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ABSTRACT

A CLASSIFICATION OF CLASS TWO AND CLASS THREE
NILPOTENT TABLE ALGEBRAS

Caroline Kettlestrings, Ph.D.
Department of Mathematical Sciences
Northern Illinois University, 2014
Harvey Blau, Director

Table algebras are generalizations of adjacency algebras, and of the character
ring of a finite group. Extensions of groups by groups have been well studied, and
Hirasaka and Bang [5] have generalized this to the study of extensions of association
schemes by association schemes. In this dissertation, we study central extensions of
table algebras by table algebras, in the case where the extension is either class two
nilpotent (which means it is an extension of a group algebra by a group algebra), or
class three nilpotent (which means it is an extension of a class two nilpotent table
algebra by a group algebra) with order p® for an arbitrary prime p. We classify
these algebras up to exact isomorphism. In the class two case, we determine exactly
when the algebra is the adjacency algebra of an association scheme, and in the class
three case, we determine which sets of the parameters of our classification determine

isomorphic algebras.
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CHAPTER 1
INTRODUCTION

The purpose of this thesis will be to study extensions of a table algebra by a
central group algebra. In certain cases, we will characterize such extensions up to
isomorphism type, and investigate whether the algebras occur as adjacency algebras
of association schemes. In particular, we will classify all class three nilpotent stan-
dard integral table algebras of order p?, for any prime p. Table algebras are algebras
over the complex numbers with a distinguished basis and non-negative real structure
constants that satisfy certain other properties (Definition 2.1). Several important
objects are examples of table algebras, such as the group algebra of a finite group.
The set of class functions from a finite group to the complex numbers forms a table
algebra with basis the irreducible characters of the group, and the center of the
group algebra of a finite group with a basis of sums over the conjugacy classes of the
group forms a table algebra that is dual (in some sense) to the class function algebra.
The adjacency algebra of an association scheme (Definitions 2.3 and 2.4) also forms
a table algebra. Table algebras were introduced by Blau and Arad in 1991 ([2])
to study the characters and conjugacy classes of a finite group. Because both the
class function algebra and the center of a group algebra are obviously commutative,
table algebras were initially defined to be commutative algebras. Shortly thereafter,
however, it became clear that several other objects were examples of table algebras,
such as hypergroups, fusion rule algebras, C-algebras, and, as mentioned, adjacency
algebras of association schemes — with the exception that these are not necessarily

commutative. The commutativity condition was dropped and the current definition



of a table algebra formulated by Arad, Fisman, and Muzychuk in [3]. See [6] for an
overview of the relationships between table algebras and various other mathematical
objects.

We can define a nilpotent table algebra in a way that arises naturally from the
definition of a nilpotent group (Definition 2.12). The process of forming a group G
by extending a group H by a group F' has been well studied, and this process has
been generalized by Hirasaka and Bang in [5] to form an association scheme as an
extension of an association scheme by an association scheme in the case where the
schemes are thin (Definition 2.7). Blau and Xu [9] have developed a classification
of commutative table algebras formed by extending an abelian group algebra CH
by an abelian group algebra CF, and any table algebra formed in this way will be
nilpotent of class 2. Blau and Xu’s work includes necessary and sufficient conditions
for such an algebra to arise as the adjacency algebra of an association scheme.

For this dissertation, we begin by extending Blau and Xu’s work to cover the
case where the group H is central in the algebra but the group F' is not necessarily
abelian, and hence the table algebra formed as the extension of CF' by CH is not
necessarily commutative (Theorem 3.1).

We then investigate table algebras formed as extensions of table algebras by
central group algebras. Because classifying all such algebras seems intractable, we
have narrowed the scope to a classification of table algebras of order p® that are
formed as extensions of class 2 nilpotent standard table algebras by central group
algebras (Theorem 4.1). Table algebras formed in this way (even if they are not
of order p3) are class 3 nilpotent table algebras. We then use this classification to

characterize the isomorphism classes of such algebras (Proposition 4.2).



CHAPTER 2
PRELIMINARIES

2.1 Definitions and Examples

The information in this section regarding table algebras can be found in [6]; the
information regarding association schemes can be found in [12]; and the information

regarding wreath products can be found in [8].

Definition 2.1. A table algebra is a (not necessarily commutative) algebra A over
C with a distinguished basis B for which the following properties hold:

i) For b;,b; € B,bibj = Y _ Bijub, where Sy € Ry for all d, j, k.

bL€EB

ii) bp=14 € B.

iii) There is an anti-automorphism of A denoted by * which is of order at most 2

and permutes B. We define b;» = b;.
iv) For any b;,b; € B, ;o = 0 unless j = i*, and f;«g = Bixio > 0.

Every table algebra has a unique algebra homomorphism from A to C with
d(B) C R* called the degree map; the values §(b;) for b; € B are called the degrees
of B. This map has the property that 0(b;) = §(b;). A table algebra whose structure
constants and degrees lie in the integers is called integral, and if 6(b;) = [0 for each
1, the algebra is called standard. Note that any table algebra may be made standard
by changing the distinguished basis from {b; € B} to {(d(b;)/Bi0)bi : b; € B}. Such



a change of basis, where each basis element b; is replaced by \;b; for \; € R with
Ai = A+ and A\g = 1, is called a rescaling of (A, B). A rescaling of (A, B) is still a

table algebra.

Definition 2.2. An ezact table algebra isomorphism from (A, B) to (U,V) is an
algebra isomorphism ¢ : A — U with ¢(B) = V.

Throughout this paper, if A; and A, are table algebras, A; = A, will indicate

that there is an exact table algebra isomorphism.

Lemma 2.1. For any table algebra (A, B), there is a sesquilinear map (-,-) : A x
A — C defined by (z,y) = 3 Bi=ovi\i where x = > vibi,y = > \ibs, and the bar
denotes complex conjugation. For x € A, b;,b;, by € B, this map has the following

properties:
i) (b;,b;) = 0;;Bii=o where 6;; is the Kronecker delta function.

Example 2.1. Let G be a finite group. Then (CG,G) forms a standard, integral
table algebra. Its structure constants are clearly non-negative integers (either one
or zero, in fact). The anti-automorphism is the usual group inversion, and §(g) = 1

for all g in the group.

Example 2.2. (Z(CG),{C; }), the center of a group algebra with a basis of sums
over the conjugacy classes of the group, also forms a standard, integral table algebra.
The anti-automorphism sends the sum over the conjugacy class of g to the sum over

the conjugacy class of g~'. The degree map is given by d(g) = |C,|.

Example 2.3. The class functions from a finite group G to C form an integral table

algebra with basis Irr(G). The anti-automorphism is defined by x;(g9) = xi(9)



where the bar denotes complex conjugation, and the degree map gives the usual
degree of a character. We know that (;;«g = 1 for every ¢ in this algebra, so it is not

standard unless G is abelian.

Definition 2.3. An association scheme (S, R) is a set S together with a collection

R={R;:0<1i<d} of subsets of S x S with the following properties:
i) Ry ={(x,z):z € S}.

i) U gR; =S x Sand RiNR; =0ifi+#j.

iii) For each i, (R;)" = {(z,y) : (y,x) € R;} = Ry for some 0 < ¢* < d.

iv) For any 0 < 1,7,k < d and any pair (z,y) € Ry, the number of elements z € S
such that (z,2) € R; and (z,y) € R; is independent of the particular choice of

x and y. This integer is denoted p;jp.
The elements of R are called relations.

An association scheme gives rise to a standard, integral table algebra in the

following way. Let A; be the matrix indexed by the elements of S with entries

defined by

1 if (x,y) € R;
(Ai):ry =
0 if not.

Such a matrix is called the i** adjacency matriz of the association scheme.

Definition 2.4. The adjacency algebra of an association scheme is the subalgebra of

M,,(C) spanned by the adjacency matrices of the association scheme, where n = |S|.

Definition 2.5. The valency k; of an adjacency matrix is the sum across any row

of the matrix. It is equal to the number of z with (x,z) € R; for any x € S; so

ki = piivo.



Using the properties in Definition 2.3, it can be shown that the adjacency algebra
of an association scheme (.S, R) with adjacency matrices A; forms an integral table
algebra with basis B = {4; : R; € R} and structure constants p;j,. The anti-

automorphism is matrix transpose. It is standard; §(A4;) = k; = pji-o-

Definition 2.6. Let (A, B) be a table algebra. We define the linear elements of B
by L(B) = {b€ B:bb* = A1, X € R}.

If a table algebra is standard, then its linear elements are exactly the elements

of degree one, and these form a group.

Definition 2.7. An association scheme (S, R) is called thin if its set of adjacency
matrices forms a group. In this case, the adjacency matrices are permutation ma-

trices.

We now discuss the quotient of a table algebra by a subset of its basis. For any
two elements b;, b; € B, we define Supp(b;b;) = {b; : Bijx # 0}. We then define a set

multiplication on the subsets of B by ST = U Supp(st). We will regularly use the
seSteT
notation st in place of {s}{t}, and the reader should be able to tell from context

which multiplication is meant. We will also be using the notation S = Z s.
ses

Definition 2.8. Let (A, B) be a table algebra. A closed subset of B is a subset

with the property that CC* C C.

This is equivalent to C' = C* and CC C C.

3(b:)?

Biio

Note that if the algebra is standard, the order of a subset is simply the sum of

Definition 2.9. The order of a subset C' of B is o(C') =
b;eC

the degrees of its elements. In the case of the adjacency algebra of an association
scheme, the order of the basis is the sum of the valencies of the matrices, and this

sum is exactly the size of the underlying set S.



Definition 2.10. Let (A, B) be a standard table algebra and C' a closed subset.
(coe)t
o(C)
of (A,B) by C is the table algebra (A//C, B//C), where A//C' is the span over C

of BJ/C.

For b € B, let b//C =

and B//C = {b//C : b € B}. The quotient algebra

The quotient algebra (A//C,B//C) is also standard. Its anti-automorphism
and degree map are simply the anti-automorphism and degree map for (A, B), re-
stricted to A//C. This algebra has the properties that o(B//C) = o(B)/o(C) and
(B//C)//(D//C) = B//D for any closed subsets C' and D of B with C' C D.

We now discuss nilpotency of table algebras.

Definition 2.11. The upper central series of a commutative standard table algebra
is a chain of closed subsets of the basis L(® C L) C L) C ... where L = {1}

and for i > 1, L( is the preimage in B of L(B//L%" 1 (B)).

This definition arises from the definition of the upper central series of a group in
that if (A, B) = (Z(CG),{C; }), then the chain LO Cc LMW C L® C ... corresponds
to the chain Zy C Zy C Z, C -+ via LW = {Cf : gZi_y € Z(G/Zi1)} ={C} : g €
Zi}.

Definition 2.12. A commutative table algebra is said to be nilpotent of class n if

its upper central series terminates in B after n steps, i.e. L™ = L") = B,

Definition 2.13. Let H be a group and let (CF, F') be a standard table algebra.
We say that a standard table algebra (A, B) is an extension of (CF, F) by (CH, H)
if there is a subgroup H' of L(B) with H' = H and B//H' = F.

Definition 2.14. Let (A, B) and (C, D) be standard table algebras, with B = {by =
1B,b1, PN ,bk} and D = {do = 1c,d1, PN ,dm}. Let

Bi1D={by®d;:0<j<m}U{b®D":1<i<k}



Then B! D is a linearly independent subset of A ®c C. Let At C' be the C—space
spanned by Bl D. Then (A{C, B! D) is a standard table algebra, which we call the
wreath product of (A, B) and (C, D).

Theorem 2.1. Let (A, B) be a standard table algebra and let N be a closed subset
of B. Then (A,B) =, (A//N,B//N)V(CN, N) if and only if for any n € N and
b€ B\ N, Supp(nb) = Supp(bn) = {b}.

Definition 2.15. A matrix Circ(co, c1, ..., ¢,) is said to be circulant if it has the
form ) )

CO Cl DT Cn

Cnh Co -+ Cp-1

cp Cy - Co

2.2 Previous Results

The following results provide a summary of previous work done on the problem
of classifying extensions of table algebras. In [5], Hirasaka and Bang study an
association scheme (X, G) that is an extension of an association scheme (Y, H) by
an association scheme (Z, F'). They cover the case where (Y, H) and (Z, F) are
both thin, so that (X, G) is an extension of a group by a group. They develop the
construction of such an extension, and give necessary and sufficient conditions for
its existence. These conditions then produce a bound on the number of schemes of
this type, up to isomorphism.

In [9], Blau and Xu investigate commutative, standard table algebras (A, B)

formed as the extension of a group algebra CH by a group algebra CF'. These are



exactly the class 2 nilpotent standard table algebras. Given abelian groups F' and
H, and an analogue of a 2-cocycle a : F' x F' — H, they develop the construction of
such an extension, and show that any extension of this type must have exactly this
construction. They also find necessary and sufficient conditions for an extension of
this type to be the adjacency algebra of an association scheme. In this dissertation,
we will generalize these results to noncommutative, standard table algebras within
which the group H is central, but the proofs are similar to Blau and Xu’s. The

results by Blau and Xu are as follows.

Theorem 2.2 ([9]). Let (A, B) be a standard, commutative table algebra with a
group H — B and B//H = F, where F is a group. (A, B) is necessarily integral,
and B can be written B = {t,h : 0 € F,h € H} where the t, comprise a set of coset
representatives for H in B. For eacho € F, let S, = {h € H : t,h =t,}, a subgroup
of H. For each o € F,S, = Sy,-1 and S, C S,S;. There also exists a function
a: FxF — H, called a factor set, satisfying a(o, p)a(T, p) = a(oT, p)a(o, 7) mod
55578, for all o,7,p € F, such that

(teh1)(trha) = [So N S| Y tora(o,7)hhyho.

h coset
reps of Sor
in SeSr

Conversely, given abelian groups H and F, a collection of subgroups {S, : o0 € F'}
of H satisfying S, = Sy-1 and Sy, C S,5;, and a factor set o satisfying the above-

mentioned congruence, these determine a unique standard, integral table algebra
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(A, B) with H — B and B//H = F, such that S, = {h € H : t,h = t,} for a set

{ts : 0 € F'} of coset representatives for H in B, and

(toh)(trho) = [So N S| Y tora(o,7)hhyhy.

h coset
reps of Sor
in S5,

Theorem 2.3. The algebra described in Theorem 2.2 arises as the adjacency algebra
of an association scheme if and only if there is a choice of factor set o such that

a(or, p)a(o,7) = alo, 7p)a(t, p) mod S,S; NS.S, for all o,7,p € F.



CHAPTER 3
EXTENSIONS OF GROUP ALGEBRAS BY GROUP
ALGEBRAS

In this section we prove the non-commutative generalizations of Theorems 2.2

and 2.3.

Theorem 3.1. Let (A, B) be a standard table algebra with a central group H — B
and B//H = F, where F is a group. (A, B) is necessarily integral, and B can be
written B = {t,h : 0 € F,h € H} where thet, comprise a set of coset representatives
for H in B. For each o € F, let S, = {h € H : t,h = t,}, a subgroup of H. For
o,7 € F, these satisfy So, = S,-1 and Sy C S,S;. There also exists a function
a: FxF — H, called a factor set, satisfying a(o, 7p)a(T, p) = a(oT, p)a(o, 7) mod
S¢5:8, for all o,7,p € F, such that

(teh1)(trha) = [So N S| Y tora(o, 7)hhyho.

h coset
reps of Sor
in SoSr

Conversely, given an abelian group H, a group F, a collection of subgroups {S, :
o € F} of H satisfying Sy = S,-1 and S,r C S,S;, and a factor set « satisfying

the above-mentioned congruence, these determine a unique standard, integral table
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algebra (A, B) with H — B and B//H = F, such that if {t, : 0 € F} is a set of

coset representatives for H in B, then S, ={h € H : t,h =t,} and

(toh)(trha) = [So N S| Y tora(o, 7)hhyhy.

h coset
reps of Sor
in S5,

Proof. For the first direction, suppose (A, B) is a standard table algebra satisfying
the given conditions. Since B//H = F', B = {t,h: 0 € F,h € H} for a set of coset
representatives t,. We choose t; = 1. It is easily shown that the sets S, for o € F
are in fact subgroups of L(B).

Since F'is a group, (t,//H) - (t://H) = 1//H, so t: = t,-1h, for some h, € H.
Hence S, = S,-1 since h € S, = ty-1h, = t& = (t,h)* = t:h™! = t,-1h,h™' =
ty1 =t,ah™'=htecS, 1 =hcS, . Similarly, S,-1 C S,.

To show that S,, C S,S;, note that (t,//H) - (t://H) =1//H = Supp(t,t’) C
H,and (t,t5, h) = (t,,t.h) #0 < h € S,. So Supp(tst:) = S,. Thus Supp(t,tit.tr) =
SySr, and since Supp(t.t5) C H and H is central, (t,t,)(t,t;)" = tot tith = t,tit tr.
So

Supp ((tot:)(tots)") = SySy.
Now, since (t,//H) - (t.//H) = to, )/ H, t,t, = Zﬂhtwh with at least one 3 > 0.
S0 Sur = Suppltonts.) C Supp (1o (tots)) = S5

We now show that there exists a factor set «a satisfying the claimed congruence.
Since Supp ((t,t;)(tst;)*) = S,S-, for each hy, hy with t,, hy,torhe € Supp(tst,),
Supp (tJTt;Thlhgl) C S,S,, so hihy' € S,8; since 1 € Supp (t,,t%,.). So for all
hy, he with t,, hy,terhe € Supp(tst,), hy = he mod S,S,. Thus there exists some

a(o,7) € H with t,t, = Zﬁhtma(a, 7)h. Note that for any o,7 € F, a(o, 1) is
h€S, Sy
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only determined up to congruence modulo S, S since replacing a(c, 7) with a(o, 7)h

for h € S, S, gives t t h =t t,
(totr, tora(o, T)h) (tot,h 1 tora(o, 7))
N f h o1y = = =
ow, for any h € S,S;, By 5io) 5(1507)
1

5 (totr,tora(o,T)). So B does not actually depend on h, so all 3, are equal.

And since t,, (o, T)hy = t,ra(o, T)hs if hy = hy mod S,,, we can write

E Btora(o, T)h = |S| g tora(o, T)h
h coset 7Tl heSy S,
reps of Sor
in SoS-

We now determine the value of 5. Since B is standard, 6(t,) = (t,,t,) =
(ty,toh) = (st h) for any h € S,. So t,th = d(t Z h, and therefore

heSs

S(tats) =46 Za(t(,)h> ty) Y (h) )5, ]
€Sy

heSs

= 6(ty)* = 8(t5)|Ss| = (ts) = |S,|.

Calculating §(t,t,) and setting it equal to |S,||S;| now gives 8 = ||if|f || |SeNS; |
Thus (A, B) is integral.
We now have
(tohn)(trhe) = 2705 S~ b, (*)

|"T| heS, Sy
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We now show that a(o,7p)a(r, p) = alot, p)a(o,7) mod S;5;S, . This is a

result of the associativity of the algebra.

S, NS,
(tot)t, = <||S—‘| > tﬂa(am)h> t,

heSsSr

|S, NS, Z M Z torpa(oT, p)k | a(o, 7)h

|Sorl h€SsS- ‘S"TP| k€Ssr S,
|Se N SH[Ser NS,
ullBors] 2, 2, (oo Pl TR

heSs S, keso-rsp

Similarly,

S, NS,IS, NS,
(1) = | lSTzHSm’ LSS S (o)l )bk,

heS:+S, k€S Srp

The same basis elements must appear in each of these, so

{torpa(oT,p)a(o, T)hk : h € S;.5;, k € S5rS,}

{torpa(o, Tp)a(T, p)hk : h € S.S,, k € S;5;,}.

So let h € S,S; and k € S,,S,. Then there exists A’ € 5.5, and k' € S,S;, such
that

torpa(oT, p)a(o, T)hk = t,.,0(0, Tp)a(T, p) 'K

Then since Syr, € S55:5,,
a(ot, p)a(o, 7)hk = ao, Tp)a(t, p)W'k mod Syr, =

alo,mp)a(r, p)'K'h k™1 = a(or, p)a(o,7) mod S,., =
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a(o, p)a(r, p) = aloT, p)a(o, 7) mod S,5,5, since W'k'h 1k~ € S,5.5,.

For the other direction, let H, F', «, and {S, : 0 € F'} satisfy the given condi-
tions. Let B = {t,h: 0 € F,h € H}, where t,hy =t hy < 0 =7 and hy = hy mod
Sy(=S;). Let t11 = 1; we then identify ¢;h with h and t,1 with ¢,. Note that this

means t,h =t, < h € S,. We give the elements of B the multiplication

(tohn)(trha) = == Y tora(o, 7)hhyha.

heSsSr

We now show that this multiplication is associative.

|S: NS,

(tghq) (tThgtph3) - tohl
|5l

> trpalr, p)h(hohs)

hesS- S,

S.NS Sy N S7
_ | ol Z 1S5 0 5| Z torpat(o, Tp)ka(T, p)h(hihohs)
‘STP’ heS-S, ‘S‘”p’ k€SsSrp

A A
|S'rp||San|

E torpa(o, Tp)a(T, p)hk(hihohs).
heS,S,,
k€SqSrp

Now, S;5,5,5;, = S55:5,. In order to equate the above sum to (t,hit, hs)(t,hs),

we need to sum over only the distinct elements of S,S5;S,. Since

|S7.5p1155S7|
15,5, 8,5,

15,5,9,| =
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for each x € S,5.5,, there are |S.S, N S,S5;,| pairs h € S;.S,,k € S,5:, such that

hk = x. So:
(toha)(trhot,hs) =

S: N S,||Se N S7,||5:-5, N S,S7 ;
| il pllS75, ol Z torpt(o, Tp)a(T, p)j(h1hahs). (1)
|STp||SUTp| Jj€SsS+Sp

Similarly,

(to-hltThz) (tphg) -

S5 N 52 [|Sor N Spl[56:57 N Sor S| > torpalor, p)afo, 7)j(hahshs).  (2)

‘SUT||SUTP| jeSo'S‘rSp

By the assumption (o, 7p)a(T, p) = a(oT, p)a(o, 7) mod S,5;S, , the sum-

mands in (1) and (2) are equal. The coefficients are equal as well, because of the

following;:

1S, 1SS N SpllS-S, N SpSy|
(3)
|70l Sorl

_ SIS [SellSmpl | [9SpllSeSm,l 1

TS 15nSul 19578,805m] 1S 0sl1S0ry)

5,115,115,
- . 4
5,5.5,/1S0m0] @)

The coefficient in (2) is exactly the same as (3) with o and p switched, and (4) is

symmetric in o and p; so the coefficients are equal. Thus (1)=(2) and associativity

holds.
The argument above that culminates in equation (%) shows that this multiplica-

tion is unique.
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We define the anti-automorphism of (A, B) = (CB, B) by
(toh)* =t,1h ra(o,0 1),

extended linearly. We now show that this map is in fact an anti-automorphism. In
the following calculation, we will use «a(o,1) = a(1,0) = 1 for each ¢ € F. This
does not result in a loss of generality since t,t; = t, = t1t, implies a(c, 1) and

a(1,0) may be set equal to any element of S,.

(tohntohs)* = (’S"’SLIS‘ 3 tJTa(a,T)h(h1h2)>

h€Sy Sy
'SS”S| S tion 1 (o, D)h(haha))  a(or, (07) 1)
[ S| h€SsSr
S, NS, 1y 1y -14— -
= |\S—|’ Z ton-ralo,7) W T hy ta(oT, (o)) T
9Tl heS,S-

And

(trhe)*(tohr)* = (tr—1hy'a(r, 7)) (to-1hy (0,07 1))
= _ 5 0S| Ztm) w7 o Yk (hea(r, 7 (o, cfl))_1

’ST to~ 1| hGS 715 1

_ 18NS 21 —dng—1y—1y— C1y— T
T Z ton-1a(r o T R hy e, T T ao, 0T T
9T hesS,S-

These are equal by the following argument.
a(o,)a(or, (o7)™") = afr, (o7) He(o, 7(o7) ™) mod S,5:S(pr)-1 = 555,

= alo,7)a(or, (o) Ha(r™t o7 = a(r, 7o a(o, 07 )a(rt, 071 mod S,.5;.
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And a(r, 7 to Ha(r™ o) = a(rr o7 Ha(r,771) mod S, S;-15,-1 = S,S,. Since

a(l,071) = 1, we now have
a(o,m)a(or, (o7) a(r™, 07 = a(o,07 a(r, 77") mod S, S,

Thus

-1

a(r o Na(o, 0 ) ra(r, 7 = alo, 1) (o, (07) 1) 7 mod S5,

So (ta—hltThQ)* = (tTh2)*(to'h1)*-
We now show that the structure constant ;0 = 0 unless ¢ = j*. Let b; =

tghl, bj = tThQ. Then

b@:% > tora(o,7)hhihs.
9T heS,S-

1

Suppose t;1 = by appears in this sum. Then 7 = ¢, and for some h' € S,5,; =

S5, 1 =S5,

tora(o, TN (hihy) = tia(o, 0 D (hihe) =11
= a(o,0 )W (hihy) = 1mod S,
= afo, 0 Y (hhy) = 1
= hy = (a(o,0” )W hy)™!

= a(o,0 ) thtH

So b; = t,hy and b; = t,-ra(o,0 V) TIhTTH T = t,a(o,07) TRy since BT €

So' = ngl. Thus bj = (to’hl)* = b;k
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Furthermore, B;;«o # 0 because if b; = t,hq,

biby = (tohy)(teh1)* = (teh1)(to-1a(o, 0”1 Thyt)
152 0 55 Ztla o,0 Yh(hia(o, o) R = | S, Ztlh.

heSs heSs

So for h = 1, by shows up with coefficient |S,|. Note that this also shows that

tots =15, h.
h€S,
We now define the degree map to be 6(t,h) = |S,|. This is an algebra homo-

morphism, since

St htohy) = 15205 S O(tora(o,7)hhiho)
“’T| h€SySy
1S, N S, |
= a3 SO'ST ) tO’T
5SSl
|Se N S7||S65-||Ser

|SO'T’

- |SU||ST| - 5(tgh1)6(t7—h2)

Thus (A, B) is standard, and since the structure constants have already been shown
to be integers, we have now shown that (A, B) is a standard, integral table algebra.
It remains to show that B//H = F. The isomorphism is ¢(o) = t,//H. This

is clearly a bijection. To show that it is an isomorphism, first note that ¢,//H =
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(teH)"  t,H*
| H| [ H[S,|
toh//H =t,//H for all h € H, we have

since t,hy = t,hy whenever hy = hy mod S,. Thus, noting that

1
¢ o ¢ - _ t h t k
@) = S !S\,;,
1 1
_ toht k
(H)ISal o(H)|5:| th
1S, N S,
_ tora(o, T)m(hk
ys 2 |th [Sor| me;s |
‘SUQST‘ 1
__PefVor] - - tora(o, T)m(hk
o(H)|S, |15+ Z;{ 0<H>\Sw\k;1 o
meSySr
\S N .S:|
- v 't O'T H
_ \Sa n STHSUST| (tor /[ H) = tor /| H = (7).

|S6]15]
O

Remark 3.1. As mentioned in the above proof, a(c, 7) is only determined up to
congruence modulo S, S;. Two factor sets that differ only by multiplication by an
element of S, S, will yield exactly isomorphic algebras. With this in mind, we state

the following theorem. Note the slight difference from Theorem 2.3.

Theorem 3.2. The algebra described in Theorem 3.1 arises as the adjacency algebra
of an association scheme if and only if there is a choice of factor set o such that

alo, tp)a(r, p) = alor, p)al(o, ) mod S, S, for all o,7,p € F.

Proof. For the first direction, suppose that the algebra is the adjacency algebra of
an association scheme. Since B is the set of adjacency matrices for this scheme, we
will index the relations of the scheme by elements of B, R,. We will calculate the

relations for this scheme and then show that the factor set congruence follows. The
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underlying set S for this scheme has size |F'||H| since |S| = o(B) (as discussed after
Definition 2.9), and B//H = F = o(B)/o(H) = o(F) = o(B) = |F||H|. So we will
label the elements of the underlying set with ordered pairs (o, h) for o € F,h € H.
H induces the equivalence relation (o, hy) ~ (7, he) < o = 7 on the underlying set,
and the scheme given by the adjacency algebra B//H has the set of these equivalence
classes as its underlying set. (See [5] or [12] for a thorough explanation of quotient
schemes.) We therefore label these elements by (o, H) for o € F.

Now, H is the basis of a subalgebra of A, and thus gives the adjacency algebra of
a subscheme of the scheme given by B. It is, in fact, the scheme given by any one of
the equivalence classes described above, so its underlying set is {(o,h) : h € H} for
any o € F'; other choices of o will simply yield copies of the same scheme. (Again,
see [5] or [12] for a thorough explanation of subschemes.) Since H is a group, this
scheme is thin, so the adjacency matrices form a group isomorphic to H. This forces
(0 11). (0, h2)) € Ry

To see what relation ((o,hy), (7, h2)) is in when o # 7, note that since F is a
group, it also gives a thin scheme, with (o,7) € R,,-1. Thus the quotient scheme
given by B//H is also a thin scheme, and it is natural to label the elements of its
underlying set (o, H) for o € F, with ((0, H), (1, H)) € R:___, ;m). This means that
the matrix (¢,,-1H)" has ones in the entries indexed by ((o, k1), (7, h2)) for every
hi,hy € H. Thus ((0,hy), (7, h2)) € Ry, for some h € H.

Since this h is undetermined by B//H = F, we may choose it arbitrarily. Differ-
ent choices will produce isomorphic schemes since they only differ in how we choose
to label the elements of the underlying set. We now show that, given an appro-
priate labeling of elements of S, we have h = a(o, 7 (™1, 7) " hihy 'k for some

keS,S;.
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We first choose an element of S to label as (1,1). We then choose the ele-
ment s € S with (s,(1,1)) € Ry for each h € H,o € F. Since we have
already chosen to label the elements of S so that ((o,h1),(7,h2)) € Ry __,s for
some h € H, the first component of s must be 0. We let s = (o,h) so that
((o,h),(1,1)) € Ry . This choice determines how the rest of S must be la-
beled. Using the facts that ((o,hy), (7,h2)) € Ry = ((7,h2),(0,h1)) € Ry and
((0,h1), (1, h2)) € Ry, ((7,h2), (7, h3)) € Rp, = ((0,h1), (7, h3)) € Ry for some

b € b1by, we have for any hy,hy € H,0,7 € F,

((1,1),(7,h2)) € Raono)r = By _ agrr1y-1ny0
SO
((U7 h1)7 (Ta h‘2)) € Rb for some b € (tUhl)(tT_la<T’ 7-*1>*1h2*1)7
SO
((07 h1)7 (Tv hz)) € Rtm_71a(077'71)0¢(7'77'71)71h1h2_1k

for some k € S,5,-1 = S,5-.
We now show that the k only depends on ¢ and 7, not on h; and h,. Suppose

hs, hy € H. Then ((0, h3), (0, h1)) € Ry j,,5-1, 50

((Ua h3)7 (T7 h2)) S R(tlhghfl)(t _1oz(o,f—1)a(7’,‘r—1)—1h1h;1k) = Rt _1Oé(U,T_l)a(TJ_l)_lhsh;lk'

oT oT

And since ((7, ha), (T, hy)) € RtlhghQH

((Ua h3)7 (Ta h'4)) < R(tm__la(a,‘r—1)a(‘r,T‘l)_1h3h;1k)(t1h2h21) = Rt _1a(o,r~Ha(r,r=1)~1hgh tke

oT
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So the k remains the same when h; and hy are changed. We therefore label k as

ksr. We now make choices for the various a(o, 7) that simplify the relations.
Recall that a(c, 7) is only determined modulo S,S;, and that we have already

chosen a(1,0) = a(o,1) = 1. Now choose (o7}, 0) = a(o,071) for all ¢ € F. This

is allowable since fora =o', b=0,c =071,

a(b,c)a(a,be) = afa,b)alab, c) mod S,5S. =

a(o,0c Ha(c™, 1) a(c™, 0)a(l,07') mod S, =

afo,07') = a(c™, o) mod S,,

and a(o,071),a(c7!, o) are only determined modulo S,. Now, choose a set of values
a(o, 7) that satisfy the conditions of Theorem 3.1 and have a(c,1) = a(l,0) =1
and a(o,07') = a(c™!, o). We will modify that choice to simplify the relations. We

have shown that

((07 hl)’ (T? hg)) € Rtm__l a(or " Ya(r,r= 1) "1hihy ko -

. —1 CV(O',’T_I)CV(T_I,T)_lhlhglk‘gﬂ—

for some k,, € S,S5.. We know that a(o7™ !, 7)a(o,77') = a(r7 !, 7)a(o,1) mod

1

SoSr-1,s0 afo, 7 et 7) 7 = a(or™h, )7 mod 8,8 -1, Say afo, 7 et )7

=a(or ', 7)" Uy, where I, , € S,5,-1. Therefore
alo, 7 Nalr ™ 1) ke = alor™ ) o ko

= ((07 hl)? (7_7 h2)) S Rtm,la(ar*1,T)*lhlhgllgﬁko;'
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So for any p # 1,71, choose

o (p, ) = alp, Tl K

pT7T pTVT :

Then for p = o7, we have
oo 1) =alor !, 7)1k, L
= dor L) =alor 7)o ks

This gives

((0,h1), (T, h2)) € By ai(or—1 1)~ 1hang -

For the remainder of the proof, we omit the prime. The association scheme relations

are then given for all o,7 € I hy,hy € H by

<<07 hl)v (T7 hQ)) = Rtm—wé(UT*laT)*lhlhzil'

Now let o,7,p € F. Let 1 = 7p and = o7p = omw. Then for any hy, hy € H,

((57 hl)’ (7?, h)) € Rtﬁw—ul(ﬁﬂ'_lﬂr)_lhlh_l?
((ﬂ-> h)’ (p7 h2)) € Rtﬁp,la(ﬂ'pfl,p)*lhh;h and

((57h1)7(p7h2)) € Rtﬁp,la(ﬂp*,p)*lhlh;l'
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Therefore t5,-1c(Bp 1, p) " thihy ' is in

Supp [(tﬁﬂ—IOZ(/BWil’ﬂ-)ilhlhil) . (tﬂp_1a(7rp’1,p)’1hh2’1)} ,

hence

tapra(Bpt, p) T haby !t = tg,a(Brt mp T a(Br T ) et p) T hahy tw

for some w € Sgr-1.55,-1. So
a(Bp~t p) "t = a(Brtm) T ralrp Tt p) T te(Brt mp ) w mod Sg,
= a(frt, alret, p) = a(Bp, p)a(Brt, mp) mod S5, 1 Ssr 1 Sepr.

Converting this to an expression in o, 7, and p, we have
alo, Tp)a(r, p) = alor, p)a(o,7) mod S,,S,5, = S,5;.

For the other direction, assume that a(o, 7p)a(r, p) = a(oT, p)a(o, 7) mod S, S-
holds; call this congruence (*). Let the underlying set be F' x H and the relations
be defined by ((a,h1), (7, hs)) € Ry & b = t,ra(or™t, 7) " hihy . Tt is clear that
these relations partition (F' x H) x (F' x H) and that R;,; is the diagonal relation.

We now show that if ((o,h1), (7, h2)) € Ry, then ((7,hy),(0,h1)) € Rpe. As
discussed earlier, the anti-automorphism is given by (t,h)* = t,-1a(o, 0" th™L.
Since
((0,h1), (T, h2)) € Ry aior—1my-thungt a0d (7, h2),(0,01)) € By oro1 0y 1honits

we need to show that

trgra(ta o) thoht = (tera(or b 1) thihyt)*

= tTo‘*lOé(O-T_laTO-_1>_IO[(O-T_17T)h2h1_1'
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We've assumed that a(o, 7p)a(T, p) = aloT, p)a(o, 7) mod S, S, . So:

alor 107 = alort,ro Ha(l,0)
= alor 707 0)a(ro™t,0) mod S,,-1S,5-1 = S,rt
= a(ro o)t = aler o D a(or™!, 7) mod S, 1.

Therefore t,,-1a(or™!, 707 ) a(or™!, T)hohy! = trgra(to™t, o) thohy .

We now show that the intersection numbers p,s depend only on r; s, and ¢, and
that these are exactly the structure constants of the algebra described in Theorem
3.1. Let ((o, h1), (7, ha)) € Ry,. If (p, hs) has the property that ((o, hy), (p, h3)) € Ry,
and ((p, hs), (1, hs)) € Ry, then we say that (p, hs) has property P with respect to
0,h1,7, he. If (p, h3) has property P with respect to o', 7/, h!, hl, for some other pair
(o', h)), (T'hYy)) € Ry,, we will say that (p, hs) has property P’. We show that the
number of (p, h3) with property P is the same as the number of (p, hs) with property
P

Let ((o, h1), (1, h2)) € Ry, and suppose (p, h) has property P. Let ((o/, h}), (7', b)) €

Ry,. We first show that there exists (p', hy) with property P’. Since

by = tora(or  7) thihyt =t oo ) TR RS
we know that o' = o/77!. Thus 070/ = 777 = po~lo’ = pri7/. Let

o = po~to’ = pr~i7'. Since a(or™!, ) hihyt = a(o’TL )RR mod S,

we have

alor ™, T)a(op™, pr DA the = ala’T ™ )a(o’ o, o' R R, mod S,
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because op~t = o’p/~tand pr~! = p/7'71. Since S,,-1 C S,,-15,,-1, this congruence

holds modulo S,,-15,,-1. Furthermore, a(ab,c)a(a,b) = a(a,bc)a(b, c) mod 5,5

with a = op~!,b = pr~ !, and ¢ = 7 gives

1 -1 1

alor™ ' T)alop ™ pr ) = alop™, p)alpr™, 7) mod S,,-15,,-1. (3.1)

Therefore

alor L m)alop™t pr YR hy = a(o'T 7Y T)alo’p 7Y, o7 TR R mod Sy 1S,
= a(opt, p)a(pr™t, 7)hi he = oo’ oL, o )a(p'7 =L, 7Ry Ry mod S,,-18,,-1

= oo’ o ) talopt p) Wb ths = a7 T a(pr ™t T) T AL by ths

mod So-p—lspT—l. So let hg € H with

7 1—1

Ry =a(d’p ™, p) ta(op™, p)hihy hy mod S,,-1 and

hy = a(p'm a(pr™, 1) hhhy ths mod S, 1.

Then

AN AN
((0 ) hl)? (p ) h3)) € RtU,p,_la(o"p’*l,p’)*lhllhg;l
- Rt(,p—1 a(o’p =10 )" Lhia(o’ p L p")a(op=L,p) " 1Ry hahy !
- Rtgp—loé(gp‘l,p)‘lhlhpfl and
N /ot
((p ) h?))’ (T 7h2)) € Rtp/_r,_la(p’T’—l,T/)—lhéh/;l
= R - _ _ _ _ —1 -1
tm__la(p’T/ L) =Lla(p'm'= Y7 )a(pr—1,7)~1hhhy "hshi
= R

1y — —1.
t,,—10(pT L)~ Lhsh,
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So (p', h%y) has property P’. Thus the existence of (p, hy) with property P implies
the existence of at least one (p/, hy) with property P’. This shows that whether
prst = 0 is independent of choice of o, 7, hy, and hs.

Now, suppose b, = t,,-1a(op~t, p)thihy' and by = t,,—ra(pr=t,7) Thyhy '
Then

Supp(bfbs) = tanla(O-p_la pT_l)a(Up_la p)_la(pT_lv 7')_15'0971 SpT*1 h1h2_1'

Suppose T € S,,-1.5,,-1 with

! ,T)T

alor™! r)a(op™, pr") = alop™", plalpr™

as in equation (3.1). Then b, € Supp(b,bs) < there exist u € S,,-1,v € S,,—1 with

1 -1

7)) Thahy e ue &

b = terra(op™", pr alop™", p) " alpr

((O-’ hlu)7 (p7 h3>> S Rtap_la(apfl,p)*lhluhgl

= Rbra

((p7 h3)7 (7—’ hQU_1>> S RtpT_1Oc(p~r—1,‘r)—1h3h;1v

= Ry, and

((07 hlu)? (T’ hQU_l)) S Rt —1a(or=17)"thiuhy o

oT

= R

b, —1 a(op=tpr~Va(op~1,p)"la(pr—1,7)"1hihy 'z tuv

- bt-
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Therefore by € Supp(b,b) if and only if there exists a triple {(o, hyu), (7, hav™1), (p, h3)}
so that p,.ss # 0. Therefore the coefficient of b; in the product b,.bs is nonzero exactly
when p,..; is nonzero.

Suppose there exists (p, h3) with property P. Another pair (m, h) has property
P only if o= = po~1, so only if 7 = p. So the number of pairs with property P is
the number of h € H such that (p, h) has property P for some fixed p.

Now, (p, h) has property P

& tya(op Tt p)thahyt =t,1a(op”t, p)Tthih 7! and
trra(pr ™t ) hahy !t =t a(pT ™t T) by
& hy'=h"' mod S,,-1 and hy = h mod S,,—1
& h € hySppr NhsSym.
Thus the number of (p, h) with property P is |h3Sy,-1 N hgS,—1| = |h3(S,,-1 N

Spr-1)| = |S5p-1NS,-1]. Similarly, the number of (p', ') with property P’ is Sy ,-1N

Vand p'77! = pr~!, these numbers are the same. So

Syp—1]. Since o’p't = op~
the value of p,.4 is independent of choice of o, 7, hy, and hs; and by Theorem 3.1,

|Sgp-1 N S,r-1] is exactly the coefficient of b, in the product b,b,.



CHAPTER 4
EXTENSIONS OF TABLE ALGEBRAS BY GROUP
ALGEBRAS

We now move to the case where B is a commutative, standard, class three
nilpotent table algebra. This means that L®)(B) = B, i.e. that B//L®(B) is a
group. Since L®)(B) is the preimage in B of L(B//L(B)), and (B//C)//(D//C) =
B// D for any closed subsets C, D of B with C' C D, this means that
(B//L(B))//(L®(B)//L(B)) = (B//L(B))//L(B//L(B)) is a group. So if F =
B//L(B), F'is class two nilpotent. Hence B is an extension of the class two nilpotent
table algebra F' by the group L(B).

This case is more complicated than the case where B is class two nilpotent
because F' is not a group, so for o,7 € F, o1 is no longer a single element of
F. B//L(B) = F now implies that if {{, : ¢ € F} is a set of coset repre-

sentatives for L(B) in B, t,t, = Z Z Aorphtoh, and it is difficult to find
pEoT heL(B)
the coefficients, or even to say which coefficients are nonzero. We therefore look

at the case where o(B) = p®. This is the simplest case because it implies that
B//L®(B), L®(B)//L(B), and L(B) are all isomorphic to Z,. The main theorem

is as follows:

Theorem 4.1. Suppose p is a prime; H = (h) is a cyclic group of order p; r =

1+ 2Zhi € ZH, where R is the set of non-zero quadratic residues modulo p;
i€R
and s = 1+ QZhi € ZH, where S is the set of non-residues modulo p. Let
i€s

(A, B) be a class three nilpotent SITA of order p*. Then o (L®(B)) = p* and
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L(B) & BJ/L®(B) = Z,. Let L(B) = L(X) = H. Up to exact isomorphism of
table algebras, B is either the wreath product (B//L®(B)) 1 L®(B), or there exists
a set of coset representatives t;,0 < i < p — 1, for L®(B) in B such that ty = 1;

for 1 <i < EL g =t, . if p#2,3, then tity = rto; if p = 3, then t1t, = (rh™)t

p=3

Jor some m; for 2 <i < B,

tltz‘ = ’I"tz‘_;,_l or tltz = Sti+1;

titp—r = (rh™)tprr  or titp—1 = (sh™)tpr1 for some m;
2 2 2 2

and these conditions uniquely determine the linear decomposition of all products t;t;.

Conversely, let X be a class two nilpotent SITA of order p*, H = Z,, and
B=XU{th*":1<i<p—1,0<k<p—1} as a formal set. Define products t,t;
as above fori < p%l. Then this multiplication extends uniquely to CB in such a way
that (CB, B) is a class three nilpotent SITA of order p* with X = L®(B),tf =t,
for all'i, and B # (B//L®(B)) 1 L®(B).

In other words, the class three nilpotent SITAs of order p® are parameterized
by the choices of r,s, and m for Ai;,2 < j < EE where t;t; = A\jti4;. Different
choices for these A;; may produce exactly isomorphic algebras, and this redundancy
is dealt with in Proposition 4.2.

Note that p = 2 is a special case. There is only one coset representative t; €
B\ L®(B), and t; = t}, which is why we do not assume t,¢; = rt,. There are no t;
for 2 <i < ’%3, so there is no choice of r’s and s’s to be made, and consequently
there is only one algebra of this kind up to exact isomorphism. In the proof of

Theorem 4.1 we will find formulas for ¢;¢f and ¢;s; for s; € L®(B)\ L(B), and these
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entirely describe the algebra. Also note that if p = 3, then ”%1 =1, so again we do
not assume A;; = r; it may be that A;; = rhA™ for some nonzero m.

Lastly, note that algebras as described in this theorem achieve the lower bound
on the cardinality of supports of products of basis elements given in Theorem 1.7 of
[7].

Much of the proof of this theorem hinges on finding the solutions to a system of

p + 1 equations in p variables.

4.1 System of Equations

In this section, we find all solutions over Z to the system of equations Z T =
kEZp

0, Z xi =p—1, and Z TpTpyn = —1 for each 0 # n € Z,. In order to solve this
keZ, kEZ,
sytem, we first need a lemma.

Lemma 4.1. Let p be an odd prime and v = (v, v1,...,v,-1) € Z'. Let P be the
permutation matriz with P(v) = (vp—1,v0, - .., Up—2). Suppose the usual dot product
Pi(v)-P?(v) = 0 mod p* for alli and j. If (P—1)*(v) =0 mod p, then (P—1)(v) =0

mod p (that is, each coordinate is congruent modulo p).

Proof. Suppose P'(v) - P/(v) = 0 mod p? for all 4 and j and (P — I)?(v) = 0 mod
p. Then (P — I)*(v) = 0 mod p = v = 2P(v) — P?(v) mod p. Therefore

Vg = 2Vp—1 — Up—2,
v = 20g — Vpo1 = 2(20p-1 — Vp—2) — Vp_1 = 3Up_1 — 20,9,

Vg = 2u1 — v = 2(3vp—1 — 20p_2) — 201 + Vp_g = 4vUp_1 — 30,9,
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Up—s = (P = 2)vp1 — (p = 3)vp—2,
Up-3 = (P — Dvp-1 — (p — 2)vp-a.
Therefore
v = (20p_1 —Vp_a + 0P, 3Up_1 —20p—2+X1D, ..., (J+ 1) Vp_1 — jUp—2+Tjap, ..., (P—
Dvp—1 — (p — 2)vp—2 + Tp_3p, Up_2, v,—1) for some set of integers xg, x1, ..., ZTp_3.
So (P —1)(v) = (Vp—2 — Up—1 — DT, Up—2 — Vp—1 + P(Tg — 1), ..., Up—2 — Vp_1 +

p(xp—4 - xp—?))a (p - 1)(2);0—1 - Up—2) + PTp-3,VUp—2 — Up—l)'

Letting b = v,_o — v,_1, we now have:

(P—ID)(v)-(P-1)(v) = b — 2pbxg —|—p2x3
+b% + 2pb(zo — 1) + p* (o — 21)*

+0% + 2pb(zy — x2) + p2(x1 — mg)Q

+0 + 2pb(ay g — 3) + P2y s — Tps)°
+(p—1)%0* = 2pb(p — 1)xp_3 + p°x_5 + b°

= ((p—= 1)+ (p— 1)) = 2pbpr,—3 + p* [25 + (w0 — 21)*
oot (Tpea — Tpos)® + 7]

= plp— 1)b2 + p?N for some N € Z.

Since we assumed P'(v)-P7(v) = 0 mod p? for all i and j, (P—1)(v)-(P—1)(v) =
0 mod p?. So we have p(p — 1)b*> = 0 mod p?, and hence v> = 0 mod p. Thus
Up—g —Vp—1 = b = 0 mod p, so v,_2 = v,—; mod p. The congruences at the beginning

of the proof then yield that all v; are congruent mod p. O
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Corollary 4.1. Let p be an odd prime and v = (vg, vy, ...,v,_1) € Z". Let P be the
permutation matriz with P(v) = (v,_1,v0,...,Vy—2) and suppose P'(v) - PI(v) =0

mod p* for all i and j. Then all v; are congruent modulo p.

Proof. Since P* =1,(P" —I)(v) =0, so (P —I)?(v) =0 mod p.

Suppose (P — I)"(v) = 0 mod p for some 2 < n < p. Then (P — I)*((P —
I)"2(v)) = 0 mod p. For any integers i and j, P* (P — )" %(v))-P? (P — I)"2(v))
is a Z~—linear combination of P*(v)- Pt(v) for various s and ¢t. Thus P(P—1)""2(v)-
Pi(P —1I)"2(v) = 0 mod p* for all 7 and j. So by Lemma 4.1, (P — I)"*(v) =
(P—I1)((P—1)"?*()) =0 mod p. By induction downward on n, (P — I)(v) =0

mod p, so all v; are congruent mod p. O

Lemma 4.2. Suppose vy, v1,...,v,-1 € R" and for 1 = (1,1,...,1) and all i # j,

Ui’l = O,
vi-v; = p—1,

V-V = —1.

Then the v; span a subspace of R” of dimension p — 1, namely 1+, and the only
dependence relations among the v; are scalar multiples of vo +v1 + -+ + v, = 0.
Proof. Clearly ({v;: 0 <4 <p—1}) C 1+, which has dimension p — 1. Suppose

p—1
Z a;v; = 0 for some scalars «;. Then for all j,

=0
p—1 p—1
0=0-v; = Z a;(vi-vj) = (p— 1)ay + Z(—l)%‘,
=0 i=0

i]
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SO

p—1
Zai = - 1oy
i=0,
i7#]
Therefore for any ¢ and j,
Oéo+"'+0[¢_1+Oéi+1+"'+06p_1 = (p—l)Oéi
Oéo+"'—|—Oéj_1+Oéj+1+"'+06p_1 = (p—l)Oéj

= a—a=p-1)(—-—m)=> o = .

Definition 4.1. The Legendre symbol of a mod p, denoted (ﬁ)’ is defined by
p

1 if a is a non-zero quadratic residue modulo p
) =4q —1 if ais not a quadratic residue modulo p

0 if @ = 0 modulo p.

We now find the solutions to the system of equations stated earlier. In this

paper, 0 is not considered a quadratic residue.

Proposition 4.1. The only solutions over the integers to the system of equations

(1):Z:L‘k:0,

keZ,
(2) : in:p—l, and
kEZ,p
(3) : Z TkThin = —1 for each 0 # n € Z,
k€Zy

k k
are xj = (%) andmk:—(%> for fixed 0 < m < p-—1.
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Proof. We first show that z; = <§) and zp = — (g) satisfy the system. Since
there are p%l quadratic residues mod p and p%l non-residues, it is clear that equa-
tions (1) and (2) are satisfied. In order to show that the remaining equations are
satisfied, we introduce some notation. If k,k +n € Z, are both nonzero quadratic
residues, we will call (k,k + n) an RR pair; if both are nonresidues, we will call
(k,k +n) an NN pair; in either case, we will call the pair a matching pair. If k is
a quadratic residue and k + n is a nonresidue, we will call (k,k + n) an RN pair;
if k is a nonresidue and k + n is a residue, we will call (k,k + n) an NR pair; in

either case we will call the pair a nonmatching pair. We show that for any nonzero

n € Zp,, there are ’%1 — 1 matching pairs and p%l nonmatching pairs. This will
imply that Z TrTrrn = —1 for each n because each matching pair contributes a 1
keZ,

to that sum, and each nonmatching pair contributes a —1.

It is well known that this holds for n = 1. For p = 1 mod 4, there are 22

consecutive RR pairs, 22 consecutive NN pairs, 21

1 1 consecutive N R pairs, and

p—1
4

p—3

1 consecutive RR pairs, /=

consecutive RN pairs. For p = 3 mod 4, there are
consecutive NN pairs, ’%3 consecutive N R pairs, and ’%1 consecutive RN pairs.
Thus there are ’%1 — 1 consecutive matching pairs and ;%1 consecutive nonmatching
pairs. A proof of this can be found in [1], pages 128-131. We show that these numbers
are independent of n.

The number of RR pairs (k, k +n) for a given n is the number of k that satisfy
the equations k = 2%k +n = 4%,k # 0,k +n # 0 for some z and y. Each set of

four solutions {(z,v), (—z,y), (z, —y), (—x,—y)} gives one such k. So the number
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of RR pairs for a given n is one quarter the number of solutions to these equations.

Furthermore,

k=2 k+n=ye2>+n=y* <y’ -2’ =n,
and thus the number of RR pairs is one quarter the number of solutions in x and y
of y? =2 =n,x #0,y #0.

Let v be a nonresidue. All other nonresidues can be written as vz for some
residue x, since a residue times a nonresidue is a nonresidue. The number of NN
pairs (k,k +n) for a given n is the number of k that satisfy k = va? k + n = vy?
for some nonzero x and y. So, as before, the number of NN pairs for a given n is
one quarter the number of nonzero solutions to vy? — vax? = n.

Recalling that n # 0, if n is a quadratic residue mod p, (xg, yo) is a solution of
v -2 =n & ((v/n) txo, (/1) lyo) is a solution of y*> —z% = 1. So if n is a residue,
the number of RR pairs n apart is the same as the number of RR pairs 1 apart.

If n is a nonresidue, the number of nonzero solutions to y?> — x? = n is the same

1

as the number of nonzero solutions to n='y? — n=!'2? = 1, which is the number of

1'is a nonresidue. So if n

NN pairs 1 apart, since n being a nonresidue implies n~
is a nonresidue, the number of RR pairs n apart is the same as the number of NN
pairs 1 apart.

If v is a nonresidue, the number of solutions to vy? — va? = n is the same as the
number of solutions to y?> — 22 = v~"'n. So the number of NN pairs n apart is the
same as the number of RR pairs v~ !n apart, which, as shown above, is the same as

the number of RR pairs 1 apart if n is a non-residue and is the same as the number

of NN pairs 1 apart if n is a residue.
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Putting this all together, if n is a residue, then the number of RR pairs n apart
is the number of RR pairs 1 apart, and the number of NN pairs n apart is the
number of NN pairs 1 apart; so the number of matching pairs n apart is the same
as the number of matching pairs 1 apart. If n is a non-residue, then the number
of RR pairs n apart is the number of NN pairs 1 apart, and the number of NN
pairs n apart is the number of RR pairs 1 apart. So the number of matching pairs
n apart is again the number of matching pairs 1 apart.

Therefore the number of matching pairs n apart for arbitrary n equals the number
of matching pairs 1 apart. It follows that for each n there are 22 matching pairs.

2

Since there are p — 2 total pairs without 0 in the pair, the number of nonmatching

k
pairs must be p — 2 — ’%3 = p%l. Thus equation (3) is satisfied by x; = (—) for
p
k
all k£ and by x, = — (—) for all k.
p
Now let © = (2o, 21, ...,2,-1), and again let P be the permutation operator with
P(x) = (zp-1, %0, ..., Tp_2). If x satisfies the system of equations, so will P*(x) for

every i since replacing xj with x4, for some i € Z, will not change equations (1)

and (2), and will yield the p—1 equations described by (3) in a different order. Thus

k k
Ty = < + m) and x, = — ( + m) are also solutions for each m € Z,,.
p p

We now show that these are the only solutions. Let z, = <§) and r =
(o, 21, ...,%p_1). Suppose y = (Yo, Y1,---,Yp—1) is another solution. Then for all
i J,

P'(z)-1= P'(y)-1 =0 by equation (1);
Pi(z) - P(x) = P'(y) - P'(y) = p— 1 by equation (2); and
Pi(x) - PI(z) = P'(y) - P/(y) = —1 by equation (3).
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Thus by Lemma 4.2, both {1, P{(z) : 0 <i <p—2} and {1, Pi(y) : 0 <i < p— 2}
form bases of R”, and P* ' (z) = —(P%(z) +--- 4+ P" (), P" ' (y) = —(P°(y) +
.--4+P"(y)). Thus there exists an orthogonal linear transformation, call it T', with
T(1) =1 and T(P'(x)) = P'(y) for each i.

T also commutes with the permutations P! since T'(P'(x)) = P'(y) = P (T(x))

and of course T'(P¥(1)) = 1 = PY(T(1)). Thus if

0 e B0,
. b e b,
L s =
then
TR R g
| TR N N A
K By b i ot |
So

(T~ P)yj = by = (P-T)y =0b;",

hence Tj(j4+1) = T{i—1);- Thus T' is a circulant matrix.
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Let T = C?:TC(bQ, bl, ceey bpfl), where ||(b0, bl, e ,bpfl)H = land Pi(bo, bl; R ,bpfl)'
Pi(bg,by,...,b,—1) =0 for all i # j. Then we have:

_ [ 0 T _ -
bo bl bp,1 p Yo
1
b,_1 b b,_ -
T(:z:) oy p—1 0o p—2 p _ A1

=0

In other words,

p—1 .
1+ k
yk:Z( )bifor()gkgp—l.
i=0 p

Since we are solving the system of equations over 7Z, all of the y, are integers. We
now show that p - b; € Z for each 1.

Let R be the set of non-zero quadratic residues modulo p, and S the set of non-
residues. For each 0 < i < p — 1, we compute Zyk — Zyk; in other words, we

i+k€R  i+keS

add together the y; in which b; has a coefficient of 1 and subtract the gy, in which
b; has a coefficient of —1. We find the coefficients of the various b,,.

Coefficient of b;: © + k is a quadratic residue for ’%1 values of k, and is a non-

residue for 7%1 values of k. So the coefficient of b; is ’%1 — (_;%1) =p—1

Coefficient of b,,n # i: We add a b,, whenever i+k,n+k € R (so that yj is being

added and b, has a coefficient of 1 in y;). We also add a b, whenever i+k,n+k € S
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(so that yy is being subtracted and b, has a coefficient of —1). In other words, we
add a b, whenever (i + k,n + k) is a matching pair. As shown earlier, this occurs

for p%?’ values of k, regardless of the value of n.

Similarly, we subtract a b, whenever (i + k,n + k) is a non-matching pair. This

occurs for 2 T values of k. So the coefficient of b, for n # 7 is T?’ — ”T = —1. Thus

for0<i<p-1,

D ue=Y u={m—-1bi— Y bn

i+k€eR  i+keS n#i
p—1
Now, an is an eigenvalue of T' (with eigenvector (1,1,...,1)). Since T is
n=0
p—1 p—1
orthogonal, Z b.|| = 1; and the b; are real, so Z b,==41. Sofor 0 < <p-—1,
n=0 n=0

allys €Z = (p—1bi—» by€Z = (p—1)b— (£l —b) €Z
n#i
= p-bFleZ = p-b el

We write T' = Czrc( o a"‘l) for a; € Z. Since H (“—0, @ ap‘l) H =1,
p p p p’p p
we also know that —p < a; < p for each 1.
Let a = (ao,al,.. ,ap—1). The vectors P'(a) are mutually orthogonal, and
Zb2 =1= Za = p®. In particular, Pi(a) - P(a) = 0 mod p? for every i
and 7. So by Corollary 4.1, all a; are congruent modulo p.

Applying a cyclic shift if necessary, assume ag is non-zero. Since —p < a; < p

for all i, if ag > 0, either a; = ag or a; = ag — p for each i; if ag < 0, then either

p—1 p—1
a; = ag or a; = ag + p for each i. Suppose ag > 0. Since Zbi = =41, Zai = +p;
i=0 i=0
p—1
and, as mentioned above, Z a? = p®. Suppose m of the a; are equal to ag, and n
i=0

are equal to ag — p. Then:
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m+n=p
mag + n(ag — p) = £p

mag + n(ay — p)* = p*

mag + (p —m)(ap — p) = £p

mag + (p —m)(ag — p)* = p°

mag + pay — p* — mag +mp = +p

ma3 + pai — 2app* + p* — mak + 2magp — mp* = p?

a=*1+p—m

az — 2app + p* + 2mag —mp =p
= (£1+p—m)2 —=2p(£l +p—m)+p* +2m(£l +p—m) —mp=7p
=1-m?>+mp=p
=m?—pm+(p—1)=0
=m=1p—1.

So a = (ag,ap —p,a0—p,...,a0—p), (ag, ao, . ..,ay —p), or a cyclic permutation
of one of those (since only one entry is different from the others, any permutation
is a cyclic permutation). Similarly, if ag < 0,a = (ag,ap + p,a0 + p, ..., a0 + p),

(ag, ag, - ..,ag + p), or a cyclic permutation of one of those. In other words,

a = (ap,a9 £ p,ap £ p,...,ap £ p) or a cyclic permutation of that.
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p—1

Since Z a; = £p, we have pagt(p—1)p = +p = pagt(p*—p) = £p = agt(p—1) =
i=0
+1, where the two %+ are independent of each other. So ay = +p, £(p — 2). Thus

a==%(p,0,0,...,0)or +(p—2,—-2,-2,...,—-2),

).so

T = Circ(P'(£(1,0,0,...,0))) = £P" or Circ(P'(£b)) for some i.

or a cyclic permutation of one of those. Let b = (%, 1_27’ %, .

SR

Obviously, if "= £ P, then T(P*(x)) = £P"*(x). If T = Circ(b), then

1 5,6 G

(1%1.2_&.2) ifk=0
= ((1%1_1).2_(7’;1)-2)4—(2—])) itkeR
() -2—(5t-1)-2—(2-p) ifkes

0 ifk=0
= -1 ifkeR
1 ifkesS

So T(x) = —z, and hence T(Pi(z)) = PY(T(z)) = P'(—x) = —P%(z). Thus
if T = Clirc(P(b)), then T(z) = Circ(PI(b))(x) = PI(Cire(b)(z)) = P/(—z). So
T(Pi(x)) = —P"(x).
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We now see that in every case, y = +P%(x) for some i. Thus the only solutions

to the system of equations are x, = | — ) ,2x = — | — | , and cyclic permutations
p p
k k
of those, i.e. xp = (ﬂ> or x = — (ﬂ) for0<m<p—1. O
p p

4.2 Proof of Main Theorem

We can now prove the main theorem.

Proof of Theorem 4.1: For the first direction: Since o(B//C) = o(B)/o(C) for any

closed subset C,
o(B) = o(B//L®(B)) - o(L®(B) //L(B)) - o( L(B)).

Since LW (B)//LY=Y(B) is a group for every i > 1, the factors in the above product

are all integers. Since B is class three nilpotent, none of them is 1, so since o( B) = p?,

all are equal to p. Thus L(B) & B//L®(B) = Z, and therefore o(L?(B)) = p?.
Suppose B # (B//L®(B)) 1 L®(B). We first find how elements of B multiply.

Since L?(B)//L(B) & Z,, we may write
L®(B)//L(B) = {s0//L(B) = 1//L(B),s1// L(B), ..., sp-1//L(B)}
where, reading the indices modulo p,

(si//L(B))(s;// L(B)) = si1;// L(B).



45

Now, for b € B, let Stab(b) = {h* € L(B) : bh* = b}. Since L(®(B) forms
the basis of a class two nilpotent table algebra, we know by Theorem 3.1 that for
be LA(B),

bb* = |Stab(b)] > b

h*€Stab(b)
Thus for b € L®(B) \ L(B), Stab(b) # {1}. Since L(B) = Z,, the only other
possibility is Stab(b) = L(B). So

LO(B)\ L(B) = {s1,52,..,5-1},

and for i # —j,
p—1
g = s hE =g
S§iS; = YijkSi+j = YijSi+j
k=0

for some «;; € Z. Since for each k, §(s;) = |Stab(sy)| = p by Theorem 3.1, §(s;s;) =

Yij6(8it5) = vij = p- So for i # —7,
$iSj =D Sitj
Since 1 € Supp(s;sf), it must be that s} = s,_,; for each 7, and
sist=p-HT.
Similarly, since |B//L®(B)| = p, B//L® (B) may be written

{to//L®(B) = 1//L®(B), t.//L*N(B),....t,1//LP(B)},
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where the t; are coset representatives for L®(B) in B and, reading the indices

modulo p,

(t:// L®/(B))(t; )/ LP(B)) = tiy; [/ LP(B). (4.1)

For the remainder of this proof, all indices will be read modulo p unless otherwise
indicated. By the comments preceding the theorem, B//L(B) is a class two nilpotent

SITA; and by the same argument as for L()(B), this means that for b ¢ L®(B),
Stab(b//L(B)) = L(B//L(B)) = L®(B)//L(B).

Thus for all 7 and 7,
(t://L(B))(s;//L(B)) = ti// L(B).

So

p—1
tz‘Sj = Z /\Z]ktzhk
k=0

And since t;s;h™ = t;s; for any m, permuting the \;;; does not change this sum;
p—1
thus all \;;, are equal and #;5; = A Z t;h*. Applying the degree map to both sides

k=0
yields §(¢;) -p = A-p-d(t;), so A = 1. Thus

p—1
tis; =Y t:ih". (4.2)
k=0
This implies that
B\L(Q)(B):{tihk 1<i<p—-1,0<k<p—1}

Note that depending on the stabilizers of the t;, these may not all be distinct.
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Since 1 € Supp(t;t}), it must be that t; = ¢, ;h¥ for some k. Since i # p — i for
any ¢ and there is no danger of ending up with ¢; = ¢;, we may choose k£ = 0, giving
=1,

By Theorem 3.1, for b ¢ L?(B),

|Stab(b// L(B))| = p = 0(b//L(B)) = [Stab(b// L(B))| = p-

Thus
S(BL(B)) _ 8(b-L(B)Y) _  5(b)
|Stab(b)| - p |Stab(b)|

p=06(b//L(B)) =

it |Stab(b)| =1
S P
p? if |Stab(b)| = p.

Now, equations (4.1) and (4.2) = Supp(tit;) C {t;;h* : 0 < k < p— 1} if

Jj # p — t. Thus for some set of \;j; € Z>o, we have
p—1
k=0

for j #p — 1.

Finally, for any n,
p—1 p—1
taty, CLO(B) = tuth = > Njs; + 3 bk
j=1 k=0
for some set of \j, \j, € Zx(. Suppose Stab(t,,) = {1}. Since (t,) = p,

if hf =1
(t? 1R = (o oy = T

0 otherwise.
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p—1
So tyth = Z)\jsj +p- 1. And by equation (4.2), for any s; € L®(B)\ L(B),

j=1

p—1
<tnt:<msj> = <tn7tnsj> = <tnaztnhk> = <tn,tn> =p.
k=0

Since 0(s;) = p, we now have

p—1
totr = Zsj +p- 1 for each n with Stab(t,) = {1}.

=1

Putting this all together, the multiplication on B is given by the following:

8iS; = D- Sy, fori# —j

p—1
SiS_i = p- Z h*
k=0
p—1
tiSj = thhk
k=0
p—1
tit]’ = Z )\i]’kti_;,_jhk fOI’ 7 7& —]
k=0

p—1
tit_; = Y sj+p-1if Stab(t;) = {1}.

J=1

We now show that if Stab(t;) = {1}, then Stab(b) = {1} for all b € B\ L®(B).

Suppose Stab(t;) = Stab(ty) = --- = Stab(t;—;) = {1} and Stab(t;) = L(B).
p—1

Then tlti,1 = Z)\l(zfl)ktzhk = )\tl for some A\ € ZZO. Thus p2 = 5(751)5(75171) =
k=0

5(t1ti_1) = )\6(t1) = )\])2 = A=1.S0 tit;—1 = t; and thus

(titi—1, titig) = {ti t;) = p°.
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On the other hand, we have

p—1 p—1
<t1t’1‘,ti,1t;[1> = <Zsj +p-1, S +p.1>

j:l ¥ 1

—_

3

(s7,55) +p* (1, 1)

]

1

p=1)p+p*=2p"—p.

<
I

—~

Since 2p* — p # p?, we now have (t1t;_1, t1t;1) # (18}, ;-1t;_,) , a contradiction.
Therefore if Stab(t;) = {1}, then Stab(t;) = {1} for all i. Since the choice of which
coset representative we label as t; is arbitrary, this means that if Stab(t;) = {1} for
any j, then Stab(t;) = {1} for all i. Therefore all stabilizers of elements in B\ L (B)
are equal, and since B # (B//L®(B)) 1 L®(B), this implies that Stab(t;) = {1}
for each 1.

We've already shown that if ¢ # p — 7,

p—1
tity =Y Aijatipih*
k=0

for some set of \;jx € Z>o. We now show that for each 4,7, and &k with ¢ #
p—1

-7, Z )\Z-jkhk = rh"™ or sh" for some n which depends on i and j.
k=0

First of all, for i # —j,

p—1 p—1
5(titj) = Z )\ijké(ti-i-j) = p2 =Dp- Z >\z]k;
k=0 k=0
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Second,

p—1
> Xk =p.
k=0
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(4.4)

O(tirj)hije = (tity, tijh") = (Eh™" tiit5) = (th™ bt ) = 6(t) Niviy i) (—h)-

So

And lastly,

(titj)t—; ti(tit—;)

n=1

ol
[e=]

Aijle = A(i+§)(=5)(=k)-

p—1 p—1
= Z )\i]’kti_w'hkt_j = tl <Z Sp,+p- 1)

p—1 p—1 p—1
= Nij M) —jymtih ™D = tis, +p -ty
k=0 m=0 n=1
p—1 p—1
= > > tihF4p-t;
n=1 k=0

p—1
(p— 1)th‘hk +p-t;
k=0

On the left-hand side, the coefficient of ;A" is

p—1
D A AN m = D MG (i) k)

m-+k=n k=0
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On the right-hand side, the coefficient of t;h" isp—1ifn #0andp—1+p=2p—1
if n=0. So

p—1

> Ak —inty =p— 1 for 1 <n <p—1and
k=0

p—1
Z AijkA (i) (=) (—k) = 2P — 1.
k=0

By (4.5), we now have:

p—1
Z NijkNij(k—n) =p—1for 1 <n <p-1 (4.6)
k=0
and
p—1
S N =2p-1. (4.7)
k=0
p—1 p—1
Now, letting z; = A — 1 and noting that Y AijxAijg—n) = > AijkAij(ktn);
k=0 k=0
equations (4.4), (4.6), and (4.7) give the system of equations solved in Proposition
k k
4.1. Therefore we must have \;j; — 1 = +m) or \ijp — 1 = — (ﬂ) for
p p
k k
some 0 < m < p—1. Thus Ay, = (ﬂ> + 1 or — (ﬂ) 4+ 1 for some
p p

0 <m <p-—1,so for each 7 and j with i # —j,

titj = (’l“hm)ti_;,_j or titj = (Shm)ti_i_j,

where the m depends on ¢ and j.
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p—1
Let A\;; = Z )\ijkhk; so tit; = Aijtiy; for i # —j. We've just shown that for some
k=0

0<m<p-— i, and each i and j with i # —j,\;; = (rh™) or sh™, where the m

p—1 *op-l
depends on i and j. Note that since (Z Aijkhk> = Z Nij(—ih",
k=0 k=0

p—1
% k
/\ij = § :)‘ij(—k)h :
k=0

Since t;t; = (t_;t_;)*, we have

By equation (4.5), Air = Ntk = A(144)(—1)(—k), SO
A = X(k1+i)(71) = Ai(=im1)- (4.8)
Next, we show that rh* and sh* are invertible elements of RH. There exists

p—1 p—1 p—1
> aph* € RH with (Z Aijkhk) (Z akhk> — 1 if and only if

k=0 k=0 k=0

- - Qp 1
Aijo At Aijp-1)
Op—1 0
Aijp-1) Ao Aijp-2)
Op—2 = 0
At gz Aijo
N i aq ] _O_
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has a solution in the «;, which occurs if the left-most matrix is invertible. Let

Aijo - Aijt o A1)
Mooy Mo 0 Nii(os
Aij = 7. Then =h ! /=2 is the circulant matrix
Aijt Az e Aijo |
. 0 1 p—1 : .
Circ|{-)+1,{-)+1,...,| —— ] +1). The eigenvalues of a circulant ma-
p p p
p—1
trix Circe(co, ..., cp1) are ¢, = Z crw”, where w is a p™ root of unity. (For more
k=0

information on the eigenvalues of a circulant matrix, see chapter 3 in [10].) Since
p—1
k
Z ((—) + 1) Wk # 0 for any w, this matrix is invertible. So r has an inverse.
p
k=0
Similarly, s has an inverse and hence rh* and sh* are invertible for all k.

Now, since (A, B) is associative, ({,ty)t. = ta(tptc) for all a,b,c = AapAarp)e =
AbeAa(bte) for all a, b, ¢ with a,b,c,a+b,b+c,a+b+c# 0. Fora=1,b=1i—1,c = j,
this gives

)\1(i—1))\z’j = /\(z‘—l)j/\l(i+j—1)

for j #0,7#0,1,—7,—7 + 1. So for these ¢ and 7,

-1

Aij = Mi—1)j M (i+i—) A p(i-1)-
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For the following argument, to avoid complications we will not read indices
modulo p; all indices will be integers between 1 and p—1. Suppose i # 1,i+j < p—1.
Then

Nj = Aa-niMati-n Ao

Ai-1)j = /\(i—2)j)‘1(i+j—2))‘1_(1—2)

A3j = AgiMgsoAn

Ay = AyAgsnAn

since Aij, Ap—j)js Ap—j+1); do not appear on the left-hand side of this list. Thus for

1<i,jwithi+j<p-—1,
/\” - (Alj)\l(j—i-l) cee >\1(i+j—1))()\11)\12 ce. Al(i_l))_l. (49)

Also,

Ap—iyp—i) = A5 = ((Aidagan - Asg—n) Az -+ Aagpiz1) )

From this and equation (4.8), it follows that for all ¢ and j with i + j # p, A;; is
uniquely determined by {);:1 < j < ;%1}

Now suppose that for 1 < ¢ < ]%3,)\11- = x;hA™, where z; = r or s for each i.
Define

-3
th =t and t; = pMmFt T for all 2 < < —
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Then ##; = Aiity = 3™ty = @1t} and for 2 < i < 252,

tllt; — tlhn1+n2+mni71ti — hn1+n2+---ni71xihmti+l

_ xihn1+n2+"-m—1+mti+1 — $it2+1.

Thus replacing

tl,tg,.. tp3tp 1, pl,’;d,...,tiwith
2 2

TR A S N ST
yields a set of coset representatives for L(2)(B) in B that satisfies the conditions of
the theorem.
For the other direction: Suppose (CX, X) is a class 2 nilpotent table algebra of
order p> and L(X) = H = (h) 2 Z,,. Let B= XU{t;h* : 1 <i<p—1,0<k < p-—1}
as a formal basis for a C—vector space. We define the multiplication on B as follows.

For x € X \ L(X),zz* # 1, so Stab(x) # {1}, so Stab(x) = H. By Theorem 3.1,
= |Stab(x ]Z h* for each z € X. Also by Theorem 3.1, §(z) = |Stab(z)| for

hFeStab(x)

each x, so 6(x) = p for z € X\ L(X), and therefore p- | X \ L(X)| = o(X \ L(X)) =
o(X) —o(L(X)) =p*—p. Thus [ X \ L(X)|=p—1. We write X = HU {s; : 1 <

i <p—1}. Let h¥t; = t;h*,

p—1
Sjti = tiSj = tz Z hk,
k=0
and

p—1
titpfi = ZSJ' —|—p - 1.
j=1

Let * be the existing anti-automorphism of X. Extend * to B via (t;h*)* =

t,—;h~F for each i and k. Note that r* =r if p =1 mod 4 and r* = s if p = 3 mod
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4, since —1 is a quadratic residue if p = 1 mod 4 and is a non-residue if p = 3 mod
4. Similarly, s* = s if p=1mod 4 and s* = r if p = 3 mod 4. Also, recall from the
first direction that rh* and sh* are invertible elements of RH for all k.

We now define the products t;t; for j # —i by setting ¢;t; = \i;t;+; and specifying
below the \;; € ZH. For the following argument, note that whenever ambiguity is
possible, indices are not read modulo p and we ensure that they are between 1 and
p—1.

Let A\j; = .

For2 <j < E= let)\lj—rors

Let )\1(%1) =rh"™ or sh™ for some 0 < m < p— 1.

For &~ <]<p 2, let Aij = Ap—j—1)-

Fori+j <p—1,let A\jj = (AjAig+1) - - - Maj—n) (Aidiz - Adgony) 7
Fori+j>p+1 let \ijj =Ap )

In the fifth line above, note that the inverted factor contains nothing if ¢ = 1.
We now show that B is a class three nilpotent SITA of order p3>. We first show
that * is an automorphism. For ¢; € B\ X,s; € X, since we already know that

(tmh®)* = t5, (h¥)*, we have

(sjti)" = (tis;)” :< th> —thth tpiSpj =1t;8; = sit;.

Suppose i +j < p—1. Thenp—i+p—j > p+1, 80 Ap—i)p—j) = Aj;, and therefore

YR

>\*

iy = M- i+ =p+ 1A =X

(r—i)(p—j) DY definition. Thus

(tit;)" = (Nijtivg)" = Nijto—itp—i = Ap—i)o—i)tp—itp— = tp-itp—j = it}
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We now show that B is commutative. Suppose i+7 < p—1, and suppose WLOG

that ¢ < j. Then:

Nio = (AiAisn) - Ay Arrg—n) Az - Ay >\1(j71))_1

== ()\1] e )\1(i+j71))()\11 e Al(i*l))_l
Aij.
— )\*

Ifi+j>p+1,thenp—i+p—7<p—1,50 N\ = A} = \j;

(p—i)(p—7) p—i)

We now define the degree map §. Define § on X to be the existing degree map
on X. For t;h* € B\ X, let 6(t;h*) = p, and extend § linearly to CB. We show

that ¢ is a homomorphism.

3(t:s;) _5< th> :pzéthk):p2:5(ti)5(sj)

fort, e B\ X,s; € X\ H.
Now, § is a homomorphism from CX to C,CH C CX, and §(h*) = 1 for all k.
Thus 0(r) = | 1+ QZ hi> = p, and similarly, d(s) = p. Since \;; = rh* or sh”

i€R
for all j, this gives 6(Ay;) = p for all j. If i +j <p — 1, then

5()\1]) = (5()\1]‘ ce )\1(14,]',1))(5()\11 e )\1(,;,1))71 = pipi(iil) =DP.

Since 7* = 7 or s and s* = s or r, (h*)* = h™F, and Ao

it follows that §(Ap—i(p—j)) = p as well.
Now \;; € ZH implies that §(\;;t,) = 6(X\;;)0(t,) for all 4,7, and n. So for
L F =
O(tit;) = 0(Nijtivg) = p* = 0(t:)d(t;).



o8

Also,

p—1

Otitp—i) =0 (Z TR 1) =(p—Dp+p=p"=05t:)d(tp).

j=1
Since it is clear from the multiplication that 1 € Supp(b1bs) < by = b}, all that
remains is to show that the multiplication is associative.

Let s;,5; € X \ L(X), t;, t, € B\ X with i 4+ j,m 4+ n # 0. Then

p—1 p—1 p—1
si(Sjtm) = si- Ztmhk = Z tmh*ht = pZtmhk and
k=0 k,l=0 k=0
p—1
(8i8j>tm = DSitj- b = pztmhk7
k=0
p—1
Si (tmtn) = S )\mnthrn = >\mn : Z tm+nhk and

k=0

p—1 p—1
k=0 k=0

p—1 p—1 p—1
si(sitm) = si(s_itm) = s;i - Ztmhk = Z thhl = pZtmhk and
k=0 k,1=0 k=0

p—1
(5i5))tm = PO _h" ty;
k=0

p—1 p—1
sitmty,) = si (Z Skt D 1) = sisctpes
k=1 k=1
p—1
= Z DSitk +p2hk + ps; :pr and
k=0

keZyp reX
k#0,—i
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-1
k=0

p—1 P p—1
(sitm)ts, = D> tmh"th, =" (Z s+ p- 1) hF
k=0 =1
p—1 p—1
= pY sitpY h=p> z
=1 k=0

zeX
p—1
Now, A\n = Z Amnkh® where {Apnk +1:0 < k < p— 1} satisfies the system of
k=0

equations in Proposition 4.1. Thus

p—1 p—1 p—1
Nije =D, 3 A =2p—1, and > NijeXijhrm) = p — 1 for m # 0.
k=0 k=0 k=0

We now show that A\;; = A\p—i—j); (or, if i+j > p+1, A2p—i—j);). Suppose i+j < p—1.

ThenO0<p—i—j<pand (p—i—j)+j=p—1i<p—1. Hence

>\ij = (/\lj Ce /\1(i+j—1)>()\11 e /\1(1‘_1))_1 and
Mpmiegi = (Aije Mpmimjjo) o Mmimgon))

- (Alj e >\1p—i—1)()\11 e )\l(pfifjfl))_l-

Ifp—i—j<i,thenp—t<i+j—1landp—i—j <i—1 Since Ay = Ajp—i—1)

for all k # p — 1, we have:

= (/\lj A >\1(p—i—1) . )\1(2‘_1)/\1(7;_2) c.. Al(p—i—j))(All .. )\l(p—i—j) e /\1(i—1))_1
= (/\1j - )\l(p—i—l))(All - /\1(p—i—j—1))_1

- A(p—i—j)j'

A similar argument shows that if p — i — 7 > ¢, the result still holds.
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Suppose i +j >p+1. Thenp—i+p—j7<p—1and

Aij = Np=i)(p—s) = Mo (p—i)— (p—3)) (p—3) = M2p—i—i)j-

Therefore

Xij = Aimg)i = it (—9) (4.10)

for all ¢ and j.

We now have

p—1 p—1 p—1
t(tl?) = tm (Zsl—l—p-l) =D (twmh") +p -t
=1 =1 k=0
p—1
= (p_1)Ztmhk+p'tm:(p_l)ztmhk+(2p_1)tm7
k=0 k=1
and by (4.10)
(tmtn)t; = )\mntm—l—n tp = )\mn>\(m+n)(p n) /\m71)\>'< tm
p—1 p—1
= <Z )\mnkhk> (Z )\mnlhl> b = Z )\mnk)\mnlhk lt
k=0 =0 k,l=0
p—
= Z /\mnk)\mnlhk_ltm + Z Z /\mnk)\mnlhk_ltm
k—1=0 4=1 k—l=q

(ZW 2(2 e

Since for s € X \ L(X),h! € L(X), s - rh! = s}, - sh! = p - 55, we now have

p—1

t:n—i-n(t tn) = t:n+n : Amntm—i—n = Z Sk)\mn +p- /\mn
k=1
p—1

= pzsk+p>\mn and

k=1
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p—1
(tj;ﬁ_ntm)tn = )\(—m—n)mtfn “ty = Sk)\(—m—n)m +p- )\(—m—n)m
k=1
p—1 p—1
= D Zsk +p /\(—m—n)m =p Zsk +p /\nm
k:% k=1
p—
k=1

Finally, let ¢;,t;,t, € B\ X with i +j,j + k,i 4+ j + k # 0. Note that since
s=2H" —r,

% = (2H+—7’)2:4H+H+_4H+T+7‘2:4pH+—4pH+—|—r2:7~2‘
Suppose i +j +1<p—1. Then i+ j < p — 2, so

MMt = AijAigig)

<~ )\11'()\1]' e )\1(i+j))<)\11 e )\h')_l == )\I(ZJF]) ()\1J e )\1(i+j71))()\11 e )\1(i,1))_1,

which is clearly true.
Suppose i #p—landi+j+1>p+ 1. Then i+ j > p+ 1 since ¢ + j # p, so
(p—(1+d))+(p—j)<p—land (p—i)+(p—j)<p—1 So
)\1i/\(1+i)j = /\ij>\1(i+j)
S Mp-i-)Ap—140)p=i) = Np=i)p=i) M Ep=i=i=1)
& Mp-ic1) [ - Mzpming2) Qur - Mipminz) ']
= NMiep-i—j-1) [(Mgp-g) - Mp-ijmn) O - Aapeimny) 7]
S Mp—j) - AMEpaizj—2)) (A1 - Apei2))
- (Al(p—j) S Ap—ieg1) Xf(2;u—i—j—1)> <>‘11 o Aipein) ¢ )\T(p—i—l)>1

-1
& 1= <>‘1(2p7i7j71) ’ )\T(prifjfl)> (Al(pfifl) ’ )\T(pfifl)> ;



62

which is true if p = 1 mod 4 because r? = s, and if p = 3 mod 4 because rs = sr.

So )\1i>\(1+i)j = )\ij)\l(iJrj) for Z,Z ‘l—] 7é P — 1. Therefore
ti(tity) =t Nijtivg = NijAaeptivgrr = Aidagiitivg+1 = (Gt

We may now use the notation ¢} for the product of ¢ copies of ¢;. Since the \;; are
invertible elements of RH, we have:
t% = )\11t2 — t2 = )\ﬁlt%

ti = (Anta)ti = Aidints = t3 = (Andiz) 7'
t; = ()\11 cee )‘l(i—l))_ltil fori=1,2,...,p— 1.

We write t; = v;t!. Reading the i, 7, and k modulo p, for i + j,7 + k,i +j + k # 0,
tiltite) = (vith) (vt vrt}) = (vivjor) (7 = (tit;) .

So the multiplication is associative. Thus (CB, B) is a commutative, associative
algebra with 1 € B, an (anti)-automorphism * permuting B, and structure constants
-1
and degrees in Z>(. Since t;t} = pz sk +p-1,0(t;) is the coefficient of 1 in ¢;tf. We
have now shown that (CB, B) is j; zommutative, standard SITA.

Finally,
o(B) =0o(B\ X)+o(X\H)+o(H)=(p—1)-p-p+(p—1)-p+p=0p"

And L(B) = H,L®(B) = {b : bb* C L(B)} = X, and L®(B) = {b : bb* C

L®(B)} = B. Therefore B is class three nilpotent of order p*.
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4.3 Isomorphic Redundancy

Theorem 4.1 and its proof show that if (A, B) is a class three nilpotent SITA of
order p?, then there is a set of coset representatives {t; : 1 <i < p — 1} for L®(B)
in B with t; = t,_; and t;t; = \;jt;y; for i # —j, where \;; = rh¥is or sh¥s for each i
and j; and the set {A;; : 1 < j < p—2} uniquely determines the algebra up to exact
isomorphism. Since two different sets of these A;; can yield isomorphic algebras, we
now investigate this redundancy. For the remainder of this section, when the word
"algebra” is used, we will mean a class three nilpotent SITA of order p? for an odd
prime p that is not a wreath product. We will use the notation (A,p) to denote
such an algebra whenever the prime needs to be stated explicitly.

Call (A11, M2, - .., Aip—2)) a t1 string for (A, p). Let m be a primitive root modulo
p, and call (A11, Ay Amzm2, -« -, Amp—2mp-2) the corresponding squares string for
(A, p). We will approach the problem of isomorphic redundancy from the viewpoint
of squares strings rather than ¢; strings.

Theorem 4.1 also shows that the ¢; can be chosen so that ky; = 0 if j # ’%1. In
this case, we will show that the corresponding squares string has a specific format,
and that it uniquely determines the algebra up to exact isomorphism as well. The

next definition deals with these cases.



64

Definition 4.2. We will call a ¢; string (A1, A2, ..., Aip—2)) special if it has the
property that A;; = 7 or s for j # ’%1. We will call a squares string (A1, A, - - - Apr—2mp—2)

special if it has the property that

rh* or sh* if%gig’%l
Xii = 8 rh7F or sh™F ifp—’%lgigp—’%l
T or s otherwise.

We will denote a squares string of this form by s;; so sy gives the pattern of r’s
and s’s that appear in the string, and two strings s, and s, have the same patterns
of r’s and s’s and only differ in the power of h that appears. Let s’ have an r
wherever sp has an s, and an s wherever sy has an r. Thus the strings s, and s%
each have an r wherever the other has an s, and h* appears in the first, whereas A"

appears in the second.

Lemma 4.3. Suppose (A,p) and (A',p) are algebras and ¢ : A" — A is an ezvact
table algebra isomorphism. Then there exist 1 < a,b,c < p — 1 so that for each 1,
o((h')") = b,
o(s)) = spi, and
B(th) = th% for some 0 < d; <p— 1.
Proof. Clearly ¢ (L®W(B')) = L"(B) for each i. Since L(B') & L(B) & Z,, for
some 1 < a <p—1we have ¢((I)") = h* for each i.

Since L?(B")//L(B') = L'®(B)//L(B) = Z,, we have for some 1 <b <p—1

¢ (si// L(B')) = s1i// L(B)
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for each i. So

1) (S—;) SRLLANN (%) = S

p b

Finally, since B'//L*®(B') = B//L®(B) = Z,, we have for some 1 <c<p—1

¢ (t;//LP(B)) = t//LP(B) for each i

(LLOB) (1L (B))*
w( Z0(B)] )‘ ZO)(B)

p—1 p—1
= ¢ (ZtQh’“) = taht
k=0 k=0

= ¢(t}) = t;h% for some d;.

O
p—1
By equation (4.2) in the proof of Theorem 4.1, we have t;s; = Z t;h* for every
k=0
j. Since this is the same for every s;, an isomorphism ¢ : A" — A that simply
sends s} to sp; can have no effect on the strings that determine either algebra; so

henceforth we will simply assume that b = 1.

Proposition 4.2. Let m be a primitive root modulo p. If the t1 string determining
an algebra (A, p) is special, then so is its corresponding squares string, and in this
case the squares string uniquely determines the algebra up to exact isomorphism.

Suppose (A, p) is determined by the special squares string s,, and (A’,p) is deter-
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mined by the special squares string s.,. If ¢ : A" — A is is an exact table algebra

isomorphism as in Lemma 4.3, then

J Pk(sq) ifa€eR
h=
Pr(sg?)  ifa €S,
and
ca”lq ifec < p%l,
n =

1. . —1
—ca~tq if ¢ > B,

where ¢ = m"* and P is the permutation operator as in Lemma 4.1.

Proof. Let m be a primitive root modulo p. Suppose \; is known for each 7. For

1< ’%1, by equation (4.9) in Theorem 4.1 we have

)\ii = )\(Z‘+1)(i+1)hk for some k& <

(3

AiAL(i41) - - - A@im DAL ATg - - - )‘5(1—1)
= M+ AM(42) - - MDA AR - A RS
A = A M@ien Ay R

AL = Mien A"

A12i) = Misnh”

for some n since r? = s? and rh? # s for any ¢. So for every even j, the squares

string determines whether there exists n; with Aj; = Ay )h™.

Furthermore, by equation (4.8) in Theorem 4.1, Aj(2;) = Ai(p—2i—1) and Ay2i1) =

Al(p—(2i41)—1) = A1(p—2i—2)- S0 the squares string determines whether there exists n

with Ajp_2i—2)h"™ = Ai(p—2i—1) as well; since p—2:—2 is odd, this means it determines

whether there exists n; with A\j; = Ay(j31)h" for each odd j as well. Since rh? # s
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for any ¢, this shows that the squares string determines whether A\; = rh™ or sh™

for each j. For j # ’%1, we know that n; = 0;np-1 is the only remaining ambiguity.
2

Let A be determined by the special ¢; string (Aq,. .., )\1(p_2)>, where /\1(@) =

2

rh? or sh? for some 0 < ¢ < p — 1. For i < 221,

i = (A1 - - >\1(2i—1))()\11 .. )\1(1'—1))71-

Now, )\1(%) appears once in this product if and only if 7 < ;%1 < 2i—1,1i.e. if and

only if ”%4’1 <i< ’%1; otherwise it does not appear at all. So, since \;; = ()\(,Z-)(,i))* ,

rh? or shi if%gig?%l
Ai =4 rh™or sh™4 ifp—p%lgigp_f%l
rors otherwise.

In other words, A is determined by the special squares string s,, and the power of
h that appears in A;; for 1%1 <i< ’%1 is equal to Npi. Thus the squares string
determines np_1, and therefore determines {A\1j 11 <j <p-—2}, which determines
the entire algebra.

Let m be a primitive root mod p. For A determined by the special squares
string s, and A’ determined by the special squares string s, , suppose ¢ : A" — A is
an arbitrary exact table algebra isomorphism with ¢(s.) = s; for each i. Then by

Lemma 4.3, there exist 1 < ¢,a < p — 1 such that for each 1,

o(t;) = teh™, ((1)') = h
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for some 0 < d; < p — 1. So there exist algebras A” and A", and isomorphisms

&1, @2, P3 such that:

1%

A=A e Gu(W)) = () a(E) = (),

AT = AT i Gal(H)) = (B oalt]) =

ci)

and

A"~ A via, ¢3((h///)i) — hai’ ¢3(t;") — ti,

and thus ¢ = ¢3 0 ¢y 0 ¢1.

For each i,

tit; = ¢s(t]"t;") = ds(Niit5) = ds(Nij ) tas,

so Ny = ¢3(N\). If a € R, then ¢3(r"”(h")") = rh™, ¢3(s” (h")") = sh®; so Ny =
rhoki e NI = " (R")R Ny = shoki & NP = s"(B")ki. Therefore A" is determined
by s4-14-

If a € S, then ¢3(r"”(R™)") = sh® and ¢3(s”(h")") = rh*; so Ny = rh* &
NI = 8" (W")ki Ny = sh®* < NI = ¢ ()%, Thus A" is determined by Sl

So A" is determined by s,-1, if @ € R, and by sZ’ilq ifaesS.

Suppose ¢ = m”*. Then for each j,
ki tonkms = G2(tmiti) = Ga( A5 mitomi) = G2( s Womkms -

SO )\/(/T/nkmj)(mkm]) — ¢2()\;’/n]mj> S07 SlIlCG ¢2(,r//(h//)’b) — T///(h///)i7 ¢2(S”(h)”)l) — Slll(h///)i
for all 7,

;;ijj — T//<h//)i PN :q/;j+kmj+k — T/,/(hm)i,

" — S//(h//)i PN )\;;:j+kmj+k — S”/(hm)i.

mimJ
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So the squares string (A], A, .., N/, a,—5) is the k™ cyclic permutation (to the
left) of the one that determines A”. In other words, this squares string is equal to
P*(s,-1,) if @ € R and is equal to Pr(s?,, ) ifa€ S,

Now,

Nigtyi (R')2% = 1] (W")*™ = n(tit;) = da(Nijths) = (N}t ()™

%

So ¢1(N,) = Ni(R")2%~2i - Since ¢y (r'(W)") = (W)}, ¢i(s'(R'))) = s”(h")!, and

r"(h") # s" for any i, this implies that
Ny =1 (R)" < N = r"(h")¥ for some k; and

Ny =8 (R < N = s"(h")¥ for some k;.

So s = P¥(sg) if a € R, sf, = P*(s?) if a € S. This gives the pattern of r’s and

s’s in the squares string for A’. We now need only determine the power of A’ that

appears in A}, for i € [1%17 P;l}_

Since
)‘/cléci)t/c,éi-&-l) = t/c//t,c/i/ = ¢2(t/1/t§/) = ¢2<)‘/llit;'/—&-l) = ¢2<)‘llli)t/c/éi+l)7

we have )\/// — ¢2()\/1/1) SO since (ﬁg(?“”(h”)i) — T,/,(h/”)i,¢2(S”(hﬂ)i) — S”/(hm)i, we

c(ct)

have

)\/1/1 — /r//(hl/)’ni &= ::/(,CZ) — rl//(h///)ni and )\/I/Z — Sl/(h/l)ni = /c/(/cz) — S/”(h/”)ni- <411)
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For the following argument, suppose ¢i has been reduced modulo p (so 0 < ¢i <
p — 1) and suppose ¢ < 21

Suppose ¢+ ¢t < p— 1. Then

-1
/\/cléci) - (/\/1,2(:@') - )‘/1,Ec+cz‘—1)) (Xﬁ s /\/(,c,—l))

by equation (4.9) in Theorem 4.1. Now, A (e51) ppears in this product exactly
once if i < ’%1 < ¢+ ci — 1 and does not appear at all otherwise. Since ¢ <
1

PT_17 (A’I’QE >7 does not appear at all. So if ¢ < 21
2
N = R a~lq " ( a"lq f < p— 1 < , — 1
oy = o 1 o < P S e,

and

n /) " :
Ac(eiy =" or 7 otherwise.

Suppose c+cit >p+1. Thenp—c+p—ci<p—1, so

)‘/c,écz) = (/\/” )(p— cz)) ()‘,/;/7 ci) c)>*
= [ Wiy Mipmeiipmem) V5 -+ Alipoiny) 7]

Since p — ¢ > ”T /\'” does not appear in the first factor of this, and since
2

p—ci—1< B2 X” (et does not appear in the second factor either. So /\’C’Ecz) =r"

or s
Thus for ¢ < 5= XC" (ci) = ' (h")4 or §"(R")* 4 exactly when ¢i < el <

c+ci— 1, and )\Zém.) =" or s otherwise. Furthermore,

1 1
cingch—ci—l@OSpT—cigc—l
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—1 —1 -3 p—1
@CZZPT—(C—l),pT—(C—2),p p .

The germane thing to notice here is that A7, = P (") or (W) for ¢

values of 7. If ¢ > p%l, this argument applies to p — ¢; so )\,(/;,)—c)[(p—c)i] = r’”(h”’)‘flq

-1 . a1 _,—1
or s"(h")* "4 for ¢ values of i, and therefore \"” .- = r"(h")~ "7 or "'(h")~* "4 for

c(ct)
c values of 7.
So, by (4.11), the same is true of \};: if ¢ < Z51, then N, = (W) or
s"(R")""4 for ¢ values of i, and if ¢ > 1 then A}, = ()4 or §"(h") 4 for
¢ values of 4. Since AY; = A, ,; = A{_, ,), the string is symmetric about )\’1’(%_1),

which is its middle element. So the number of i < B with A/, = 7”(h")=* ' or

2
—1 . . . _ . . . .
s"(h")=*" 1 is £ if ¢ is even, and % if ¢ is odd; and Xl’(p,l) = 17" or s" if ¢ is even,
5
" AN AY nipmatq -1 " "epmy—a=t
1(%):71@)@ ? or s"(h")" qlfc§”Tlsodd,and)\l(%):r(h) @4 or

s"(h")~* "4 if ¢ > -1 is odd.

We can now deduce the squares string determining A’. We have
N (Y4 = G (Y4 = 64 (0480) = 01 (Nithn) = 6a (N )t (B,
SO
(R BTE = Gy (N (R) (4.12)

for all 7.

Since the squares string s/, is special, the t] string determining A’ is also special.
So for i # E-L N, = 1" or 8. Write X}, = r”(R")™ or s”(h")™. Since ¢;(r'(I')") =
r"(R") and ¢y (s'(K)") = s"(h")* for all 4, we have for i # 21

N (YA = gy () (B

=dy+d; +n; :di+1.



So fori#’%l,

di = Zdl + an.

Jj<i
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Since t)_;(h")%= = ¢1(t7) = ¢1(t])* = t;_;(h")~%, we have d,_; = —d;. There-

fore, by equation (4.12),

&1 (X))

So, recalling that

" o
et =

ditdp—1—dpi1
2 2

Mgy )

di4+2dp_1
)\/l . h// PT
1) (")

Mgzt (M)

N ooy () 5055

r"” or s”
T//(h//)aflq or S//(h//)aflq

T//(h//>—a*1q or S//(h//)—zflq

d1+2(p771)d1+2 Zj<

p—1 Tj
pl

p—1

if ¢ is even and ¢ < -,

. . 1
if ¢ is even and ¢ > =,

if cis odd and ¢ < 21,

if cis odd and ¢ > 7%1.

if ¢ is even ,
if ¢ is odd and ¢ < B2,

if ¢ is odd and ¢ > 22,
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we have

T//(h//)caflq or S//(h//)caflq if ¢ < P%l’

gb N p—1 =
! ( 1(T)> T//(h’/)—clflq or Sll(h’/)—caflq ife>2 !

=
regardless of whether c is even or odd. Thus

r’(h’)c‘flq or s’(h’)c‘flq ife< p%l,

AQ(E) - 11N\ —ca"lq 11\ —ca"lq . p—1
(') or s'(h') if ¢ > =

So if A is determined by s, and ¢ : A’ — A is as described in Lemma 4.3, then

s', the squares string determining A’, is described by the following:

;

) PF(sg) ifa€eR
80 ==
Pr(sgP) ifa€ S,
\
and
(
ca lqif ¢ < ’%1,
’)’L g
—ca”lqif ¢ > 1,
\

This establishes the result.
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