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ABSTRACT

A CLASSIFICATION OF CLASS TWO AND CLASS THREE
NILPOTENT TABLE ALGEBRAS

Caroline Kettlestrings, Ph.D.
Department of Mathematical Sciences

Northern Illinois University, 2014
Harvey Blau, Director

Table algebras are generalizations of adjacency algebras, and of the character

ring of a finite group. Extensions of groups by groups have been well studied, and

Hirasaka and Bang [5] have generalized this to the study of extensions of association

schemes by association schemes. In this dissertation, we study central extensions of

table algebras by table algebras, in the case where the extension is either class two

nilpotent (which means it is an extension of a group algebra by a group algebra), or

class three nilpotent (which means it is an extension of a class two nilpotent table

algebra by a group algebra) with order p3 for an arbitrary prime p. We classify

these algebras up to exact isomorphism. In the class two case, we determine exactly

when the algebra is the adjacency algebra of an association scheme, and in the class

three case, we determine which sets of the parameters of our classification determine

isomorphic algebras.



NORTHERN ILLINOIS UNIVERSITY
DE KALB, ILLINOIS

DECEMBER 2014

A CLASSIFICATION OF CLASS TWO AND CLASS THREE

NILPOTENT TABLE ALGEBRAS

BY

CAROLINE KETTLESTRINGS
c© 2014 Caroline Kettlestrings

A DISSERTATION SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE

DOCTOR OF PHILOSOPHY

DEPARTMENT OF MATHEMATICAL SCIENCES

Dissertation Director:
Harvey Blau



TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Definitions and Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Previous Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 EXTENSIONS OF GROUP ALGEBRAS BY GROUP ALGEBRAS. . . . 11

4 EXTENSIONS OF TABLE ALGEBRAS BY GROUP ALGEBRAS . . . . 30

4.1 System of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Proof of Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Isomorphic Redundancy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



CHAPTER 1

INTRODUCTION

The purpose of this thesis will be to study extensions of a table algebra by a

central group algebra. In certain cases, we will characterize such extensions up to

isomorphism type, and investigate whether the algebras occur as adjacency algebras

of association schemes. In particular, we will classify all class three nilpotent stan-

dard integral table algebras of order p3, for any prime p. Table algebras are algebras

over the complex numbers with a distinguished basis and non-negative real structure

constants that satisfy certain other properties (Definition 2.1). Several important

objects are examples of table algebras, such as the group algebra of a finite group.

The set of class functions from a finite group to the complex numbers forms a table

algebra with basis the irreducible characters of the group, and the center of the

group algebra of a finite group with a basis of sums over the conjugacy classes of the

group forms a table algebra that is dual (in some sense) to the class function algebra.

The adjacency algebra of an association scheme (Definitions 2.3 and 2.4) also forms

a table algebra. Table algebras were introduced by Blau and Arad in 1991 ([2])

to study the characters and conjugacy classes of a finite group. Because both the

class function algebra and the center of a group algebra are obviously commutative,

table algebras were initially defined to be commutative algebras. Shortly thereafter,

however, it became clear that several other objects were examples of table algebras,

such as hypergroups, fusion rule algebras, C-algebras, and, as mentioned, adjacency

algebras of association schemes – with the exception that these are not necessarily

commutative. The commutativity condition was dropped and the current definition
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of a table algebra formulated by Arad, Fisman, and Muzychuk in [3]. See [6] for an

overview of the relationships between table algebras and various other mathematical

objects.

We can define a nilpotent table algebra in a way that arises naturally from the

definition of a nilpotent group (Definition 2.12). The process of forming a group G

by extending a group H by a group F has been well studied, and this process has

been generalized by Hirasaka and Bang in [5] to form an association scheme as an

extension of an association scheme by an association scheme in the case where the

schemes are thin (Definition 2.7). Blau and Xu [9] have developed a classification

of commutative table algebras formed by extending an abelian group algebra CH

by an abelian group algebra CF , and any table algebra formed in this way will be

nilpotent of class 2. Blau and Xu’s work includes necessary and sufficient conditions

for such an algebra to arise as the adjacency algebra of an association scheme.

For this dissertation, we begin by extending Blau and Xu’s work to cover the

case where the group H is central in the algebra but the group F is not necessarily

abelian, and hence the table algebra formed as the extension of CF by CH is not

necessarily commutative (Theorem 3.1).

We then investigate table algebras formed as extensions of table algebras by

central group algebras. Because classifying all such algebras seems intractable, we

have narrowed the scope to a classification of table algebras of order p3 that are

formed as extensions of class 2 nilpotent standard table algebras by central group

algebras (Theorem 4.1). Table algebras formed in this way (even if they are not

of order p3) are class 3 nilpotent table algebras. We then use this classification to

characterize the isomorphism classes of such algebras (Proposition 4.2).



CHAPTER 2

PRELIMINARIES

2.1 Definitions and Examples

The information in this section regarding table algebras can be found in [6]; the

information regarding association schemes can be found in [12]; and the information

regarding wreath products can be found in [8].

Definition 2.1. A table algebra is a (not necessarily commutative) algebra A over

C with a distinguished basis B for which the following properties hold:

i) For bi, bj ∈ B, bibj =
∑
bk∈B

βijkbk, where βijk ∈ R≥0 for all i, j, k.

ii) b0 = 1A ∈ B.

iii) There is an anti-automorphism of A denoted by ∗ which is of order at most 2

and permutes B. We define bi∗ = b∗i .

iv) For any bi, bj ∈ B, βij0 = 0 unless j = i∗, and βii∗0 = βi∗i0 > 0.

Every table algebra has a unique algebra homomorphism from A to C with

δ(B) ⊆ R+ called the degree map; the values δ(bi) for bi ∈ B are called the degrees

of B. This map has the property that δ(bi) = δ(b∗i ). A table algebra whose structure

constants and degrees lie in the integers is called integral, and if δ(bi) = βii∗0 for each

i, the algebra is called standard. Note that any table algebra may be made standard

by changing the distinguished basis from {bi ∈ B} to {(δ(bi)/βii∗0)bi : bi ∈ B}. Such
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a change of basis, where each basis element bi is replaced by λibi for λi ∈ R+ with

λi = λi∗ and λ0 = 1, is called a rescaling of (A,B). A rescaling of (A,B) is still a

table algebra.

Definition 2.2. An exact table algebra isomorphism from (A,B) to (U, V ) is an

algebra isomorphism φ : A→ U with φ(B) = V .

Throughout this paper, if A1 and A2 are table algebras, A1
∼= A2 will indicate

that there is an exact table algebra isomorphism.

Lemma 2.1. For any table algebra (A,B), there is a sesquilinear map 〈·, ·〉 : A ×

A → C defined by 〈x, y〉 =
∑
βii∗0γiλi where x =

∑
γibi, y =

∑
λibi, and the bar

denotes complex conjugation. For x ∈ A, bi, bj, bk ∈ B, this map has the following

properties:

i) 〈bi, bj〉 = δijβii∗0 where δij is the Kronecker delta function.

ii) 〈bibj, bk〉 = 〈bj, b∗i bk〉 , 〈bi, bjbk〉 = 〈bib∗k, bj〉.

Example 2.1. Let G be a finite group. Then (CG,G) forms a standard, integral

table algebra. Its structure constants are clearly non-negative integers (either one

or zero, in fact). The anti-automorphism is the usual group inversion, and δ(g) = 1

for all g in the group.

Example 2.2. (Z(CG), {C+
g }), the center of a group algebra with a basis of sums

over the conjugacy classes of the group, also forms a standard, integral table algebra.

The anti-automorphism sends the sum over the conjugacy class of g to the sum over

the conjugacy class of g−1. The degree map is given by δ(g) = |Cg|.

Example 2.3. The class functions from a finite group G to C form an integral table

algebra with basis Irr(G). The anti-automorphism is defined by χi∗(g) = χi(g)
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where the bar denotes complex conjugation, and the degree map gives the usual

degree of a character. We know that βii∗0 = 1 for every i in this algebra, so it is not

standard unless G is abelian.

Definition 2.3. An association scheme (S,R) is a set S together with a collection

R = {Ri : 0 ≤ i ≤ d} of subsets of S × S with the following properties:

i) R0 = {(x, x) : x ∈ S}.

ii) ∪di=0Ri = S × S and Ri ∩Rj = ∅ if i 6= j.

iii) For each i, (Ri)
T = {(x, y) : (y, x) ∈ Ri} = Ri∗ for some 0 ≤ i∗ ≤ d.

iv) For any 0 ≤ i, j, k ≤ d and any pair (x, y) ∈ Rk, the number of elements z ∈ S

such that (x, z) ∈ Ri and (z, y) ∈ Rj is independent of the particular choice of

x and y. This integer is denoted pijk.

The elements of R are called relations.

An association scheme gives rise to a standard, integral table algebra in the

following way. Let Ai be the matrix indexed by the elements of S with entries

defined by

(Ai)xy =

 1 if (x, y) ∈ Ri

0 if not.

Such a matrix is called the ith adjacency matrix of the association scheme.

Definition 2.4. The adjacency algebra of an association scheme is the subalgebra of

Mn(C) spanned by the adjacency matrices of the association scheme, where n = |S|.

Definition 2.5. The valency ki of an adjacency matrix is the sum across any row

of the matrix. It is equal to the number of z with (x, z) ∈ Ri for any x ∈ S; so

ki = pii∗0.
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Using the properties in Definition 2.3, it can be shown that the adjacency algebra

of an association scheme (S,R) with adjacency matrices Ai forms an integral table

algebra with basis B = {Ai : Ri ∈ R} and structure constants pijk. The anti-

automorphism is matrix transpose. It is standard; δ(Ai) = ki = pii∗0.

Definition 2.6. Let (A,B) be a table algebra. We define the linear elements of B

by L(B) = {b ∈ B : bb∗ = λ1, λ ∈ R}.

If a table algebra is standard, then its linear elements are exactly the elements

of degree one, and these form a group.

Definition 2.7. An association scheme (S,R) is called thin if its set of adjacency

matrices forms a group. In this case, the adjacency matrices are permutation ma-

trices.

We now discuss the quotient of a table algebra by a subset of its basis. For any

two elements bi, bj ∈ B, we define Supp(bibj) = {bk : βijk 6= 0}. We then define a set

multiplication on the subsets of B by ST =
⋃

s∈S,t∈T

Supp(st). We will regularly use the

notation st in place of {s}{t}, and the reader should be able to tell from context

which multiplication is meant. We will also be using the notation S+ =
∑
s∈S

s.

Definition 2.8. Let (A,B) be a table algebra. A closed subset of B is a subset

with the property that CC∗ ⊆ C.

This is equivalent to C = C∗ and CC ⊆ C.

Definition 2.9. The order of a subset C of B is o(C) =
∑
bi∈C

δ(bi)
2

βii∗0
.

Note that if the algebra is standard, the order of a subset is simply the sum of

the degrees of its elements. In the case of the adjacency algebra of an association

scheme, the order of the basis is the sum of the valencies of the matrices, and this

sum is exactly the size of the underlying set S.
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Definition 2.10. Let (A,B) be a standard table algebra and C a closed subset.

For b ∈ B, let b//C =
(CbC)+

o(C)
and B//C = {b//C : b ∈ B}. The quotient algebra

of (A,B) by C is the table algebra (A//C,B//C), where A//C is the span over C

of B//C.

The quotient algebra (A//C,B//C) is also standard. Its anti-automorphism

and degree map are simply the anti-automorphism and degree map for (A,B), re-

stricted to A//C. This algebra has the properties that o(B//C) = o(B)/o(C) and

(B//C)//(D//C) ∼= B//D for any closed subsets C and D of B with C ⊆ D.

We now discuss nilpotency of table algebras.

Definition 2.11. The upper central series of a commutative standard table algebra

is a chain of closed subsets of the basis L(0) ⊆ L(1) ⊆ L(2) ⊆ · · · , where L(0) = {1}

and for i ≥ 1, L(i) is the preimage in B of L(B//L(i−1)(B)).

This definition arises from the definition of the upper central series of a group in

that if (A,B) = (Z(CG), {C+
g }), then the chain L(0) ⊆ L(1) ⊆ L(2) ⊆ · · · corresponds

to the chain Z0 ⊆ Z1 ⊆ Z2 ⊆ · · · via L(i) = {C+
g : gZi−1 ∈ Z(G/Zi−1)} = {C+

g : g ∈

Zi}.

Definition 2.12. A commutative table algebra is said to be nilpotent of class n if

its upper central series terminates in B after n steps, i.e. L(n) = L(n+1) = B.

Definition 2.13. Let H be a group and let (CF, F ) be a standard table algebra.

We say that a standard table algebra (A,B) is an extension of (CF, F ) by (CH,H)

if there is a subgroup H ′ of L(B) with H ′ ∼= H and B//H ′ ∼= F .

Definition 2.14. Let (A,B) and (C,D) be standard table algebras, with B = {b0 =

1B, b1, . . . , bk} and D = {d0 = 1C , d1, . . . , dm}. Let

B oD = {b0 ⊗ dj : 0 ≤ j ≤ m} ∪ {bi ⊗D+ : 1 ≤ i ≤ k}.
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Then B oD is a linearly independent subset of A ⊗C C. Let A o C be the C−space

spanned by B oD. Then (A oC,B oD) is a standard table algebra, which we call the

wreath product of (A,B) and (C,D).

Theorem 2.1. Let (A,B) be a standard table algebra and let N be a closed subset

of B. Then (A,B) ∼=x (A//N,B//N) o (CN,N) if and only if for any n ∈ N and

b ∈ B \N,Supp(nb) = Supp(bn) = {b}.

Definition 2.15. A matrix Circ(c0, c1, . . . , cn) is said to be circulant if it has the

form 

c0 c1 · · · cn

cn c0 · · · cn−1
...

c1 c2 · · · c0


.

2.2 Previous Results

The following results provide a summary of previous work done on the problem

of classifying extensions of table algebras. In [5], Hirasaka and Bang study an

association scheme (X,G) that is an extension of an association scheme (Y,H) by

an association scheme (Z, F ). They cover the case where (Y,H) and (Z, F ) are

both thin, so that (X,G) is an extension of a group by a group. They develop the

construction of such an extension, and give necessary and sufficient conditions for

its existence. These conditions then produce a bound on the number of schemes of

this type, up to isomorphism.

In [9], Blau and Xu investigate commutative, standard table algebras (A,B)

formed as the extension of a group algebra CH by a group algebra CF . These are
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exactly the class 2 nilpotent standard table algebras. Given abelian groups F and

H, and an analogue of a 2-cocycle α : F ×F → H, they develop the construction of

such an extension, and show that any extension of this type must have exactly this

construction. They also find necessary and sufficient conditions for an extension of

this type to be the adjacency algebra of an association scheme. In this dissertation,

we will generalize these results to noncommutative, standard table algebras within

which the group H is central, but the proofs are similar to Blau and Xu’s. The

results by Blau and Xu are as follows.

Theorem 2.2 ([9]). Let (A,B) be a standard, commutative table algebra with a

group H ↪→ B and B//H ∼= F , where F is a group. (A,B) is necessarily integral,

and B can be written B = {tσh : σ ∈ F, h ∈ H} where the tσ comprise a set of coset

representatives for H in B. For each σ ∈ F , let Sσ = {h ∈ H : tσh = tσ}, a subgroup

of H. For each σ ∈ F, Sσ = Sσ−1 and Sστ ⊆ SσSτ . There also exists a function

α : F ×F → H, called a factor set, satisfying α(σ, τρ)α(τ, ρ) ≡ α(στ, ρ)α(σ, τ) mod

SσSτSρ for all σ, τ, ρ ∈ F , such that

(tσh1)(tτh2) = |Sσ ∩ Sτ |
∑

h coset
reps of Sστ
in SσSτ

tστα(σ, τ)hh1h2.

Conversely, given abelian groups H and F , a collection of subgroups {Sσ : σ ∈ F}

of H satisfying Sσ = Sσ−1 and Sστ ⊆ SσSτ , and a factor set α satisfying the above-

mentioned congruence, these determine a unique standard, integral table algebra
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(A,B) with H ↪→ B and B//H ∼= F , such that Sσ = {h ∈ H : tσh = tσ} for a set

{tσ : σ ∈ F} of coset representatives for H in B, and

(tσh1)(tτh2) = |Sσ ∩ Sτ |
∑

h coset
reps of Sστ
in SσSτ

tστα(σ, τ)hh1h2.

Theorem 2.3. The algebra described in Theorem 2.2 arises as the adjacency algebra

of an association scheme if and only if there is a choice of factor set α such that

α(στ, ρ)α(σ, τ) ≡ α(σ, τρ)α(τ, ρ) mod SσSτ ∩ SτSρ for all σ, τ, ρ ∈ F .



CHAPTER 3

EXTENSIONS OF GROUP ALGEBRAS BY GROUP

ALGEBRAS

In this section we prove the non-commutative generalizations of Theorems 2.2

and 2.3.

Theorem 3.1. Let (A,B) be a standard table algebra with a central group H ↪→ B

and B//H ∼= F , where F is a group. (A,B) is necessarily integral, and B can be

written B = {tσh : σ ∈ F, h ∈ H} where the tσ comprise a set of coset representatives

for H in B. For each σ ∈ F , let Sσ = {h ∈ H : tσh = tσ}, a subgroup of H. For

σ, τ ∈ F , these satisfy Sσ = Sσ−1 and Sστ ⊆ SσSτ . There also exists a function

α : F ×F → H, called a factor set, satisfying α(σ, τρ)α(τ, ρ) ≡ α(στ, ρ)α(σ, τ) mod

SσSτSρ for all σ, τ, ρ ∈ F , such that

(tσh1)(tτh2) = |Sσ ∩ Sτ |
∑

h coset
reps of Sστ
in SσSτ

tστα(σ, τ)hh1h2.

Conversely, given an abelian group H, a group F , a collection of subgroups {Sσ :

σ ∈ F} of H satisfying Sσ = Sσ−1 and Sστ ⊆ SσSτ , and a factor set α satisfying

the above-mentioned congruence, these determine a unique standard, integral table
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algebra (A,B) with H ↪→ B and B//H ∼= F , such that if {tσ : σ ∈ F} is a set of

coset representatives for H in B, then Sσ = {h ∈ H : tσh = tσ} and

(tσh1)(tτh2) = |Sσ ∩ Sτ |
∑

h coset
reps of Sστ
in SσSτ

tστα(σ, τ)hh1h2.

Proof. For the first direction, suppose (A,B) is a standard table algebra satisfying

the given conditions. Since B//H ∼= F , B = {tσh : σ ∈ F, h ∈ H} for a set of coset

representatives tσ. We choose t1 = 1. It is easily shown that the sets Sσ for σ ∈ F

are in fact subgroups of L(B).

Since F is a group, (tσ//H) · (t∗σ//H) = 1//H, so t∗σ = tσ−1hσ for some hσ ∈ H.

Hence Sσ = Sσ−1 since h ∈ Sσ ⇒ tσ−1hσ = t∗σ = (tσh)∗ = t∗σh
−1 = tσ−1hσh

−1 ⇒

tσ−1 = tσ−1h−1 ⇒ h−1 ∈ Sσ−1 ⇒ h ∈ Sσ−1 . Similarly, Sσ−1 ⊆ Sσ.

To show that Sστ ⊆ SσSτ , note that (tσ//H) · (t∗σ//H) = 1//H ⇒ Supp(tσt
∗
σ) ⊆

H, and 〈tσt∗σ, h〉 = 〈tσ, tσh〉 6= 0⇔ h ∈ Sσ. So Supp(tσt
∗
σ) = Sσ. Thus Supp(tσt

∗
σtτ t

∗
τ ) =

SσSτ , and since Supp(tτ t
∗
τ ) ⊆ H and H is central, (tσtτ )(tσtτ )

∗ = tσtτ t
∗
τ t
∗
σ = tσt

∗
σtτ t

∗
τ .

So

Supp ((tσtτ )(tσtτ )
∗) = SσSτ .

Now, since (tσ//H) · (tτ//H) = tστ//H, tσtτ =
∑
h∈H

βhtστh with at least one βh > 0.

So Sστ = Supp(tστ t
∗
στ ) ⊆ Supp ((tσtτ )(tσtτ )

∗) = SσSτ .

We now show that there exists a factor set α satisfying the claimed congruence.

Since Supp ((tσtτ )(tσtτ )
∗) = SσSτ , for each h1, h2 with tστh1, tστh2 ∈ Supp(tσtτ ),

Supp
(
tστ t

∗
στh1h

−1
2

)
⊆ SσSτ , so h1h

−1
2 ∈ SσSτ since 1 ∈ Supp (tστ t

∗
στ ). So for all

h1, h2 with tστh1, tστh2 ∈ Supp(tσtτ ), h1 ≡ h2 mod SσSτ . Thus there exists some

α(σ, τ) ∈ H with tσtτ =
∑

h∈SσSτ

βhtστα(σ, τ)h. Note that for any σ, τ ∈ F , α(σ, τ) is
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only determined up to congruence modulo SσSτ since replacing α(σ, τ) with α(σ, τ)h

for h ∈ SσSτ gives tσtτh = tσtτ .

Now, for any h ∈ SσSτ , βh =
〈tσtτ , tστα(σ, τ)h〉

δ(tστ )
=
〈tσtτh−1, tστα(σ, τ)〉

δ(tστ )
=

1

δ(tστ )
〈tσtτ , tστα(σ, τ)〉. So βh does not actually depend on h, so all βh are equal.

And since tστα(σ, τ)h1 = tστα(σ, τ)h2 if h1 ≡ h2 mod Sστ , we can write

tσtτ =
∑

h coset
reps of Sστ
in SσSτ

βtστα(σ, τ)h =
β

|Sστ |
∑

h∈SσSτ

tστα(σ, τ)h.

We now determine the value of β. Since B is standard, δ(tσ) = 〈tσ, tσ〉 =

〈tσ, tσh〉 = 〈tσt∗σ, h〉 for any h ∈ Sσ. So tσt
∗
σ = δ(tσ)

∑
h∈Sσ

h, and therefore

δ(tσt
∗
σ) = δ

(∑
h∈Sσ

δ(tσ)h

)
= δ(tσ)

∑
h∈Sσ

δ(h) = δ(tσ)|Sσ|

⇒ δ(tσ)2 = δ(tσ)|Sσ| ⇒ δ(tσ) = |Sσ|.

Calculating δ(tσtτ ) and setting it equal to |Sσ||Sτ | now gives β =
|Sσ||Sτ |
|SσSτ |

= |Sσ∩Sτ |.

Thus (A,B) is integral.

We now have

(tσh1)(tτh2) =
|Sσ ∩ Sτ |
|Sστ |

∑
h∈SσSτ

tστα(σ, τ)hh1h2. (*)
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We now show that α(σ, τρ)α(τ, ρ) ≡ α(στ, ρ)α(σ, τ) mod SσSτSρ . This is a

result of the associativity of the algebra.

(tσtτ )tρ =

(
|Sσ ∩ Sτ |
|Sστ |

∑
h∈SσSτ

tστα(σ, τ)h

)
tρ

=
|Sσ ∩ Sτ |
|Sστ |

∑
h∈SσSτ

tστ tρα(σ, τ)h

=
|Sσ ∩ Sτ |
|Sστ |

∑
h∈SσSτ

 |Sστ ∩ Sρ|
|Sστρ|

∑
k∈SστSρ

tστρα(στ, ρ)k

α(σ, τ)h

=
|Sσ ∩ Sτ ||Sστ ∩ Sρ|
|Sστ ||Sστρ|

∑
h∈SσSτ

∑
k∈SστSρ

tστρα(στ, ρ)α(σ, τ)hk.

Similarly,

tσ(tτ tρ) =
|Sτ ∩ Sρ||Sσ ∩ Sτρ|
|Sτρ||Sστρ|

∑
h∈SτSρ

∑
k∈SσSτρ

tστρα(σ, τρ)α(τ, ρ)hk.

The same basis elements must appear in each of these, so

{tστρα(στ, ρ)α(σ, τ)hk : h ∈ SσSτ , k ∈ SστSρ}

= {tστρα(σ, τρ)α(τ, ρ)hk : h ∈ SτSρ, k ∈ SσSτρ}.

So let h ∈ SσSτ and k ∈ SστSρ. Then there exists h′ ∈ SτSρ and k′ ∈ SσSτρ such

that

tστρα(στ, ρ)α(σ, τ)hk = tστρα(σ, τρ)α(τ, ρ)h′k′.

Then since Sστρ ⊆ SσSτSρ,

α(στ, ρ)α(σ, τ)hk ≡ α(σ, τρ)α(τ, ρ)h′k′ mod Sστρ ⇒

α(σ, τρ)α(τ, ρ)h′k′h−1k−1 ≡ α(στ, ρ)α(σ, τ) mod Sστρ ⇒
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α(σ, τρ)α(τ, ρ) ≡ α(στ, ρ)α(σ, τ) mod SσSτSρ since h′k′h−1k−1 ∈ SσSτSρ.

For the other direction, let H, F , α, and {Sσ : σ ∈ F} satisfy the given condi-

tions. Let B = {tσh : σ ∈ F, h ∈ H}, where tσh1 = tτh2 ⇔ σ = τ and h1 ≡ h2 mod

Sσ(= Sτ ). Let t11 = 1; we then identify t1h with h and tσ1 with tσ. Note that this

means tσh = tσ ⇔ h ∈ Sσ. We give the elements of B the multiplication

(tσh1)(tτh2) =
|Sσ ∩ Sτ |
|Sστ |

∑
h∈SσSτ

tστα(σ, τ)hh1h2.

We now show that this multiplication is associative.

(tσh1)(tτh2tρh3) = tσh1

 |Sτ ∩ Sρ|
|Sτρ|

∑
h∈SτSρ

tτρα(τ, ρ)h(h2h3)



=
|Sτ ∩ Sρ|
|Sτρ|

 ∑
h∈SτSρ

 |Sσ ∩ Sτρ|
|Sστρ|

∑
k∈SσSτρ

tστρα(σ, τρ)kα(τ, ρ)h(h1h2h3)



=
|Sτ ∩ Sρ||Sσ ∩ Sτρ|
|Sτρ||Sστρ|

∑
h∈SτSρ,
k∈SσSτρ

tστρα(σ, τρ)α(τ, ρ)hk(h1h2h3).

Now, SτSρSσSτρ = SσSτSρ. In order to equate the above sum to (tσh1tτh2)(tρh3),

we need to sum over only the distinct elements of SσSτSρ. Since

|SσSτSρ| =
|SτSρ||SσSτρ|
|SτSρ ∩ SσSτρ|

,
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for each x ∈ SσSτSρ, there are |SτSρ ∩ SσSτρ| pairs h ∈ SτSρ, k ∈ SσSτρ such that

hk = x. So:

(tσh1)(tτh2tρh3) =

|Sτ ∩ Sρ||Sσ ∩ Sτρ||SτSρ ∩ SσSτρ|
|Sτρ||Sστρ|

∑
j∈SσSτSρ

tστρα(σ, τρ)α(τ, ρ)j(h1h2h3). (1)

Similarly,

(tσh1tτh2)(tρh3) =

|Sσ ∩ Sτ ||Sστ ∩ Sρ||SσSτ ∩ SστSρ|
|Sστ ||Sστρ|

∑
j∈SσSτSρ

tστρα(στ, ρ)α(σ, τ)j(h1h2h3). (2)

By the assumption α(σ, τρ)α(τ, ρ) ≡ α(στ, ρ)α(σ, τ) mod SσSτSρ , the sum-

mands in (1) and (2) are equal. The coefficients are equal as well, because of the

following:

|Sτ ∩ Sρ||Sσ ∩ Sτρ||SτSρ ∩ SσSτρ|
|Sτρ||Sστρ|

(3)

=
|Sτ ||Sρ|
|SτSρ|

· |Sσ||Sτρ|
|SσSτρ|

· |SτSρ||SσSτρ|
|SτSρSσSτρ|

· 1

|Sτρ||Sστρ|

=
|Sτ ||Sρ||Sσ|
|SσSτSρ||Sστρ|

. (4)

The coefficient in (2) is exactly the same as (3) with σ and ρ switched, and (4) is

symmetric in σ and ρ; so the coefficients are equal. Thus (1)=(2) and associativity

holds.

The argument above that culminates in equation (∗) shows that this multiplica-

tion is unique.
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We define the anti-automorphism of (A,B) = (CB,B) by

(tσh)∗ = tσ−1h−1α(σ, σ−1)−1,

extended linearly. We now show that this map is in fact an anti-automorphism. In

the following calculation, we will use α(σ, 1) = α(1, σ) = 1 for each σ ∈ F . This

does not result in a loss of generality since tσt1 = tσ = t1tσ implies α(σ, 1) and

α(1, σ) may be set equal to any element of Sσ.

(tσh1tτh2)
∗ =

(
|Sσ ∩ Sτ |
|Sστ |

∑
h∈SσSτ

tστα(σ, τ)h(h1h2)

)∗
=
|Sσ ∩ Sτ |
|Sστ |

∑
h∈SσSτ

t(στ)−1(α(σ, τ)h(h1h2))
−1α(στ, (στ)−1)−1

=
|Sσ ∩ Sτ |
|Sστ |

∑
h∈SσSτ

t(στ)−1α(σ, τ)−1h−1h−11 h−12 α(στ, (στ)−1)−1.

And

(tτh2)
∗(tσh1)

∗ =
(
tτ−1h−12 α(τ, τ−1)−1

) (
tσ−1h−11 α(σ, σ−1)−1

)
=
|Sτ−1 ∩ Sσ−1|
|Sτ−1σ−1|

∑
h∈Sτ−1Sσ−1

t(στ)−1α(τ−1, σ−1)h
(
h2α(τ, τ−1)h1α(σ, σ−1)

)−1
=
|Sσ ∩ Sτ |
|Sστ |

∑
h∈SσSτ

t(στ)−1α(τ−1, σ−1)h−1h−11 h−12 α(τ, τ−1)−1α(σ, σ−1)−1.

These are equal by the following argument.

α(σ, τ)α(στ, (στ)−1) ≡ α(τ, (στ)−1)α(σ, τ(στ)−1) mod SσSτS(στ)−1 = SσSτ

⇒ α(σ, τ)α(στ, (στ)−1)α(τ−1, σ−1) ≡ α(τ, τ−1σ−1)α(σ, σ−1)α(τ−1, σ−1) mod SσSτ .
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And α(τ, τ−1σ−1)α(τ−1, σ−1) ≡ α(ττ−1, σ−1)α(τ, τ−1) mod SτSτ−1Sσ−1 = SσSτ . Since

α(1, σ−1) = 1, we now have

α(σ, τ)α(στ, (στ)−1)α(τ−1, σ−1) ≡ α(σ, σ−1)α(τ, τ−1) mod SσSτ .

Thus

α(τ−1, σ−1)α(σ, σ−1)−1α(τ, τ−1)−1 ≡ α(σ, τ)−1α(στ, (στ)−1)−1 mod SσSτ .

So (tσh1tτh2)
∗ = (tτh2)

∗(tσh1)
∗.

We now show that the structure constant βij0 = 0 unless i = j∗. Let bi =

tσh1, bj = tτh2. Then

bibj =
|Sσ ∩ Sτ |
|Sστ |

∑
h∈SσSτ

tστα(σ, τ)hh1h2.

Suppose t11 = b0 appears in this sum. Then τ = σ−1, and for some h′ ∈ SσSτ =

SσSσ−1 = Sσ,

tστα(σ, τ)h′(h1h2) = t1α(σ, σ−1)h′(h1h2) = t11

⇒ α(σ, σ−1)h′(h1h2) ≡ 1 mod S1

⇒ α(σ, σ−1)h′(h1h2) = 1

⇒ h2 = (α(σ, σ−1)h′h1)
−1

= α(σ, σ−1)−1h−11 h′−1.

So bi = tσh1 and bj = tσ−1α(σ, σ−1)−1h−11 h′−1 = tσ−1α(σ, σ−1)−1h−11 since h′−1 ∈

Sσ = Sσ−1 . Thus bj = (tσh1)
∗ = b∗i .
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Furthermore, βii∗0 6= 0 because if bi = tσh1,

bib
∗
i = (tσh1)(tσh1)

∗ = (tσh1)(tσ−1α(σ, σ−1)−1h−11 )

=
|Sσ ∩ Sσ−1 |
|Sσσ−1|

∑
h∈Sσ

t1α(σ, σ−1)h(h1α(σ, σ−1)−1h−11 ) = |Sσ|
∑
h∈Sσ

t1h.

So for h = 1, b0 shows up with coefficient |Sσ|. Note that this also shows that

tσt
∗
σ = |Sσ|

∑
h∈Sσ

h.

We now define the degree map to be δ(tσh) = |Sσ|. This is an algebra homo-

morphism, since

δ(tσh1tτh2) =
|Sσ ∩ Sτ |
|Sστ |

∑
h∈SσSτ

δ(tστα(σ, τ)hh1h2)

=
|Sσ ∩ Sτ |
|Sστ |

· |SσSτ |δ(tστ )

=
|Sσ ∩ Sτ ||SσSτ ||Sστ |

|Sστ |
= |Sσ||Sτ | = δ(tσh1)δ(tτh2).

Thus (A,B) is standard, and since the structure constants have already been shown

to be integers, we have now shown that (A,B) is a standard, integral table algebra.

It remains to show that B//H ∼= F . The isomorphism is φ(σ) = tσ//H. This

is clearly a bijection. To show that it is an isomorphism, first note that tσ//H =
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(tσH)+

|H|
=

tσH
+

|H||Sσ|
since tσh1 = tσh2 whenever h1 ≡ h2 mod Sσ. Thus, noting that

tσh//H = tσ//H for all h ∈ H, we have

φ(σ)φ(τ) =
1

o(H)|Sσ|
∑
h∈H

tσh
1

o(H)|Sτ |
∑
k∈H

tτk

=
1

o(H)|Sσ|
1

o(H)|Sτ |
∑
h,k∈H

tσhtτk

=
1

o(H)2|Sσ||Sτ |
∑
h,k∈H

|Sσ ∩ Sτ |
|Sστ |

∑
m∈SσSτ

tστα(σ, τ)m(hk)

=
|Sσ ∩ Sτ |

o(H)|Sσ||Sτ |
∑
h∈H

m∈SσSτ

1

o(H)|Sστ |
∑
k∈H

tστα(σ, τ)m(hk)

=
|Sσ ∩ Sτ |

o(H)|Sσ||Sτ |
∑
h∈H

∑
m∈SσSτ

tστ//H

=
|Sσ ∩ Sτ ||SσSτ |
|Sσ||Sτ |

· (tστ//H) = tστ//H = φ(στ).

Remark 3.1. As mentioned in the above proof, α(σ, τ) is only determined up to

congruence modulo SσSτ . Two factor sets that differ only by multiplication by an

element of SσSτ will yield exactly isomorphic algebras. With this in mind, we state

the following theorem. Note the slight difference from Theorem 2.3.

Theorem 3.2. The algebra described in Theorem 3.1 arises as the adjacency algebra

of an association scheme if and only if there is a choice of factor set α such that

α(σ, τρ)α(τ, ρ) ≡ α(στ, ρ)α(σ, τ) mod SσSτ for all σ, τ, ρ ∈ F .

Proof. For the first direction, suppose that the algebra is the adjacency algebra of

an association scheme. Since B is the set of adjacency matrices for this scheme, we

will index the relations of the scheme by elements of B, Rb. We will calculate the

relations for this scheme and then show that the factor set congruence follows. The
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underlying set S for this scheme has size |F ||H| since |S| = o(B) (as discussed after

Definition 2.9), and B//H ∼= F ⇒ o(B)/o(H) = o(F )⇒ o(B) = |F ||H|. So we will

label the elements of the underlying set with ordered pairs (σ, h) for σ ∈ F, h ∈ H.

H induces the equivalence relation (σ, h1) ∼ (τ, h2)⇔ σ = τ on the underlying set,

and the scheme given by the adjacency algebra B//H has the set of these equivalence

classes as its underlying set. (See [5] or [12] for a thorough explanation of quotient

schemes.) We therefore label these elements by (σ,H) for σ ∈ F .

Now, H is the basis of a subalgebra of A, and thus gives the adjacency algebra of

a subscheme of the scheme given by B. It is, in fact, the scheme given by any one of

the equivalence classes described above, so its underlying set is {(σ, h) : h ∈ H} for

any σ ∈ F ; other choices of σ will simply yield copies of the same scheme. (Again,

see [5] or [12] for a thorough explanation of subschemes.) Since H is a group, this

scheme is thin, so the adjacency matrices form a group isomorphic to H. This forces

((σ, h1), (σ, h2)) ∈ Rh1h
−1
2

.

To see what relation ((σ, h1), (τ, h2)) is in when σ 6= τ , note that since F is a

group, it also gives a thin scheme, with (σ, τ) ∈ Rστ−1 . Thus the quotient scheme

given by B//H is also a thin scheme, and it is natural to label the elements of its

underlying set (σ,H) for σ ∈ F , with ((σ,H), (τ,H)) ∈ R(tστ−1//H). This means that

the matrix (tστ−1H)+ has ones in the entries indexed by ((σ, h1), (τ, h2)) for every

h1, h2 ∈ H. Thus ((σ, h1), (τ, h2)) ∈ Rtστ−1h for some h ∈ H.

Since this h is undetermined by B//H ∼= F , we may choose it arbitrarily. Differ-

ent choices will produce isomorphic schemes since they only differ in how we choose

to label the elements of the underlying set. We now show that, given an appro-

priate labeling of elements of S, we have h = α(σ, τ−1)α(τ−1, τ)−1h1h
−1
2 k for some

k ∈ SσSτ .



22

We first choose an element of S to label as (1, 1). We then choose the ele-

ment s ∈ S with (s, (1, 1)) ∈ Rtσh for each h ∈ H, σ ∈ F . Since we have

already chosen to label the elements of S so that ((σ, h1), (τ, h2)) ∈ Rtστ−1h for

some h ∈ H, the first component of s must be σ. We let s = (σ, h) so that

((σ, h), (1, 1)) ∈ Rtσh. This choice determines how the rest of S must be la-

beled. Using the facts that ((σ, h1), (τ, h2)) ∈ Rb ⇒ ((τ, h2), (σ, h1)) ∈ Rb∗ and

((σ, h1), (τ, h2)) ∈ Rb1 , ((τ, h2), (π, h3)) ∈ Rb2 ⇒ ((σ, h1), (π, h3)) ∈ Rb for some

b ∈ b1b2, we have for any h1, h2 ∈ H, σ, τ ∈ F,

((1, 1), (τ, h2)) ∈ R(tτh2)∗ = Rtτ−1α(τ,τ−1)−1h−1
2
,

so

((σ, h1), (τ, h2)) ∈ Rb for some b ∈ (tσh1)(tτ−1α(τ, τ−1)−1h−12 ),

so

((σ, h1), (τ, h2)) ∈ Rtστ−1α(σ,τ−1)α(τ,τ−1)−1h1h
−1
2 k

for some k ∈ SσSτ−1 = SσSτ .

We now show that the k only depends on σ and τ , not on h1 and h2. Suppose

h3, h4 ∈ H. Then ((σ, h3), (σ, h1)) ∈ Rt1h3h
−1
1

, so

((σ, h3), (τ, h2)) ∈ R(t1h3h
−1
1 )(tστ−1α(σ,τ−1)α(τ,τ−1)−1h1h

−1
2 k) = Rtστ−1α(σ,τ−1)α(τ,τ−1)−1h3h

−1
2 k.

And since ((τ, h2), (τ, h4)) ∈ Rt1h2h
−1
4

,

((σ, h3), (τ, h4)) ∈ R(tστ−1α(σ,τ−1)α(τ,τ−1)−1h3h
−1
2 k)(t1h2h

−1
4 ) = Rtστ−1α(σ,τ−1)α(τ,τ−1)−1h3h

−1
4 k.
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So the k remains the same when h1 and h2 are changed. We therefore label k as

kσ,τ . We now make choices for the various α(σ, τ) that simplify the relations.

Recall that α(σ, τ) is only determined modulo SσSτ , and that we have already

chosen α(1, σ) = α(σ, 1) = 1. Now choose α(σ−1, σ) = α(σ, σ−1) for all σ ∈ F . This

is allowable since for a = σ−1, b = σ, c = σ−1,

α(b, c)α(a, bc) ≡ α(a, b)α(ab, c) mod SaSbSc ⇒

α(σ, σ−1)α(σ−1, 1) ≡ α(σ−1, σ)α(1, σ−1) mod Sσ ⇒

α(σ, σ−1) ≡ α(σ−1, σ) mod Sσ,

and α(σ, σ−1), α(σ−1, σ) are only determined modulo Sσ. Now, choose a set of values

α(σ, τ) that satisfy the conditions of Theorem 3.1 and have α(σ, 1) = α(1, σ) = 1

and α(σ, σ−1) = α(σ−1, σ). We will modify that choice to simplify the relations. We

have shown that

((σ, h1), (τ, h2)) ∈ Rtστ−1α(σ,τ−1)α(τ,τ−1)−1h1h
−1
2 kσ,τ

= Rtστ−1α(σ,τ−1)α(τ−1,τ)−1h1h
−1
2 kσ,τ

for some kσ,τ ∈ SσSτ . We know that α(στ−1, τ)α(σ, τ−1) ≡ α(τ−1, τ)α(σ, 1) mod

SσSτ−1 , so α(σ, τ−1)α(τ−1, τ)−1 ≡ α(στ−1, τ)−1 mod SσSτ−1 . Say α(σ, τ−1)α(τ−1, τ)−1

= α(στ−1, τ)−1lσ,τ , where lσ,τ ∈ SσSτ−1 . Therefore

α(σ, τ−1)α(τ−1, τ)−1kσ,τ = α(στ−1, τ)−1lσ,τkσ,τ

⇒ ((σ, h1), (τ, h2)) ∈ Rtστ−1α(στ−1,τ)−1h1h
−1
2 lσ,τkσ,τ

.
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So for any ρ 6= 1, τ−1, choose

α′(ρ, τ) = α(ρ, τ)l−1ρτ,τk
−1
ρτ,τ .

Then for ρ = στ−1, we have

α′(στ−1, τ) = α(στ−1, τ)l−1σ,τk
−1
σ,τ

⇒ α′(στ−1, τ)−1 = α(στ−1, τ)−1lσ,τkσ,τ .

This gives

((σ, h1), (τ, h2)) ∈ Rtστ−1α′(στ−1,τ)−1h1h
−1
2
.

For the remainder of the proof, we omit the prime. The association scheme relations

are then given for all σ, τ ∈ F, h1, h2 ∈ H by

((σ, h1), (τ, h2)) ∈ Rtστ−1α(στ−1,τ)−1h1h
−1
2
.

Now let σ, τ, ρ ∈ F . Let π = τρ and β = στρ = σπ. Then for any h1, h2 ∈ H,

((β, h1), (π, h)) ∈ Rtβπ−1α(βπ−1,π)−1h1h−1 ,

((π, h), (ρ, h2)) ∈ Rtπρ−1α(πρ−1,ρ)−1hh−1
2
, and

((β, h1), (ρ, h2)) ∈ Rtβρ−1α(βρ−1,ρ)−1h1h
−1
2
.
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Therefore tβρ−1α(βρ−1, ρ)−1h1h
−1
2 is in

Supp
[(
tβπ−1α(βπ−1, π)−1h1h

−1) · (tπρ−1α(πρ−1, ρ)−1hh−12

)]
,

hence

tβρ−1α(βρ−1, ρ)−1h1h
−1
2 = tβρ−1α(βπ−1, πρ−1)α(βπ−1, π)−1α(πρ−1, ρ)−1h1h

−1
2 w

for some w ∈ Sβπ−1Sπρ−1 . So

α(βρ−1, ρ)−1 ≡ α(βπ−1, π)−1α(πρ−1, ρ)−1α(βπ−1, πρ−1)w mod Sβρ−1

⇒ α(βπ−1, π)α(πρ−1, ρ) ≡ α(βρ−1, ρ)α(βπ−1, πρ−1) mod Sβρ−1Sβπ−1Sπρ−1 .

Converting this to an expression in σ, τ, and ρ, we have

α(σ, τρ)α(τ, ρ) ≡ α(στ, ρ)α(σ, τ) mod SστSσSτ = SσSτ .

For the other direction, assume that α(σ, τρ)α(τ, ρ) ≡ α(στ, ρ)α(σ, τ) mod SσSτ

holds; call this congruence (*). Let the underlying set be F ×H and the relations

be defined by ((σ, h1), (τ, h2)) ∈ Rb ⇔ b = tστ−1α(στ−1, τ)−1h1h
−1
2 . It is clear that

these relations partition (F ×H)× (F ×H) and that Rt11 is the diagonal relation.

We now show that if ((σ, h1), (τ, h2)) ∈ Rb, then ((τ, h2), (σ, h1)) ∈ Rb∗ . As

discussed earlier, the anti-automorphism is given by (tσh)∗ = tσ−1α(σ, σ−1)−1h−1.

Since

((σ, h1), (τ, h2)) ∈ Rtστ−1α(στ−1,τ)−1h1h
−1
2

and ((τ, h2), (σ, h1)) ∈ Rtτσ−1α(τσ−1,σ)−1h2h
−1
1
,

we need to show that

tτσ−1α(τσ−1, σ)−1h2h
−1
1 = (tστ−1α(στ−1, τ)−1h1h

−1
2 )∗

= tτσ−1α(στ−1, τσ−1)−1α(στ−1, τ)h2h
−1
1 .
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We’ve assumed that α(σ, τρ)α(τ, ρ) ≡ α(στ, ρ)α(σ, τ) mod SσSτ . So:

α(στ−1, τσ−1) = α(στ−1, τσ−1)α(1, σ)

≡ α(στ−1, τσ−1σ)α(τσ−1, σ) mod Sστ−1Sτσ−1 = Sστ−1

⇒ α(τσ−1, σ)−1 ≡ α(στ−1, τσ−1)−1α(στ−1, τ) mod Sστ−1 .

Therefore tτσ−1α(στ−1, τσ−1)−1α(στ−1, τ)h2h
−1
1 = tτσ−1α(τσ−1, σ)−1h2h

−1
1 .

We now show that the intersection numbers prst depend only on r, s, and t, and

that these are exactly the structure constants of the algebra described in Theorem

3.1. Let ((σ, h1), (τ, h2)) ∈ Rbt . If (ρ, h3) has the property that ((σ, h1), (ρ, h3)) ∈ Rbr

and ((ρ, h3), (τ, h2)) ∈ Rbs , then we say that (ρ, h3) has property P with respect to

σ, h1, τ, h2. If (ρ, h3) has property P with respect to σ′, τ ′, h′1, h
′
2 for some other pair

((σ′, h′1), (τ
′h′2)) ∈ Rbt , we will say that (ρ, h3) has property P ′. We show that the

number of (ρ, h3) with property P is the same as the number of (ρ, h3) with property

P ′.

Let ((σ, h1), (τ, h2)) ∈ Rbt and suppose (ρ, h3) has property P . Let ((σ′, h′1), (τ
′, h′2)) ∈

Rbt . We first show that there exists (ρ′, h′3) with property P ′. Since

bt = tστ−1α(στ−1, τ)−1h1h
−1
2 = tσ′τ ′−1α(σ′τ ′−1, τ ′)−1h′1h

′−1
2 ,

we know that στ−1 = σ′τ ′−1. Thus σ−1σ′ = τ−1τ ′ ⇒ ρσ−1σ′ = ρτ−1τ ′. Let

ρ′ = ρσ−1σ′ = ρτ−1τ ′. Since α(στ−1, τ)−1h1h
−1
2 ≡ α(σ′τ ′−1, τ ′)−1h′1h

′−1
2 mod Sστ−1 ,

we have

α(στ−1, τ)α(σρ−1, ρτ−1)h−11 h2 ≡ α(σ′τ ′−1, τ ′)α(σ′ρ′−1, ρ′τ ′−1)h′−11 h′2 mod Sστ−1
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because σρ−1 = σ′ρ′−1 and ρτ−1 = ρ′τ ′−1. Since Sστ−1 ⊆ Sσρ−1Sρτ−1 , this congruence

holds modulo Sσρ−1Sρτ−1 . Furthermore, α(ab, c)α(a, b) ≡ α(a, bc)α(b, c) mod SaSb

with a = σρ−1, b = ρτ−1, and c = τ gives

α(στ−1, τ)α(σρ−1, ρτ−1) ≡ α(σρ−1, ρ)α(ρτ−1, τ) mod Sσρ−1Sρτ−1 . (3.1)

Therefore

α(στ−1, τ)α(σρ−1, ρτ−1)h−11 h2 ≡ α(σ′τ ′−1, τ ′)α(σ′ρ′−1, ρ′τ ′−1)h′−11 h′2 mod Sσρ−1Sρτ−1

⇒ α(σρ−1, ρ)α(ρτ−1, τ)h−11 h2 ≡ α(σ′ρ′−1, ρ′)α(ρ′τ ′−1, τ ′)h′−11 h′2 mod Sσρ−1Sρτ−1

⇒ α(σ′ρ′−1, ρ′)−1α(σρ−1, ρ)h′1h
−1
1 h3 ≡ α(ρ′τ ′−1, τ ′)α(ρτ−1, τ)−1h′2h

−1
2 h3

mod Sσρ−1Sρτ−1 . So let h′3 ∈ H with

h′3 ≡ α(σ′ρ′−1, ρ′)−1α(σρ−1, ρ)h′1h
−1
1 h3 mod Sσρ−1 and

h′3 ≡ α(ρ′τ ′−1, τ ′)α(ρτ−1, τ)−1h′2h
−1
2 h3 mod Sρτ−1 .

Then

((σ′, h′1), (ρ
′, h′3)) ∈ Rtσ′ρ′−1α(σ′ρ′−1,ρ′)−1h′1h

′−1
3

= Rtσρ−1α(σ′ρ′−1,ρ′)−1h′1α(σ
′ρ′−1,ρ′)α(σρ−1,ρ)−1h′−1

1 h1h
−1
3

= Rtσρ−1α(σρ−1,ρ)−1h1h
−1
3

and

((ρ′, h′3), (τ
′, h′2)) ∈ Rtρ′τ ′−1α(ρ′τ ′−1,τ ′)−1h′3h

′−1
2

= Rtρτ−1α(ρ′τ ′−1,τ ′)−1α(ρ′τ ′−1,τ ′)α(ρτ−1,τ)−1h′2h
−1
2 h3h

′−1
2

= Rtρτ−1α(ρτ−1,τ)−1h3h
−1
2
.
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So (ρ′, h′3) has property P ′. Thus the existence of (ρ, h3) with property P implies

the existence of at least one (ρ′, h′3) with property P ′. This shows that whether

prst = 0 is independent of choice of σ, τ, h1, and h2.

Now, suppose br = tσρ−1α(σρ−1, ρ)−1h1h
−1
3 and bs = tρτ−1α(ρτ−1, τ)−1h3h

−1
2 .

Then

Supp(brbs) = tστ−1α(σρ−1, ρτ−1)α(σρ−1, ρ)−1α(ρτ−1, τ)−1Sσρ−1Sρτ−1h1h
−1
2 .

Suppose x ∈ Sσρ−1Sρτ−1 with

α(στ−1, τ)α(σρ−1, ρτ−1) = α(σρ−1, ρ)α(ρτ−1, τ)x

as in equation (3.1). Then bt ∈ Supp(brbs)⇔ there exist u ∈ Sσρ−1 , v ∈ Sρτ−1 with

bt = tστ−1α(σρ−1, ρτ−1)α(σρ−1, ρ)−1α(ρτ−1, τ)−1h1h
−1
2 x−1uv ⇔

((σ, h1u), (ρ, h3)) ∈ Rtσρ−1α(σρ−1,ρ)−1h1uh
−1
3

= Rbr ,

((ρ, h3), (τ, h2v
−1)) ∈ Rtρτ−1α(ρτ−1,τ)−1h3h

−1
2 v

= Rbs , and

((σ, h1u), (τ, h2v
−1)) ∈ Rtστ−1α(στ−1,τ)−1h1uh

−1
2 v

= Rtστ−1α(σρ−1,ρτ−1)α(σρ−1,ρ)−1α(ρτ−1,τ)−1h1h
−1
2 x−1uv

= bt.
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Therefore bt ∈ Supp(brbs) if and only if there exists a triple {(σ, h1u), (τ, h2v
−1), (ρ, h3)}

so that prst 6= 0. Therefore the coefficient of bt in the product brbs is nonzero exactly

when prst is nonzero.

Suppose there exists (ρ, h3) with property P . Another pair (π, h) has property

P only if πσ−1 = ρσ−1, so only if π = ρ. So the number of pairs with property P is

the number of h ∈ H such that (ρ, h) has property P for some fixed ρ.

Now, (ρ, h) has property P

⇔ tσρ−1α(σρ−1, ρ)−1h1h
−1
3 = tσρ−1α(σρ−1, ρ)−1h1h

−1 and

tρτ−1α(ρτ−1, τ)−1h3h
−1
2 = tρτ−1α(ρτ−1, τ)−1hh−12

⇔ h−13 ≡ h−1 mod Sσρ−1 and h3 ≡ h mod Sρτ−1

⇔ h ∈ h3Sσρ−1 ∩ h3Sρτ−1 .

Thus the number of (ρ, h) with property P is |h3Sσρ−1 ∩ h3Sρτ−1| = |h3(Sσρ−1 ∩

Sρτ−1)| = |Sσρ−1∩Sρτ−1|. Similarly, the number of (ρ′, h′) with property P ′ is |Sσ′ρ′−1∩

Sρ′τ ′−1 |. Since σ′ρ′−1 = σρ−1 and ρ′τ ′−1 = ρτ−1, these numbers are the same. So

the value of prst is independent of choice of σ, τ, h1, and h2; and by Theorem 3.1,

|Sσρ−1 ∩ Sρτ−1| is exactly the coefficient of bt in the product brbs.



CHAPTER 4

EXTENSIONS OF TABLE ALGEBRAS BY GROUP

ALGEBRAS

We now move to the case where B is a commutative, standard, class three

nilpotent table algebra. This means that L(3)(B) = B, i.e. that B//L(2)(B) is a

group. Since L(2)(B) is the preimage in B of L(B//L(B)), and (B//C)//(D//C) =

B//D for any closed subsets C,D of B with C ⊆ D, this means that

(B//L(B))//(L(2)(B)//L(B)) = (B//L(B))//L(B//L(B)) is a group. So if F =

B//L(B), F is class two nilpotent. Hence B is an extension of the class two nilpotent

table algebra F by the group L(B).

This case is more complicated than the case where B is class two nilpotent

because F is not a group, so for σ, τ ∈ F , στ is no longer a single element of

F . B//L(B) ∼= F now implies that if {tσ : σ ∈ F} is a set of coset repre-

sentatives for L(B) in B, tσtτ =
∑
ρ∈στ

∑
h∈L(B)

λστρhtρh, and it is difficult to find

the coefficients, or even to say which coefficients are nonzero. We therefore look

at the case where o(B) = p3. This is the simplest case because it implies that

B//L(2)(B), L(2)(B)//L(B), and L(B) are all isomorphic to Zp. The main theorem

is as follows:

Theorem 4.1. Suppose p is a prime; H = 〈h〉 is a cyclic group of order p; r =

1 + 2
∑
i∈R

hi ∈ ZH, where R is the set of non-zero quadratic residues modulo p;

and s = 1 + 2
∑
i∈S

hi ∈ ZH, where S is the set of non-residues modulo p. Let

(A,B) be a class three nilpotent SITA of order p3. Then o
(
L(2)(B)

)
= p2 and



31

L(B) ∼= B//L(2)(B) ∼= Zp. Let L(B) = L(X) = H. Up to exact isomorphism of

table algebras, B is either the wreath product
(
B//L(2)(B)

)
oL(2)(B), or there exists

a set of coset representatives ti, 0 ≤ i ≤ p − 1, for L(2)(B) in B such that t0 = 1;

for 1 ≤ i ≤ p−1
2
, t∗i = tp−i; if p 6= 2, 3, then t1t1 = rt2; if p = 3, then t1t1 = (rhm)t2

for some m; for 2 ≤ i ≤ p−3
2

,

t1ti = r ti+1 or t1ti = s ti+1;

t1t p−1
2

= (rhm)t p+1
2

or t1t p−1
2

= (shm)t p+1
2

for some m;

and these conditions uniquely determine the linear decomposition of all products titj.

Conversely, let X be a class two nilpotent SITA of order p2, H ∼= Zp, and

B = X ∪ {tihk : 1 ≤ i ≤ p− 1, 0 ≤ k ≤ p− 1} as a formal set. Define products t1ti

as above for i ≤ p−1
2

. Then this multiplication extends uniquely to CB in such a way

that (CB,B) is a class three nilpotent SITA of order p3 with X = L(2)(B), t∗i = tp−i

for all i, and B 6=
(
B//L(2)(B)

)
o L(2)(B).

In other words, the class three nilpotent SITAs of order p3 are parameterized

by the choices of r, s, and m for λ1j, 2 ≤ j ≤ p−1
2

, where t1tj = λ1jt1+j. Different

choices for these λ1j may produce exactly isomorphic algebras, and this redundancy

is dealt with in Proposition 4.2.

Note that p = 2 is a special case. There is only one coset representative t1 ∈

B \L(2)(B), and t1 = t∗1, which is why we do not assume t1t1 = rt2. There are no ti

for 2 ≤ i ≤ p−3
2

, so there is no choice of r’s and s’s to be made, and consequently

there is only one algebra of this kind up to exact isomorphism. In the proof of

Theorem 4.1 we will find formulas for tit
∗
i and tisj for sj ∈ L(2)(B)\L(B), and these
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entirely describe the algebra. Also note that if p = 3, then p−1
2

= 1, so again we do

not assume λ11 = r; it may be that λ11 = rhm for some nonzero m.

Lastly, note that algebras as described in this theorem achieve the lower bound

on the cardinality of supports of products of basis elements given in Theorem 1.7 of

[7].

Much of the proof of this theorem hinges on finding the solutions to a system of

p+ 1 equations in p variables.

4.1 System of Equations

In this section, we find all solutions over Z to the system of equations
∑
k∈Zp

xk =

0,
∑
k∈Zp

x2k = p− 1, and
∑
k∈Zp

xkxk+n = −1 for each 0 6= n ∈ Zp. In order to solve this

sytem, we first need a lemma.

Lemma 4.1. Let p be an odd prime and v = (v0, v1, . . . , vp−1) ∈ Zp
. Let P be the

permutation matrix with P (v) = (vp−1, v0, . . . , vp−2). Suppose the usual dot product

P i(v)·P j(v) ≡ 0 mod p2 for all i and j. If (P−I)2(v) ≡ 0 mod p, then (P−I)(v) ≡ 0

mod p (that is, each coordinate is congruent modulo p).

Proof. Suppose P i(v) · P j(v) ≡ 0 mod p2 for all i and j and (P − I)2(v) ≡ 0 mod

p. Then (P − I)2(v) ≡ 0 mod p⇒ v ≡ 2P (v)− P 2(v) mod p. Therefore

v0 ≡ 2vp−1 − vp−2,

v1 ≡ 2v0 − vp−1 ≡ 2(2vp−1 − vp−2)− vp−1 ≡ 3vp−1 − 2vp−2,

v2 ≡ 2v1 − v0 ≡ 2(3vp−1 − 2vp−2)− 2vp−1 + vp−2 ≡ 4vp−1 − 3vp−2,

...
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vp−4 ≡ (p− 2)vp−1 − (p− 3)vp−2,

vp−3 ≡ (p− 1)vp−1 − (p− 2)vp−2.

Therefore

v = (2vp−1−vp−2 +x0p, 3vp−1−2vp−2 +x1p, . . . , (j+1)vp−1− jvp−2 +xj−1p, . . . , (p−

1)vp−1 − (p− 2)vp−2 + xp−3p, vp−2, vp−1) for some set of integers x0, x1, . . . , xp−3.

So (P − I)(v) = (vp−2 − vp−1 − px0, vp−2 − vp−1 + p(x0 − x1), . . . , vp−2 − vp−1 +

p(xp−4 − xp−3), (p− 1)(vp−1 − vp−2) + pxp−3, vp−2 − vp−1).

Letting b = vp−2 − vp−1, we now have:

(P − I)(v) · (P − I)(v) = b2 − 2pbx0 + p2x20

+b2 + 2pb(x0 − x1) + p2(x0 − x1)2

+b2 + 2pb(x1 − x2) + p2(x1 − x2)2

...

+b2 + 2pb(xp−4 − xp−3) + p2(xp−4 − xp−3)2

+(p− 1)2b2 − 2pb(p− 1)xp−3 + p2x2p−3 + b2

= ((p− 1) + (p− 1)2)b2 − 2pbpxp−3 + p2
[
x20 + (x0 − x1)2

+ · · ·+ (xp−4 − xp−3)2 + x2p−3
]

= p(p− 1)b2 + p2N for some N ∈ Z.

Since we assumed P i(v)·P j(v) ≡ 0 mod p2 for all i and j, (P−I)(v)·(P−I)(v) ≡

0 mod p2. So we have p(p − 1)b2 ≡ 0 mod p2, and hence b2 ≡ 0 mod p. Thus

vp−2−vp−1 = b ≡ 0 mod p, so vp−2 ≡ vp−1 mod p. The congruences at the beginning

of the proof then yield that all vi are congruent mod p.
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Corollary 4.1. Let p be an odd prime and v = (v0, v1, . . . , vp−1) ∈ Zp
. Let P be the

permutation matrix with P (v) = (vp−1, v0, . . . , vp−2) and suppose P i(v) · P j(v) ≡ 0

mod p2 for all i and j. Then all vi are congruent modulo p.

Proof. Since P
p

= I, (P
p − I)(v) = 0, so (P − I)p(v) ≡ 0 mod p.

Suppose (P − I)n(v) ≡ 0 mod p for some 2 < n ≤ p. Then (P − I)2((P −

I)n−2(v)) ≡ 0 mod p. For any integers i and j, P i ((P − I)n−2(v))·P j ((P − I)n−2(v))

is a Z−linear combination of P s(v) ·P t(v) for various s and t. Thus P i(P−I)n−2(v) ·

P j(P − I)n−2(v) ≡ 0 mod p2 for all i and j. So by Lemma 4.1, (P − I)n−1(v) =

(P − I)((P − I)n−2(v)) ≡ 0 mod p. By induction downward on n, (P − I)(v) ≡ 0

mod p, so all vi are congruent mod p.

Lemma 4.2. Suppose v0, v1, . . . , vp−1 ∈ Rp
and for 1 = (1, 1, . . . , 1) and all i 6= j,

vi · 1 = 0,

vi · vi = p− 1,

vi · vj = −1.

Then the vi span a subspace of Rp
of dimension p − 1, namely 1⊥, and the only

dependence relations among the vi are scalar multiples of v0 + v1 + · · ·+ vp−1 = 0.

Proof. Clearly 〈{vi : 0 ≤ i ≤ p− 1}〉 ⊆ 1⊥, which has dimension p − 1. Suppose
p−1∑
i=0

αivi = 0 for some scalars αi. Then for all j,

0 = 0 · vj =

p−1∑
i=0

αi(vi · vj) = (p− 1)αj +

p−1∑
i=0,
i 6=j

(−1)αi,
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so
p−1∑
i=0,
i 6=j

αi = (p− 1)αj.

Therefore for any i and j,

α0 + · · ·+ αi−1 + αi+1 + · · ·+ αp−1 = (p− 1)αi

α0 + · · ·+ αj−1 + αj+1 + · · ·+ αp−1 = (p− 1)αj

⇒ αi − αj = (p− 1)(αj − αi)⇒ αj = αi.

Definition 4.1. The Legendre symbol of a mod p, denoted

(
a

p

)
, is defined by

(
a

p

)
=


1 if a is a non-zero quadratic residue modulo p

−1 if a is not a quadratic residue modulo p

0 if a ≡ 0 modulo p.

We now find the solutions to the system of equations stated earlier. In this

paper, 0 is not considered a quadratic residue.

Proposition 4.1. The only solutions over the integers to the system of equations

(1) :
∑
k∈Zp

xk = 0,

(2) :
∑
k∈Zp

x2k = p− 1, and

(3) :
∑
k∈Zp

xkxk+n = −1 for each 0 6= n ∈ Zp

are xk =

(
k +m

p

)
and xk = −

(
k +m

p

)
for fixed 0 ≤ m ≤ p− 1.
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Proof. We first show that xk =

(
k

p

)
and xk = −

(
k

p

)
satisfy the system. Since

there are p−1
2

quadratic residues mod p and p−1
2

non-residues, it is clear that equa-

tions (1) and (2) are satisfied. In order to show that the remaining equations are

satisfied, we introduce some notation. If k, k + n ∈ Zp are both nonzero quadratic

residues, we will call (k, k + n) an RR pair; if both are nonresidues, we will call

(k, k + n) an NN pair; in either case, we will call the pair a matching pair. If k is

a quadratic residue and k + n is a nonresidue, we will call (k, k + n) an RN pair;

if k is a nonresidue and k + n is a residue, we will call (k, k + n) an NR pair; in

either case we will call the pair a nonmatching pair. We show that for any nonzero

n ∈ Zp, there are p−1
2
− 1 matching pairs and p−1

2
nonmatching pairs. This will

imply that
∑
k∈Zp

xkxk+n = −1 for each n because each matching pair contributes a 1

to that sum, and each nonmatching pair contributes a −1.

It is well known that this holds for n = 1. For p ≡ 1 mod 4, there are p−5
4

consecutive RR pairs, p−1
4

consecutive NN pairs, p−1
4

consecutive NR pairs, and

p−1
4

consecutive RN pairs. For p ≡ 3 mod 4, there are p−3
4

consecutive RR pairs, p−3
4

consecutive NN pairs, p−3
4

consecutive NR pairs, and p+1
4

consecutive RN pairs.

Thus there are p−1
2
−1 consecutive matching pairs and p−1

2
consecutive nonmatching

pairs. A proof of this can be found in [1], pages 128-131. We show that these numbers

are independent of n.

The number of RR pairs (k, k + n) for a given n is the number of k that satisfy

the equations k = x2, k + n = y2, k 6= 0, k + n 6= 0 for some x and y. Each set of

four solutions {(x, y), (−x, y), (x,−y), (−x,−y)} gives one such k. So the number
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of RR pairs for a given n is one quarter the number of solutions to these equations.

Furthermore,

k = x2, k + n = y2 ⇔ x2 + n = y2 ⇔ y2 − x2 = n,

and thus the number of RR pairs is one quarter the number of solutions in x and y

of y2 − x2 = n, x 6= 0, y 6= 0.

Let v be a nonresidue. All other nonresidues can be written as vx for some

residue x, since a residue times a nonresidue is a nonresidue. The number of NN

pairs (k, k + n) for a given n is the number of k that satisfy k = vx2, k + n = vy2

for some nonzero x and y. So, as before, the number of NN pairs for a given n is

one quarter the number of nonzero solutions to vy2 − vx2 = n.

Recalling that n 6= 0, if n is a quadratic residue mod p, (x0, y0) is a solution of

y2−x2 = n⇔ ((
√
n)−1x0, (

√
n)−1y0) is a solution of y2−x2 = 1. So if n is a residue,

the number of RR pairs n apart is the same as the number of RR pairs 1 apart.

If n is a nonresidue, the number of nonzero solutions to y2 − x2 = n is the same

as the number of nonzero solutions to n−1y2 − n−1x2 = 1, which is the number of

NN pairs 1 apart, since n being a nonresidue implies n−1 is a nonresidue. So if n

is a nonresidue, the number of RR pairs n apart is the same as the number of NN

pairs 1 apart.

If v is a nonresidue, the number of solutions to vy2− vx2 = n is the same as the

number of solutions to y2 − x2 = v−1n. So the number of NN pairs n apart is the

same as the number of RR pairs v−1n apart, which, as shown above, is the same as

the number of RR pairs 1 apart if n is a non-residue and is the same as the number

of NN pairs 1 apart if n is a residue.
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Putting this all together, if n is a residue, then the number of RR pairs n apart

is the number of RR pairs 1 apart, and the number of NN pairs n apart is the

number of NN pairs 1 apart; so the number of matching pairs n apart is the same

as the number of matching pairs 1 apart. If n is a non-residue, then the number

of RR pairs n apart is the number of NN pairs 1 apart, and the number of NN

pairs n apart is the number of RR pairs 1 apart. So the number of matching pairs

n apart is again the number of matching pairs 1 apart.

Therefore the number of matching pairs n apart for arbitrary n equals the number

of matching pairs 1 apart. It follows that for each n there are p−3
2

matching pairs.

Since there are p− 2 total pairs without 0 in the pair, the number of nonmatching

pairs must be p − 2 − p−3
2

= p−1
2

. Thus equation (3) is satisfied by xk =

(
k

p

)
for

all k and by xk = −
(
k

p

)
for all k.

Now let x = (x0, x1, . . . , xp−1), and again let P be the permutation operator with

P (x) = (xp−1, x0, . . . , xp−2). If x satisfies the system of equations, so will P i(x) for

every i since replacing xk with xk+i for some i ∈ Zp will not change equations (1)

and (2), and will yield the p−1 equations described by (3) in a different order. Thus

xk =

(
k +m

p

)
and xk = −

(
k +m

p

)
are also solutions for each m ∈ Zp.

We now show that these are the only solutions. Let xk =

(
k

p

)
and x =

(x0, x1, . . . , xp−1). Suppose y = (y0, y1, . . . , yp−1) is another solution. Then for all

i 6= j,

P i(x) · 1 = P i(y) · 1 = 0 by equation (1);

P i(x) · P i(x) = P i(y) · P i(y) = p− 1 by equation (2); and

P i(x) · P j(x) = P i(y) · P j(y) = −1 by equation (3).
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Thus by Lemma 4.2, both {1, P i(x) : 0 ≤ i ≤ p− 2} and {1, P i(y) : 0 ≤ i ≤ p− 2}

form bases of Rp
, and P

p−1
(x) = −(P 0(x) + · · · + P

p−2
(x)), P

p−1
(y) = −(P 0(y) +

· · ·+P
p−2

(y)). Thus there exists an orthogonal linear transformation, call it T , with

T (1) = 1 and T (P i(x)) = P i(y) for each i.

T also commutes with the permutations P i since T (P i(x)) = P i(y) = P i(T (x))

and of course T (P i(1)) = 1 = P i(T (1)). Thus if

T =



b00 b01 · · · b0p−1

b10 b11 · · · b1p−1
...

bp−10 bp−11 · · · bp−1p−1


,

then

T · P =



b01 b02 · · · b0p−1 b00

b11 b12 · · · b1p−1 b10
...

bp−11 bp−12 · · · bp−1p−1 bp−10


= P · T =



bp−10 bp−11 · · · bp−1p−1

b00 b01 · · · b0p−1
...

bp−20 bp−21 · · · bp−2p−1


.

So

(T · P )ij = bij+1 = (P · T )ij = bi−1j ,

hence Ti(j+1) = T(i−1)j. Thus T is a circulant matrix.
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Let T = Circ(b0, b1, . . . , bp−1), where ||(b0, b1, . . . , bp−1)|| = 1 and P i(b0, b1, . . . , bp−1)·

P j(b0, b1, . . . , bp−1) = 0 for all i 6= j. Then we have:

T (x) = y ⇒



b0 b1 · · · bp−1

bp−1 b0 · · · bp−2
...

b1 b2 · · · b0





(
0

p

)
(

1

p

)
...(

p− 1

p

)


=



y0

y1
...

yp−1



⇒ y0 =

p−1∑
i=0

(
i

p

)
bi, y1 =

p−1∑
i=0

(
i+ 1

p

)
bi, . . . , yp−1 =

p−1∑
i=0

(
i+ (p− 1)

p

)
bi.

In other words,

yk =

p−1∑
i=0

(
i+ k

p

)
bi for 0 ≤ k ≤ p− 1.

Since we are solving the system of equations over Z, all of the yk are integers. We

now show that p · bi ∈ Z for each i.

Let R be the set of non-zero quadratic residues modulo p, and S the set of non-

residues. For each 0 ≤ i ≤ p − 1, we compute
∑
i+k∈R

yk −
∑
i+k∈S

yk; in other words, we

add together the yk in which bi has a coefficient of 1 and subtract the yk in which

bi has a coefficient of −1. We find the coefficients of the various bn.

Coefficient of bi: i + k is a quadratic residue for p−1
2

values of k, and is a non-

residue for p−1
2

values of k. So the coefficient of bi is p−1
2
−
(
−p−1

2

)
= p− 1.

Coefficient of bn, n 6= i: We add a bn whenever i+k, n+k ∈ R (so that yk is being

added and bn has a coefficient of 1 in yk). We also add a bn whenever i+k, n+k ∈ S
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(so that yk is being subtracted and bn has a coefficient of −1). In other words, we

add a bn whenever (i + k, n + k) is a matching pair. As shown earlier, this occurs

for p−3
2

values of k, regardless of the value of n.

Similarly, we subtract a bn whenever (i+ k, n+ k) is a non-matching pair. This

occurs for p−1
2

values of k. So the coefficient of bn for n 6= i is p−3
2
− p−1

2
= −1. Thus

for 0 ≤ i ≤ p− 1, ∑
i+k∈R

yk −
∑
i+k∈S

yk = (p− 1)bi −
∑
n 6=i

bn.

Now,

p−1∑
n=0

bn is an eigenvalue of T (with eigenvector (1, 1, . . . , 1)). Since T is

orthogonal,

∥∥∥∥∥
p−1∑
n=0

bn

∥∥∥∥∥ = 1; and the bi are real, so

p−1∑
n=0

bn = ±1. So for 0 ≤ i ≤ p− 1,

all yk ∈ Z ⇒ (p− 1)bi −
∑
n 6=i

bn ∈ Z ⇒ (p− 1)bi − (±1− bi) ∈ Z

⇒ p · bi ∓ 1 ∈ Z ⇒ p · bi ∈ Z.

We write T = Circ
(
a0
p
, a1
p
, . . . , ap−1

p

)
for ai ∈ Z. Since

∥∥∥(a0p , a1p , . . . , ap−1

p

)∥∥∥ = 1,

we also know that −p ≤ ai ≤ p for each i.

Let a = (a0, a1, . . . , ap−1). The vectors P i(a) are mutually orthogonal, and
p−1∑
i=0

b2i = 1 ⇒
p−1∑
i=0

a2i = p2. In particular, P i(a) · P j(a) ≡ 0 mod p2 for every i

and j. So by Corollary 4.1, all ai are congruent modulo p.

Applying a cyclic shift if necessary, assume a0 is non-zero. Since −p ≤ ai ≤ p

for all i, if a0 > 0, either ai = a0 or ai = a0 − p for each i; if a0 < 0, then either

ai = a0 or ai = a0 + p for each i. Suppose a0 > 0. Since

p−1∑
i=0

bi = ±1,

p−1∑
i=0

ai = ±p;

and, as mentioned above,

p−1∑
i=0

a2i = p2. Suppose m of the ai are equal to a0, and n

are equal to a0 − p. Then:
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m+ n = p

ma0 + n(a0 − p) = ±p

ma20 + n(a0 − p)2 = p2

⇒

ma0 + (p−m)(a0 − p) = ±p

ma20 + (p−m)(a0 − p)2 = p2

⇒

ma0 + pa0 − p2 −ma0 +mp = ±p

ma20 + pa20 − 2a0p
2 + p3 −ma20 + 2ma0p−mp2 = p2

⇒

a0 = ±1 + p−m

a20 − 2a0p+ p2 + 2ma0 −mp = p

⇒ (±1 + p−m)2 − 2p(±1 + p−m) + p2 + 2m(±1 + p−m)−mp = p

⇒ 1−m2 +mp = p

⇒ m2 − pm+ (p− 1) = 0

⇒ m = 1, p− 1.

So a = (a0, a0− p, a0− p, . . . , a0− p), (a0, a0, . . . , a0− p), or a cyclic permutation

of one of those (since only one entry is different from the others, any permutation

is a cyclic permutation). Similarly, if a0 < 0, a = (a0, a0 + p, a0 + p, . . . , a0 + p),

(a0, a0, . . . , a0 + p), or a cyclic permutation of one of those. In other words,

a = (a0, a0 ± p, a0 ± p, . . . , a0 ± p) or a cyclic permutation of that.
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Since

p−1∑
i=0

ai = ±p, we have pa0±(p−1)p = ±p⇒ pa0±(p2−p) = ±p⇒ a0±(p−1) =

±1, where the two ± are independent of each other. So a0 = ±p,±(p− 2). Thus

a = ±(p, 0, 0, . . . , 0) or ± (p− 2,−2,−2, . . . ,−2),

or a cyclic permutation of one of those. Let b =
(

2−p
p
, 2
p
, 2
p
, . . . , 2

p

)
. So

T = Circ(P i(±(1, 0, 0, . . . , 0))) = ±P i or Circ(P i(±b)) for some i.

Obviously, if T = ±P i, then T (P k(x)) = ±P i+k(x). If T = Circ(b), then

yk =
1

p

∑
i∈Zp\{k}

(
i

p

)
· 2 +

(
k

p

)
(2− p)

=
1

p


(p−1

2
· 2− p−1

2
· 2) if k = 0

((p−1
2
− 1) · 2− (p−1

2
) · 2) + (2− p) if k ∈ R

((p−1
2

) · 2− (p−1
2
− 1) · 2− (2− p) if k ∈ S

=


0 if k = 0

−1 if k ∈ R

1 if k ∈ S

= −
(
k

p

)
= −xk.

So T (x) = −x, and hence T (P i(x)) = P i(T (x)) = P i(−x) = −P i(x). Thus

if T = Circ(P j(b)), then T (x) = Circ(P j(b))(x) = P j(Circ(b)(x)) = P j(−x). So

T (P i(x)) = −P i+j(x).
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We now see that in every case, y = ±P i(x) for some i. Thus the only solutions

to the system of equations are xk =

(
k

p

)
, xk = −

(
k

p

)
, and cyclic permutations

of those, i.e. xk =

(
k +m

p

)
or xk = −

(
k +m

p

)
for 0 ≤ m ≤ p− 1.

4.2 Proof of Main Theorem

We can now prove the main theorem.

Proof of Theorem 4.1: For the first direction: Since o(B//C) = o(B)/o(C) for any

closed subset C,

o(B) = o(B//L(2)(B)) · o(L(2)(B)//L(B)) · o(L(B)).

Since L(i)(B)//L(i−1)(B) is a group for every i ≥ 1, the factors in the above product

are all integers. Since B is class three nilpotent, none of them is 1, so since o(B) = p3,

all are equal to p. Thus L(B) ∼= B//L(2)(B) ∼= Zp and therefore o(L(2)(B)) = p2.

Suppose B 6=
(
B//L(2)(B)

)
o L(2)(B). We first find how elements of B multiply.

Since L(2)(B)//L(B) ∼= Zp, we may write

L(2)(B)//L(B) = {s0//L(B) = 1//L(B), s1//L(B), . . . , sp−1//L(B)}

where, reading the indices modulo p,

(si//L(B))(sj//L(B)) = si+j//L(B).
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Now, for b ∈ B, let Stab(b) = {hk ∈ L(B) : bhk = b}. Since L(2)(B) forms

the basis of a class two nilpotent table algebra, we know by Theorem 3.1 that for

b ∈ L(2)(B),

bb∗ = |Stab(b)|
∑

hk∈Stab(b)

hk.

Thus for b ∈ L(2)(B) \ L(B), Stab(b) 6= {1}. Since L(B) ∼= Zp, the only other

possibility is Stab(b) = L(B). So

L(2)(B) \ L(B) = {s1, s2, . . . , sp−1},

and for i 6= −j,

sisj =

p−1∑
k=0

γijksi+jh
k = γijsi+j

for some γij ∈ Z. Since for each k, δ(sk) = |Stab(sk)| = p by Theorem 3.1, δ(sisj) =

γijδ(si+j)⇒ γij = p. So for i 6= −j,

sisj = p · si+j.

Since 1 ∈ Supp(sis∗i ), it must be that s∗i = sp−i for each i, and

sis
∗
i = p ·H+.

Similarly, since |B//L(2)(B)| = p,B//L(2)(B) may be written

{
t0//L

(2)(B) = 1//L(2)(B), t1//L
(2)(B), . . . , tp−1//L

(2)(B)
}
,
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where the ti are coset representatives for L(2)(B) in B and, reading the indices

modulo p,

(ti//L
(2)(B))(tj//L

(2)(B)) = ti+j//L
(2)(B). (4.1)

For the remainder of this proof, all indices will be read modulo p unless otherwise

indicated. By the comments preceding the theorem, B//L(B) is a class two nilpotent

SITA; and by the same argument as for L(2)(B), this means that for b 6∈ L(2)(B),

Stab(b//L(B)) = L(B//L(B)) = L(2)(B)//L(B).

Thus for all i and j,

(ti//L(B))(sj//L(B)) = ti//L(B).

So

tisj =

p−1∑
k=0

λijktih
k.

And since tisjh
m = tisj for any m, permuting the λijk does not change this sum;

thus all λijk are equal and tisj = λ

p−1∑
k=0

tih
k. Applying the degree map to both sides

yields δ(ti) · p = λ · p · δ(ti), so λ = 1. Thus

tisj =

p−1∑
k=0

tih
k. (4.2)

This implies that

B \ L(2)(B) = {tihk : 1 ≤ i ≤ p− 1, 0 ≤ k ≤ p− 1}.

Note that depending on the stabilizers of the ti, these may not all be distinct.
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Since 1 ∈ Supp(tit∗i ), it must be that t∗i = tp−ih
k for some k. Since i 6= p− i for

any i and there is no danger of ending up with t∗i = ti, we may choose k = 0, giving

t∗i = tp−i.

By Theorem 3.1, for b 6∈ L(2)(B),

|Stab(b//L(B))| = p⇒ δ(b//L(B)) = |Stab(b//L(B))| = p.

Thus

p = δ(b//L(B)) =
δ((bL(B))+)

p
=
δ(b · L(B)+)

|Stab(b)| · p
=

δ(b)

|Stab(b)|
.

So

δ(b) =

 p if |Stab(b)| = 1

p2 if |Stab(b)| = p.

Now, equations (4.1) and (4.2) ⇒ Supp(titj) ⊆ {ti+jhk : 0 ≤ k ≤ p − 1} if

j 6= p− i. Thus for some set of λijk ∈ Z≥0, we have

titj =

p−1∑
k=0

λijkti+jh
k (4.3)

for j 6= p− i.

Finally, for any n,

tnt
∗
n ⊆ L(2)(B)⇒ tnt

∗
n =

p−1∑
j=1

λjsj +

p−1∑
k=0

λkh
k

for some set of λj, λk ∈ Z≥0. Suppose Stab(tn) = {1}. Since δ(tn) = p,

〈tnt∗n, hk〉 = 〈tn, tnhk〉 =

 p if hk = 1

0 otherwise.
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So tnt
∗
n =

p−1∑
j=1

λjsj + p · 1. And by equation (4.2), for any sj ∈ L(2)(B) \ L(B),

〈tnt∗n, sj〉 = 〈tn, tnsj〉 =

〈
tn,

p−1∑
k=0

tnh
k

〉
= 〈tn, tn〉 = p.

Since δ(sj) = p, we now have

tnt
∗
n =

p−1∑
j=1

sj + p · 1 for each n with Stab(tn) = {1}.

Putting this all together, the multiplication on B is given by the following:

sisj = p · si+j for i 6= −j

sis−i = p ·
p−1∑
k=0

hk

tisj =

p−1∑
k=0

tih
k

titj =

p−1∑
k=0

λijkti+jh
k for i 6= −j

tit−i =

p−1∑
j=1

sj + p · 1 if Stab(ti) = {1}.

We now show that if Stab(t1) = {1}, then Stab(b) = {1} for all b ∈ B \ L(2)(B).

Suppose Stab(t1) = Stab(t2) = · · · = Stab(ti−1) = {1} and Stab(ti) = L(B).

Then t1ti−1 =

p−1∑
k=0

λ1(i−1)ktih
k = λti for some λ ∈ Z≥0. Thus p2 = δ(t1)δ(ti−1) =

δ(t1ti−1) = λδ(ti) = λp2 ⇒ λ = 1. So t1ti−1 = ti and thus

〈t1ti−1, t1ti−1〉 = 〈ti, ti〉 = p2.
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On the other hand, we have

〈
t1t
∗
1, ti−1t

∗
i−1
〉

=

〈
p−1∑
j=1

sj + p · 1,
p−1∑
j=1

sj + p · 1

〉

=

p−1∑
j=1

〈sj, sj〉+ p2 〈1, 1〉

= (p− 1)p+ p2 = 2p2 − p.

Since 2p2 − p 6= p2, we now have 〈t1ti−1, t1ti−1〉 6=
〈
t1t
∗
1, ti−1t

∗
i−1
〉
, a contradiction.

Therefore if Stab(t1) = {1}, then Stab(ti) = {1} for all i. Since the choice of which

coset representative we label as t1 is arbitrary, this means that if Stab(tj) = {1} for

any j, then Stab(ti) = {1} for all i. Therefore all stabilizers of elements in B\L(2)(B)

are equal, and since B 6=
(
B//L(2)(B)

)
o L(2)(B), this implies that Stab(ti) = {1}

for each i.

We’ve already shown that if i 6= p− j,

titj =

p−1∑
k=0

λijkti+jh
k

for some set of λijk ∈ Z≥0. We now show that for each i, j, and k with i 6=

−j,
p−1∑
k=0

λijkh
k = rhn or shn for some n which depends on i and j.

First of all, for i 6= −j,

δ(titj) =

p−1∑
k=0

λijkδ(ti+j)⇒ p2 = p ·
p−1∑
k=0

λijk.
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So
p−1∑
k=0

λijk = p. (4.4)

Second,

δ(ti+j)λijk = 〈titj, ti+jhk〉 = 〈tih−k, ti+jt∗j〉 = 〈tih−k, ti+jt−j〉 = δ(ti)λ(i+j)(−j)(−k).

So

λijk = λ(i+j)(−j)(−k). (4.5)

And lastly,

(titj)t−j = ti(tjt−j)

⇒
p−1∑
k=0

λijkti+jh
kt−j = ti

(
p−1∑
n=1

sn + p · 1

)

⇒
p−1∑
k=0

p−1∑
m=0

λijkλ(i+j)(−j)mtih
mhk =

p−1∑
n=1

tisn + p · ti

=

p−1∑
n=1

p−1∑
k=0

tih
k + p · ti

= (p− 1)

p−1∑
k=0

tih
k + p · ti.

On the left-hand side, the coefficient of tih
n is

∑
m+k=n

λijkλ(i+j)(−j)m =

p−1∑
k=0

λijkλ(i+j)(−j)(n−k).
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On the right-hand side, the coefficient of tih
n is p−1 if n 6= 0 and p−1 +p = 2p−1

if n = 0. So

p−1∑
k=0

λijkλ(i+j)(−j)(n−k) = p− 1 for 1 ≤ n ≤ p− 1 and

p−1∑
k=0

λijkλ(i+j)(−j)(−k) = 2p− 1.

By (4.5), we now have:

p−1∑
k=0

λijkλij(k−n) = p− 1 for 1 ≤ n ≤ p− 1 (4.6)

and
p−1∑
k=0

λ2ijk = 2p− 1. (4.7)

Now, letting xk = λijk − 1 and noting that

p−1∑
k=0

λijkλij(k−n) =

p−1∑
k=0

λijkλij(k+n),

equations (4.4), (4.6), and (4.7) give the system of equations solved in Proposition

4.1. Therefore we must have λijk − 1 =

(
k +m

p

)
or λijk − 1 = −

(
k +m

p

)
for

some 0 ≤ m ≤ p − 1. Thus λijk =

(
k +m

p

)
+ 1 or −

(
k +m

p

)
+ 1 for some

0 ≤ m ≤ p− 1, so for each i and j with i 6= −j,

titj = (rhm)ti+j or titj = (shm)ti+j,

where the m depends on i and j.
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Let λij =

p−1∑
k=0

λijkh
k; so titj = λijti+j for i 6= −j. We’ve just shown that for some

0 ≤ m ≤ p − 1, and each i and j with i 6= −j, λij = (rhm) or shm, where the m

depends on i and j. Note that since

(
p−1∑
k=0

λijkh
k

)∗
=

p−1∑
k=0

λij(−k)h
k,

λ∗ij =

p−1∑
k=0

λij(−k)h
k.

Since titj = (t−it−j)
∗, we have

λij = λ∗(−i)(−j).

By equation (4.5), λ1ik = λi1k = λ(1+i)(−1)(−k), so

λ1i = λ∗(1+i)(−1) = λ1(−i−1). (4.8)

Next, we show that rhk and shk are invertible elements of RH. There exists
p−1∑
k=0

αkh
k ∈ RH with

(
p−1∑
k=0

λijkh
k

)(
p−1∑
k=0

αkh
k

)
= 1 if and only if



λij0 λij1 · · · λij(p−1)

λij(p−1) λij0 · · · λij(p−2)
...

λij1 λij2 · · · λij0





α0

αp−1

αp−2
...

α1


=



1

0

0

...

0
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has a solution in the αi, which occurs if the left-most matrix is invertible. Let

λij = r. Then



λij0 λij1 · · · λij(p−1)

λij(p−1) λij0 · · · λij(p−2)
...

λij1 λij2 · · · λij0


is the circulant matrix

Circ

((
0

p

)
+ 1,

(
1

p

)
+ 1, . . . ,

(
p− 1

p

)
+ 1

)
. The eigenvalues of a circulant ma-

trix Circ(c0, . . . , cp−1) are ψω =

p−1∑
k=0

ckω
k, where ω is a pth root of unity. (For more

information on the eigenvalues of a circulant matrix, see chapter 3 in [10].) Since
p−1∑
k=0

((
k

p

)
+ 1

)
ωk 6= 0 for any ω, this matrix is invertible. So r has an inverse.

Similarly, s has an inverse and hence rhk and shk are invertible for all k.

Now, since (A,B) is associative, (tatb)tc = ta(tbtc) for all a, b, c ⇒ λabλ(a+b)c =

λbcλa(b+c) for all a, b, c with a, b, c, a+b, b+c, a+b+c 6= 0. For a = 1, b = i−1, c = j,

this gives

λ1(i−1)λij = λ(i−1)jλ1(i+j−1)

for j 6= 0, i 6= 0, 1,−j,−j + 1. So for these i and j,

λij = λ(i−1)jλ1(i+j−1)λ
−1
1(i−1).
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For the following argument, to avoid complications we will not read indices

modulo p; all indices will be integers between 1 and p−1. Suppose i 6= 1, i+j ≤ p−1.

Then

λij = λ(i−1)jλ1(i+j−1)λ
−1
1(i−1)

λ(i−1)j = λ(i−2)jλ1(i+j−2)λ
−1
1(i−2)

...

λ3j = λ2jλ1(j+2)λ
−1
12

λ2j = λ1jλ1(j+1)λ
−1
11

since λ1j, λ(p−j)j, λ(p−j+1)j do not appear on the left-hand side of this list. Thus for

1 ≤ i, j with i+ j ≤ p− 1,

λij = (λ1jλ1(j+1) . . . λ1(i+j−1))(λ11λ12 . . . λ1(i−1))
−1. (4.9)

Also,

λ(p−i)(p−j) = λ∗ij =
(
(λ1jλ1(j+1) . . . λ1(i+j−1))(λ11λ12 . . . λ1(p−i−1))

−1)∗ .
From this and equation (4.8), it follows that for all i and j with i + j 6= p, λij is

uniquely determined by {λ1j : 1 ≤ j ≤ p−1
2
}.

Now suppose that for 1 ≤ i ≤ p−3
2
, λ1i = xih

ni , where xi = r or s for each i.

Define

t′1 = t1 and t′i = hn1+n2+···+ni−1ti for all 2 ≤ i ≤ p− 3

2
.
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Then t′1t
′
1 = λ11t2 = x1h

n1t2 = x1t
′
2, and for 2 ≤ i ≤ p−3

2
,

t′1t
′
i = t1h

n1+n2+···ni−1ti = hn1+n2+···ni−1xih
niti+1

= xih
n1+n2+···ni−1+niti+1 = xit

′
i+1.

Thus replacing

t1, t2, . . . , t p−3
2
, t p−1

2
, t∗p−1

2

, t∗p−3
2

, . . . , t∗1 with

t′1, t
′
2, . . . , t

′
p−3
2

, t p−1
2
, t∗p−1

2

, t′∗p−3
2

, . . . , t′∗1

yields a set of coset representatives for L(2)(B) in B that satisfies the conditions of

the theorem.

For the other direction: Suppose (CX,X) is a class 2 nilpotent table algebra of

order p2 and L(X) = H = 〈h〉 ∼= Zp. LetB = X∪{tihk : 1 ≤ i ≤ p−1, 0 ≤ k ≤ p−1}

as a formal basis for a C−vector space. We define the multiplication on B as follows.

For x ∈ X \L(X), xx∗ 6= 1, so Stab(x) 6= {1}, so Stab(x) = H. By Theorem 3.1,

xx∗ = |Stab(x)|
∑

hk∈Stab(x)

hk for each x ∈ X. Also by Theorem 3.1, δ(x) = |Stab(x)| for

each x, so δ(x) = p for x ∈ X \L(X), and therefore p · |X \L(X)| = o(X \L(X)) =

o(X) − o(L(X)) = p2 − p. Thus |X \ L(X)| = p − 1. We write X = H ∪ {si : 1 ≤

i ≤ p− 1}. Let hkti = tih
k,

sjti = tisj = ti

p−1∑
k=0

hk,

and

titp−i =

p−1∑
j=1

sj + p · 1.

Let ∗ be the existing anti-automorphism of X. Extend ∗ to B via (tih
k)∗ =

tp−ih
−k for each i and k. Note that r∗ = r if p ≡ 1 mod 4 and r∗ = s if p ≡ 3 mod
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4, since −1 is a quadratic residue if p ≡ 1 mod 4 and is a non-residue if p ≡ 3 mod

4. Similarly, s∗ = s if p ≡ 1 mod 4 and s∗ = r if p ≡ 3 mod 4. Also, recall from the

first direction that rhk and shk are invertible elements of RH for all k.

We now define the products titj for j 6≡ −i by setting titj = λijti+j and specifying

below the λij ∈ ZH. For the following argument, note that whenever ambiguity is

possible, indices are not read modulo p and we ensure that they are between 1 and

p− 1.

Let λ11 = r.

For 2 ≤ j ≤ p−3
2
, let λ1j = r or s.

Let λ1( p−1
2 ) = rhm or shm for some 0 ≤ m ≤ p− 1.

For p−1
2
< j ≤ p− 2, let λ1j = λ1(p−j−1).

For i+ j ≤ p− 1, let λij = (λ1jλ1(j+1) . . . λ1(i+j−1))(λ11λ12 . . . λ1(i−1))
−1.

For i+ j ≥ p+ 1, let λij = λ∗(p−i)(p−j).

In the fifth line above, note that the inverted factor contains nothing if i = 1.

We now show that B is a class three nilpotent SITA of order p3. We first show

that ∗ is an automorphism. For ti ∈ B \ X, sj ∈ X, since we already know that

(tmh
k)∗ = t∗m(hk)∗, we have

(sjti)
∗ = (tisj)

∗ =

(
ti

p−1∑
k=0

hk

)∗
= tp−i

p−1∑
k=0

hk = tp−isp−j = t∗i s
∗
j = s∗j t

∗
i .

Suppose i+ j ≤ p− 1. Then p− i+ p− j ≥ p+ 1, so λ(p−i)(p−j) = λ∗ij, and therefore

λ∗(p−i)(p−j) = λij. If i+ j ≥ p+ 1, λij = λ∗(p−i)(p−j) by definition. Thus

(titj)
∗ = (λijti+j)

∗ = λ∗ijtp−i+p−j = λ(p−i)(p−j)tp−i+p−j = tp−itp−j = t∗i t
∗
j .
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We now show that B is commutative. Suppose i+j ≤ p−1, and suppose WLOG

that i < j. Then:

λji = (λ1iλ1(i+1) . . . λ1j . . . λ1(i+j−1))(λ11λ12 . . . λ1i . . . λ1(j−1))
−1

= (λ1j . . . λ1(i+j−1))(λ11 . . . λ1(i−1))
−1

= λij.

If i+ j ≥ p+ 1, then p− i+ p− j ≤ p− 1, so λij = λ∗(p−i)(p−j) = λ∗(p−j)(p−i) = λji.

We now define the degree map δ. Define δ on X to be the existing degree map

on X. For tih
k ∈ B \ X, let δ(tih

k) = p, and extend δ linearly to CB. We show

that δ is a homomorphism.

δ(tisj) = δ

(
ti

p−1∑
k=0

hk

)
=

p−1∑
k=0

δ(tih
k) = p2 = δ(ti)δ(sj)

for ti ∈ B \X, sj ∈ X \H.

Now, δ is a homomorphism from CX to C,CH ⊆ CX, and δ(hk) = 1 for all k.

Thus δ(r) = δ

(
1 + 2

∑
i∈R

hi

)
= p, and similarly, δ(s) = p. Since λ1j = rhk or shk

for all j, this gives δ(λ1j) = p for all j. If i+ j ≤ p− 1, then

δ(λij) = δ(λ1j . . . λ1(i+j−1))δ(λ11 . . . λ1(i−1))
−1 = pip−(i−1) = p.

Since r∗ = r or s and s∗ = s or r, (hk)∗ = h−k, and λ∗(p−i)(p−j) = λ∗ij for i+ j ≤ p−1,

it follows that δ(λ(p−i)(p−j)) = p as well.

Now λij ∈ ZH implies that δ(λijtn) = δ(λij)δ(tn) for all i, j, and n. So for

i 6≡ −j,

δ(titj) = δ(λijti+j) = p2 = δ(ti)δ(tj).
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Also,

δ(titp−i) = δ

(
p−1∑
j=1

sj + p · 1

)
= (p− 1)p+ p = p2 = δ(ti)δ(tp−i).

Since it is clear from the multiplication that 1 ∈ Supp(b1b2)⇔ b2 = b∗1, all that

remains is to show that the multiplication is associative.

Let si, sj ∈ X \ L(X), tm, tn ∈ B \X with i+ j,m+ n 6= 0. Then

si(sjtm) = si ·
p−1∑
k=0

tmh
k =

p−1∑
k,l=0

tmh
khl = p

p−1∑
k=0

tmh
k and

(sisj)tm = psi+j · tm = p

p−1∑
k=0

tmh
k;

si(tmtn) = si · λmntm+n = λmn ·
p−1∑
k=0

tm+nh
k and

(sitm)tn =

p−1∑
k=0

tmh
k · tn =

p−1∑
k=0

λmntm+nh
k;

si(s
∗
i tm) = si(s−itm) = si ·

p−1∑
k=0

tmh
k =

p−1∑
k,l=0

tmh
khl = p

p−1∑
k=0

tmh
k and

(sis
∗
i )tm = p

p−1∑
k=0

hk · tm;

si(tmt
∗
m) = si

(
p−1∑
k=1

sk + p · 1

)
=

p−1∑
k=1

sisk + p · si

=
∑
k∈Zp
k 6=0,−i

psi+k + p

p−1∑
k=0

hk + psi = p
∑
x∈X

x and
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(sitm)t∗m =

p−1∑
k=0

tmh
k · t∗m =

p−1∑
k=0

(
p−1∑
l=1

sl + p · 1

)
hk

= p

p−1∑
l=1

sl + p

p−1∑
k=0

hk = p
∑
x∈X

x.

Now, λmn =

p−1∑
k=0

λmnkh
k where {λmnk + 1 : 0 ≤ k ≤ p− 1} satisfies the system of

equations in Proposition 4.1. Thus

p−1∑
k=0

λijk = p,

p−1∑
k=0

λ2ijk = 2p− 1, and

p−1∑
k=0

λijkλij(k+m) = p− 1 for m 6= 0.

We now show that λij = λ(p−i−j)j (or, if i+j ≥ p+1, λ(2p−i−j)j). Suppose i+j ≤ p−1.

Then 0 < p− i− j < p and (p− i− j) + j = p− i ≤ p− 1. Hence

λij = (λ1j . . . λ1(i+j−1))(λ11 . . . λ1(i−1))
−1 and

λ(p−i−j)j = (λ1j . . . λ1p−i−j+j−1)(λ11 . . . λ1(p−i−j−1))
−1

= (λ1j . . . λ1p−i−1)(λ11 . . . λ1(p−i−j−1))
−1.

If p− i− j < i, then p− i ≤ i + j − 1 and p− i− j ≤ i− 1. Since λ1k = λ1(p−k−1)

for all k 6= p− 1, we have:

λij = (λ1jλ1(j+1) . . . λ1(p−i−1)λ1(p−i) . . . λ1(i+j−1))(λ11λ12 . . . λ1(p−i−j) . . . λ1(i−1))
−1

= (λ1j . . . λ1(p−i−1) · λ1(i−1)λ1(i−2) . . . λ1(p−i−j))(λ11 . . . λ1(p−i−j) . . . λ1(i−1))−1

= (λ1j . . . λ1(p−i−1))(λ11 . . . λ1(p−i−j−1))
−1

= λ(p−i−j)j.

A similar argument shows that if p− i− j > i, the result still holds.
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Suppose i+ j ≥ p+ 1. Then p− i+ p− j ≤ p− 1 and

λij = λ∗(p−i)(p−j) = λ∗(p−(p−i)−(p−j))(p−j) = λ(2p−i−j)j.

Therefore

λij = λ(−i−j)j = λ∗(i+j)(−j) (4.10)

for all i and j.

We now have

tm(tnt
∗
n) = tm

(
p−1∑
l=1

sl + p · 1

)
=

p−1∑
l=1

p−1∑
k=0

(tmh
k) + p · tm

= (p− 1)

p−1∑
k=0

tmh
k + p · tm = (p− 1)

p−1∑
k=1

tmh
k + (2p− 1)tm,

and by (4.10)

(tmtn)t∗n = λmntm+n · t−n = λmnλ(m+n)(p−n)tm = λmnλ
∗
mntm

=

(
p−1∑
k=0

λmnkh
k

)(
p−1∑
l=0

λmnlh
l

)∗
tm =

p−1∑
k,l=0

λmnkλmnlh
k−ltm

=
∑
k−l=0

λmnkλmnlh
k−ltm +

p−1∑
q=1

∑
k−l=q

λmnkλmnlh
k−ltm

=

(
p−1∑
k=0

λ2mnk

)
tm +

p−1∑
q=1

(
p−1∑
l=0

λmn(q+l)λmnl

)
hqtm

= (2p− 1)tm + (p− 1)

p−1∑
q=1

tmh
q.

Since for sk ∈ X \ L(X), hl ∈ L(X), sk · rhl = sk · shl = p · sk, we now have

t∗m+n(tmtn) = t∗m+n · λmntm+n =

p−1∑
k=1

skλmn + p · λmn

= p

p−1∑
k=1

sk + p · λmn and
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(t∗m+ntm)tn = λ(−m−n)mt−n · tn =

p−1∑
k=1

skλ(−m−n)m + p · λ(−m−n)m

= p ·
p−1∑
k=1

sk + p · λ(−m−n)m = p ·
p−1∑
k=1

sk + p · λnm

= p ·
p−1∑
k=1

sk + p · λmn.

Finally, let ti, tj, tk ∈ B \ X with i + j, j + k, i + j + k 6≡ 0. Note that since

s = 2H+ − r,

s2 = (2H+ − r)2 = 4H+H+ − 4H+r + r2 = 4pH+ − 4pH+ + r2 = r2.

Suppose i+ j + 1 ≤ p− 1. Then i+ j ≤ p− 2, so

λ1iλ(1+i)j = λijλ1(i+j)

⇔ λ1i(λ1j . . . λ1(i+j))(λ11 . . . λ1i)
−1 = λ1(i+j)(λ1j . . . λ1(i+j−1))(λ11 . . . λ1(i−1))

−1,

which is clearly true.

Suppose i 6= p− 1 and i+ j + 1 ≥ p+ 1. Then i+ j ≥ p+ 1 since i+ j 6= p, so

(p− (1 + i)) + (p− j) ≤ p− 1 and (p− i) + (p− j) ≤ p− 1. So

λ1iλ(1+i)j = λijλ1(i+j)

⇔ λ1(p−i−1)λ
∗
(p−(1+i))(p−j) = λ∗(p−i)(p−j)λ1(2p−i−j−1)

⇔ λ1(p−i−1)
[
(λ1(p−j) . . . λ1(2p−i−j−2))(λ11 . . . λ1(p−i−2))

−1]∗
= λ1(2p−i−j−1)

[
(λ1(p−j) . . . λ1(2p−i−j−1))(λ11 . . . λ1(p−i−1))

−1]∗
⇔ (λ1(p−j) . . . λ1(2p−i−j−2))(λ11 . . . λ1(p−i−2))

−1

=
(
λ1(p−j) · · ·λ1(2p−i−j−1) · λ∗1(2p−i−j−1)

)(
λ11 · · ·λ1(p−i−1) · λ∗1(p−i−1)

)−1
⇔ 1 =

(
λ1(2p−i−j−1) · λ∗1(2p−i−j−1)

)(
λ1(p−i−1) · λ∗1(p−i−1)

)−1
,
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which is true if p ≡ 1 mod 4 because r2 = s2, and if p ≡ 3 mod 4 because rs = sr.

So λ1iλ(1+i)j = λijλ1(i+j) for i, i+ j 6= p− 1. Therefore

t1(titj) = t1 · λijti+j = λijλ1(i+j)ti+j+1 = λ1iλ(1+i)jti+j+1 = (t1ti)tj.

We may now use the notation ti1 for the product of i copies of t1. Since the λij are

invertible elements of RH, we have:

t21 = λ11t2 =⇒ t2 = λ−111 t
2
1

t31 = (λ11t2)t1 = λ11λ12t3 =⇒ t3 = (λ11λ12)
−1t31

...

ti = (λ11 . . . λ1(i−1))
−1ti1 for i = 1, 2, . . . , p− 1.

We write ti = vit
i
1. Reading the i, j, and k modulo p, for i+ j, j + k, i+ j + k 6≡ 0,

ti(tjtk) = (vit
i
1)(vjt

j
1vkt

k
1) = (vivjvk)t

i+j+k
1 = (titj)tk.

So the multiplication is associative. Thus (CB,B) is a commutative, associative

algebra with 1 ∈ B, an (anti)-automorphism ∗ permuting B, and structure constants

and degrees in Z≥0. Since tit
∗
i =

p−1∑
j=1

sk + p · 1, δ(ti) is the coefficient of 1 in tit
∗
i . We

have now shown that (CB,B) is a commutative, standard SITA.

Finally,

o(B) = o(B \X) + o(X \H) + o(H) = (p− 1) · p · p+ (p− 1) · p+ p = p3.

And L(B) = H,L(2)(B) = {b : bb∗ ⊆ L(B)} = X, and L(3)(B) = {b : bb∗ ⊆

L(2)(B)} = B. Therefore B is class three nilpotent of order p3.
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4.3 Isomorphic Redundancy

Theorem 4.1 and its proof show that if (A,B) is a class three nilpotent SITA of

order p3, then there is a set of coset representatives {ti : 1 ≤ i ≤ p− 1} for L(2)(B)

in B with t∗i = tp−i and titj = λijti+j for i 6= −j, where λij = rhkij or shkij for each i

and j; and the set {λ1j : 1 ≤ j ≤ p−2} uniquely determines the algebra up to exact

isomorphism. Since two different sets of these λ1j can yield isomorphic algebras, we

now investigate this redundancy. For the remainder of this section, when the word

”algebra” is used, we will mean a class three nilpotent SITA of order p3 for an odd

prime p that is not a wreath product. We will use the notation (A, p) to denote

such an algebra whenever the prime needs to be stated explicitly.

Call (λ11, λ12, . . . , λ1(p−2)) a t1 string for (A, p). Let m be a primitive root modulo

p, and call (λ11, λmm, λm2m2 , . . . , λmp−2mp−2) the corresponding squares string for

(A, p). We will approach the problem of isomorphic redundancy from the viewpoint

of squares strings rather than t1 strings.

Theorem 4.1 also shows that the ti can be chosen so that k1j = 0 if j 6= p−1
2

. In

this case, we will show that the corresponding squares string has a specific format,

and that it uniquely determines the algebra up to exact isomorphism as well. The

next definition deals with these cases.
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Definition 4.2. We will call a t1 string (λ11, λ12, . . . , λ1(p−2)) special if it has the

property that λ1j = r or s for j 6= p−1
2

. We will call a squares string (λ11, λmm, . . . , λmp−2mp−2)

special if it has the property that

λii =


rhk or shk if p+1

4
≤ i ≤ p−1

2

rh−k or sh−k if p− p−1
2
≤ i ≤ p− p+1

4

r or s otherwise.

We will denote a squares string of this form by sk; so s0 gives the pattern of r’s

and s’s that appear in the string, and two strings sk and sn have the same patterns

of r’s and s’s and only differ in the power of h that appears. Let sop0 have an r

wherever s0 has an s, and an s wherever s0 has an r. Thus the strings sk and sopn

each have an r wherever the other has an s, and hk appears in the first, whereas hn

appears in the second.

Lemma 4.3. Suppose (A, p) and (A′, p) are algebras and φ : A′ → A is an exact

table algebra isomorphism. Then there exist 1 ≤ a, b, c ≤ p− 1 so that for each i,

φ((h′)i) = hai,

φ(s′i) = sbi, and

φ(t′i) = tcih
di for some 0 ≤ di ≤ p− 1.

Proof. Clearly φ
(
L(i)(B′)

)
= L(i)(B) for each i. Since L(B′) ∼= L(B) ∼= Zp, for

some 1 ≤ a ≤ p− 1 we have φ((h′)i) = hai for each i.

Since L(2)(B′)//L(B′) ∼= L(2)(B)//L(B) ∼= Zp, we have for some 1 ≤ b ≤ p− 1

φ (s′i//L(B′)) = sbi//L(B)
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for each i. So

φ

(
s′i
p

)
=
sbi
p
⇒ φ(s′i) = sbi.

Finally, since B′//L(2)(B′) ∼= B//L(2)(B) ∼= Zp, we have for some 1 ≤ c ≤ p− 1

φ
(
t′i//L

(2)(B)
)

= tci//L
(2)(B) for each i

⇒ φ

(
(t′iL

(2)(B′))+

|L(2)(B′)|

)
=

(tciL
(2)(B))+

|L(2)(B)|

⇒ φ

(
p−1∑
k=0

t′ih
k

)
=

p−1∑
k=0

tcih
k

⇒ φ(t′i) = tcih
di for some di.

By equation (4.2) in the proof of Theorem 4.1, we have tisj =

p−1∑
k=0

tih
k for every

j. Since this is the same for every sj, an isomorphism φ : A′ → A that simply

sends s′i to sbi can have no effect on the strings that determine either algebra; so

henceforth we will simply assume that b = 1.

Proposition 4.2. Let m be a primitive root modulo p. If the t1 string determining

an algebra (A, p) is special, then so is its corresponding squares string, and in this

case the squares string uniquely determines the algebra up to exact isomorphism.

Suppose (A, p) is determined by the special squares string sq, and (A′, p) is deter-
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mined by the special squares string s′n. If φ : A′ → A is is an exact table algebra

isomorphism as in Lemma 4.3, then

s′0 =

 P k(s0) if a ∈ R

P k(sop0 ) if a ∈ S,

and

n =

 ca−1q if c ≤ p−1
2
,

−ca−1q if c > p−1
2
,

where c = mk and P is the permutation operator as in Lemma 4.1.

Proof. Let m be a primitive root modulo p. Suppose λii is known for each i. For

i < p−1
2

, by equation (4.9) in Theorem 4.1 we have

λii = λ(i+1)(i+1)h
k for some k ⇔ λ1iλ1(i+1) . . . λ1(2i−1)λ

−1
11 λ

−1
12 . . . λ

−1
1(i−1)

= λ1(i+1)λ1(i+2) . . . λ1(2i+1)λ
−1
11 λ

−1
12 . . . λ

−1
1i h

k

⇔ λ1i = λ1(2i)λ1(2i+1)λ
−1
1i h

k

⇔ λ21i = λ1(2i)λ1(2i+1)h
k

⇔ λ1(2i) = λ1(2i+1)h
n

for some n since r2 = s2 and rhq 6= s for any q. So for every even j, the squares

string determines whether there exists nj with λ1j = λ1(j+1)h
nj .

Furthermore, by equation (4.8) in Theorem 4.1, λ1(2i) = λ1(p−2i−1) and λ1(2i+1) =

λ1(p−(2i+1)−1) = λ1(p−2i−2). So the squares string determines whether there exists n

with λ1(p−2i−2)h
n = λ1(p−2i−1) as well; since p−2i−2 is odd, this means it determines

whether there exists nj with λ1j = λ1(j+1)h
nj for each odd j as well. Since rhq 6= s
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for any q, this shows that the squares string determines whether λ1j = rhnj or shnj

for each j. For j 6= p−1
2

, we know that nj = 0;n p−1
2

is the only remaining ambiguity.

Let A be determined by the special t1 string (λ11, . . . , λ1(p−2)), where λ1( p−1
2 ) =

rhq or shq for some 0 ≤ q ≤ p− 1. For i ≤ p−1
2
,

λii = (λ1i . . . λ1(2i−1))(λ11 . . . λ1(i−1))
−1.

Now, λ1( p−1
2 ) appears once in this product if and only if i ≤ p−1

2
≤ 2i− 1, i.e. if and

only if p+1
4
≤ i ≤ p−1

2
; otherwise it does not appear at all. So, since λii =

(
λ(−i)(−i)

)∗
,

λii =


rhq or shq if p+1

4
≤ i ≤ p−1

2

rh−q or sh−q if p− p−1
2
≤ i ≤ p− p+1

4

r or s otherwise.

In other words, A is determined by the special squares string sq, and the power of

h that appears in λii for p+1
4
≤ i ≤ p−1

2
is equal to n p−1

2
. Thus the squares string

determines n p−1
2

, and therefore determines {λ1j : 1 ≤ j ≤ p− 2}, which determines

the entire algebra.

Let m be a primitive root mod p. For A determined by the special squares

string sq and A′ determined by the special squares string s′n, suppose φ : A′ → A is

an arbitrary exact table algebra isomorphism with φ(s′i) = si for each i. Then by

Lemma 4.3, there exist 1 ≤ c, a ≤ p− 1 such that for each i,

φ(t′i) = tcih
di , φ((h′)i) = hai
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for some 0 ≤ di ≤ p − 1. So there exist algebras A′′ and A′′′, and isomorphisms

φ1, φ2, φ3 such that:

A′ ∼= A′′ via φ1((h
′)i) = (h′′)i, φ1(t

′
i) = t′′i (h

′′)di ,

A′′ ∼= A′′′ via φ2((h
′′)i) = (h′′′)i, φ2(t

′′
i ) = t′′′ci, and

A′′′ ∼= A via φ3((h
′′′)i) = hai, φ3(t

′′′
i ) = ti,

and thus φ = φ3 ◦ φ2 ◦ φ1.

For each i,

titi = φ3(t
′′′
i t
′′′
i ) = φ3(λ

′′′
ii t
′′′
2i) = φ3(λ

′′′
ii )t2i,

so λii = φ3(λ
′′′
ii ). If a ∈ R, then φ3(r

′′′(h′′′)i) = rhai, φ3(s
′′′(h′′′)i) = shai; so λii =

rhaki ⇔ λ′′′ii = r′′′(h′′′)ki , λii = shaki ⇔ λ′′′ii = s′′′(h′′′)ki . Therefore A′′′ is determined

by sa−1q.

If a ∈ S, then φ3(r
′′′(h′′′)i) = shai and φ3(s

′′′(h′′′)i) = rhai; so λii = rhaki ⇔

λ′′′ii = s′′′(h′′′)ki , λii = shaki ⇔ λ′′′ii = r′′′(h′′′)ki . Thus A′′′ is determined by sopa−1q.

So A′′′ is determined by sa−1q if a ∈ R, and by sopa−1q if a ∈ S.

Suppose c = mk. Then for each j,

t′′′mkmj t
′′′
mkmj = φ2(t

′′
mj t
′′
mj) = φ2(λ

′′
mjmj t

′′
2mj) = φ2(λ

′′
mjmj)t

′′′
2mkmj .

So λ′′′
(mkmj)(mkmj)

= φ2(λ
′′
mjmj). So, since φ2(r

′′(h′′)i) = r′′′(h′′′)i, φ2(s
′′(h′′)i) = s′′′(h′′′)i

for all i,

λ′′mjmj = r′′(h′′)i ⇔ λ′′′mj+kmj+k = r′′′(h′′′)i,

λ′′mjmj = s′′(h′′)i ⇔ λ′′′mj+kmj+k = s′′′(h′′′)i.
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So the squares string (λ′′11, λ
′′
mm, . . . , λ

′′
mp−2mp−2) is the kth cyclic permutation (to the

left) of the one that determines A′′′. In other words, this squares string is equal to

P k(sa−1q) if a ∈ R and is equal to P k(sopa−1q) if a ∈ S.

Now,

λ′′iit
′′
2i(h

′′)2di = t′′i t
′′
i (h
′′)2di = φ1(t

′
it
′
i) = φ1(λ

′
iit
′
2i) = φ1(λ

′
ii)t
′′
2i(h

′′)d2i .

So φ1(λ
′
ii) = λ′′ii(h

′′)2di−d2i . Since φ1(r
′(h′)i) = r′′(h′′)i, φ1(s

′(h′)i) = s′′(h′′)i, and

r′′(h′′)i 6= s′′ for any i, this implies that

λ′ii = r′(h′)n ⇔ λ′′ii = r′′(h′′)ki for some ki and

λ′ii = s′(h′)n ⇔ λ′′ii = s′′(h′′)ki for some ki.

So s′0 = P k(s0) if a ∈ R, s′0 = P k(sop0 ) if a ∈ S. This gives the pattern of r’s and

s’s in the squares string for A′. We now need only determine the power of h′ that

appears in λ′ii for i ∈
[
p+1
4
, p−1

2

]
.

Since

λ′′′c(ci)t
′′′
c(i+1) = t′′′c t

′′′
ci = φ2(t

′′
1t
′′
i ) = φ2(λ

′′
1it
′′
i+1) = φ2(λ

′′
1i)t
′′′
c(i+1),

we have λ′′′c(ci) = φ2(λ
′′
1i). So since φ2(r

′′(h′′)i) = r′′′(h′′′)i, φ2(s
′′(h′′)i) = s′′′(h′′′)i, we

have

λ′′1i = r′′(h′′)ni ⇔ λ′′′c(ci) = r′′′(h′′′)ni and λ′′1i = s′′(h′′)ni ⇔ λ′′′c(ci) = s′′′(h′′′)ni . (4.11)
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For the following argument, suppose ci has been reduced modulo p (so 0 ≤ ci ≤

p− 1) and suppose c ≤ p−1
2

.

Suppose c+ ci ≤ p− 1. Then

λ′′′c(ci) =
(
λ′′′1(ci) . . . λ

′′′
1(c+ci−1)

) (
λ′′′11 . . . λ

′′′
(c−1)

)−1
by equation (4.9) in Theorem 4.1. Now, λ′′′

1( p−1
2

)
appears in this product exactly

once if ci ≤ p−1
2
≤ c + ci − 1 and does not appear at all otherwise. Since c ≤

p−1
2
,
(
λ′′′
1( p−1

2
)

)−1
does not appear at all. So if c ≤ p−1

2
,

λ′′′c(ci) = r′′′(h′′′)a
−1q or s′′′(h′′′)a

−1q for ci ≤ p− 1

2
≤ c+ ci− 1,

and

λ′′′c(ci) = r′′′ or s′′′ otherwise.

Suppose c+ ci ≥ p+ 1. Then p− c+ p− ci ≤ p− 1, so

λ′′′c(ci) =
(
λ′′′(p−c)(p−ci)

)∗
=
(
λ′′′(p−ci)(p−c)

)∗
=

[(
λ′′′1(p−c) . . . λ

′′′
1(p−ci+p−c−1)

) (
λ′′′11 . . . λ

′′′
1(p−ci−1)

)−1]∗
.

Since p − c ≥ p+1
2
, λ′′′

1( p−1
2

)
does not appear in the first factor of this, and since

p− ci− 1 ≤ p−3
2
, λ′′′

1( p−1
2

)
does not appear in the second factor either. So λ′′′c(ci) = r′′′

or s′′′.

Thus for c ≤ p−1
2
, λ′′′c(ci) = r′′′(h′′′)a

−1q or s′′′(h′′′)a
−1q exactly when ci ≤ p−1

2
≤

c+ ci− 1, and λ′′′c(ci) = r′′′ or s′′′ otherwise. Furthermore,

ci ≤ p− 1

2
≤ c+ ci− 1⇔ 0 ≤ p− 1

2
− ci ≤ c− 1
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⇔ ci =
p− 1

2
− (c− 1),

p− 1

2
− (c− 2), . . . ,

p− 3

2
,
p− 1

2
.

The germane thing to notice here is that λ′′′c(ci) = r′′′(h′′′)a
−1q or s′′′(h′′′)a

−1q for c

values of i. If c > p−1
2
, this argument applies to p− c; so λ′′′(p−c)[(p−c)i] = r′′′(h′′′)a

−1q

or s′′′(h′′′)a
−1q for c values of i, and therefore λ′′′c(ci) = r′′′(h′′′)−a

−1q or s′′′(h′′′)−a
−1q for

c values of i.

So, by (4.11), the same is true of λ′′1i: if c ≤ p−1
2
, then λ′′1i = r′′(h′′)a

−1q or

s′′(h′′)a
−1q for c values of i, and if c > p−1

2
, then λ′′1i = r′′(h′′)−a

−1q or s′′(h′′)−a
−1q for

c values of i. Since λ′′1i = λ′′(−1−i)1 = λ′′1(−i−1), the string is symmetric about λ′′
1( p−1

2
)
,

which is its middle element. So the number of i < p−1
2

with λ′′1i = r′′(h′′)±a
−1q or

s′′(h′′)±a
−1q is c

2
if c is even, and c−1

2
if c is odd; and λ′′

1( p−1
2

)
= r′′ or s′′ if c is even,

λ′′
1( p−1

2
)

= r′′(h′′)a
−1q or s′′(h′′)a

−1q if c ≤ p−1
2

is odd, and λ′′
1( p−1

2
)

= r′′(h′′)−a
−1q or

s′′(h′′)−a
−1q if c > p−1

2
is odd.

We can now deduce the squares string determining A′. We have

λ′′1it
′′
i+1(h

′′)d1+di = t′′1t
′′
i (h
′′)d1+di = φ1(t

′
1t
′
i) = φ1(λ

′
1it
′
i+1) = φ1(λ

′
1i)t
′′
i+1(h

′′)di+1 ,

so

λ′′1i(h
′′)d1+di = φ1(λ

′
1i)(h

′′)di+1 (4.12)

for all i.

Since the squares string s′n is special, the t′1 string determining A′ is also special.

So for i 6= p−1
2
, λ′1i = r′ or s′. Write λ′′1i = r′′(h′′)ni or s′′(h′′)ni . Since φ1(r

′(h′)i) =

r′′(h′′)i and φ1(s
′(h′)i) = s′′(h′′)i for all i, we have for i 6= p−1

2

λ′′1i(h
′′)d1+di = φ1(λ

′
1i)(h

′′)di+1

⇒ d1 + di + ni = di+1.
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So for i 6= p+1
2
,

di = id1 +
∑
j<i

nj.

Since t′′p−i(h
′′)dp−i = φ1(t

′∗
i ) = φ1(t

′
i)
∗ = t′′p−i(h

′′)−di , we have dp−i = −di. There-

fore, by equation (4.12),

φ1

(
λ′
1( p−1

2 )

)
= λ′′

1( p−1
2 )(h′′)

d1+d p−1
2
−d p+1

2

= λ′′
1( p−1

2 )(h′′)
d1+2d p−1

2

= λ′′
1( p−1

2 )(h′′)
d1+2( p−1

2 )d1+2
∑
j<

p−1
2

nj

= λ′′
1( p−1

2 )(h′′)
2
∑
j<

p−1
2

nj

=



λ′′
1( p−1

2 )
(h′′)2(

c
2)a−1q if c is even and c ≤ p−1

2
,

λ′′
1( p−1

2 )
(h′′)2(

c
2)(−a−1q) if c is even and c > p−1

2
,

λ′′
1( p−1

2 )
(h′′)2(

c−1
2 )a−1q if c is odd and c ≤ p−1

2
,

λ′′
1( p−1

2 )
(h′′)2(

c−1
2 )(−a−1q) if c is odd and c > p−1

2
.

So, recalling that

λ′′
1( p−1

2 ) =


r′′ or s′′ if c is even ,

r′′(h′′)a
−1q or s′′(h′′)a

−1q if c is odd and c ≤ p−1
2
,

r′′(h′′)−a
−1q or s′′(h′′)−a

−1q if c is odd and c > p−1
2
,
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we have

φ1

(
λ′
1( p−1

2 )

)
=

 r′′(h′′)ca
−1q or s′′(h′′)ca

−1q if c ≤ p−1
2
,

r′′(h′′)−ca
−1q or s′′(h′′)−ca

−1q if c > p−1
2
,

regardless of whether c is even or odd. Thus

λ′
1( p−1

2 ) =

 r′(h′)ca
−1q or s′(h′)ca

−1q if c ≤ p−1
2
,

r′(h′)−ca
−1q or s′(h′)−ca

−1q if c > p−1
2
.

So if A is determined by sq and φ : A′ → A is as described in Lemma 4.3, then

s′n, the squares string determining A′, is described by the following:

s′0 =

 P k(s0) if a ∈ R

P k(sop0 ) if a ∈ S,

and

n =

 ca−1q if c ≤ p−1
2
,

−ca−1q if c > p−1
2
.

This establishes the result.
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