one output. This final output allows a brewer to boil water, helping to ensure

that they have a good, bacteria free batch.

The first thing to happen is that the LP tank gets hooked up to the regulator. This

provides the fuel for the system. After the tank valve is opened, and the regulator dialed

in, a signal is needed from the Arduino. This signal comes from the kettle that needs hot

water. This will only be one kettle at a time, so we do not try to overwhelm the system.

The signal that is received gets interpreted and modified into a call for energy.

This call for energy is sent to the control module. It looks at this signal and realizes it

needs gas flowing and a flame. The automatic valve receives a signal to flow gas to the

pilot, and the pilot gets a spark signal. Once the thermocouple on the pilot starts to get a

reading, the ignition is stopped to allow for a clean flame. This clean flame, once hot

W enough, will start the flame on the burner. It takes the thermocouple getting hot, and

42

then telling the control module all is good. Upon receipt of this message, a different

signal is sent to the automatic valve to open the main line to the burner. This carries the

gas to the burner, where it mixes with the air pulled in from the outside, and the flame

from the pilot to produce the energy necessary to boil water.

When the kettle’s thermocouple realizes the water is hot enough, the Arduino

takes this signal and tells the control module to shut off. When this signal is received,

the module calls the automatic valve to shut everything down, effectively killing the

burner flame along with the pilot flame. Due to the intermittent nature of the system, this

can be repeated on a regular basis to keep a kettle at a near constant temperature.

43

Chapter 7 Electrical

7.1 Introduction

In order to automate the brewing process, numerous electrical and mechanical

components had to be combined. One major requirement in completing this objective

was to not be tethered to a computer in order to brew a batch. This led to three major

component types: processing, automation inputs, and automation outputs. For this

reason, the electrical system became rather

complex and was one of the last items to actually

complete in the project.

7.2 Processing

For the automation system to be successful

there had to exist some method to accept sensor inputs and operate electromechanical

outputs. An Arduino Mega was chosen to act as the brains for this application (Figure

11). The Arduino operates using open source, C++ programming language. This

particular unit was selected due to the number of digital input/output (I/O) pins and

analog pins available. This allowed for a large number of possible sensor and electronic

control configurations.

This processor operates from 5-volt DC power. This allows the Arduino to be

powered by many different power supplies including cell phone chargers or a computer

USB port. This created one of the base power supply requirements for the automated

process.

44

7.3 Automation Inputs

The original design called for three temperature sensors in order to monitor the

individual kettle temperatures. There were two major kinds of sensor to select from:

digital or analog. The advantage of the digital

sensor is its ability to share a single digital

pin for multiple OneWire-type devices. The

disadvantage is the complexity of

programming required to obtain data from

the sensors. The advantage of the analog

sensor was the simplicity of programming

required to obtain a temperature read. The

disadvantage is that a single pin must be designated for each individual sensor. Overall,

the digital sensor was selected in order to reduce the number of I/O pins required

(Figure 12).

Multiple methods for determining fluid levels within the kettles were considered.

These ranged from submersible pressure sensors, flow meters, float switches, and

differential pressure sensors. Each one had unique challenges in their usage. Aside

from simply determining the level of liquid in each kettle, it was desired to calculate the

specific gravity of the wort as it was brewing. This eliminated both the flow meters and

float switches as the only sensor used. The largest drawback to stainless steel,

submersible pressure sensors were the price tag for each unit. These could be ordered

for approximately $110 due to its food grade safe construction method. This became

rather cost prohibitive due to needing four sensors. An idea was considered of only

45

using two of these sensors in order to calculate the specific gravity in kettle two while

using another sensor to measure the liquid level in the other containers. A second type

of pressure sensor, the MPX501ODP (Figure 13), was found that was not of a

submersible type. This was connected using a port welted to the sidewall of the kettles

and connected using flexible tubing. This sampled the pressure measured from the port

with respect to the ambient air pressure

allowing a liquid level to be determined.

When two of these ports were mounted at a

specific height, the difference between

pressures measured would allow for the

specific gravity to be determined. This

particular sensor transmits data by changing

output voltage which is connected and measured by an analog pin on the Arduino.

A common requirement for both the temperature and pressure sensors was the

operating voltage. Both of these sensors operate at 5-volts DC, allowing them to share

the same power supply as the Arduino.

7.4 Automation Outputs

In order to facilitate fluid movement and temperature regulation, numerous liquid

valves and pumps were required. The actual system called for three three-way valves,

one two-way valve, and two liquid transfer pumps. One major requirement for all of

these components is the construction material. The material used must be compliant for

use in a food grade application.

46

The first item to be selected was the

liquid transfer pump. The pumps are required

in order to transfer liquid between the

individual kettles. The particular pump was the

Chugger Stainless Steel Inlet Pump (Figure

14). This pump operates at 120-volt AC power

and is designed for the actual application it will

be utilized. This pump features a removable

pump head which allows for ease of maintenance and repair.

The next item selected was the liquid transfer valves. These are required to

change the flow of liquid between the individual kettles. The valves selected were of the

KLD20S series in both two- and three-way configuration (Figure 15). These are quarter-

turn valves that are controlled by a three-wire circuit

to operate a 12-volt DC motorized drive. The

construction material was also food safe and readily

available. Many valves were considered, but out of

the other options considered, this series of valves

were both economical and reasonably priced.

47

7.5 Circuitry

In order to control the various components mentioned above, a custom control

circuit had to be designed. The voltage requirements to operate the automation system

were 5-volt DC, 12-volt DC, 24-volt AC, and 120-volt AC. This presented for quite the

challenge since the Arduino sends and receives data in a range between 0-5-volts DC.

Appendix 3 shows the general wiring schematic designed for this function.

A power distribution system was used to feed 120-volt AC power from a GFI

protected outlet to the various components. A 250-watt ATX computer power supply was

disassembled and used due to its stable 5-volt and 12-volt DC power output. This power

supply has the capacity to run all four liquid control valves, three temperature sensors,

four differential pressure sensors, the Arduino, and the actual control circuit. A 24-volt

AC doorbell transformer was also fed from the power distribution system in order to

provide proper voltage to the ignition and gas control system. The power distribution

system was also used to feed the liquid transfer pumps 120-volt AC power.

In order to distribute power and control

the numerous components, two circuit boards

were proposed. These provided mounting

location for the semi-conductor components

and a means to wire all of the automation

components together. The first variation

utilized a pre-drilled project board that all of

the semi-conductor components were soldered to (Figure 16). An attempt to solder

jumper wires on the backside of the board proved to be difficult and ineffective.

48

The next variation came to be when a 3-

dimensional model was created to lay out and plan

traces to be placed on a PCB. A total of three

revisions to the 3-D model were done to optimize

the circuit design (Figure 17). The next part of this

circuit design is to manufacture the physical board.

There were three main options considered in order

to manufacture the board. The first was to

outsource the board to an online company. This

became both cost- and time-prohibitive. The

second option was to use a CNC mill in order to

physically remove excess copper and isolate the

traces on the copper clad PCB board.

This proved to be unrealistic due to the hardware

requirements of the CNC mill itself. Due to the

minute size of the bit used to remove the copper,

the minimum revolutions per minute were higher

than the capability of NIU’s equipment. The last

option was to chemically etch the copper clad

boards to remove excess copper. This was a long,

grueling process to adequately protect the copper traces from the acid etchant. After

three attempts of transferring toner from printer paper to the copper and etching the

board, we still did not have an adequate circuit board. After changing to an actual PCB

Revision 3

Figure 17: 3-D Circuit Board Traces

49

etchant solution, and using a

different toner transfer medium, we

successfully produced a PCB board

(Figure 18). Once this was complete,

the mounting holes were drilled and

traces cleaned up. The

semiconductors were desoldered

from the original project board and

moved to the new board and

soldered in place. Numerous circuit

tests were conducted to verify both

conductivity and no existence of

short circuits (Figure 19).

The final step in creating the

control circuitry was to enclose the electronics. A weather tight box was found and

customized in order to mount all of the electronic controls. As shown in Figure 19, the

components were mounted to plexiglass and then secured inside of the customized

enclosure. Figure 20 shows the customizing of the

enclosure in order to support and secure the circuit

boards. This provided an effective way to prevent

water damage and shed any accumulated water.

50

The actual components selected for use have been uploaded to

http://qoo.ql/b0ns4 to conserve paper and allow for multimedia collaboration.

http://qoo.ql/b0ns4

Chapter 8 Programming and Controls

8.1 Introduction

In order to control all of the equipment using an Arduino, a large amount of

programming was required. The principles learned in CSCI240 and MEE321 allowed for

a significantly more complex programming style. By layering sections of coding, the

overall process logic was greatly simplified. This also allowed for a more robust system

control.

8.2 Functional Units

The automated brewing system required essentially four core functions. These

functions controlled the individual components selected earlier on. In order to obtain

readings from the digital temperature sensors, the OneWire library was loaded and

sample coding was modified in order to fit into the overall programming hierarchy.

The Arduino was programmed to measure voltage using the analog input pins

where the pressure sensors were connected. A calibrating equation had to be created in

order to convert the voltage measured to the height of water. Equation 1 relates the

measure pressure to the depth of water from the measurement point. Both pand g are

density and gravitational constants, respectively.

P = pgh

Equation 1: Pressure

This allowed the volume of liquid to be measured by inserting the height of liquid

into the volume equation shown in Equation 2.

V = 7rr2/i

Equation 2: Volume

In this equation, height of the liquid is measured using the pressure sensors to

equate the current volume as desired in the initial programming.

The specific gravity was calculated using the same pressure sensors and

Equation 3.

This allowed for a measure of pressure difference in order to determine the

specific gravity as it relates to tap water.

The next functional group was the control of digital I/O pins in order to send

either 0- or 5-volts DC to operate relays or transistors on the control board. This allowed

for control over the pumps, valves, and ignition system.

The last main functional group was to obtain a time stamp. The Arduino’s time

function resets itself after approximately seventy-minutes, making it unusable without

significant coding. By using an external clock to maintain track of time allowed for

processes to run longer than seventy-minutes without losing track of time.

8.3 Logical Units

In order to simplify individual process coding, logical units were created to

perform simple tasks. These tasks included temperature comparisons, liquid level

^ L l l I G L y i U , T- u / V L t / L V y

L89
SG =

Equation 3: Specific Gravity

W

53

comparisons, and time duration comparisons between goal and actual values. By doing

so, repeat functions could be called using a broad language function.

The next logical units were used to combine valve and pump states in order to

achieve goals. An example of these is transfer commands between two kettles or

recirculation commands within one kettle.

8.4 Process Sequence

The original intent for this system was to allow for multiple processes to easily

occur. These processes included brewing cycles, sanitation cycles, and demonstration

cycles. A usable function was created to allow for easy use of one of these three

processes.

Using the logical units, it greatly simplified the calling of functions so as to reduce

the probable programming errors. Appendix 4 includes the general logic for the brewing

process. The actual Arduino code is included in Appendix 5 for reference.

54

Chapter 9 Heat Exchanger

9.1 Design

The home brew market has a number of chillers available. They are mainly just

that: chillers. They are not very useful for trying to keep the energy in the system, such

as a recirculation system that only uses two burners. We chose to address as a

complex problem.

Each of the chillers had a good idea. The tube in tube style has a large surface

area for a compact operational area. The plate type is also compact. The immersion

style (drop in) chiller takes direct advantage of the chilled water. We felt that a large

surface area with a compact body and good use of the cooling medium would all be

W ' necessary. We were also concerned with the amount material being used, as this would

mean more money spent.

To this end, we would like to introduce the helical, single pass, parallel and

counter flow heat exchanger. This design uses 0.5”x0.5” inch channels that spiral in with

each other. As they reach the center, they turn vertically ninety degrees, and then turn

parallel to the initial path, only forty-five degrees off of the initial line. This change in

direction gets the lines to cross. The flow back to the edge is again parallel flow. The

counter flow portion is the transfer between layers. With the liquid moving in on the

bottom, and out on the top, it creates a different amount of heat transfer than just

following the same lines. Figure 21 shows the flow paths.

The material was a topic of debate also. There are a few good materials for heat

transfer: copper, aluminum, and silicon were all debated. In the end we, chose

55

Figure 21 Bottom (left) and Top of Heat Exchanger

aluminum due to its machinability. With copper, we would have needed to figure out how

to bend the tubes the exact same, while allowing for a few bends in the middle. This

may be looked at in the future, but was beyond the scope for the moment. The

aluminum used was 6061, chosen mainly due to familiarity. After discussions with Ken

Sparkes, we found there are better choices out there, and they will be further

researched in the future.

The initial calculations for the heat exchanger are shown in Appendix . They will

show that with a quarter inch wall thickness and approximately forty square inches of

surface area, there should be a drop of approximately eighty degrees after a short

period of time. This estimate would have the wort cooled down to seventy degrees in

only a couple minutes. We feel this is a high estimate, as we feel would need much

more surface are to achieve the results expected.

We also looked at a second method for analysis of the temperature gradients.

This method used nodal analysis in Excel to figure out what the temperatures would be.

We would now like to extend our gratitude to Ken Sparkes for his assistance in teaching

56

this method to Josh. However, it never came to fruition. The biggest problem was time.

It takes a serious amount of time to populate a number of Excel worksheets with a

number of equations. This was further complicated by the path of the fluid and the extra

set of equations that needed to be derived for the fluids. When time ran out, there was a

rather good proof of concept that is now at the link shared in Chapter 7 Electrical, in the

482hx.xls file.

9.2 Testing

After Nick was able to machine the heat exchanger out of aluminum, and we

were able to install it into the system properly, Humza used his MEE 390 final

experiment to determine the amount of heat being moved.

For this experiment, k-type thermocouples were installed near the inlet and outlet

ports of the heat exchanger. Once the system was fully assembled, the functional loops

were setup for cooling off kettle three by recirculation of kettle one. Kettle three held

near boiling water, and kettle one held near frozen water. The testing was done at a few

different flow speeds to see what kind of affect the flow through the system had on the

temperature change.

57

w

W

The data showed that at a higher speed, more energy as transferred from the hot

to the cold side. At a flow rate of 3.6 gallons per minute, the initial temperature drop

across the heat exchanger was over 45°F. It took the system 12.5 minutes to reach the

final goal of 70°F. This is approximately 40% faster than the immersion chiller that Nick

already has. This is a substantial improvement, and with more work could be improved

greatly. The data is also in the shared folder mentioned in Chapter 7 Electrical.

Temperature vs Time (3.6 GPM)

■ Hot inlet

■ Hot outlet

■Cold inlet

■Cold outlet

Figure 22 Test Data for the Chiller at 3.6 GPM

W

58

Chapter 10 Discussion and Conclusions

This project came together as any engineering endeavor does; with a solution to

a problem. Our project had many solutions to each problem that was encountered, yet

as a team we came together to decide on the best solution. Initially, it all began with the

issue of not inconsistency and the laborious task in brewing beer. Many solutions were

discussed to each other, while some ideas were better than others; the main lesson

leaded is the ability to respectfully find the best solution.

Trust was another great lesson learned in this project, as each person had their

responsibilities, trust in each other to successfully complete one’s task was key in the

project’s success. Each person has their own process of completing a task and trust

that they will finish is a very important lesson learned.

Aside from what we learn from this project, some future plans involve using the

system to create the best beer known to man!

59

References
W

[1] amazon.com. Amazon.com Bayou Classis BG14 Banjo Burner 10 in. x 10 in .. 6 May

2013. 6 May 2013. <http://www.amazon.com/Bayou-Classic-BG14-Banjo-

Burner/dp/B0009JXYTG>

— . RV Motorhome LP Gas Tank Propane Portable Side-Vent two stage Bulk Kit-

Amazon. 6 May 2013. 6 May 2013. <http://www.amazon.com/Motorhome-

Propane-Portable-Side-Vent-two-

stage/dp/B003VBCZVC/ref=pd_sim_sbs_auto_6>.

Brewers Hardware, LLC. LPG Valve - Orifice from Brewers Hardware. 6 may 2013. 6

May 2013. <http://www.brewershardware.com/Valve-and-LPG-Orifice-for-

BURN10.html>.

PexSupply.com. Honeywell S8610U3009 Intermittent Pilot Control. 6 May 2013. 6 May
W

2013. <http://www.pexsupply.com/Honeywell-S8610U3009-lntermittent-Pilot-

Control-4584000-p>.

— . Q345A1313 - Honeywell Q345A1313 - Pilot Burner for natural gas with a BCR-18

orifice. 6 May 2013. 6 may 2013. <http://www.pexsupply.com/Honeywell-

Q345A1313-Pilot-Burner-for-natural-gas-with-a-BCR-18-orifice>.

— . VR8204A2076 - Honeywell VR8204A2076 - Standard Dual Intermittent Pilot Gas

Valve. 6 May 2013. 6 May 2013. <http://www.pexsupply.com/Honeywell-

VR8204A2076-Standard-Dual-lntermittent-Pilot-Gas-Valve-13663000-p>.

60

http://www.amazon.com/Bayou-Classic-BG14-Banjo-Burner/dp/B0009JXYTG
http://www.amazon.com/Bayou-Classic-BG14-Banjo-Burner/dp/B0009JXYTG
http://www.amazon.com/Motorhome-Propane-Portable-Side-Vent-two-stage/dp/B003VBCZVC/ref=pd_sim_sbs_auto_6
http://www.amazon.com/Motorhome-Propane-Portable-Side-Vent-two-stage/dp/B003VBCZVC/ref=pd_sim_sbs_auto_6
http://www.amazon.com/Motorhome-Propane-Portable-Side-Vent-two-stage/dp/B003VBCZVC/ref=pd_sim_sbs_auto_6
http://www.brewershardware.com/Valve-and-LPG-Orifice-for-BURN10.html
http://www.brewershardware.com/Valve-and-LPG-Orifice-for-BURN10.html
http://www.pexsupply.com/Honeywell-S8610U3009-lntermittent-Pilot-Control-4584000-p
http://www.pexsupply.com/Honeywell-S8610U3009-lntermittent-Pilot-Control-4584000-p
http://www.pexsupply.com/Honeywell-Q345A1313-Pilot-Burner-for-natural-gas-with-a-BCR-18-orifice
http://www.pexsupply.com/Honeywell-Q345A1313-Pilot-Burner-for-natural-gas-with-a-BCR-18-orifice
http://www.pexsupply.com/Honeywell-VR8204A2076-Standard-Dual-lntermittent-Pilot-Gas-Valve-13663000-p
http://www.pexsupply.com/Honeywell-VR8204A2076-Standard-Dual-lntermittent-Pilot-Gas-Valve-13663000-p

((I

Appendix 1

Appendix

Table 9 Gantt Chart

Planned Actual Show Gantt for Actual Show Status? What is current week?

3 List of Activties Stan Dur Start Dur Done
1 D e term ine Project 1 1 1 1 100%
2 Learn Process 1 6 1 8 100%
3 D e te rm ine M e th ods For Design 2 6 1 9 100%
4 Research Pump Types 3 7 3 4 100%
5 Research Va lve Types 3 7 3 9 100%
6 Research Therm ocoup les 3 7 3 6 100%
7 Research Pressu re Gauges 3 7 3 13 100%
3 D e tem ine F low Paths 6 3 6 8 90%
9 Choose and Purchase Tem perature Sensors 10 4 10 4 10%
10 D esign Fram e 13 4 13 4 75%
11 D e te rm ine S u ita b le Com petito rs 13 4 13 4 2%
12 Design P ip ing System 13 4 13 4 5%
13 Purchase Backup Contro l U n it 13 4 13 4 10%
14 D esign E lectr ica l System 13 6 13 6 5%
15 Choose and Purchase V a lve s 13 8 13 8 10%
16 Choose and Purchase P ip ing 18 6 18 6 C%
17 W rite Code 18 10 18 10 0%
18 Purchase Burner 20 1 20 1 10%
19 Choose and Purchase Igniters 20 2 20 2 1%
20 Choose and Purchase Burner Contro ls 20 3 20 3 0%
21 B u ild Fram e 20 5 20 5 0%
22 Route P ip ing 22 5 22 5 0%
23 Route E lectr ica l 22 5 22 5 0%
24 Test Code 22 7 22 7 0%
25 Perform In it ia l Testing 26 4 26 4 0%
26 Perform Q u a lity Testing 31 8 31 8 0%

Appendix 2

Table 10 House of Quality

PROJECT: Automated Brewing System

>orrelation/Relationshi]

Positive
Average
Negative

Direction of Improvement C ustom er’s F eed ba ck

Product-/Service-
Requirements

"HOW"

Customer
Requirements

"WHAT’

0o
c
03to□J

simplicity

repeatablitiy

low cost

portability

ease of use

safety

automated

quality

volume

esthetics

serviceability
food grade safe

E N C H M A R t Own Organization
Sabco
Competitor 2
Competitor 3
Competitor 4

Goal 40 37

Importance (1-5)

E f i l i a t i o k

C o a p c t i t io t / t a p o iU i

Uvcry weak I hot important

2=wcak l little important

3=averagc

4=;trong l important

3 5 5 4 5 5 4 4 5=v<ry strong / very important

28 26 35 48 39 33 16 18

KMET

Electrical Wiring Diagram

Appendix 3

63

Appendix 4
W

Brewing Logic

• Pumps, valves, burners OFF
• //Strike Water TankKStep H

o If Templ<=StrikeTemp //Heat Until Strike Temp
■ Burnerl ON

o Else //Transfer to Tank2
■ BurnerlOFF
■ Valvel open to Tank2
■ Pumpl ON
■ Until VolumeTank2 = StrikeVolume //Transfer until Strike Volume

• Valvel close
• Pumpl Off

• //Mash & RecirculationfSteo 2)
o Loop until MashTime/Specific Gravity

■ If Temp2 < MashTemp //Recirculate while Burner2 On
• Burner2 on
• Valve2 open to Tank2 //Recirculate
• Pump2 On

■ Else
• Burner2 off
• Pump2 off

• //Transfer & Rinse (AKA SpareeKStep 3)
o Until Tank3<= BoilVol

■ //Transfer Tank2 to Tank3
• Valve2 open to Tank3
• Pump2 on

* //Transfer Tankl to Tank2 to rinse
• Valvel open to Tank2
• Pumpl on

• //Boil (Step 41
o Burner3 Intermitted to maintain BoilTemp

■ Wait until Hopl(min)
• Alarm Hopl

■ Wait until Hop2(min)
• Alarm Hop2

■ Wait until Hop3(min)
• Alarm Hop3

■ Wait until Hop3(min) ends
• //Chill (Steo5)

o Until VolTank3 = 0
■ Burner3 Off
■ //Chiller Recirculation

• Valve 1 open to chiller
• Pumpl on

■ Valve 3 open to fermenter

64

Appendix 5
's^p/

Arduino Code

*****Arduino_Sketch*****
#include "Arduino.h"
in c lu d e "ControlMe.h"
#include <string>
#include <iostream>
using namespace std;

//Time in minutes
//Temperature in degrees

F

double FillTemp = 40;

double BrewTime = 0;
double BrewTempChange

= 0;
double BrewTemp = 0;
double BrewTemp2 = 0;
double goalSG = 0;

double RinseDelay = 0;

double PasturizeTemp =
210;

double PasturizeTime = 0;

double Hopsl = 0;
double Hops2 = 0;
double Hops3 = 0;
double IceDump = 0;
double CoolTemp = 0;

ControlMe Brew;
ControlMe Setup;

void setup()
{

Serial.begin(9600);
Setup.lnitialize();
int x = Demo();

}
void loop()
{

Brew.Shutdown();
}
int BrewCycleO
{

ControlMe Brew;
double TotalStart,

BrewStart, RinseStart,
PasturizeStart;

TotalStart =
Brew.GetTimeO; //Stamps initial
process start time

Brew .F ill(l); //F ills
Keg 1

w
do
{

if (Brew.CheckLevel(l)
== TRUE)

Brew.RecircKeg(1,1);
//Recirculates Keg 1 once filled

if
(Brew.CheckTemp(1, FillTemp) ==
FALSE)

Brew.Burner(1,1);
//Turns Burner 1 on if under desired
temp

else
Brew.Bumer(1,0);

//Turns Burner 1 off if @ desired
temp

}
//Exits loop if Keg 1 is fu ll

and @ desired temp
while

(Brew.CheckLevel(l) != TRUE &&
Brew.CheckTemp(1 .FillTemp)
!=TRUE);

Brew.Transfer(2);
//Transfers water to Keg 2

do
{

if (Brew.CheckLevel(2)
== TRUE)

Brew.RecircKeg(1,1);
//Recirculates Keg 1 once Keg 2 is
filled

if
(Brew.CheckTemp(1,FillTemp) ==
FALSE)

Brew.Burner(1,1);
//Turns Burner 1 on if under desired
temp

else
Brew.Burner(1,0);

//Turns Burner 1 off if @ desired
temp

if
(Brew.CheckTemp(2, BrewTemp) ==
FALSE)

Brew.RecircKeg(2,1);
//Recirculates Keg 2 if under desired
temp

else
Brew.RecircKeg(2,0);

//Stops recirculating Keg 2 if @
desired temp

>
//Exits loop if Keg 2 is full

and @ desired temp
while

(Brew.CheckLevel(2) != TRUE &&
Brew.CheckTemp(2, BrewTemp)
!=TRUE);

//***DUMP GRAINS

BrewStart =
Brew.GetTimeO; //Stamps brewing
start time

do
{

if
(Brew.CheckTemp(2,BrewTemp) ==
FALSE)

{
Brew.RecircKeg(2,1);

//Recirculates Keg 2 if under desired
temp

Brew.RecircKeg(1,1);
//Recirculates Keg 1 if Keg 1 is under
desired temp

}
else

Brew.RecircKeg(1,0);
//Stops recirculating Keg 1 if @
desired temp

if
(Brew.CheckTemp(1 .FillTemp) ==
FALSE)

Brew.Bumer(1,1);
//Turns Burner 1 on if under desired
temp

else
Brew.Bumer(1,0);

//Turns Burner 1 off if under desired
temp

if
(Brew.CheckTime(BrewStart, BrewTe
mpChange) == TRUE)

BrewTemp =
BrewTemp2; //Increases brew
temperature after desired time

}
//Exits loop if time cycle is

complete or specific gravity is
reached

while
(Brew.CheckTime(BrewStart,BrewTi
me) != TRUE ||
Brew.CheckSG(goalSG) !=TRUE);

Brew.Burner(1,0);
//Turns Burner 1 off

Brew.Transfer(3);
//Transfers brewed liquid to Keg 3

RinseStart =
Brew.GetTimeO; //Stamps rinse start
time

do
{
//RINSE DELAY

}

65

//Exits loop after specified // if Brew.Pump(1,1);
RinseDelay (Brew.CheckTime(PasturizeStart,Ho Brew.Pump(2,1);

while ps2) == TRUE)
(Brew.CheckTime(RinseStart,RinseD //AD D HOPS delay(30000);
elay) != TRUE); // Dump HOPS

// if Brew.Pump(1,0);
do (Brew.CheckTime(PasturizeStart,Ho Brew.Pump(2,0);
{ ps3) == TRUE) Brew.Valve(4,0);

Brew.Transfer(2); //AD D HOPS Brew.Valve(2,1);
//Transfers water from Keg 1 to Keg // Dump HOPS
2 } delay(7500);

} //Exits loop after cycle
//Exits loop if Keg 3 is full time is complete Brew.Pump(2,1);
while while

(Brew.CheckLevel(3) != TRUE); (Brew. CheckTime(PasturizeStart, Pas
turizeTime) != TRUE);

delay(15000);

Brew.RecircKeg(1,0); Brew.Pump(1,1);
//Turns Pump 1 off and closes valve do
2 {

Brew. RecircKeg(1,1);
delay(30000);

do //Recirculate Keg 1 for cooling Brew.Pump(1,0);
{ Brew.RecircKeg(3,1); Brew.Pump(2,0);

Brew.Burner(2,1); //Recirculate Keg 3 for cooling Brew.Valve(3,0);
//Turns Burner 2 on } Brew.Valve(2,0);

} //Exits loop after goal
//Exits loop if Keg 3 is @ temperature is reached delay(7500);

desired temp while
while (Brew.CheckTemp(3,Coorremp) != Brew.Pump(2,1);

(Brew.CheckTemp(3,PasturizeTemp) TRUE); Brew.Burner(2,1);
== FALSE);

Brew.Shutdown(); delay(6000);
Brew.Burner(2,0); //Shuts down brewing cycle

//Turns Burner 2 off
return 0;

Brew.Bumer(2,0);

PasturizeStart = } delay(15000);
Brew.GetTimeQ; //Stamps pasturize
start time int Demo()

{
Brew.Valve(1,1);

Brew.Pump(1,1);

do delay(30000);
{ Brew.Valve(2,1);

if Brew.Pump(2,0);
(Brew.CheckTemp(3,PasturizeTemp) delay(7500); Brew.Pump(1,0);
== FALSE)

Brew.Burner(2,1); Brew.Pump(2,1); return 0;
//Turns Burner 3 on }

else delay(45000);
Brew.Bumer(2,0);

//Turns Burner 3 off Brew.Pump{2,0);
Brew.Valve(1,0);

if (Brew.CheckLevel(l) Brew.Valve(2,1);
== FALSE)

Brew .Fill(l); delay(7500);
//F ills Keg 1 for cooling cycle

Brew.Burner(1,1);
if (Brew.BoilOverQ ==

TRUE) delay(6000);
Brew.Bumer(2,0);

//Turns Burner 2 off if boil over Brew.Burner(1,0);
occurs

//•-IN S E R T Brew.Pump(1,1);
PASTU R IN G STEPS

// if delay(30000);
(Brew.CheckTime(PasturizeStart,lce
Dump) == TRUE) Brew.Pump(1,0);

//AD D ICE Brew.Valve(3,1);
// if Brew.Valve(4,1);

(Brew.CheckTime(PasturizeStart,Ho Brew.Valve(2,0);
ps1) ==TRUE)

//AD D HOPS delay(7500);
// Dump HOPS

*****ControlMe.h*****

// ControlMe.h
II
II
II
II
II Humza Shamsuddin, 2013.
//==========================

#include "OneWire.h"
#include "W ire.h"

class ControlMe
{
public:

ControlMe();
~ControlMe();

void Burner(int Burner, int
10);

void Valve(int Valve, int
10);

void Pump(int Pump, int
10);

void RecircKeg(int Keg, int
10);

void F ill(int 10);
void Transfer(int

TransferTo);

void lnitialize();
void ShutdownQ;

bool CheckLevel(int Keg);
bool CheckTemp(int Keg,

double GoalTemp);
bool CheckTime(double Time,

double CycleTime);
bool CheckSG(double SG);

bool BoilOver();

double KegTemp(int Keg);
double KegPress(int Keg,

int Position);
double GetTime();

double AnalogSensor(int Pin);
// void ElapsedTime(double
Tnow, double Tstart);
// void ElapsedCycle(double
Tnow, double Tstart);

private:
//Declares variable for pin

addresses for each component on
theArduino

int BURNER1;
int BURNER2;
int VALVE1;
intVALVE2;
int VALVE3;
int VALVE4;
in tP U M P I;
int PUMP2;

int TEM PI;

int TEMP2;
int TEMP3;
int KEG1PRES1;
int KEG2PRES1;
int KEG2PRES2;
int KEG3PRES1;

char tem pi [8];
char temp2[8];
char temp3[8];

double FillVolume;
double KegRadius;

67

*****ControlMe.cpp****
//================= pinMode(TEMP1, INPUT) analogReference(EXTERNAL);

// ControlMe.cpp
II
//
//
II
II Humza Shamsuddin,

2013.
//=================

pinMode(TEMP2, INPUT);

pinMode(TEMP3,INPUT);

pinMode(KEG1PRES1,INPUT)

pinMode(KEG2PRES1 .INPUT)

pinMode(KEG2PRES2, INPUT)

pinMode(KEG3PRES1 .INPUT)

Valve(1,1);
Valve(2.1);
Valve(3,1);
Valve(4,1);

delay(7500);

Valve(1,0);
Valve(2,0);
Valve(3,0);
Valve(4,0);

#include "ControlMe.h"

//-------------------------------

// constructor
//------------------------

ControlMe::ControlMe()
{

//Declares pin
assignments for components
connected to the Arduino

BURNER1 =41;
BURNER2 = 39;

VALVE 1 = 24;
VALVE2 = 26;
VALVE3 = 28;
VALVE4 = 30;

//Turns
connected components off at startup

Bumer(1,0);
Bumer(2,0);
Valve(1,0);
Valve(2,0);
Valve(3,0);
Valve(4,0);
Pump(1,0);
Pump(2,0);

}

// destructorII------------------------

ControlMe::~ControlMe()
{

PUMP1 = 49;
PUMP2 = 47;

TEMPI = 38
TEMP2 = 40
TEMP3 = 42

KEG1PRES1 =A4
KEG2PRES1 =A6
KEG2PRES2 = A7
KEG3PRES1 =A5

//Volume in gallons
FillVolume = 0;
//Radius in feet
KegRadius = 1;

}
li
lt Initialize
II Accepts: Nothing
II Returns:

Nothing
II Purpose:

Initiates all output pins and ensures
state is off

void ControlMe::lnitialize()
{
Wire.beginQ;

w

//Sets up pin // clear /EOSC bit
assignments within Arduino // Sometimes necessary

pinMode(BURN to ensure that the clock
ER1,OUTPUT); // keeps running on just

pinMode(BURN battery power. Once set,
ER2,OUTPUT); // it shouldn't need to be

pinMode(VALVE reset but it’s a good
1,OUTPUT);

pinMode(VALVE
// idea to make sure.

2,OUTPUT); W ire.beginTransmission(0x68); //
pinMode(VALVE address DS3231

3,OUTPUT); Wire.write(OxOE); II select
pinMode(VALVE register

4,OUTPUT); W ire.write(0b00011100);
pinMode(PUMP II write register bitmap, bit 7 is

1,OUTPUT); /EOSC

2,OUTPUT);
pinMode(PUMP Wire.endTransmissionO;

delay(7500);
}
//------------

II Burner Control
// Accepts: int Burner as

the burner number
// int IO as the

burner state (On/Off)
// Returns:

Nothing
// Purpose:

Evaluates input number and state
and controls appropriate

II Arduino pin
state II-------------------------

void ControlMe::Burner(int
Burner, int IO)

{
int pin;

//Converts
burner number to proper Arduino pin
address

if (Burner == 1)

BURNER1;

= = 2)

BURNER2;

pin =

else if (Burner

pin =

//Controls
Arduino pin output (LOW = 0 volts,
HIGH = 5 volts)

if (IO = 0)

digitalW rite(pin, LOW);
else if (IO == 1)

digitalW rite(pin, HIGH);

return;
>
/I-------------------------

// Valve Control
// Accepts: int Valve as

the valve number
// int IO as the

valve state (On/Off)

68

// Returns:
10 == 0)

if (Keg == 1 &&
. Nothing

// Purpose:
Evaluates input number and state
and controls appropriate

// Arduino pin
state

//----------------------

void ControlMe::Valve(int
Valve, int 10)

{
in t pin;

//Converts valve
number to proper Arduino pin
address

if (Valve == 1)

VALVE 1;

2)

VALVE2;

3)

pin =

else if (Valve ==

pin =

else if (Valve ==

VALVE3;

4)

pin =

else if (Valve ==

VALVE4;
pin =

//Controls
Arduino pin output (LOW = 0 volts,
HIGH = 5 volts)

if (I0 == 0)

digitalW rite(pin, LOW);
else if (I0 == 1)

digitalW rite(pin, HIGH);

return;
}

PUMP1;

2)

PUMP2;

if (Pump == 1)
pin =

else if (Pump ==

pin =

//Controls
Arduino pin output (LOW = 0 volts,
HIGH = 5 volts)

if (I0 == 0)

digitalW rite(pin, LOW);
else if (IO == 1)

digita!W rite(pin, HIGH);

return;
}
II-------------------------

// Recirculate
// Accepts: int Keg as

the keg number
// int IO as the

recirculate state (On/Off)
// Returns:

Nothing
// Purpose:

Evaluates input number and state
and calls appropriate

// functions
II---------------------------------

void
Contro!Me::RecircKeg(int Keg, int
IO)

{
if (Keg == 1 &&

IO ==1)
{

Valve(2,0);

fi

ll Pump Control
// Accepts: int Pump as

the pump number
// int IO as the

pump state (On/Off)
If Returns:

Nothing
// Purpose:

Evaluates input number and state
and controls appropriate

// Arduino pin
state

//------------------------

&& 10 ==

Pump(1,1);
}
else if (Keg == 2

D
{

&& IO ==

Valve{3,1);

Va!ve(4,1);

Pump(2,1);
}
else if (Keg == 3

1)
{

void ControlMe::Pump(int
Pump, int IO)

{
int pin;

//Converts pump
number to proper Arduino pin
address

Valve(3,0);

Valve(4,0);

Pump(2,1);
}

&& IO == 0)

{
Pump(1,0);
Valve(2,0);

else if (Keg == 2

&& IO ==
Pump(2,0);

else if (Keg == 3
0)
Pump(2,0);

return;
}
//---------------

// Fill Keg 1
// Accepts: int IO as the

fill state (On/Off)
// Returns:

Nothing
// Purpose:

Evaluates input state and calls
appropriate functions

//------------------------

void ControlMe::Fill(int IO)
{

if (IO == 0)

Valve(1,0);
else if (IO ==1)

Valve(1,1);

return;
}
//------------------------

// Transfer Fluid
// Accepts: int

TransferTo as the destination keg
II Returns:

Nothing
// Purpose:

Evaluates input destination and calls
appropriate functions

void
ControlMe::Transfer(int TransferTo)

{
if (TransferTo ==

1)
Fi!l(1);

else if
(TransferTo == 2)

{
Valve(2,1);

Pump(1,1);
}
else if

(TransferTo == 3)

69

{
Valve(3,1);

Valve(4,0);

Pump(2,1);
}
return;

}
//---------------

// Shutdown Procedure
// Accepts: Nothing
// Returns:

Nothing
II Purpose:

Shutsdown all output pins and
ensures state is off

II-----------------------
void

ControlMe::Shutdown()
{

Bumer(1,0);
Burner(2,0);
Valve(1,0);
Valve(2,0);
Valve(3,0);
Valve(4,0);
Pump(1,0);
Pump(2,0);

}

minutes = W ire.read(); //
get minutes

hours = Wire.readO; //
get hours

sec = (((seconds &
0b11110000)»4)*10 + (seconds &
0b00001111)); // convert BCD to
decimal

mins = (((minutes &
0b11110000)»4)*10 + (minutes &
0b00001111)); // convert BCD to
decimal

hrs = (((hours &
0b00100000)»5)*20 + ((hours &
0b00010000)»4)*10 + (hours &
0b00001111)); // convert BCD to
decimal (assume 24 hour mode)

}
double Time = (((hrs *60)

+ mins) * 60) + sec;
return Time;

}

// Get Keg Temperature
// Accepts: int Keg as

Keg number
// Returns: double

KegTemp
// Purpose: Gets

keg temp and returns its value
//------------------------

II-------------------------

// Get Time Stamp
// Accepts: Nothing
// Returns: double

Time
// Purpose: Gets

time stamp from clock and returns its
value

II-------------------------
double

ControlMe: :GetTime()
{

// send request to receive
data starting at register 0

Wire.beginTransmission(0x68); //
0x68 is DS3231 device address

W ire.write((byte)0); //
start at register 0

W ire.endTransmission();
W ire.requestFrom(0x68,

3); // request three bytes (seconds,
minutes, hours)

double sec, mins, hrs;
int seconds, minutes,

hours;

double
ControlMe::KegTemp(int Keg)

{
//Temperature Retrieval

and Conversion Function
byte type_s;
byte data[12];
byte addr{8];

if (Keg == 1)
{

OneWire
Tempi (TEM PI);

if (!Temp1 .search(addr))
{

//no more sensors on
chain, reset search

Tempi .resetjsearchO;
return -1000;

}
if

(OneWire::crc8(addr,7) != addr[7])
{

Serial.printlnfCRC is
not valid!");

return -1000;
}

while(W ire.available())
{

seconds = Wire.readO;
W // get seconds

if (addr[0] != 0x10 &&
addr[0] != 0x28)

{
Serial.printfDevice is

not recognized");

return -1000;
}
Tem pi.reset();
Tempi .select(addr);
Tempi .write(0x44,1);

//start conversion, with parasite
power on at the end

delay(750);

byte present =
Tem pi.reset();

Tempi .select(addr);
Tempi .write(OxBE);

//Read Scratchpad

for (int i = 0; i < 9; i++)
{

//We need 9 bytes
data[i] = Tem pi.read();

}
Tempi .reset_search();

}
if (Keg == 2)
{

OneWire
Temp2(TEMP2);

if (!Temp2.search(addr))
{

//no more sensors on
chain, reset search

Temp2.reset_search();
return -1000;

}
if

(OneWire::crc8(addr,7) != addr[7])
{

Serial.printlnfCRC is
not valid!");

return -1000;
}
rf(addr[0] !=0x10&&

addr[0] != 0x28)
{

Serial.printfDevice is
not recognized");

return -1000;
}
Temp2.reset();
Temp2.select(addr);
Temp2.write(0x44,1);

//start conversion, with parasite
power on at the end

byte present =
Temp2.reset();

Temp2.select(addr);
Temp2.write(0xBE);

//Read Scratchpad

for (int i = 0; i < 9; i++)
{

//We need 9 bytes
data[i] = Temp2.read();

}

70

> , Temp2.reset_search0;}
if (Keg == 3)
{

OneWire
Temp3(TEMP3);

if (!Temp3.search(addr))
{

//no more sensors on
chain, reset search

Temp3.reset_search();
return -1000;

}
if

(OneWire::crc8(addr,7) != addr[7])
{

Serial.println("CRC is
not valid!");

return -1000;
}
if (addrfO] != 0x10 &&

addr[0] != 0x28)
{

Serial.printfDevice is
not recognized");

return -1000;
}
Temp3.reset();
Temp3.select(addr);
Temp3.write(0x44,1);

//start conversion, with parasite
power on at the end

byte present =
Temp3.reset();

Temp3.se!ect(addr);
Temp3.write(0xBE);

//Read Scratchpad

for (int i = 0; i < 9; i++)
{
//We need 9 bytes
data[i] = Temp3.read();

}
Temp3.reset_search();

}
unsigned int raw =

(data[1] « 8) | data[0];
if (type s)
{

raw = raw « 3; // 9 bit
resolution default

if (data[7] = 0x10)
{

// count remain gives
fu ll 12 bit resolution

raw = (raw & OxFFFO)
+12 - data[6];

}
}
else
{

byte cfg = (data[4] &
0x60);

if (cfg = 0x00) raw =
raw « 3; // 9 bit resolution, 93.75
ms

else if (cfg == 0x20) raw
= raw « 2; //1 0 bit res, 187.5 ms

else if (cfg == 0x40) raw
= raw « 1 ; //11 bit res, 375 ms

// default is 12 bit
resolution, 750 ms conversion time

}
byte MSB = data[1];
byte LSB = data[0];

float tempRead = ((MSB
« 8) | LSB); //using two's
compliment

float TemperatureSum =
(float)tempRead /1 6 ;
//Temperature in degrees C

float KegTemp =
(TemperatureSum * 1.8) + 32.0;
//Temperature in degrees F

return KegTemp;
}
//------------------------

// Check Level
// Accepts: int Keg as

which keg
// Returns: bool
// Purpose:

Checks the level of the keg and
determines if it's full

//----------------------

bool
ControlMe::CheckLeve!(int Keg)

{
//Determines goal height

for fill status in feet
double GoalHeight =

FiliVolume / (3.14159 * KegRadius *
Keg Radius);

double CurrentHeight;
double

PressureConversionConstant = 0;
double Voltage;
double Pressure;

if (Keg == 1)
{

Voltage =
AnalogSensor(KEG1 PRES1);

Pressure = Voltage *
PressureConversionConstant;

CurrentHeight =
Pressure / (1.936 * 32.2); //Based
on Spec. Weight @ 70-degrees F

}
else if (Keg == 2)
{

Voltage =
AnalogSensor(KEG2PRES1);

Pressure = Voltage *
PressureConversionConstant;

CurrentHeight =
Pressure / (1.89 * 32.2); //Based
on Spec. Weight @ 160-degrees F

}
else if (Keg == 3)
{

Voltage =
AnalogSensor(KEG3PRES 1);

Pressure = Voltage *
PressureConversionConstant;

CurrentHeight =
Pressure / (1.89 * 32.2); //Based
on Spec. Weight @ 160-degrees F

}

if (CurrentHeight >=
GoalHeight)

return 1;
else

return 0;
}

// Analog Sensor
// Accepts: int Pin as

which PIN assignment
// Returns: Voltage
// Purpose:

Checks the voltage of the sensor
and sends back the value

double
ControlMe::AnalogSensor(int Pin)

{
analogReference(EXTERNAL);

double Voltage =
0.0048828125 * analogRead(Pin);

return (Voltage);
}
II--------------------------------

// Check Temp
// Accepts: int Keg as

which keg
II double

GoalTemp as the goal temperature
// Returns: bool
// Purpose:

Checks the temp of the keg and
determines if it’s @ tempII------------------------

bool
ControlMe::CheckTemp(int Keg,
double GoalTemp)

{
double CurrentTemp =

KegTemp(Keg);

if (CurrentTemp >=
(GoalTemp - 0.0))

return 1;
else

return 0;
}
II-----------------------
// Check Time

71

return 0;// Accepts: double Time
as process start time

W ' // double
CycleTime as cycle duration

// Returns: bool
// Purpose:

Checks the time duration and
determines if cycle is complete

//------------------------

bool
ControlMe::CheckTime(double Time,
double CycleTime)

{
double CurrentTime =

GetTimeO; //Gets timestamp in
seconds

if ((Time + CycleTime) >=
CurrentTime)

return 1;
else

return 0;
>
It------------------------------------

// Check Specific Gravity
// Accepts: double SG

as goal specific gravity
// Returns: bool
// Purpose:

Checks the specific gravity against
goal value

bool
ControlMe::CheckSG(double SG)

{
//Determines goal height

for fill status in feet
double GoalHeight =

FillVolume / (3.14159 * KegRadius *
KegRadius);

double CurrentHeight;
double

PressureConversionConstant = 0;
double delHeight = 10 /

12; //Sensor height difference in
inches

double Voltage 1 =
AnalogSensor(KEG2PRES1);

double Pressurel =
Voltagel *
PressureConversionConstant;

double Voltage2 =
AnalogSensor(KEG2PRES2);

double Pressure2 =
Voltage2 *
PressureConversionConstant;

double CurrentSG =
((Pressure2 - P ressurel) / (delHeight
* 32.2)) /1 .89 ; //Based on Density
@ 160-degrees F

if (CurrentSG >= SG)
return 1;

else

}
//-

// Boil Over
II Accepts: Nothing
// Returns: bool
// Purpose:

Checks if boilover condition exists in
Keg 3

bool ControlMe::BoilOver()
{

return 0;
}

72

*****lmported
Libraries*****

#ifndef OneWire_h
#define OneWire_h

#include <inttypes.h>

if ARDUINO >= 100
#include "Arduino.h" //

for delayMicroseconds,
digitalPinToBitMask, etc

#else
#include "WProgram.h"

// for delayMicroseconds
#include "pins_arduino.h"

// for digitalPinToBitMask, etc
#endif

// You can exclude certain
features from OneWire. In theory,
this

// might save some space.
In practice, the compiler
automatically

// removes unused code
(technically, the linker, using -fdata-
sections

// and -ffunction-sections
when compiling, and W l,-gc-
sections

// when linking), so most of
these w ill not result in any code size

// reduction. Well, unless
you try to use the missing features

// and redesign your
program to not need them!
ONEWIRE_CRC8_TABLE

// is the exception,
because it selects a fast but large
algorithm

// or a small but slow
algorithm.

// you can exclude
onewire_search by defining that to 0

#ifndef
ONEWIRE_SEARCH

iHpfinp
ONEWIRE_SEARCH 1

#endif

// You can exclude CRC
checks altogether by defining this to
0

#ifndefONEWIRE_CRC
#define ONEWIRE_CRC 1
#endif

// Select the table-lookup
method of computing the 8-bit CRC

// by setting this to 1. The
lookup table enlarges code size by

// about 250 bytes. It does
NOT consume RAM (but did in very

// old versions of
OneWire). If you disable this, a
slower

// but very compact
algorithm is used.

#ifndef
ONEWIRE_CRC8_TABLE

itHpfinp
ONEWIRE_CRC8_TABLE 1

#endif

// You can allow 16-bit
CRC checks by defining this to 1

// (Note that
ONEWIRE_CRC must also be 1.)

#ifndef ONEWIRE_CRC16
#define

ONEWIRE_CRC16 1
#endif

#define FALSE 0
#define TRUE 1

// Platform specific I/O
definitions

if defined(_AVR__)
& jafjnp

PIN_TO_BASEREG(pin)
(portlnputRegister(digitalPinToPort(pi
n)))

tfdpfinp
PIN_TO_BITMASK(pin)
(digitalPinToBitMask(pin))

#define IO_REG_TYPE
uint8_t

#define IO_REG_ASM
asm("r30")

#define
DIRECT_READ(base, mask)
(((*(base)) & (mask)) ? 1 :0)

#define
DIRECT_MODE_!NPUT(base,
mask) ((*(base+1)) &= -(m ask))

#define
DIRECT_MODE_OUTPUT(base,
mask) ((*(base+1)) |= (mask))

define
DIRECT_WRITE_LOW(base, mask)
((*(base+2)) &= -(m ask))

#defjne
DIRECT_WRITE_HIGH(base, mask)
((*(base+2)) |= (mask))

#e lif
defined(__PIC32MX__)

#include <plib.h> // is this
necessary?

jUpfinp
PIN_TO_BASEREG(pin)
(portModeRegister(digita)PinToPort(p
in)))

itrlp fino
PIN_TO_BITMASK(pin)
(digitalPinToBitMask(pin))

#define IO_REG_TYPE
uint32_t

#define IO_REG_ASM
#define

DIRECT_READ(base, mask)
(((*(base+4)) & (mask)) ? 1 : 0)
//PORTX + 0x10

#define
DIRECT_MODEJNPUT(base,

mask) ((*(base+2)) = (mask))
//TRISXSET + 0x08

define
DIRECT_MODE_OUTPUT(base,
mask) ((*(base+1)) = (mask))
//TRISXCLR + 0x04

define
DIRECT_WRITE_LOW(base, mask)
((*(base+8+1)) = (mask))
//LATXCLR + 0x24

^define
DIRECT_WRITE_HIGH(base, mask)
((*(base+8+2)) = (mask))
//LATXSET + 0x28

#else
#error "Please define I/O

register types here"
#endif

class OneWire
{

private:
IO_REG_TYPE

bitmask;
volatile IO_REG_TYPE

*baseReg;

if ONEWIRE_SEARCH
// global search state
unsigned char

ROM_NO[8];
uint8_t

LastDiscrepancy;
uint8_t

LastFamilyDiscrepancy;
uint8_t LastDeviceFlag;

#endif

public:
OneWire(uint8_t pin);

// Perform a 1-Wire
reset cycle. Returns 1 if a device
responds

If with a presence pulse.
Returns 0 if there is no device or the

II bus is shorted or
otherwise held low for more than
250uS

uint8_t reset(void);

// Issue a 1-Wire rom
select command, you do the reset
first.

void select(uint8_t
rom[8]);

II Issue a 1-Wire rom
skip command, to address all on
bus.

void skip(void);

// W rite a byte. If 'power1
is one then the wire is held high at

II the end for
parasitically powered devices. You
are responsible

73

w

w

//fo r eventually // Compute a Dallas // byte order than the
depowering it by calling depower() or Semiconductor 8 bit CRC, these are two bytes you get from 1-Wire.
doing used in the // @param input - Array

// another read or write. // ROM and scratchpad of bytes to checksum.
void write(uint8_t v, registers. // @param len - How

uint8_t power = 0); static uint8_t crc8(many bytes to use.
uint8_t *addr, uint8_t ten); 11 © return The CRC16,

void write_bytes(const as defined by Dallas Semiconductor.
uint8_t *buf, uint16_t count, bool # if ONEWIRE_CRC16 static uint16_t
power = 0); // Compute the 1-Wire crc16(uint8_t* input, uint16_t len);

CRC16 and compare it against the #endif
// Read a byte. received CRC. #endif
uint8_t read(void); // Example usage

(reading a DS2408):
void read_bytes(uint8_t // // Put everything in a #endif

*buf, uint16_t count); buffer so we can compute the CRC
easily. r

//W rite a bit. The bus is // uint8 t buf[13]; Copyright (c) 2007, Jim
always left powered at the end, see // buf[0 f= OxFO; // Studt (original old version - many

II note in write() about Read PIO Registers contributors since)
that. // b u fti] = 0x88; //

void write_bit(uint8_t v); LSB address The latest version of this
// buf[2] = 0x00; II library may be found at:

// Read a bit. MSB address
uint8_t read_bit(void); // W riteBytes(net, buf, http://www.pjrc.com/teensy/td_libs_0

3); // W rite 3 cmd bytes neWire.html
// Stop forcing power // ReadBytes(net,

onto the bus. You only need to do bu f+3 ,10); // Read 6 data bytes, 2 Version 2.1:
this if OxFF, 2 CRC16 Arduino 1.0 compatibility,

// you used the 'power* // if Paul Stoffregen
flag to write() or used a write_bit() (!CheckCRC16(buf, 11, &buf[11])){ Improve temperature
call // // Handle error. example, Paul Stoffregen

// and aren't about to do // } DS250x_PROM
another read or write. You would II example, Guillermo Lovato
rather // @param input - Array PIC32 (chipKit)

// not leave this powered of bytes to checksum. compatibility, Jason Dangel,
if you don't have to, just in case // @param len - How dangel.jason AT gmail.com

// someone shorts your many bytes to use. Improvements from
bus. // @param inverted_crc Glenn Trewitt:

void depower(void); - The two CRC16 bytes in the -crc16() now works
received data. - check_crc16() does all

if ONEWIRE_SEARCH // This of calculation/checking work.
If Clear the search state should just point into the received -Added read_bytes() and

so that if w ill start from the beginning data, write_bytes(), to reduce tedious
again. // *not* at loops.

void reset_search(); a 16-bit integer. -Added ds2408 example.
// © return True, iff the Delete very old, out-of-

// Look for the next CRC matches. date readme file (info is here)
device. Returns 1 if a new address static bool
has been check_crc16(uint8_t* input, uint16_t Version 2.0: Modifications

// returned. A zero might len, uint8_t* inverted_crc); by Paul Stoffregen, January 2010:
mean that the bus is shorted, there http://www.pjrc.com/teensy
are // Compute a Dallas /td_libs_OneW ire.html

// no devices, or you Semiconductor 16 bit CRC. This is Search fix from Robin
have already retrieved all o f them. It required to check James

// might be a good idea //th e integrity o f data
to check the CRC to make sure you received from many 1-Wire devices. http://www.arduino.cc/cgi-
didn't Note that the bin/yabb2/YaBB.pl?num=123803229

/ / get garbage. The // CRC computed here 5/27#27
order is deterministic. You w ill always is *not* what you'll get from the 1- Use direct optimized I/O
get W ire network, in all cases

// the same devices in // for two reasons: Disable interrupts during
the same order. // 1) The CRC is tim ing critical sections

uint8_t search(uint8_t transmitted bitwise inverted. (this solves many
*newAddr); // 2) Depending on the random communication errors)

#endif endian-ness of your processor, the Disable interrupts during
binary read-modify-write I/O

#ifONEWIRE_CRC // representation of Reduce RAM
the two-byte return value may have a consumption by eliminating
different unnecessary

74

http://www.pjrc.com/teensy/td_libs_0
http://www.pjrc.com/teensy
http://www.arduino.cc/cgi-

variables and trimming
many to 8 bits

Optimize both crc8 - table
version moved to flash

Modified to work with
larger numbers of devices - avoids
loop.

Tested inArduino 11 alpha
with 12 sensors.

26 Sept 2008 - Robin
James

http://www.arduino.cc/cgi-
bin/yabb2/YaBB.pl?num=123803229
5/27#27

Updated to work with
arduino-0008 and to include skip() as
of

2007/07/06. —RJL20

Modified to calculate the 8-
bit CRC directly, avoiding the need
for

the 256-byte lookup table
to be loaded in RAM. Tested in
arduino-0010

- Tom Pollard, Jan 23,
2008

Jim Studt’s original library
was modified by Josh Larios.

Tom Pollard,
pollard@ alum.mit.edu, contributed

w around May 20, 2008

Permission is hereby
granted, free of charge, to any
person obtaining

a copy of this software and
associated documentation files (the

"Software"), to deal in the
Software without restriction,
including

without lim itation the rights
to use, copy, modify, merge, publish,

distribute, sublicense,
and/or sell copies of the Software,
and to

permit persons to whom
the Software is furnished to do so,
subject to

the following conditions:

The above copyright
notice and this permission notice
shall be

included in all copies or
substantial portions o f the Software.

THE SOFTWARE IS
PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF

MERCHANTABILITY.
FITNESS FOR A PARTICULAR
PURPOSE AND

NONINFRINGEMENT. IN
NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE

LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION

OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION

WITH THE SOFTWARE
OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Much of the code was
inspired by Derek Yergeris code,
though I don't

think much of that
remains. In any event that was..

(copyleft) 2006 by
Derek Yerger - Free to distribute
freely.

The CRC code was
excerpted and inspired by the Dallas
Semiconductor

sample code bearing this
copyright.

// Copyright (C) 2000
Dallas Semiconductor Corporation,
A ll Rights Reserved.

//
// Permission is hereby

granted, free of charge, to any
person obtaining a

// copy of this software and
associated documentation files (the
"Software"),

// to deal in the Software
without restriction, including without
lim itation

// the rights to use, copy,
modify, merge, publish, distribute,
sublicense,

// and/or sell copies of the
Software, and to permit persons to
whom the

// Software is furnished to
do so, subject to the following
conditions:

II
//T he above copyright

notice and this permission notice
shall be included

// in all copies or
substantial portions of the Software.

//
//TH E SOFTWARE IS

PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND,
EXPRESS

//O R IMPLIED.
INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF

// MERCHANTABILITY,
FITNESS FORA PARTICULAR
PURPOSE AND
NONINFRINGEMENT.

//IN NO EVENT SHALL
DALLAS SEMICONDUCTOR BE
LIABLE FOR ANY CLAIM,
DAMAGES

//O R OTHER LIABILITY,
WHETHER IN AN ACTION OF
CONTRACT, TORT OR
OTHERWISE,

//ARISING FROM, OUT
OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR

//OTHER DEALINGS IN
THE SOFTWARE.

II
// Except as contained in

this notice, the name of Dallas
Semiconductor

// shall not be used except
as stated in the Dallas
Semiconductor

// Branding Policy.
//------------------------

7

#include "OneWire.h"

pin)

INPUT):

OneWire: :OneWire(uint8_t

{
pinMode(pin,

bitmask =
PIN_TO_BITMASK(pin);

baseReg =
PIN_TO BASEREG(pin);

if ONEWIRE SEARCH
reset_search();

#endif
}

// Perform the onewire
reset function. We w ill wait up to
250uS for

// the bus to come high, if it
doesn't then it is broken or shorted

// and we return a 0;
II
II Returns 1 if a device

asserted a presence pulse, 0
otherwise.

II
uint8_t

OneWire::reset(void)
{

IO REG TYPE
mask = bitmask;

volatile
IO_REG_TYPE *reg IO_REG_ASM
= baseReg;

uint8_t r;
uint8_t retries =

125;

nolnterrupts();
DIRECT MODE

_INPUT(reg, mask);
interruptsQ;

75

http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=123803229
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=123803229
mailto:pollard@alum.mit.edu

w

// wait until the void
wire is high... just in case DIRECT_WRITE_LOW(re OneW ire::write(uint8_t v, uint8_t

d o { g, mask); power /* = 0*1) {
if (- uint8_t bitMask;

retries == 0) return 0; DIRECT_MODE_OUTPUT
(reg, mask); // drive output for (bitMask = 0x01;

delayMicroseconds(2); low bitMask; bitMask « = 1) {
} while (OneWire:: write

!DIRECT_READ(reg, mask)); delayMicroseconds(65); bit((bitMask &v)?1:0);
}
if (! power) {noInterruptsO; DIRECT_WRITE_HIGH(re

DIRECT_WRITE g, mask); // drive output high noInterruptsO;
LOW(reg, mask); DIRECT_MODE

DIRECT MODE interruptsO; INPUT(baseReg, bitmask);
_OUTPUT(reg, mask); // DIRECT_WRITE
drive output low delayMicroseconds(5); _LOW(baseReg, bitmask);

interrupts(); > interruptsO;
delayMicroseco } }

nds(500); }
noInterruptsO; II
DIRECT_MODE II Read a bit. Port and bit void

_INPUT(reg, m ask);// allow it to float is used to cut lookup time and OneWire:: write_bytes(const u int8_t
delayMicroseco provide *buf, uint16 t count, bool power/* =

nds(80); // more certain timing. 0 * /) {
r = II for (uint16_t i = 0 ; i <

!DIRECT_READ(reg, mask); uint8_t count; i++)
interruptsO; OneWire::read bit(void) write(buf[i]);
delayMicroseco { if (Ipower) {

nds(420); IO_REG_TYPE noInterruptsO;
return r; mask=bitmask;

} volatile DIRECT_MODE_INPUT(baseReg,
IO_REG_TYPE *reg IO_REG_ASM bitmask);

II = baseReg;
II W rite a bit. Port and bit is uint8_t r; DIRECT_WRITE_LOW(baseReg,

used to cut lookup time and provide bitmask);
// more certain timing. noInterruptsO; interruptsO;
II DIRECT_MODE }
void OUTPUT(reg, mask); }

OneWire::write bit(uint8 tv) DIRECT_WRITE
{ _LOW(reg, mask); If

IO_REG_TYPE delayMicroseco // Read a byte
mask=bitmask; nds(3); II

volatile DIRECT_MODE uint8_t OneWire::read() {
IO_REG_TYPE *reg IO_REG_ASM JNPUT(reg, m ask);// let pin float, uint8_t bitMask;
= baseReg; pull up w ill raise uint8_t r = 0;

delayMicroseco
if (v & 1) { nds(10); for (bitMask = 0x01;

r = bitMask; bitMask « = 1) {
noInterruptsO; DIRECT_READ(reg, mask); if (

interruptsO; OneWire::read bit()) r |= bitMask;
DIRECT_WRITE_LOW(re delayMicroseco }

g, mask); nds(53); return n
return r; }

DIRECT_MODE_OUTPUT }
(reg, mask); // drive output void
low II OneWire::read_bytes(uint8_t *buf,

II W rite a byte. The writing uint16_t count) {
delayMicroseconds(10); code uses the active drivers to raise for <uint16_t i = 0 ; i<

the count; i++)
DIRECT_WRITE_HIGH(re //p in high, if you need bufli] = read();

g, mask); // drive output high power after the write (e.g. DS18S20
in

}

interruptsO;
III

// parasite power mode) II
then set 'power* to 1, otherwise the II Do a ROM select

delayMicroseconds(55); pin w ill II
} else { // go tri-state at the end of void OneWire: :select(

the write to avoid heating in a short uint8 trom [8])
noInterruptsO; or {

// other mishap.
II

int i;

76

write(0x55); //
Choose ROM

for(i = 0; i < 8; i++)
write(rom[i]);

}
//
// Do a ROM skip
II
void OneWire::skip()
{

write(OxCC); //
Skip ROM

}
void OneWire::depower()
{

noInterruptsO;
DIRECT_MODE

JNPUT(baseReg, bitmask);
interrupts();

}

fi
ll Perform the 1-Wire

Search Algorithm on the 1-Wire bus
using the existing

// search state.
//R eturnTR U E : device

found, ROM number in ROM_NO
buffer

// FALSE : device not
found, end of search

II
uint8_t

OneWire::search(uint8_t *newAddr)
{

uint8_t id_bit_number;
uint8_t last_zero,

rom_byte_number, searchjresult;
uint8_t id_bit,

cmp_id_bit;

unsigned char
rom_byte_mask, search_direction;

if (id_bit !=
cmp_id_bit)

searchjdirection
= id_bit; // bit write value for search

else
{

// if this
discrepancy if before the Last
Discrepancy

// on a previous
next then pick the same as last time

if (id_bit_number
< LastDiscrepancy)

search_direction =
((ROM_NO[rom_byte_number] &
rom_byte_mask7 > 0);

else
// if equal to

last pick 1, if not then pick 0

search_direction = (id_bit_number
== LastDiscrepancy);

#ifONEWIRE_SEARCH

//
// You need to use this

function to start a search again from
the beginning.

// You do not need to do it
for the first search, though you could.

II
void

OneWire::reset_searchO
w <

// reset the search state
LastDiscrepancy = 0;
LastDeviceFlag = FALSE;
LastFamilyDiscrepancy =

0;
for(int i = 7 ;; i-)
{
ROM_NO[i] = 0;
if (i == 0) break;
}

}
II
II Perform a search. If this

function returns a T then it has
II enumerated the next

device and you may retrieve the
ROM from the

// OneWire::address
variable. If there are no devices, no
further

// devices, or something
horrible happens in the middle of the

// enumeration then a 0 is
returned. If a new device is found
then

II its address is copied to
newAddr. Use
OneWire::reset_search() to

// start over.
II
H — Replaced by the one

from the Dallas Semiconductor web
site —

// initialize fo r search
id_bit_number = 1;
last_zero = 0;
rom_byte_number = 0;
rom_byte_mask -1 ;
search_resu!t = 0;

// if the last call was not
the last one

if (! LastDeviceFlag)
{

II 1-Wire reset
if (!reset())
{

II reset the search
LastDiscrepancy = 0;
LastDeviceFlag =

FALSE;

LastFamilyDiscrepancy = 0;
return FALSE;

}
// issue the search

command
write(OxFO);

II loop to do the search
do
{

// read a bit and its
complement

id_bit = read_bit();
cmp_id_bit =

read_bit();

// check fo r no
devices on 1-wire

if ((id_bit == 1)&&
(cmp_id_bit == 1))

break;
else
{

// all devices
coupled have 0 or 1

// if 0 was picked
then record its position in LastZero

if
(search direction == 0)

{
last_zero =

id_bit_number;

// check for
Last discrepancy in family

if (last_zero <
9)

LastFamilyDiscrepancy = last_zero;
>

}
// set or clear the

bit in the ROM byte
rom_byte_number

// with mask
rom_byte_mask

= = 1)
if (search_direction

ROM_NO[rom_byte_number] |=
rom_byte_mask;

else

ROM_NO[rom_byte_number] &=
~rom_byte_mask;

// serial number
search direction write bit

write_bit(search_direction);

// increment the
byte counter id_bit_number

// and shift the
mask rom_byte_mask

id_bit_number++;
rom_byte_mask

«= 1;

77

/ / i f the mask is 0
then go to new SerialNum byte
rom_byte_number and reset mask

if (rom_byte_mask
== 0)

{
rom_byte_number++;

rom_byte_mask
= 1 ;

}
}

}
while(rom_byte_number < 8); // loop
until through all ROM bytes 0-7

/ / i f the search was
successful then

if (!(id_bit_number <
65))

{
// search successful

so set
LastDiscrepancy,LastDeviceFlag,sea
rch_result

LastDiscrepancy =
last_zero;

device

= = 0)

TRUE;
W

TRUE;

// check for last

if (LastDiscrepancy

LastDeviceFlag =

search_result =

}
}
// if no device found then

reset counters so next 'search' w ill
be like a first

if (!search_result ||
!ROM_NO[0])

{
LastDiscrepancy = 0;
LastDeviceFlag =

FALSE;

LastFamilyDiscrepancy = 0;
search_resu!t =

FALSE;
}
for (int i = 0; i < 8; i++)

newAddrli] = ROM_NO[i];
return search_result;
}

if
ONEWIRE_CRC8_TABLE

// This table comes from
Dallas sample code where it is freely
reusable,

// though Copyright (C)
2000 Dallas Semiconductor
Corporation

static const uint8_t
PROGMEM dscrc tablefl = {

0, 94,188,226, 97,
63,221,131,194,156,126,
32,163,253, 31,65,

157,195,
33,127,252,162, 64. 30, 95,
I , 227,189, 62, 96,130,220,

35,125,159,193,66,
28,254,160,225,191, 93, 3,128,222,
60, 98,

190,224, 2,92,223,129,
99, 61,124,34,192,158, 29,
67,161,255,

70, 24,250,164,
39,121,155,197,132,218,
56,102,229,187,89, 7,

219,133,103,
57,186,228, 6 ,88 ,25 ,
71,165,251,120, 38,196,154,

101,59,217,135, 4,
90,184,230,167,249, 27,
69,198,152,122, 36,

248,166, 68,
26,153,199, 37,123, 58,100,134,216,
91, 5,231,185,

140,210,
48,110,237,179, 81 ,15,78 ,
16,242,172, 47,113,147,205,

17, 79,173,243,112,
46,204,146,211,141,111,49,178,236,
14, 80,

175,241,19,
77,206,144,114, 44,109, 51,209,143,
12, 82,176,238,

50,108,142,208, 83,
13,239,177,240,174, 76, 18,145,207,
45,115,

202,148,118,
40,171,245,23,73, 8,
86,180,234,105, 55,213,139,

87, 9,235,181,
54,104,138,212,149,203,
41,119,244.170.72,22,

233,183. 85,
I I , 136,214, 52,106, 43,117,151,201,
74, 20,246,168,

116,42,200.150, 21,
75,169,247,182,232,10,
84,215,137,107, 53};

// confused, so I use this
table from the examples.)

//
uint8_t OneWire::crc8(

uint8_t *addr, uint8_t len)
{

uint8_t crc = 0;

while (le n -) {
crc =

pgm_read_byte(dscrc_table + (crc A
*addr++));

}
return crc;

}
#else
II
// Compute a Dallas

Semiconductor 8 bit CRC directly.
// this is much slower, but

much smaller, than the lookup table.
If
uint8_t OneWire::crc8(

uint8_t *addr, uint8 t len)
{

uint8_t crc = 0;

while (le n -) {

uint8_t inbyte = *addr++;
for

(uint8_t i = 8; i; i-) {

uint8_t mix = (crc A inbyte)
& 0x01;

crc » = 1;

if (mix) crc A= 0x8C;

inbyte » = 1;
}

}
return crc;

}
#endif

if ONEWIRE_CRC16
bool

OneWire::check_crc16(uint8_t*
input, uint16_t len, uint8_t*
inverted_crc)

{
uint16_t crc =

~crc16(input, len);
return (crc & OxFF) ==

inverted_crc(0] && (crc » 8) ==
inverted c rc [lj;

}
#endif

if ONEWIRE_CRC
//T he 1-Wire CRC scheme

is described in Maxim Application
Note 27:

// "Understanding and
Using Cyclic Redundancy Checks

V with Maxim iButton Products"
//

//
// Compute a Dallas

Semiconductor 8 bit CRC. These
show up in the ROM

// and the registers, (note:
this m ight better be done without to

// table, it would probably
be sm aller and certainly fast enough

// compared to all those
delayMicrosecondQ calls. But I got

uint16_t
OneW ire::crc16(uint8_t* input,
uint16_t len)

{
static const uint8_t

oddparity[16] =
{0,1.1,0,1,0,0,1,

1,0,0,1,0,1,1,0);
uint16_tcrc = 0; //

Starting seed is zero.

78

fo r (uint16_t i = 0 ; i <
7

W le n ; i++) {
// Even though we're

ju s t copying a byte from the input,
// we'll be doing 16-bit

computation with it.
uint16 tcda ta =

inputji];
cdata = (cdata A (crc &

Oxff)) & Oxff;
crc » = 8;

if (oddparity[cdata &
OxOF]A oddparity[cdata » 4])

c rcA= 0xC001;

cdata « = 6;
crc A= cdata;
cdata « = 1;
crc A= cdata;

}
return crc;

}
#endif

#endif

#ifndef TwoWire_h
#define TwoWire_h

#include <inttypes.h>
#include "Stream.h"

#define
BUFFER_LENGTH 32

class TwoW ire: public
Stream

{
private:

static uint8_t rxBufferQ;
static uint8_t

rxBufferlndex;
static uint8_t

rxBufferLength;

static uint8_t txAddress;
static uint8_t txBufferQ;
static uint8_t

txBufferlndex;
static uint8_t

txBufferLength;

r
TwoWire. h - TWI/I2C

library fo r Arduino & W iring
Copyright (c) 2006

Nicholas Zambetti. AN right
resen/ed.

This library is free
software; you can redistribute it
and/or

modify it under the terms
of the GNU Lesser General Public

License as published by
the Free Software Foundation; either

version 2.1 of the
License, or (at your option) any later
version.

This library is distributed
in the hope that it w ill be useful,

but WITHOUT ANY
WARRANTY; without even the
implied warranty of

MERCHANTABILITY or
FITNESS FOR A PARTICULAR
PURPOSE. See the GNU

Lesser General Public
License for more details.

You should have received
a copy of the GNU Lesser General
Public

License along with this
library; if not, write to the Free
Software

Foundation, Inc., 51
Franklin St, Fifth Floor, Boston, MA
02110-1301 USA

Modified 2012 by Todd
' W Krein (todd@ krein.org) to implement

repeated starts

static uint8_t
transmitting;

static void
(*user_onRequest)(void);

static void
(*user_onReceive)(int);

static void
onRequestService(void);

static void
onReceiveService(uint8_t*. int);

public:
TwoWire();
void begin();
void begin(uint8_t);
void begin(int);
void

beginTransmission(uint8_t);
void

beginTransmission(int);
uint8_t

endTransmission(void);
uint8_t

endTransmission(uint8_t);
uint8_t

requestFrom(uint8_t, uint8_t);
uint8_t

requestFrom(uint8_t, uint8_t,
uint8_t);

uint8_t requestFrom(int,

uint8_t requestFrom(int,
int);

int, int);
virtual size_t

write(uint8_t);
virtual size_twrite(const

uint8_t *, size_t);
virtual int

availab!e(void);
virtual int read(void);
virtual int peek(void);

virtual void
fiush(void);

O (in t));
void onRequest(void

H (v o id));

void onReceive(void

inline size_t
write(unsigned long n) { return
write((uint8_t)n);}

inline size_t write(long
n) { return write((uint8_t)n);}

inline size_t
write(unsigned int n) { return
write((uint8_t)n);}

inline size_t write(int n) {
return write((uint8_t)n);}

using Print::write;
};
extern TwoWire W ire;

#endif

r
TwoWire.cpp - TWI/I2C

library for W iring & Arduino
Copyright (c) 2006

Nicholas Zambetti. A ll right
reserved.

This library is free
software; you can redistribute it
and/or

modify it under the terms
o f the GNU Lesser General Public

License as published by
the Free Software Foundation; either

version 2.1 of the
License, or (at your option) any later
version.

This library is distributed
in the hope that it w ill be useful,

but WITHOUT ANY
WARRANTY; without even the
implied warranty of

MERCHANTABILITY or
FITNESS FOR A PARTICULAR
PURPOSE. See the GNU

Lesser General Public
License for more details.

You should have received
a copy of the GNU Lesser General
Public

License along with this
library; if not, write to the Free
Software

Foundation, Inc., 51
Franklin St, Fifth Floor, Boston, MA
02110-1301 USA

Modified 2012 by Todd
Krein (todd@ krein.org) to implement
repeated starts

7

extern "C" {
#include <stdlib.h>
#include <string.h>
frinclude "inttypes.h"

79

mailto:todd@krein.org
mailto:todd@krein.org

^include "twi.h"

#include ’W ire.h"

// Initialize Class Variables
llllllllllin illllllllllllllllllllllllllllllllllll

uint8 t
TwoWire::rxBuffertBUFFER LENGT
Hi;

uint8_t
TwoW ire::rxBufferlndex = 0;

uint8_t
TwoWire::rxBufferLength = 0;

uint8_t
TwoWire::txAddress = 0;

uint8_t
TwoWire::txBufferfBUFFER_LENGT
H);

uint8_t
TwoW ire::txBufferlndex = 0;

uint8_t
TwoWire::txBufferLength = 0;

uint8_t
TwoWire::transmitting = 0;

void
(*TwoWire::user_onRequest)(void);

void
(*TwoWire::user_onReceive)(int);

// Constructors
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiiiiiiim

\mm/ Hill
TwoWire::TwoWire()
{
}
// Public Methods

lll
III

void TwoWire::begin(void)
{

rxBufferlndex = 0;
rxBufferLength = 0;

txBufferlndex = 0;
txBufferLength = 0;

twi_init();
}
void

TwoWire::begin(uint8 t address)
{

twi_setAddress(address);

twi_attachSlaveTxEvent(onRequest
Service);

twi_attachSlaveRxEvent(onReceive
Service);

begin();

void TwoW ire::begin(int
address)

{
begin((uint8_t)address);

}
uint8_t

TwoWire::requestFrom(uint8_t
address, uint8_t quantity, uint8_t
sendStop)

{
// clamp to buffer length
if(quantity >

BUFFER_LENGTH){
quantity =

BUFFER LENGTH;
}
// perform blocking read

into buffer
uint8_t read =

twi_readFrom(address, rxBuffer,
quantity, sendStop);

// set rx buffer iterator
vars

rxBufferlndex = 0;
rxBufferLength = read;

return read;
}
uint8_t

TwoWire::requestFrom(uint8_t
address, uint8_t quantity)

{
return

requestFrom((uint8_t)address,
(uint8_t)quantity, (uint8_t)true);

}
uint8_t

TwoWire::requestFrom(int address,
int quantity)

{
return

requestFrom((uint8_t)address,
(uint8 t)quantity, (uint8 t)true);

}
uint8_t

TwoWire::requestFrom(int address,
int quantity, int sendStop)

{
return

requestFrom((uint8_t)address,
(uint8_t)quantity, (uint8_t)sendStop);

}

void
TwoWire::beginTransmission(uint8_t
address)

{
// indicate that we are

transmitting
transmitting = 1;
// set address of targeted

slave
txAddress = address;
// reset tx buffer iterator

vars
txBufferlndex = 0;

txBufferLength = 0;
}
void

TwoWire::beginTransmission(int
address)

{
beginTransmission((uint8_t)address)

}
II
// Originally,

'endTransmission' was an f(void)
function.

// It has been
modified to take one parameter
indicating

// whether or not a
STOP should be performed on the
bus.

// Calling
endTransmission(false) allows a
sketch to

// perform a
repeated start.

II
II WARNING:

Nothing in the library keeps track of
whether

// the bus tenure
has been properly ended with a
STOP. It

// is very possible
to leave the bus in a hung state if

// no call to
endTransmission(true) is made.
Some I2C

// devices will
behave oddly if they do not see a
STOP.

II
uint8_t

TwoWire::endTransmission(uint8_t
sendStop)

{
//transm it buffer

(blocking)
int8_t ret =

twi_writeTo(txAddress, txBuffer,
txBufferLength, 1, sendStop);

// reset tx buffer iterator
vars

txBufferlndex = 0;
txBufferLength = 0;
II indicate that we are

done transmitting
transmitting = 0;
return ret;

>
// This provides

backwards compatibility with the
original

// definition, and
expected behaviour, of
endTransmission

II

80

uint8_t
TwoWire::endTransmission(void)

W {
return

endTransmission(true);
}
// must be called in:
// slave tx event callback
// or after

beginT ransmission(address)
size_t

TwoW ire::write(uint8_t data)
{

if(transm itting){
// in master transm itter

mode
// don't bother if buffer is

fu ll
if(txBufferLength >=

BUFFER_LENGTH){
setW riteError();
return 0;

>
// put byte in tx buffer
txBuffer[txBufferlndex] =

data;
++txBufferlndex;
// update amount in

buffer
txBufferLength =

txBufferlndex;
}else{
// in slave send mode

// reply to master
w twi_transmit(&data, 1);

return 1;
}
// must be called in:
// slave tx event callback
// or after

beginTransmission(address)
size_t

TwoW ire::write(const uint8_t *data,
size_t quantity)

{
if(transm itting){
// in master transmitter

mode
for(size_t i = 0; i <

quantity; ++i){
write(data[i]);

}
}else{
// in slave send mode

// reply to master
twi_transmit(data,

quantity);
>
return quantity;

}
// must be called in:
// slave rx event callback
// or after

requestFrom(address, numBytes)
int

TwoWire::available(void)

{
return rxBufferLength -

rxBuffer Index;
>
II must be called in:
// slave rx event callback
II or after

requestFrom(address, numBytes)
int TwoWire::read(void)
{

int value = -1;

// get each successive
byte on each call

if(rxBufferlndex <
rxBufferLength){

value =
rxBufferfrxBufferlndex];

++rxBufferlndex;
}
return value;

}
// must be called in:
// slave rx event callback
// or after

requestFrom(address, numBytes)
int TwoWire::peek(void)
{

int value = -1;

if(rxBufferlndex <
rxBufferLength){

value =
rxBufferfrxBufferlndex];

}
return value;

}
void TwoWire::flush(void)
{

//XXX: to be
implemented.

}
// behind the scenes

function that is called when data is
received

void
TwoWire::onReceiveService(uint8_t*
inBytes, int numBytes)

{
II don't bother if user

hasn't registered a callback
if(!user_onReceive){

return;
}
// don't bother if ix buffer

is in use by a master requestFrom()
op

// i know this drops data,
but it allows for slight stupidity

II meaning, they may not
have read all the master
requestFromO data yet

if(rxBufferlndex <
rxBufferLength){

return;
}
II copy twi rx buffer into

local read buffer
//th is enables new reads

to happen in parallel
for(uint8_t i = 0; i <

numBytes; ++i){
rxBuffer[i] = inBytes[i];

}
// set rx iterator vars
rxBufferlndex = 0;
rxBufferLength =

numBytes;
// alert user program

user_onReceive(numBytes);
}
II behind the scenes

function that is called when data is
requested

void
TwoWire::onRequestService(void)

{
// don't bother if user

hasn't registered a callback
if(! user_onReq uest){

return;
}
// reset tx buffer iterator

vars
// III this w ill kill any

pending pre-master sendTo() activity
txBufferlndex = 0;
txBufferLength = 0;
II alert user program
user onRequest();

}
// sets function called on

slave write
void TwoWire::onReceive(

void (*function)(int))
{

user_onReceive =
function;

}
// sets function called on

slave read
void TwoWire::onRequest(

void (*function)(void))
{

user_onRequest =
function;

}
II Preinstantiate Objects

lllim

TwoWire W ire =
TwoWireO;

r
twi.h - TWI/I2C library for

W iring &Arduino
Copyright (c) 2006

Nicholas Zambetti. A ll right
reserved.

81

w

w

This library is free
software; you can redistribute it
and/or

modify it under the terms
of the GNU Lesser General Public

License as published by
the Free Software Foundation; either

version 2.1 of the
License, or (at your option) any later
version.

This library is distributed
in the hope that it w ill be useful,

but WITHOUT ANY
WARRANTY; without even the
implied warranty of

MERCHANTABILITY or
FITNESS FORA PARTICULAR
PURPOSE. See the GNU

Lesser General Public
License for more details.

You should have received
a copy of the GNU Lesser General
Public

License along with this
library; if not, write to the Free
Software

Foundation, Inc., 51
Franklin St, Fifth Floor, Boston, MA
02110-1301 USA

7

#ifndeftw i_h
#define twi_h

#include <inttypes.h>

//#define ATMEGA8

#ifndef TWI_FREQ
#define TWI_FREQ

100000L
#endif

#ifndef
TWI_BUFFER_LENGTH

Ĥofjno
TWI_BUFFER_LENGTH 32

#endif

#define TWI_READY 0
#define TWI_MRX 1
#define TWI_MTX 2
#define TWI_SRX 3
#define TWI_STX 4

void twi_init(void);
void

twi_setAddress(uint8_t);
uint8_t

twi_readFrom(uint8_t, uint8_t*,
uint8_t, uint8_t);

uint8_t
twi_writeTo(uint8_t, uint8_t*, uint8_t,
uint8_t, uint8_t);

uint8_t twi_transmit(const
uint8_t*, uint8_t);

void
twi_attachSlaveRxEvent(void
(*)(uint8_t*, in t));

void
twi_attachSlaveTxEvent(void
H (vo id));

void twi_reply(uint8_t);
void twi_stop(void);
void

twi_releaseBus(void);

#endif

r
tw i.c - TWI/I2C library for

W iring &Arduino
Copyright (c) 2006

Nicholas Zambetti. A ll right
reserved.

This library is free
software; you can redistribute it
and/or

modify it under the terms
of the GNU Lesser General Public

License as published by
the Free Software Foundation; either

version 2.1 of the
License, or (at your option) any later
version.

This library is distributed
in the hope that it w ill be useful,

but WITHOUT ANY
WARRANTY; without even the
implied warranty of

MERCHANTABILITY or
FITNESS FORA PARTICULAR
PURPOSE. See the GNU

Lesser General Public
License for more details.

You should have received
a copy of the GNU Lesser General
Public

License along with this
library; if not, write to the Free
Software

Foundation, Inc., 51
Franklin St, Fifth Floor, Boston, MA
02110-1301 USA

Modified 2012 by Todd
Krein (todd@ krein.org) to implement
repeated starts

7

#include <math.h>
#include <stdlib.h>
#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <compat/twi.h>
#include "Arduino.h" // for

digitalW rite

#ifndef cbi
#define cbi(sfr, bit)

(_SFR_BYTE(sfr) &= ~_BV(bit))
#endif

#ifndef sbi
#define sbi(sfr, bit)

LSFR_BYTE(sfr) |=_BV(bit))
#endif

#include "pins_arduino.h"
#include "twi.h"

static volatile uint8_t
twi_state;

static volatile uint8_t
twi_slarw;

static volatile uint8_t
twi_sendStop;

// should the transaction
end with a stop

static volatile uint8_t
tw iJnRepStart;

// in the middle of a
repeated start

static void
(*twi_onSlaveTransm it)(void);

static void
(*twi_onSlaveReceive)(uint8_t*, int);

static uint8_t
twi_masterBuffer[TW r BUFFER LE
NGTH];

static volatile uint8_t
twi_masterBufferlndex;

static volatile uint8_t
twi_masterBufferLength;

static uint8_t
twi_txBufferfTWI_BUFFER_LENGTH
];

static volatile uint8_t
tw iJxBufferlndex;

static volatile uint8_t
tw iJxBufferLength;

static uint8_t
twi_rxBuffer(TWI_BUFFER_LENGT
HI;

static volatile uint8_t
twi_rxBufferlndex;

static volatile uint8_t
twi_error;

r
* Function tw ijn it
* Desc readys twi pins

and sets twi bitrate
* Input none
* Output none
7

void tw ijn it(vo id)
{

// initialize state
twi_state = TWI_READY;
twi_sendStop ="true;

// default value
tw iJnRepStart = false;

// activate internal pullups
for twi.

digitalWrite(SDA, 1);

82

mailto:todd@krein.org

digitalW rite(SCL, 1);

^ 0^ // initialize twi prescaler
and bit rate

cbifTWSR, TWPSO);
cbifTWSR, TWPS1);
TWBR = ((F_CPU /

TWI_FREQ) - 16) / 2;

r twi bit rate formula from
atmega128 manual pg 204

SCL Frequency = CPU
Clock Frequency / (16 + (2 * TWBR))

note: TWBR should be 10
or higher for master mode

It is 72 for a 16mhz
Wiring board with 100kHz TWI 7

// enable twi module,
acks, and twi interrupt

TWCR = _BV(TWEN) |
BV(TWIE) | BV(TWEA);

}
/*
* Function twi_slavelnit
* Desc sets slave

address and enables interrupt
* Input none
* Output none
7

void
twi_setAddress(uint8_t address)

{
// set twi slave address

w (skip over TWGCE bit)
TWAR = address « 1;

}
r
* Function twi_readFrom
* Desc attempts to

become tw i bus master and read a
* series of bytes

from a device on the bus
* Input address: 7bit i2c

device address
data: pointer to

byte array
* length: number of

bytes to read into array
* sendStop: Boolean

indicating whether to send a stop at
the end

•O utput number o f bytes
read

7
uint8_t

twi_readFrom(uint8_t address,
uint8_t* data, uint8_t length, uint8_t
sendStop)

{
uint8_t i;

// ensure data w ill fit into
buffer

if(TWi_BUFFER_LENGTH < lengthK
return 0;

}

}
// wait until tw i is ready,

/
else

become master receiver // send start condition
while(TWI_READY != TWCR = BV(TWEN) |

twi_state){ BV(TWIE) | BV(TWEA) |
continue;

}
twi_state = TWI_MRX;

_BV(TWINT) | _BV(TWSTA);

// wait fo r read operation
twi_sendStop = to complete

sendStop; while(TWi_MRX ==
// reset error state (OxFF.. tw i_state){

no error occured) continue;
twi_error = OxFF; }

II initialize buffer iteration if (twi_masterBufferlndex
vars < length)

twi masterBufferlndex = length =
0; twi masterBufferlndex;

twi_masterBufferLength =
length-1; // This is not intuitive, read // copy twi buffer to data
on... for(i = 0; i < length; ++i){

// On receive, the data[i] =
previously configured ACK/NACK twi masterBuffer[i];
setting is transmitted in }

// response to the
received byte before the interrupt is return length;
signalled. }

//Therefor we must
actually set NACK when the _next_ /*
to last byte is * Function twi_writeTo

// received, causing that • Desc attempts to
NACK to be sent in response to become twi bus master and write a
receiving the last • series of bytes to a

// expected byte o f data. device on the bus

// build sla+w, slave
* Input address: 7bit i2c

device address
device address + w bit • data: pointer to

twi_s!arw = TW_READ; byte array
twi slarw |= address « * length: number of

1; bytes in array

if (true == twi inRepStart)
* wait: boolean

indicating to wait for write or not
{ • sendStop: boolean

//ifw e 're in the indicating whether or not to send a
repeated start state, then we've stop at the end
already sent the start, • Output 0 .. success

// (@@@ we hope), and • 1 .. length to long
the TWI statemachine is just waiting for buffer
for the address byte. * 2 .. address send,

II We need to remove NACK received
ourselves from the repeated start • 3 .. data send,
state before we enable interrupts, NACK received

// since the ISR is • 4 .. other twi error
ASYNC, and we could get confused (lost bus arbitration, bus erro r,..)
if we hit the ISR before cleaning 7

// up. Also, don't enable uint8_t twi_writeTo(uint8_t
the START interrupt. There may be address, uint8_t* data, uint8_t
one pending from the length, uint8_t wait, uint8_t

// repeated start that we sendStop)
sent outselves, and that would really {
confuse things. uint8_t i;

tw iJnRepStart = false;
// // ensure data w ill fit into

remember, we're dealing with an buffer
ASYNC ISR

TWDR = tw i slarw; if(TWI_BUFFER_LENGTH < length){
TWCR = BV(TWINT) | return 1;

_BV(TWEA) | _BV(TWEN) | }
_BV(TWIE); / / enable INTs,
but not START

83

// wait until twi is ready,
become master transmitter

W ' whi!e(TWI_READY !=
twi_state){

continue;
}
twi_state = TWI_MTX;
twi_sendStop =

sendStop;
// reset error state (OxFF..

no error occured)
twi_error = OxFF;

vars

0;

length;

// initialize buffer iteration

twi_masterBufferlndex =

twi_masterBufferLength =

// copy data to twi buffer
for(i = 0; i < length; ++i){

twi_masterBuffer[i] =
data[i];

}
// build sla+w, slave

device address + w bit
twi_slarw = TW_WRITE;
twi_slarw |= address «

// if we're in a repeated
start, then we've already sent the
START

Y .^ 7 // in the ISR. Don't do it
again.

//
if (true == twi inRepStart)

{
/ / i f we're in the

repeated start state, then we've
already sent the start,

// (@@@ we hope), and
the TWI statemachine is just waiting
for the address byte.

// We need to remove
ourselves from the repeated start
state before we enable interrupts,

// since the ISR is
ASYNC, and we could get confused
if we hit the ISR before cleaning

// up. Also, don't enable
the START interrupt. There may be
one pending from the

// repeated start that we
sent outselves, and that would really
confuse things.

twiJnRepStart = false;
//

remember, we're dealing with an
ASYNC ISR

TWDR = twi_slarw;

TWCR = BV(TWINT) |
BV(TWEA) | _BV(TWEN) |

_BV(TWIE); / / enable INTs,
but not START

>

else
// send start condition
TWCR = _BV(TWINT) |

BV(TWEA) | _BV(TWEN) |
_BV(TWIE) | _BV(TWSTA); //
enable INTs

// wait for write operation
to complete

while(wait && (TWI_MTX
== twi_state)){

continue;
}
if (twi_error == OxFF)

return 0; //
success

else if (twi_error ==
TW_MT_S LA_N AC K)

return 2; //
error; address send, nack received

else if (twi_error ==
TW_MT_DATA_NACK)

return 3; //
error, data send, nack received

else
return 4; //

other twi error
}
r
* Function twi_transmit
* Desc fills slave tx

buffer with data
* must be called in

slave be event callback
* Input data: pointer to

byte array
* length: number of

bytes in array
* Output 1 length too

long for buffer
* 2 not slave

transmitter
* Ook
7

uint8_t twi_transmit(const
uint8 t* data, uint8 t length)

{
uint8_t i;

// ensure data will fit into
buffer

if(TWI_BUFFER_LENGTH < length){
return 1;

}
// ensure we are currently

a slave transmitter
if(TWI_STX != twi_stateK

return 2;
}
// set length and copy

data into tx buffer
twiJxBufferLength =

length;
for(i = 0; i < length; ++i){

twi_txBufferti] = data[i];

>
return 0;

}
/*
* Function

twi_attachSlaveRxEvent
* Desc sets function

called before a slave read operation
* Input function: callback

function to use
* Output none
7

void
twi_attachSlaveRxEvent(void
(*function)(uint8_t*, in t))

{
twi_onSlaveReceive =

function;
}
r
* Function

twi_attachSlaveTxEvent
* Desc sets function

called before a slave write operation
* Input function: callback

function to use
* Output none
7

void
twi_attachSlaveTxEvent(void
(*function)(void))

{
twi_onSlaveTransmit =

function;
}
r
* Function twi_reply
* Desc sends byte or

readys receive line
* Input ack: byte

indicating to ack or to nack
* Output none
7

void twi reply(uint8 tack)
{

// transmit master read
ready signal, with or without ack

if(ack){
TWCR = _BV(TWEN) |

_BV(TWIE) | _BV(TWINT) |
_BV(TWEA);

}else{
TWCR =

_BV(TWEN) | _BV(TWIE) |
_BV(TWINT);

}
}
r
* Function twi_stop
* Desc relinquishes bus

master status
* Input none
* Output none
7

void twi_stop(void)

84

'W

{ if (twi_sendStop) // put final byte into
// send stop condition twi_stop(); buffer
TWCR = BV(TWEN) | e lse{

BV(TWIE) | BV(TWEA) | twiJnRepStart twi masterBuffer[twi masterBufferln
_BV(TWINT) | _BV(TWSTO); = true; // we're gonna send the dex++] = TWDR;

START if (twi_sendStop)
// wait for stop condition // don't enable twi_stop();

to be exectued on bus the interrupt. We'll generate the start, e lse{
// TWINT is not set after a but we twiJnRepStart

stop condition! // avoid = true; // we're gonna send the
while(TWCR & handling the interrupt until we're in START

_BV(TWSTO)){ the next transaction, // don't enable
continue; // at the point the interrupt. We'll generate the start,

} where we would normally issue the but we
start. // avoid

/ / update twi state TWCR = handling the interrupt until we're in
twi state = TWI READY; BV(TWINT) | BV(TWSTA)| the next transaction,

} _BV(TWEN); // at the point
twi state = where we would normally issue the

r TWI READY; start.
* Function twi_releaseBus } TWCR =
* Desc releases bus } BV(TWINT) | BV(TWSTA)|

control break; _BV(TWEN);
* Input none case twi state -
* Output none TW_MT_SLA_NACK: // address TWI READY;
*1 sent, nack received }

void twi releaseBus(void) twi error = break;
{ TW_MT_SLA_NACK; case

// release bus twi_stop(); TW_MR_SLA_NACK: // address
TWCR = BV(TWEN) | break; sent, nack received

BV(TWIE) | BVfTWEA) | case twi_stop();
_BV(TWINT); TW_MT_DATA_NACK: // data sent, break;

nack received //TW MR ARB LOST
// update twi state twi error = handled by TW_MT_ARB_LOST
twi state = TWI READY; TW_MT_DATA_NACK; case

} twi_stop();
break; // Slave Receiver

SIGNAL(TWI vect) case case
{ TW_MT_ARB_LOST: // lost bus TW_S R_S LA_ACK: // add ressed,

switch(TW_STATUS){ arbitration returned ack
//A ll Master twi error = case
case TW_START: // TW_MT_ARB_LOST; TW_SR_GCALL_ACK: // addressed

sent start condition twi_releaseBus(); generally, returned ack
case TW_REP_START: break; case

// sent repeated start condition TW_S R_ARB_LOST_S LA_ACK: //
// copy device address // Master Receiver lost arbitration, returned ack

and r/w bit to output register and ack case case
TWDR = twi_slarw; TW_MR_DATA_ACK: // data TW_SR_ARB_LOST_GCALL_ACK:
twi_reply(1); received, ack sent // lost arbitration, returned ack
break; // put byte into buffer // enter slave receiver

mode
// Master Transmitter twi masterBufferftwi masterBufferln twi_state = TWI_SRX;
case dex++] = TWDR; // indicate that rx buffer

TW_MT_SLA_ACK: // slave receiver case can be overwritten and ack
acked address TW_MR_SLA_ACK: // address sent, twi_rxBufferlndex = 0;

case ack received twi_reply(1);
TW_MT_DATA_AC K: // slave // ack if more bytes are break;
receiver acked data expected, otherwise nack case

/ / i f there is data to TW_SR_DATA_ACK: //data
send, send it, otherwise stop if(twi_masterBufferlndex < received, returned ack

twi_masterBufferLength){ case
if(twi_masterBufferlndex < twi_reply(1); TW_SR_GCALL_DATA_ACK: // data
twi_masterBufferLength){ }else{ received generally, returned ack

// copy data to output twi reply(O); // if there is still room in
register and ack } the rx buffer

TWDR = break; if(twi rxBufferlndex <
twi_masterBuffer[twi_masterBufferln case TWI_BUFFER_LENGTH){
dex++]; TW_MR_DATA_NACK: // data // put byte in buffer

twi_reply(1); received, nack sent and ack
}else{

85

twi rxBuffer[twi_rxBufferlndex++] =
W ' ' TWDR;

twi_reply(1);
}else{

// otherwise nack
twi_reply(0);

}
break*

case TW_SR_STOP: //
stop or repeated start condition
received

// put a null char after
data if there's room

if(twi rxBufferlndex <
TWI_BUFFER_LENGTH){

twi_rxBuffer[twi_rxBufferlndex] = '\0';
}
II sends ack and stops

interface for clock stretching
twi_stop();
// callback to user

defined callback

twi_onSlaveReceive(twi_rxBuffer,
twi_rxBufferlndex);

// since we submit rx
buffer to "wire" library, we can reset it

twi_rxBufferlndex = 0;
// ack future responses

and leave slave receiver state
twi_releaseBus();
break;

case
TW_SR_DATA_NACK: //data
received, returned nack

case
TW_SR_GCALL_DATA_NACK: //
data received generally, returned
nack

// nack back at master
twi_reply(0);
break;

// Slave Transmitter
case

TW_ST_SLA_ACK: //
addressed, returned ack

case
TW_ST_ARB_LOST_SLA_ACK: //
arbitration lost, returned ack

// enter slave
transmitter mode

twi_state = TWI_STX;
// ready the tx buffer

index for iteration
twi_txBufferlndex = 0;
// set tx buffer length to

be zero, to verify if user changes it
twi_txBufferl_ength = 0;
// request for txBuffer

to be filled and length to be set
// note: user must call

twi_transmit(bytes, length) to do this
twi_onSlaveTransmit();
// if they didn't change

buffer & length, initialize it
if(0 ==

twi_txBufferLength){
twi_txBufferLength =

1;

twi_txBuffer[0] =
0x00;

}
// transmit first byte

from buffer, fall
cass

TW_ST_DATA_ACK: // byte sent,
ack returned

// copy data to output
register

TWDR =
twi_txBufferttwi_txBufferlndex++];

/ / i f there is more to
send, ack, otherwise nack

if(twi_txBufferl ndex <
twi_txBufferLength){

twi_reply(1);
}else{

twi_reply(0);
}
break;

case
TW_ST_DATA_NAC K: // received
nack, we are done

case
TW_ST_LAST_DATA: // received
ack, but we are done already!

// ack future responses
twi_reply(1);
// leave slave receiver

state
twi_state =

TWI_READY;
break;

//A ll
case TW_NO_INFO: //

no state information
break;

case
7W_BUS_ERROR: // bus error,
illegal stop/start

twi_error =
TW_BUS_ERROR;

twi_stop();
break;

}
}

86

Appendix 6

W

Thotin = 212 F

Tcoldir, — 32 F

m = 3
g a llo n s

m inu te

 ̂ ^ B tu
CPcold = 1-01 lbm * F

B tu
cPhot = 1-007 lbm * F

K o t = 3000
Btu

h c o id . ~ 3 0

k = 1160

f t 2 * h r * F

Btu

f t 2 * h r * F

B tu

f t * h r * F

A = 40 i n 2

L = .25 in

m inu tes lbm
Ccoid = cPcold * rh * 60 — -------- * 8.3436

Chot = cVhot * m hot * 60

hou r

m inu tes

hou r

g a llo n

*8.3436
lb.m

g a llo n

= 1516.87

= 1449.30

B tu

F * hou r

B tu

F * hou r

C = 5 ti» = .955
Wiot

U = 1 L 1
+ T.+

= 48.66
B tu

lcold k h
f t 2 * h r * F

hot

U * A
NTU = - — = 1.343

Chot

87

X — e -N T U * (l -C)

^ = 1 - C * e -N T U *0 - -C) ~ - 5 8 0 6

Thotout ~ Thotin f * (Jh o tin ~~ TColdin) = 107.50 F

T — T | C ... /̂ . ^COidffl) _ -I /i -f 07 plcoZdout — Tcoldfa 4" S * Ccold * r ~ 141.37 F

