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Abstract AlSebra is ~ branch of mathematics in which _

. larSe amount of research is currentl~ taking place. This

research includes the investigation into different t~pes of

algebraic structures such as fields, rings, groups, and their

properties. The histor~ of algebra is as rich as the science

itself. It is m~ intention to investigate a crucial step in

the development of algebra: the beginning of noncommutative

Noncommutative algebra can trace it's roots to the

development of the Guaternions b~ William Rowan Hamilton in

1843. These Guaternions were the first s~stem of numbers
..

-

abandon the commutative propert~. This investiSation will

show the developments that motivated Hamilton's search
.i ;, .....

J
...;,

f

.
this number s~stem. It will also relate how Hamilton

subseGuentl~ developed his Guaternions, and the reactions to

his work b~ the mathematical communit~ at the time. The was

these Guaternions are viewed toda~ and the influence the

auaternions have had on the stud~ of alSebra will also be

. .
e }~ a ITIl n e (J

i'

To set the historical stage for Hamilton's work it

should be noted that b~ about 1700 almost all of what can .- -
called 2lementar~ mathematics had been established.

Arithmetic, basic algebra, and Euclidean geometr~ were well

established. Elementar~ triSonometr~ and analstical Seometr~

were both fafniliaT't AlthouSh analssis was f'!otorl a

foundation ~et, Newton and Leibnitz had introduced



eishteenth centurs there was much interest in this "new. area

. of caculus.. Much of the ~,jorkwas done bs lTJenwho held

interests in mechanics or astronoms or similiar fields;

therfore, the work was aimed more at applications than toward

a deeper understandinS of calculus.

The list of these eiShteenth centurs men includes mans

familiar names. In France the trio of LeSendre, LaSranSe, and

Laplace were all active. Lesendre and Laplace worked on

potential theors and Laplace worked on differential eQuations

amonS other areas. EnSland was somewhat isolated durinS this

time from the mathematical communits of the continent because

of the disputes between the students of Newton and those of

Leibnitz. EnSland still realized the contributions .of Taslor

.
and Maclaurin on series nonetheless. The BeT'noull::.

,.. .
"1Tarnl.L1~;1

Daniel, James, and John contributed in mans area of calculus

and Seometrs. Perhaps the lTJostnoteworths of eiShteenth

centurs mathemeticians was Leonard Euler whose work touched

upon almost all areas of math includins calculus, Seometrs,

alSebra, and even the philosophs of science.

Thus for a centurs the emphasis in mathematical work ~as

on applications of calculus. In the next centurs, the

nineteenth, there was a slow shift in emphasis toward

establishinS the foundations of different disciplines.

Hamilton, born in 1805, was doinS his work Just as this shift

was takinS place and his discovers motivated the further

developmer~t of al~ebr2.

.



been born in Dublin and attendinS Trinit~ ColleSe there also.

. He was a child prodis~ and e:.:celled in an~ area he tried his

hand at. It was his earl~ work on optics and ra~s which

earned him his earl~ reputation in the scientific communits.

His work "Theors of S~stems of Rass" was larsels responsible

for his appointment as Rosal Astronomer at Dunsink

Observator~. He later incorporated ideas from this into

mechanics also; thoush these optical-mechanical analoSies

were not full~ appreciated until the time of Scroedinger's

\.,10
T'k in t.he twentieth

,
centlJ r'\::~.

Hamilton also enJo~ed poetr~ and metaph~sics, which is

apparent in most of his writinss. Indeed, the writings of

Kant in his "CritiQue of Pure Reason" Sreatl~ influenced

.
Hamilton's earl~ ideas on alsebra.

As noted earlier, EnSland had been somewhat isolated

from continental Europe during the eiSht.eenth centur~. In

1813 the Anal~tical Societs was formed at CambridSe which

worked toward reuniting with the continent. GeorSe Peacock

was one of t.he original members of this societs and his

writing on algebra was ver~ influential. In Peacock's

"Treatise on AISebra"(1830) he made a distinction between

what he called "arithmetical alSebra" and 'ssmbolic algebra."

The former describes alSebra when the s~mbols used stand for

arithmatical Quantities, the latter when the s~mbols are not

necessarils dealing with numbers or magnitudes at all.

Peacock thus allowed the free use of "impossible Quantities"



meaning in an alsebra of masnitudes. Peacock did put forth

. sOlne res tT'ict ions on the use of s~mbo 1ic aISeb l'a. These we re

summed UP b~ what he called .The Principle of the Permanence

of EGuivalent Forms. which states: .Whatever form is

algebraicall~ eQuivalent to another when expressed in general

s~mbols~ must continue to be eGuivalent whatever those

s~mbols denote. Whatever eauivalent form is discoverable in

arithmatical algebra considered as the science of suggestion,

when the s~mbols are seneral in their form, though specific

in their value, will continue to be an eGuivalent form when

the s~mbols are Seneral in their nature as well as their

'Z.

form." This basicall~ meant that the usual rules for

manipulation of s~mbols from arithmatical algebra still

.
applied to s~mbolic alsebra. These usual rules, at the

beginning of the nineteenth centur~, were understood to be:

1. EGual auantities added to a third ~ield eaual

Guantities.

2. (atb)tc=at(btc)

3. atb=bta

4. Eauals added to eauals sive eauals

5. Eauals added to uneauals give uneouals

6. a(bc)=(ab)c

7. ab=ba

B. a(btc)=ab+ac

It was the seventh of these that the Guaternions would not

obe~.

. Hamilton \4aS T'evolte"d b~ this .:3PPT'oach to algebra~ for



it seemed to him "to reduce al~ebra to a mere system of

. symbols and nothin~ more; Hamilton felt that in order for

alSebra to have more solid foundations than those suSgested

bs Peacock the slemecls of algebra must be investigated

further. He thus set out to develop a better approach to the

concept of number. Hamilton thought of the concept of number

in vers metaphysical terms as is evidenced in his

"Metaphssical Remarks' in which he wrote, Relations

between succesive thou~ht thus viewed as succesive states of

one more general and changing thou~ht, are the primars

relations of algebra. ...For with Time and Space we connect

all continuous change, and by symbols of Time and Space we

reason on and realise progression.' These concepts .were

.
similiar to ideas in Kant's 'Critiaue of Pure Reason,. in

which Kant outlines the only 'Pure Sciences" as being tnose

based on .Pure Time" or 'Pure Space." Since Hamilton wished

for al~ebra to fulfill these reauirements to be a "Pure

Science," he set out to define "number" in terms of .Pure

Time." Hamilton proposed that a number should be thought of

as a step in time, then addition could be thousht of as

consecutive steps in time and subtraction as steps back in

time. He put forth these ideas formally when he delivered nlS

talk "AlSebra as the Science of Pure Time" to the British

Association in Dublin.3This ~ave a very metaphysical footins

to the concept of number, but it proved the necessars break

from the restrictions of the .permanence of forms. that would

. P T'0v ide f0 Y' the de '.,1e lop IT!en t 0 f C~u ate rn ion s. H aIT!i 1ton f i 1"::;t
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used this new concept of number in the further development of

cOIYIPle:< numbers.

WorkinS with complex numbers was vel's familiar bs this

time. Complex numbers, like neSative numbers, posed

conceptual problems thoush. Euler was one of the first to use

Sraphical representations of complex numbers in his work.

Later Wessel, ArSand, and Gauss developed this method and bs

about 1830 it was seneralls accepted to represent the complex

nUIYiber 3+bi in the complex plane, with ~ alons C:~"real

axis. and b aIonS a perpendicular 'ima~inars axis,' and in

this was addition and multiplication of complex numbers could

be performed Seometricalls aS'shown below.
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imaginary.

To attempt to alleviate this inconsistenc~ Hamilton set

out to define complex numbers as he had real numbers, as

steps in time. This time though he compared couples of

moments in time (Al,A2) instead of single moments. He then

defined a .comparison. between two moment couples

This then led to defining a Dew kiDd of number whose

operations were defined (similiar to above) to remain

consistant with the operations of complex numbers, but these

operations were no longer dependant on the addition of real

to imaginar~ Quantities. This was the first departure from

the real number line as the basis for algebra.

Thus Hamilton had invented real number couples
,

ana

defined operations of addition and multiplication on them

which allowed them to correspond entirel~ with the complex

numbers. Intuitivel~ this led him (and others) to searching

for an eauall~ satisf~ing ssstem of triples. This was a

natural direction to turn since it is the next order after

couples and also a desirable goal, for a ssstem of triples

would hopefull~ give a new method of working with

three-space (analogous to number couples and the complex

plane). Hamilton was encouraged in this search bs John

a ~oung mathemetician and friend, who was immediatels

interested in the possible triplets after reading Hamilton's

.Essa~ on Algebra as the Science of Pure Time."

Hamilton searched on and off for the triplets for ~ne



next thirteen sears followinS his Essas. Each attempt to

. define operations on the triplets failed to satisfs a basic

desired properts for the s~stem to be useful. His earl~

attempts at defining a multiplication failed to be

distributive, and also ~ielded a zero result for

multiplication of certain pairs of non-zero triplets. These

earls failures were discouraSins but the~ did not diminish

Hamilton's conviction that a satisfsinS s~stem of triplets

existed. In fact such a ssstem does not exist, but this was

net proved until 1867 (after Hamilton had abandoned the

triplets in favor of the Quaternions) when HankIe proved that

"no H~percomplex number s~stem could satisf~ all the laws of

alsebra." Ten ~ears later (1877) Frobenius amonS others

. (Peirce? Cartan, and Criessman) proved that onl~ one extra

division alsebra (be~ond Real and Complex numbers) is maGe

possible b~ droppinS the restriction to a commutative

multiplication. This extra division algebra is the

8uaternions. (In fact droppinS associativit~ also adds onl~

one more algebra, that beins the Ca~le~ Numbers of dimension

8, proved bs Milnor, Bott and others 1958)

To see in more detail the problems encountered bs

Hamilton in his search for the nonexistent triplets, it 15

enliShtenins to follow his methods and a later paper b~ B.

Peirce showins the impossibilit~ of findinS the triplets.

One propert~ Hamilton felt the triplets should satisfs

was that of the modulus (lensth or norm); that is, that the

. modulus of the product of t~JO numb(::!T'seCilJals the :~"I'oduct cf



the moduli of two numbers. As seen, this is satisfied b~ the

. number couples and if the triplet:- were to T'epresent lines in

thT'ee-space then it seemed necessaT'~ foT' them to satisf~ this

PT'opert~ also. To make triplets an extension of complex

numbers he assumed a form xt~itzk with .'1. .7. .

'f'1 =,j =- J.. nu~:;.

geometT'icall~ J was to represent an axis peT'pendiculaT' to

the T'eal and i axes. To check if the law of modulus is

satisfied note that multiplication of a triplet with itself

!:delds.~

Then setting the moduli on both sides eGual to one another:

~ to ...,
'-

Z. t. ? 'to t. 1-(x t~ +z leX +~ +z )=(x -~ -z )

e asslJ!l'!ing iJ=Ji as Hamilton did in his first attempts). 'D,
, .j.

.\.."...1 !.."

. notice that this sields an extra teT'm on the T'ight (the

term). To alleviate this problem Hamilton saw two possible

solutions, to set the 1J teT'm to zero or to let i.j::=:-ji

which would mean givinS UP commutativits. He chose the

latteT" since it seemed more natural to think two oPPo5itel~

directed lines might add to zero than to think that two

non-zero lines multiplied to zero. Thus he continued settin~

The next Question was "will the law for the

multiplication of vectors in the complex plane still hold IT

the plane is in the three dimensional space?" Taking two

triplets (a+bi+cJ) and (x+~i+zJ) he checked (aSain with

iJ=-ji) and confiT'med that the product line does lie
'"

,

.::\

,J'-

. same plane defined b~ the two lines. But the product ,-:-
\..'I th2S~:
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two seneral triplets save a result:

(a+bi+cJ)(x+yi+zJ)=(ax-by-cz)+(ay+bx)i+(az+ca)J+(bz_cy)iJ

from which two problems arise immediately; one, that the

modulus of the risht side will have four terms which can not

be the modulus of any triplet, and two, that the appearence

of the iJ terms shows the product not to be a triplet and

thus the multiplication is not closed. Further investisation

at this point reveals the impossibility of a satisfactors

solution to this dilemma. In a paper by B. Peirce, he notes

that for closure of multiplication to hold for this seneral

product you must have iJ=d+ei+fJ for some real

multiplins both sides on the risht by J gives:

-i=dJ+eiJ-f

now substituting for iJ yields, after some rearransin~:

which that e~+1=O but e was defined and thus
implies real

closure for multiplication of general triplets is impossible.

Hamilton did not see this and continued to try and overcome

this problem by various methods, until he came upon the

Guaternions.

Hamilton's inspiration for the Guaternions came on

October 16, 1843 while walking to Dublin with his wife. It

was on this walk that he realized that the fourth term in the

product would not be a problem if he were to work with sets

of ordered 4-tuples instead of triplets. Thus the general

form of these Guaternions could be a+bi+cJ+dk. As implied

from his work with triplets Hamilton set
-

iJ=k and



i
1.

= J
1-

=
k't-

= - 1 . He then on I ~ needed v a 11.Je s for the re ma i n ins

. CT'OSS terms which satisfied the desired properties. Notins

that ik=iiJ=i~J=-J and similarl~ kJ=-i he arrived at.

values for t.hese cross terms. Checkins the law of modulus

revealed asain the need to abandon the commutative propert~

and he asain, as with the triplets, set iJ=-Ji which led t.o

a complete list of .multiplication assumpt.ions. as he called

them:

.1. .1. I.~ 11 =.J =(.. =-

iJ=-Ji=k ; Jk=-kJ=i ; ki=-ik=J

It was t.hese expressions he scratched down in his excitement.

while on the Broushaffi Bridse on his walk.+

Usins these above assumptions and the componentwise. addition similar to that for the number couples the

multiplication of two seneral Quaternions ~ields:

I", t 1'0\'", 't I'Jl b t'
: t !-, it ':") I'

j'-I-,', _
a b -",' -::> h

)t,'" I 131. I c>~.J a... '.., , 01. 1
'-:\'"'

1.:.+'.
-, c>, C I .. Z. "'3°.3 '"'+

_
+

..

( a
I b"t,

t
a'2,b, t a3 b~ - a 4

b
3

)
i +

from which it can be seen that closure for multiplication

holds and that the law of the modulus also 1S satisfied,

which proved so troublesome for the triplets. Hamilton

Quickl~ ckecked and confirmed t.hat all the familiar laws of

arithmetic held except for commutativity. He later remarked

that "At this stase, then, I felt assured already that

Guaternions must furnish an interestins and prQbabl~. important field of mathematical T'esearch: I felt also that.



they contained the solution of a difficulty, which at

. intervals had for man~ years pressed on m~ mind, respectins

the particularisation of useful application of some sreat

principles lens since perceived by me respectins polsplets er

sets of numbers."iHe then immediatel~ presented his

Guaterniens to the Ro~al Irish Academs.

SacrificinS commutativit~ was a step not previousls

taken bs an~ mathemeticians and was a break from Peacock's

.Permanence of Forms." Perhaps what had made it more eass for

Hamilton to do so was that in his work with triplets ....
:.;:.::;.

Isometrical representations in three-space he noticed that

rotations in three-space do not commute either, thus if the

new numbers and their multiplication were to represent lines. and rotations the~ should also reflect this properts.

SacrificinS commutativit~ and movinS to Guaterniens from

triplets surprised those people who had been in close contact

with Hamilton. John Graves and AuSustus DeMorsan both reacted

with surprise and some Jealous~, but the~ were both

enthusiastic that Hamilton had been able to "invent" these

Guaternions rather than havine to find them usins existins

rules of alsebra. This was the beginninS of attempts to

arrive at more algebras that did not follow the rules of

ordinary arithmetic by other mathemeticians and thus "The

Permanence of Forms" was shattered by Hamilton's discovers.

Hamilton wished for these Guaternions to give the

desired representation of manipulations of lines in

. thr'ee---;:.pacebut this PPf:sent.0)da conceptual problem. It 1.1;:,.:::.



intuitively obvious to think of the

. the auaternions as representins three mutually perpendicular

lines, but the first real component was harder to

Hamilton's first inclination was to think of this

representinS a time coordinate but this remained as

speculation on his part. He resolved to think of it .."....

Q=:'

representinS a fourth proportional to the is , Js , and ks,

but that it was a line onl~ to the extent that it could be

moved on forward and backward. Thus he thousht of this "line"

as a scale and called the real component of his auaternions

the "scalar" part. He then thousht of the three "imaSinar~'

coefficients as representinS a directed line seSment which ne

called the "vector" part of the auaternion. CThis was ~ne

. first use of these terms ln this Seneral sense.)

Havins defined a multiplication that was not

commutative~ Hamilton realized that division would not be

unambiguous, thus he defined division in terms of a auotient

f' ,with r such that p=ra for division of the

auaternion p b~ the auaternion r. Thus to find this r he

introduced (1-17 If a=atbitcJtdk then a'=a-bi-cJ-dk

(
a n a log 0 IJS. tot h e c C)I1Jpie ;.: con Jus ate, at t1I := a - b i) a r'Jd 1 ;:;:.t tin ~i

"L ~ 1. "toNCa)=norm of a= a tb tc td

This leads to Cfer p=ra

and I',,!C c<) :1:0) :

and thus a definition for a auaternion auotient.'

Now if this definition of multiplication and &. . .
fJl\ll'3J.Gn

. l.-Ji:i'c.;~o be IJs.eful a':;:.mlJlti:::'licat.ion of lines HalTJilton felt



that four conditions must be met, these being:)

. (a) The direction and magnitude of the product must be

determined unambiguously by the two factor lines.

(b) The direction and sign of the product line is

reversed when one of the factor lines is reversed.

(c) The relationship of the product line and the factor

lines must remain the same, independent of an~ orientation 1n

space. Thus the space is symmetrical and coordinate free.

(d) The distributive law holds for the multiplication of

vectors, which ma~ be represented as the sum of components.

From these properties Hamilton deduced that the Quotient or

product of two parallel lines must be a scalar and the

Quotient or product of two perpendicular lines must be _

. vector perpendicular to the two original vectors. From this

and the distributive law he concluded that the Quotient of

an~ two vectors can be represented by the "symbolic sum" of
_

scalar and a vector. For instance, if the line b

divided b~ the line a then:

with b/f and bJ. the breakdown of b into the S.IJITJof

components parallel and perpendicular to a and with ~ r .

"
f~ D

If
-;.d ,.'

a 5.cala!' and a vector. Thus he defined his

Quaternions as the Quotient of the two lines which was then
Q

definition based on geolTJetr~, independant of algebra.

Then b~ multipling only the vector portions of two

Quaternions ~ and ~'~ou arrive at:



part the product Hamilton S ...c.'"

,The scalar of denot.ed a~; and
,

t.he vector part as I) ,DC. co(. ,.
Very early in his work with Buaternions Hamilton also

introduced the differential operator (which he called nabla)

as: <J :::: i (d~) + j (ty) + k < d~ )

He also then showed that when applied to a scalar point

it produced a vector:

4U ~. +
111..(.

+
»1..(I= ~)C 1 'by..J n t~.

and when applied to a continuous vect.or point function

all functions of x?y, and _

it produced a Buaternion:

4 1)::::-( bV...l ~+ ~v3
)+< ~'I3_ ~)i+{ ill/,._~))j+( bV~ __ oVI)1--:(IX '"1Jy ~'Z "1Jy ~"Z... '~t 4X' 0')(

0Y"

Hamilton, with insight from his backS round in mechanics and

. remarked that "applications to analyltical physics

must be extensive to a hish a
deSree," He certainly proved

correct on this point as it can be seen that 4U is what is

now known as the Sradient of U, and the scalar part of ~V

is the neSative of what is now called the diversence of V

and the vector part is called the curl of V, all of which

are used extensively in most branches of Physics today,

Bs the fact that Hamilton failed to investisate further

these properties it is evident that he had become more a

mathemetician than a physicist by this point in time, He much

preferred to work out a complete and riSorous description of

the auaternions and their alSebraic and seometric properties,

l~lhich hE.'did wit.h the T'0.'s.ultcd his work takins UP thT'e0)



(2 vols). He noted the failure of multiplication of vectors

. alone to satisf~ man~ alsebraic PT'operties. For e>:aITIPle,the

existence of two t~pes of products, dot and cross, one of

which fails to have closure and the other fails to be

commutative or associative, and both do not satisf~ the law

of the modulus. Thus Hamilton preferred, as a mathemetician,

to work with the whole Guaternion and thus was onl~ forced to

abandon commutativit~.

At this point one can look back and see another reason

wh~ these "numbers" that Hamilton sousht after first '...

~..

~. ;::.

triplets had to contain four elements and also whs

commutativits had to be lost. As noted earlier, Hamilton had

noticed that rotations in three-space need not commute. thus

. if the Guaternions are viewed as operators which rotates a

siven vector about an axis in space and expand or contract i~

also, then sou can see that two components are needed to

the axis of rotation, a third to specifs the ansle the vector

is to be rotated and a fourth to prescribe the contraction or

.
" V

. .expansIon. leWlns the Guaternions this wa~, and notins that

the~ act as linear operators on vectors, thes should

expressable as matrices. Not surprisinsl~ a matrix

representation of Guaternions does exist, it is as follows:

A ::

which can be decomposed into ~ form more like a Guaternion



.

.

.

(
' 000

)
1 =

0100

o 0 10

a 0 0
() (

o -I 00

)
1 000::
0 a u"1
o 0 1 0 (

0 0 -I 0

)
J0:::, a 0 0' .., a 0 0 )

0-1 0 0 (

0 0 0 -I

)
k::. 00-10

c> f 0 0
. CJ 0 0

)

F T'0 m wh i chi t can be c h e c ked t hat i'2..=J
1..=k'Z..=- 1

-Ithe Guaternions and similiarl~ if IA140; A::."

which is analosous to the inverse worked out bs Hamilton.

This matrix representation makes the noncommutativits

implicit.

An apparent inconsistenc~ in attitude bs Hamilton was

his repulsion of the complex number representation atbi and

his own Guaternion representation ataitaJtak when the i~J~k

terms were obviousls Just as ima~inar~ as the i term in the

complex numbers and hence can not be added to the real part

of a Guaternion in a strict sense of addition. This bothered

Hamilton and he never resolved this completel~ in his

thinking. He thought of the Guaternions as "denoting partl~ a

number, and partls a line, which two parts are to be

conceived as Quite distinct in kind from each other, although

thes are ssmbolicalls added, that is although their s~mbols

\0are written with the sign t interposed." He admitted that

this was settins close to an attitude similiar to that of

Peacock's that he had earlier criticized. This problem can be

avoided bs viewins the Guaternions in modern terms as a

noncommutative division rins, or skew field. Thousht of this

wa~ we let Q=(RXRXRXR). Then under componentwise addition Q

is a Sroup. Next lettins and



~ seneral element of Q can be viewed ast

Then to define multiplication on Q let:

. 1. . 1.. I.
1,.

1 .
1 =,-1 :::t~. :- , iJ=k=-Ji; Jk=i=-kJ; ki=J=-ik

Then multiplication can be defined to satisf~ the

distributive law analo.ous to auaternion multiplication.

Inverses are then defined as:

a =a/lal\.with a= (a,-b i-cJ-dk)

and thus all of the field axioms can be seen to be satisfied,

"and a noncommutative division al.ebra is obtained. This then

does not rel~ on an~ "addition" of real to ima.inar~ parts

which troubled Hamilton, but these theories were not

~
developed until much later (In fact it was Hamilton's work

which was the inspiration for much of these developments).

To see how Hamilton's introduction of these Quaternions

would kindle a search for other numbers of higher order one

Dnl~ has to look two months after his initial presentation of

auaternions. John Graves, who as noted earlier was in close

contact with Hamilton throughout his search for the triples,

sent to Hamilton a s~stem of h~percomplex numbers composed of

eight elements, which also were noncommutative but did

satisfy the law of modulus and closure property. Graves ask eo

Hamilton to publish these results but Hamilton dela~ed i3nd

noticed later that Graves' "octaves" did not satisf~ the

associative law. (This was the first use of this term and

~ first T'ealization that an slgebl'a might not satisf':;! thi~::.
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propert~.) Thus Hamilton wrote back to Graves suggesting he

. tT'~ and alter his multiplication to tT'~ and mend this

difficult~. During this dela~ Arther Ca~le~, who had also

been reading Hamilton's work, published an algebra

essentiall~ identical to Graves' octaves and thus the~ became

known as Ca~le~ numbers. DeMorgan was also influenced b~

Hamilton's abandonment of the commutative law and proposed _

ssstem of triplets, which allowed the product of two finite

triplets to be zero and the auotient to be indeterminate.

Hamilton rebuked these t~pes of s~stems for giving UP too

man~ properties to be useful at all.

As was noted, Hamilton did not full~ develop the vector

analsis from his auaternions, he felt the auaternions WOUI0

. be the answer to the ph~sicist/s problems. Indeed the

ph~sicist James Clerk Maxwell stated "the invention of the

calculus of Quaternions is a step towards the knowledge of

Quantities related to space which can onl~ be compared, for

it's importance, with the invention of the triple coordinates

b~ Descartes.,13 Maxwell then went on to use Quaternions in

his work on electricit~ and magnetism. It was Maxwell who

(4T'ote Hamilton's 4 'nabla" as 7 .del" and coinedl:..he name.':;.

converSence for vU (later divergence for -vU) and curl for

the vector portion of vV.

B~ the late nineteenth centur~ there was what could be
I

called a war going on between the "auaternionists" ana the

"vector anal~sists.u The Quaternionists felt that the

. Quaternions should be used in all vector work because ,..,oj':-

"._" I
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failin~s of vectors al.ebraically; the vector analysists on

the other hand dealt with the scalar and vector parts of the

auaternions separately to make calculations simpler when onls

one part was of interest. Maxwell's "Treatise on Electricits

and Magnetism" and Hamilton's works on auaternions greatls

influenced both J.W.Gibbs and Oliver Heaviside, but thes both

saw the "carrsing alan.' of both parts of a auaternion as

being tedious. It was by these two men that vector anaslsis

was realls developed. Gibbs published his Elemeots of ~ecto~

aDal~sis (1884) and Heaviside gave a detailed treatment of

vector analysis in the first volume of his Elect~oma.oetic

Ibeo~~ (1893). Tait, the main proponent of the auaternions,

reacted to Gibbs' work with vi.or proclaimin., 'Prof. William

Gibbs must be ranked as one of the retarders of the

Quaternion progress, in virtue of his pamphlet on Vector

Analysis; a sort of hermarphadite monster, compounded of the

notations of Hamilton and Grassmann.' Heaviside came to

Gibbs' defense in a paper called 'Some Electrostatic and

Magnetic Relations' in which he writes, "there is .reat

advantage in most practical work in ignoring Quaternions

alto~ether...there is no auestion as to the difficults and

1+the practical inconvenience of the auaternion system.' This

battle was waged into the twentieth century, but as can be

seen, the use of auaternions has now been abandoned bs

physicists for basically the vers resons outlined by

Heaviside.

Much of algebraic work being completed in the half



centur~ after the introduction of the Guaternions was also

. influenced to a lesser desree b~ the l,",orkof Hermann

Grassmann. Grassmann touched on man~ of the same ideas as

Hamilton, but from a more seneral and philisophical approach.

His work ausdebcuDgsleb~e (1844) included much of Guaternion

algebra and vector anal~sis but did not center on Just one

algebra. In these ~ears 1843-1870) man~ new algebras

appeared largel~ due to the inspiration of Hamilton's

Guaternions. There at first seemed to be a state of chaos In

algebra as properties were abandoned in experimentation but

it soon became clear that the direction of stud~ of multiple

algebras were still "subject to laws" as noted b~ Gibbs.

Benjamin Peirce, one of the first great American

. mathemeticians, was one of the earl~ supporters of Hamilton

and refered to him once as "the immortal author of

8uaternions." Piece summarized all the algebras of

hspercomplex numbers known by 1870 in his work "Linear

Associative Algebras." This shows how rich this area had

become in a relatively short period of time after Hamilton

first presented his Guaternions. The development of these

other algebras was also responsible in part for the

Quaternions becoming less interesting to the mathematical

community, as the~ became one of many algebraic structures

that did not obey all the familar rules of arithmetic.

Because Guaternions have been virtually abandoned now,

by physicists in favor of vector anal~sis and bs

. mathematicians in favor of 1./e c t D!' ';:.pac e s ,
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Guaternions as a failure. E.T. Bell labels Hamilton "The

Irish Tra~ed~. because he felt his talents were wasted b~

~ears of work on the Guaternions. In fact, the Guaternions

still form a basic example in the theor~ of division rinss.

Other important examples can be constructed usins them as a

model. For example, Herstein'Suses "Quaternions. with inteser

coefficients to prove the theorem of Lasranse that ever~

positive inte~er is a sum of four SQuares. He does this b~

investisatin~ division in the rin~ of inte~ral Guaternions.

Thus the Quaternions are ver~ important as a fundamental

model, and have a variet~ of applications still toda~. ThouSh

it is true that the~ are not as fundamental as Hamilton had

hoped.

Although Guaternions were not all Hamilton thousht lhes

would be, their discover~ was the necessar~ break from the

accepted laws of al~ebra for the field to expand. The

Quaternions were the step that opened the wa~ for the

investigation of different algebras and the eventual Grou?

Theor~, Rins Theor~, Field Theor~ etc. that compose todas's

stud~ of abstract alSebra. Thus the Quaternions' importance

was not their direct use, but rather, the auaternions'

importance was their break ins awa~ from an assumed universal

law- commutativit~- and revealins new conceptual horizons.
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