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A Comprehensive and Unified Procedure for
Symbolic Analysis of Analog Circuits

Reza Hashemian , Life Senior Member, IEEE

Abstract— The objective here is to develop a uniform and
comprehensive procedure for symbolic analysis of linear circuits
using the Sum of the Tree Products (STP) of the circuit.
We achieve this goal in two stages. In the first stage a circuit
with active devices, such as VCCSs and I/O ports, is changed to
a nullor circuit, i.e., to a circuit with only passive components
and nullors. The nullor circuit is also partitioned into two parts,
a passive circuit and an all-nullor circuit. It is shown that the
magnitude of the STP, i.e., the determinant of the NAM, of the
circuit is equal to the STP of the passive portion of the circuit,
and the sign (0, 1, or −1) of the STP comes from its all-nullor
part. Another significant development in this presentation is the
replacement of the regular STP methodology with a rather new
Admittance Method (AM). It is shown that by doing this the
entire two-graph theory for active circuits as well as the use
of 2-tree procedures for I/O ports analysis are eliminated. It is
these new developments that substantially simplifies the circuit
analysis and makes it quite efficient for symbolic representation
of transfer functions.

Index Terms— Admittance method, analog circuits, parallel-
series operations, sum of tree products, transfer functions.

I. INTRODUCTION

SYMBOLIC representation of circuit transfer functions
through topological formulas is a well-studied topic for

an extended time. Different methods have been developed
in the past that are challenging the subject matter fur-
ther [1]–[19]. Among them, techniques such as the Sum of
the Tree Products (STP) of circuits is a well-known method-
ology [1]–[9], [20]. Other methods such as Binary Decision
Diagrams (BDD), and Determinant Decision Diagrams (DDD)
are also shown to be quite effective in reducing the com-
putational intensity [1], [3], [7]. In a similar procedure
S.D. Djordjevic, P.M. Petkovicy, and V.B. Litovskiz have
presented their topological oriented symbolic analysis of
circuits using Topology Decision Diagram (TDD), which
as stated, is inspired by the DDD methodology [21].
In another effort, S. Lasota uses Parameter Decision Dia-
grams (PDD), again similar to the DDD procedure, in his
modeling of modern active devices [22]. Further, S. Lasota
presents symbolic analysis of electric networks using PDD as
well [23].
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Nevertheless, with all the progress made there have been
number of generic problems that keeps these methods away
from further advancements. One such problem is that, most
of the methods, particularly the tree enumeration types, need
to deal with the entire circuit (graph) during the operation,
making it time consuming and complicated, specially for large
circuits. The separation of I and V graphs, known as two-graph
technique, and keeping track of the matching trees is another
serious problem [1], [3], [4]. Similarly, the problem of finding
and tracking 2-trees, being required for the computation of the
I/O transfer functions, is another timely involvement in the
process. In addition, the sign determinations in cases of
the cofactors also adds another group of difficulties to the
analysis of transfer functions using topological techniques. For
example, as we will see, when a 4-terminal active source is
broken into two 3-terminals, one appears with positive sign
and the other one with negative.

Still on top of all these, is the issue of the repeated
appearances of the circuit elements (branches) in multiple
number of trees through the process. Due to almost exponential
growth of the number of circuit trees the computational over-
head payed increases very fast, making the tree enumeration
methods almost impractical for large circuits. As a result,
these problems has seriously hindered the practicality of the
topological formulas in circuit analysis compared to the well-
advanced numerical techniques.

The objective in this presentation is to further develop a
technique, known as Admittance Method (AM) [10], for circuit
analysis in order to alleviate some of the serious obstacles
described, and get the topological methods applicable and
efficient, at least for symbolic representation of the circuit
transfer functions. Obviously, the AM procedure does not
claim to effectively treat all foregoing difficulties and issues,
but redirect some. First, for an optimum process, it is ideal
for the operation to go through each circuit element only
once. This is done through AM and by reducing the circuit
systematically as we progress. The AM tries to localize the
process and making the circuit continuously shrink. This is
very similar to the sparse matrix analysis technique, where
it concentrates on the matrix elements rather than on the
complete matrix operations.

Other major steps taken in this development are the elimina-
tion of both two-graph technique for active devices as well as
the 2-tree requirements for I/O transfer functions calculations.
Due to the replacement of nullors for active devices, as well
as the I/O ports, both two-graph and 2-tree techniques are
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eliminated in the AM approach. Finally, the sign problem
that rises from the 2-tree implementation is removed here
and is replace with the nullor signs that are much simpler
to formulate and resolve.

So overall, in comparing with other tree enumeration tech-
niques and topological analysis methods reported, the AM
procedure stays tall and more efficient from several respects.
Those specifically include the followings. 1) Turning active
circuits with VCCS devices, and I/Os into nullor circuits.
2) Gradually reducing an active circuit to a single element
or to an all-nullor circuit. 3) Eliminating two-graph rep-
resentation of the circuit all together. 4) Eliminating the
need to use the 2-tree (or m-tree) technique for trans-
fer function computation. 5) Finally, presenting a system-
atic procedure for sign determination in transfer functions
calculations.

Before I conclude with this introduction, I must recognize
a much similar work done by Filaretov and Gorshkov [24].
The article represents efficient generation of compact sym-
bolic network functions in a nested rational form. They
cover number of similar procedures that are presented
in this submission in different forms and with no prior
knowledge.

In brief, the AM procedure and the all-nullor circuit are two
pillars of this presentation. Given a linear active circuit, the
AM starts from any passive element and progresses toward
the end, reducing the circuit through parallel and series (P/S)
operations until the entire passive portion is shrunk into a
single element with a total admittance that represents the
circuit determinant/cofactor. The remaining all-nullor circuit,
however, is responsible to determine the sign (0, 1, or −1) of
the admittance. The AM has all the advantages of a typical
STP technique with much reduced computational complexity.
It is simple and fast, particularly for less populated circuits,
where more series and parallel elements can be found. The
AM procedure can also be substantially optimize by sharing
certain stages of the operations between different process
sections. One such optimization technique is described in
Appendix A. On the other hand, in the all-nullor circuit,
we first test the existence (non-zero) of thecofactor, and
then the sign will emerge when we gradually remove the
nullors.

This paper is organized as follows. Section II is a review of
the Admittance Method [10]. It provides three basic operations
that are used in the AM. Next, the AM procedure is formu-
lated for reducing passive elements in a circuit. Section III
discusses nullors and nullor circuits. Methods and techniques
are provides in this section to turn an active circuit to a nullor
circuit. Section IV start with a nullor circuit and operate on it
until the circuit determinant or cofactor emerges. That is, the
section provides the fundamental stages in dealing with nullor
circuits all the way to the determination of the determinants,
and cofactors with sign included. Section V discusses the AM
method used in Modern Active Devices. In Section VI two
circuit examples are worked out. Section VII is Conclusion.
There are also Appendices A and B discussing A) an optimiza-
tion method for AM operation, and B) dealing with 4-termilas
VCCSs and I/Os.

II. THE ADMITTANCE METHOD - A REVIEW

In a linear circuit N with input and output ports i and j, the
trans-admittance function can be written as

y j i(s) = T/Tj i (1)

where, T and Tj i denote the determinant and the ji cofactor of
the NAM of N [1], [2]. Equation (1) also applies to a single
or multiple combinations of connected elements. For example,
the admittance of an element ei , is written as yi = ni/di , with
di starting with 1. Similarly, two elements ei and e j , with the
admittances yi = ni/di and y j = n j/d j in parallel produce
the admittances function

yp = ni d j + n j di

di d j
= ni d j

di d j
+ n j di

di d j
. (2)

Also, the same elements ei and e j , when in series produce

ys = ni n j

ni d j + n j di
. (3)

It is important to note that, because we are dealing with
determinants/cofactors no division is permitted here. For
example in (2), if e j (or ei ) is removed after the parallel
operation, the resulted admittance function is reduced to

ni d j

di d j
, and not to the original

ni

di
.

Now that we understand how the admittance function of
a component looks like we can describe certain admittance
operations on components. Although these admittance oper-
ations work with passive components, we also need to deal
with active components as well.

A. Passive Components

We start with all passive circuits and introduce the Admit-
tance Method.

1) Admittance Method (AM): Given a passive circuit N ,
the AM is used to reduce N into a 2-terminal component with
admittance yt = nt/dt , where nt = T , the determinant of the
NAM of N. The AM process is a systematic process and in
each step one of the following three basic operations is applied
to N : a) parallel, b) series, or c) partition.

2) Parallel and Series: Two parallel components ei and e j

with admittances yi = ni/di and y j = n j /d j can be replace
with a component ek with admittance yk as given in (2).
Likewise, two components ei and e j in series can be replaced
with es as given in (3). A sequence of parallel/series (P/S)
operations is referred to a sequence of one or more parallel and
series operations until the sequence ends up with no possible
series or parallel operation in N . A circuit is P/S free if no
more P/S operation on N is possible.

3) Partition: Given a circuit N , a partitioned circuit N{A; B}
is obtained from N by removing elements A and short
circuiting elements B, and T{A; B} refers to the determinant
of the NAM (or STP) of N{A; B}. Now, consider a circuit N
with its STP as T . If ei is an element in N with yi = ni/di ,
then by applying the partition procedure we can write [3], [6]

T = ni T {0; ei } + di T {ei ; 0} (4)

Authorized licensed use limited to: Northern Illinois University. Downloaded on November 03,2022 at 20:17:26 UTC from IEEE Xplore.  Restrictions apply. 
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Now, suppose T o is the determinant of the NAM of N when
all of the active components are removed (open circuitrd).
To compute T o we first perform P/S operations on the circuit
and reduce it to a P/S free circuit. If the circuit is terminated
with a single element e j , with the admittance y j = n j /d j ,
then T o = n j . Otherwise, we make partitioning and remove
one or more elements from N to produce P/S operations
again. We continue with this process until we come up
with a single element. This is not the end of the process,
of course. According to (4) the process must continue with
short circuiting those elements that were removed. For details
refer to Algorithm 1.

Algorithm 1 To Find the Determinant of a Passive Circuit
1. Given a circuit N , perform a set of P/S operations on

N first to make it P/S free.
2. Then, remove all the active components from N to make

it a passive circuit No .
3. Again, apply P/S operations to No . If the result is

a single element, we have done with passive circuit,
othervise the result is a P/S free circuit. Then find
a node nk with the lowest degree, say k. Remove
m = k − 2 elements from nk to make it a series node.
Reapply P/S operations to the circuit, and in case the
circuit still is not a single element continue step 3 until
a single element is resulted.

4. For each element ei removed from No , as a result of
step 3, connect the two nodes, corresponding to ei in
No , together to form No{0; ei }. Apply step 3 to No{0;
ei } to reduce it to a single element with nt = T o{0; ei }
as its admittance numerator. So, as the results, we have
both T o{ei ; 0} and T o{0; ei } found. The next step is to
apply (4) to add up the two STPs, T o{ei ; 0} and T o{0;
ei }. Continue with steps 3 and 4 until the entire circuit
No is processed and T o is optioned.

We are now ready to include the active components into the
circuit.

B. Active Components

Up until now, we were talking about 2-terminal passive
elements. For active components, we consider both 3-terminal
and 4-terminal VCCSs (gm) and I/Os. However, because of
the sign determination, we need to change the 4-terminal
component (if needed) to 3-terminal components. This can be
done in two ways. 1) Leave them as they are until the circuit
is processed and it is reduced to an all-nullor circuit, as we
will discuss it later, or 2) replace each 4-terminal with two
3-terminal components.

In the first case, because all passive elements in the circuit
either are removed or short-circuited the chances are that the
4-terminal components (nullors) end up becoming 3-terminals
in the process. In addition, as discussed in Appendix B, the
last three nullors in the STP process are becoming 3-terminals
anyway. This is a strong statement, because the last three
nullors can represent three 4-terminal I/Os or VCCSs.

Fig. 1. Breaking a 4-nodes VCCS into two 3-nodes VCCS, where the sign
from 3 to 2 is positive, but from 2 to 4 it is negative.

Fig. 2. Nullors; (a) three nodes, STP = 0; (b) two nodes and positive,
STP = 1; (c) two nodes and negative, STP = −1.

In the second case, each 4-terminal can be replaced with
two 3-terminal components, as shown in Fig. 1. However,
in the process for the determination of the STP, we cannot
consider the two VCCSs (nullors) present in combinations.
In fact, we don’t need to worry about the issue, because the
two gm make a loop, resulting in STP = 0 anyway.

Other types of active components, such as VCVS, CCVS,
and CCCS, can be easily transformed into VCCSs [25].

As mentioned before, one of the major contributions of this
article is the fact that the active components do not enter into
the computation of the circuit determinants or STPs. They are
replace with nullors, and the nullors are used only to determine
the signs in the STPs. Therefore, it is sufficient to discuss
circuits with only passive elements plus nullors.

III. NULLORS AND NULLOR CIRCUITS

A nullor consists of a nullator and a norator. For our
purpose, we can consider two types of nullors; a) those with
a common node (3-terminal), as shown in Fig. 2(a), and b)
4-terminal nullors. Like a VCCS, a 4-terminal nullor can be
replaced with two 3-terminal nullors as well. Nullors also carry
signs. For example, the sign of the nullors in Figs. 2(a) and (b)
are positive, whereas the one in Fig. 2(c) has negative sign.

Theorem 1: Consider an active linear circuit N with one or
more VCCSs. We can expand the determinant (STP) of the
NAM of N in term of a VCCS, gm , in N as

T = T o + gm T m (5)

where, T o is the STP of N when gm is removed (open
circuited), and T m is the STP of N when gm is replaced with
a nullor (the nullator replacing the controlling voltage and the
norator replacing the current source).

Proof: Getting T o is quite evident from (4). For T m ,
we realize that in (5), T approaches gm T m as gm grows large.
So, when gm approaches infinity we can write T = gmT m .

Authorized licensed use limited to: Northern Illinois University. Downloaded on November 03,2022 at 20:17:26 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. A 2-port circuit to calculate the trans-conductance y21; (a) the original
2-port circuit; (b) port replacement with a VCCS; (c) final replacement with
a nullor.

On the other hand, when gm grows to infinity the VCCS
approaches to a nullor [10].

Notice that, although gm grows in (5) as the VCCS
approaches a nullor but T m stays constant, associated with
gm = 1. This indicates that the magnitude of a nullor can be
assumed 1. Another example is given in Fig. 2, where the STP
of a single nullor is shown to be either 0, 1, or −1.

Theorem 2: Consider an active circuit N with n number of
VCCSs, g1, g2, . . . , gn . The STP of N can be written as

T = T o + g1T 1 + g2T 2 + g1g2T 12 + g3T 3

+ . . . + g1g2 . . . gnT 12...n (6)

where, T o is the STP of N when all the active components
are removed, and T i j ...k , for all i, j, . . . , and k, is equal to T
when the VCCSs gi , g j , . . . , and gk are replaced with nullors
and the rest of the VCCSs are removed from N .

Proof: The proof of Theorem 2 is quite similar to that
of Theorem1, except here, instead of only one gm , we grow
all gi , g j , . . . , and gk to infinity and remove the rest of the
VCCSs from N .

A. 2-Port Circuit

Consider a 2-port linear circuit N, shown in Fig. 3(a).
We can write the transfer admittance y21 of N as

y21 = I1/V2 = T/T21 (7)

where, T and T21 are the determinant and the trans-cofactor
of N with the sign included.1

Next, let us remove the input source I1 in Fig. 3(a) and
instead add a VCCS with gm = y21 to the pair of I/O ports,
as shown in Fig. 3(b). What this means is that: if we apply
a voltage V2 at the output port of the circuit, in Fig. 3(b),
then the VCCS at the input port provides a current I1 that
is equivalent to the original setup (with an input source I1).
In other words, the assigned VCCS with gm = y21, have
created a non-singularity NAM matrix with the determinant
T = 0. So, according to Theorem 1

T = T − gmT m = 0 (8)

Notice that, the negative sign in (8) is due to the negative
sign of the VCCS in Fig. 3(b). Now, if we replace for gm = y21
from (7) we get.

T21 = T m (9)

Equation (8) provide us with a very important result. It indi-
cates that, in order to get the trans-admittance (as well as the

1We will take care of the sign later.

Fig. 4. (a) An all-nullor circuit, (b) the corresponding nullator network, and
(c) the corresponding norator network.

I/O gains) of a 2-port circuit N, all we need to do is to replace
each I/O port with a nullor, as shown in Fig. 3(c), and then find
the determinant T m for the circuit N with the nullor attached.
Therefore, there is no need to find the cofactor T21, which
traditionally demands applying the 2-tree technique and its
long procedures [1]. This is stated in Theorem 3.

Theorem 3: Consider a 2-port linear circuit as shown in
Fig. 2(a). To find the cofactor T21 in (7) all we need to do is
to find the STP of the circuit where a nullor replaces the pair
of the I/O ports, as shown in Fig. 3(c).

Evidently, Theorem 3 stands valid for multi-I/O ports cir-
cuits as well. To deal with this situation we enumerate the
pairs of I/O ports and then assign one nullor to each pair, and
proceed as we did for a single 2-port.

Combination of Theorem 2 and Theorem 3 provide a
comprehensive and uniformity in circuit analysis, which can
be stated as follows. However, before that let us make some
definitions.

B. Nullor Circuit

A nullor circuit contains passive components and nullors.
An all-nullor circuit contains all nullors with no passive
element. An all-nullor circuit consists of a nullator network
and a norator network combined. Figure 4(a) shows an all-
nullor circuit, and Figs. 4(b) and (c) show the corresponding
nullator and norator networks separated. Notice that all four
nullors in the all-nullor circuit are positive (both arrows are
toward the common node).

C. Uniformity

To find a (numerical or symbolic) transfer function of an
active linear circuit N , which contains dependent sources,
nullors, and I/O ports, we only need to construct a single nullor
circuit Nn , as described below.

1. Replace all active devices (VCCS) with nullors.
2. For each pair of an input current source and an output

voltage port (I/O) in N remove the input current source
and instead add a nullor to the ports, as shown in
Fig. 3(c).

So far, we have been able to convert a circuit N with active
devices, nullors, and I/O ports into a single nullor circuit Nn .
The next step is to apply the AM to Nn and find all the STPs
associated with the circuit that leads to the computation of T
and T21, and finally to y j i , for all i and j .

So, in brief, an active linear circuit N of any complexity
and number of I/O ports can be transformed into a nullor
circuit, Nn , where, while the passive parts remain unchanged,
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each dependent source or an I/O port is replaced with a nullor.
Section IV describes how we can find a transfer function in
the circuit, either in numerical form or in symbolic form.

IV. ADMITTANCE METHOD FOR NULLOR CIRCUITS

Our objective is now to compute the STPs of a nullor circuit
Nn . To achieve this goal, we consider two separate operations.
1) The AM operations applied to the passive components of
Nn , and 2) operating on the all-nullor circuit that is resulted
from Nn , after we have done with the passive elements. This
circuit contains all the nullors. In dealing with the passive
circuit, we apply AM procedure until we reach to a final
2-terminal component with its admittance yp = n p/dp, where
n p = Tp representing the determinant of the passive circuit.

In the second step, we need to find the STP, Tn , of the all-
nullor circuit. The final determinant of the original circuit N
is then found as

T = Tp
∗ Tn (10)

Hence, after getting Tp for the passive elements, the prob-
lem is how to find Tn . This is stated in Theorem 4.

Theorem 4: The STP of an all-nullor circuit Tn is either 0,
1, or −1.

Proof: First, the magnitude of the STP cannot be greater
than 1. This is because each individual nullor has its
STP = 0, 1 or −1 (Fig. 2).

Now, given an all-nullor circuit, the problem is then to
find rules that indicate whether the STP Tn is 0, 1, or −1.
To find that out, we first split the problem into two parts,
the magnitude, which is STPmag = 0 or 1, and the sign,
s (+ or −). We will discuss each separately.

Theorem 5: The magnitude, STPmag , of an all-nullor circuit
is 1 if and only if each one of the nullator and norator networks
(together forming the all-nullor circuit) hform a single tree
with no loop. Otherwise, STPmag , = 0.

Proof: Because each element in the nullator or norator
network represents a VCCS device or an I/O port it must be
present in every tree in the STP. Hence, no loop in either
nullator or norator network is permissible, and the STP must
consist of a single tree, otherwise not all of the nullators (or
norators) can be in the same tree.

Corollary 1: An all-nullor circuit has a non-zero STPmag,
only if the total number of its nodes is equal to the total
number of nullors plus one.

For example, take the case of Fig. 4. The nullator network
is a single tree and has no loop but the norator network has
one loop. Therefore, the STPmag = 0.

Now we should start with the sign of an all-nullor circuit.
Algorithm 2 explains the entire process.

For the proof of Algorithm 2, notice that, each time we short
circuit a nullor we do short circuit both the nullator and the
norator in the positive direction, which it does not change s.
Therefore, the sign of s depends on the number of changes
we have made in the direction of nullators and norators.

2In practice, the number of 4-terminal nullors may exceed three (with no
certainty) as long as there are enough 3-terminals to start the process of the
short-circuiting until the 4-terminals turn into 3-terminals, Appendix B.

Algorithm 2 To Find the Determinant of an All-Nullor Circuit
1. Given an all-nullor circuit Nn with k nullors, we assume

that except for a maximum of three 4-terminals the
rest of the nullors are 3-terminals.2 Next, separate the
nullator and norator networks from each other, and
begin eliminating nullors one by one starting from the
3-terminals. In case the arrows in both corresponding
nullator and norator are not toward or away from the
common node change the sign s accordingly. Then
short-circuit the nullor elements with the common node
removed, and move to the next nullor (see Appendix B).

2. Do step 1 all the way to the last nullor, k. It is shown
(Appendix B) that the last, up to three, 4-terminal
nullors will change to 3-terminals as well.

3. The final determinant of the all-nullor circuit is then
Tn = s∗ST Pmag , where STPmag = 1 or 0.

Fig. 5. (a) An all-nullor circuit with the number of nullors k = 3, (b) the
nullator and norator networks separated, (c) the nullor 1 is short-circuited,
and (d) the nullor 2 is short-circuited, and the nullor 3 is the only one left.

Fig. 6. (a) An all-nullor circuit with the number of nullors k = 2, (b) the
nullator and norator networks separated, and (c) the first nullor, 1, is short-
circuited, and the nullor 2 is the only one left with Tn = −1.

We have three examples to show this. The first one is a
three-nullor circuit shown in Fig. 5. According to Algorithm 2,
we begin short-circuiting the nullors systematically. As shown
in Figs. 5(b), (c), and (d). When we reach to the last nullor, 3,
we find its sign to be positive. Therefore, the final Tn = 1.

In the second example, we have a two-nullor circuit shown
in Fig. 6 (a). Figures 6 (b) and (c) show the two nullator and
norator networks separated. Again, we short-circuit the first
nullor (i.e., the nullator and norator in the two networks) and
will be left with the last nullor, 2. As noticed (Fig. 6 (d)), the
nullor sign is negative. So Tn = −1.

In the third example, we have a three-nullor circuit shown
in Fig. 7 (a), and the separated nullator and norator networks
are shown in Fig. 7 (b). Notice that both nullator and norator
networks are single trees, and so, the STP must be either
1 or −1. To find the sign, we begin short circuiting nullor
1 in both networks and get the reduced networks as shown
in Fig. 7 (c). However, notice that this action has changed
the sign of nullor 2 to negative. Therefore, we need to
change the direction of an arrow, and this makes s = −1.
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Fig. 7. (a) An all-nullor circuit with the number of nullors k = 3, (b) the
nullator and norator networks separated, (c) the nullor 1 is short-circuited,
and (d) the nullor 2 is short-circuited, and the nullor 3 is the only one left.

Finally, the networks are further reduced to only one nullor, 3,
as shown in Fig. 7 (d). This nullor is negative and requires
changing sign, which ultimately makes s = 1. Therefore, the
final STP is Tn = 1.

In summary, what we have achieved so far is as fol-
lows. For a given active linear circuit N, we first replace
all active (VCCS) devices and I/O ports with nullors. This
changes N to a totally nullor circuit, Nn . Circuit Nn is then
partitioned into a passive circuit and an all-nullor circuit. The
passive circuit calculates the magnitude of the STP, and the
all-nullor circuit provides us with the coefficient 0, 1, or −1
of the final determinant. We have already discussed how to
find the coefficient 0, 1, or −1. Therefore, what remains is to
calculate the magnitude of the STP from the passive portion
of Nn , and finally N , which is our next topic.

A. Determinant of the Passive Portion of Nn

As we know, Nn is a nullor circuit with both passive ele-
ments and nullors. In applying AM operations on the passive
circuit, we usually come up with two cases: a passive-passive
operation, denoted by AM-p, and a passive-nullor operation,
denoted by AM-n. We have already discussed the AM-p in
Section II. So, we need to find out about AM-n.

Theorem 6 (Parallel/Series Operations in AM-n): If a pas-
sive element ei , with admittances yi = ni/di , is parallel with a
nullor element (a nullator or a norator), ei is removed and di is
preserved. Likewise, if the passive element ei is in series with
a nullor element ei , the element is short-circuited and ni is
preserved. Note that, the preserved values, such as di and ni ,
are the coefficient multipliers forming the coefficient-multiplier
p, which at the end is multiplied to the final determinant (or
the cofactor).

Proof: Suppose the determinant of the original circuit
is T . Then in the parallel case, when ei is removed the
determinant becomes T{ei ; 0}. Next, we short circuit ei and
get the determinant T{0, ei } = 0. This is because by short
circuiting ei we create a nullator or norator self-loop and
according to Theorem 5 the STP becomes zero. So, from (4)
we are then left with T = di T{ei ; 0}.

Similarly, in the series case, it is easy to prove that removing
ei produces T{ei ; 0} = 0, and hence by applying (4) we get
T = ni T{0, ei }. This completes the proof.

We are now ready to combine the AM-p and AM-n oper-
ations in a nullor circuit. A brief procedure is given in
Algorithm 3, and more details can be found in [10].

Algorithm 3 To Find the Determinant of an Active Circuit

1. Given a nullor circuit Nn , a set of P/S operations3 is
applied to make Nn P/S free.

2. In case Nn is reduced to a 2-terminal passive component
et with admittance yt = nt/dt , then Tt = st ptnt is the
final determinant of Nn , where, pt is the coefficient-
multiplier, and st is the sign (0, 1, or −1) associated
with the all-nullor circuit.

3. In case Nn is not reduced to a 2-terminal passive
component, find a node ni that has the lowest degree,4

say k. Remove m = k − 2 passive elements from ni to
make it a series node, and store the elements removed
in a stack. In case there are less than m passive elements
incident to ni , remove all of them and move to another
node. When a series node is created, continue applying
P/S operations until no more operations is possible.
If the circuit is not reduced to a 2-terminal passive
component, continue step 3 until a single component
is reached.

4. For any element e j removed from Nn , forming Nn{e j ;
0}, we must connect its corresponding two nodes
together to form Nn{0; e j }. Step 3 operations are again
applied to Nn{0; e j } to reduce it to a single passive
component. Next, use (4) to combine Nn{0; e j } and
Nn{0; e j } and move on. Do the operations multiple
times as long as a passive element is left in the stack.

5. Now, we are apparently left with, say q , number of
2-terminal passive components with admittances y1 =
n1/d1, y2 = n2/d2, . . . and yq = nq/dq , and with
their coefficient-multipliers p1, p2, . . . and pq , and
also their signs si , for i = 1, 2, . . . , q . The final
determinant (STP) of Nn is then given by

T =
q∑

i=1

si pi ni (11)

This concludes Algorithm 3, as well as computing the STPs.

V. ADMITTANCE METHOD FOR MODERN ACTIVE DEVICES

In Section IV, we showed that the AM works in any nullor
circuit for finding a transfer function, numerically or symbolic.
Now the question is, how does the method works with circuits
containing modern active devices [22]?

To respond this question, we first need to identify such
devices and then model them using nullor circuits. The next
stage in the process is to include these devices into the main
nullor circuits. Hence, we are back to a nullor circuit again,
although larger and with more nullors. First, it looks normal

3From now on the operations are referred to both passive-passive and
passive–nullor operations.

4Node degree here counts both passive and nullor elements.
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Fig. 8. (a), (b) nullator-based models of a fixator, and (c) denotes a fixator.

Fig. 9. VM-CM Pair and its nullor model.

and the solution can be achieved by using Algorithm 3 when
considering nullors one at a time. The difference, however,
is in case of modern devices that each are modeled with more
than one nullor. The solution is to deal with all nullors in a
device as a whole. The advantage here is that, because of the
nullors grouping the computation reduces substantially.

Because of the space limitation, it must be sufficient to work
only on some devices such as fixators [26], voltage mirror and
current mirror (VM-CM) pairs [27], and a second generation
Current Conveyers (CCII+) [28], as examples.

A. Fixators

Fixators are structurally very similar to nullators; instead
of having zero voltage and zero current they can accept any
arbitrary voltages and currents. Therefore, a fixator can be
modeled by a nullator, which is attached to a voltage source
and a current source, shown in Fig. 8 [26]. Evidently, a fixator
pairing with a norator will form a nullor, and hence, there will
be no need to treat them separately.

B. VM-CM

Figure 9 shows a pair of VM-CM along with their nullor
models [24], [27], where all resistors are 1. As shown, the
model consists of three nullors, which in the AM operation
must come as a group of three rather than individual nullors.

Now, as an example let us considered a combined grounded
pair of VM-CM, shown in Fig. 10(a) and its nullor model in
Fig. 10(b). In checking for Corollary 1, we notice that the
circuit has six nodes and three nullors. So, to satisfy Corollary
1 we need to eliminate two nodes. This is done by short-
circuiting two resistors and removing (open circuiting) the
other two. The actin creates six all-nullor circuits all of which
result in having STP = 0, except for one. This case is when
we short-circuit r3 and r4 and open circuit r1 and r2, which
provide STP2,4 = r2r4 in symbolic format, and STP2,4 = 1 for
unit resistances, as shown in Fig. 10(c) [24]. We notice how
simple a symbolic representation of a transfer function has
been achieved here.

Fig. 10. (a) VM-CM Pair as a device, (b) the nullor circuit, and (c) the
all-nullor circuit with non-zero STP.

Fig. 11. (a) A nullor model of a CCII+ active device, and (b) a current
controlled voltage source – an application.

C. CCII+
Figure 11(a) shows a CCII+ in nullor representation [28].

The model circuit shows two pairs of nullors that must
always be treated together. Figure 11(b) shows a CCII+ based
constructed trans-impedance amplifier, where

Zm = Vo

Ii
= −r1

r2
Rm (12)

Now, to apply the AM procedure we first need to draw
the graph representation of the nullor circuit. Figure 12(a)
is the graph of the amplifier with the input voltage source
removed. In applying, the AM procedure gx is opened, because
it is parallel with a nullor element, and Gm is collapsed,
because it is in series with a nullor element (Theorem 6).
Similarly, g2 is opened. Then the nullor circuit left has only
g1 as the passive component. The circuit has four nodes and
two nullors. Therefore, according to Corollary 1, for non-zero
STP, we need to short circuit g1. This produced the circuit
determinant as T = g1 Gm .

For computing the trans-conductance Zm we also need to
find the cofactor T21. The circuit graph corresponding to T21
is shown in Fig. 12(b), where a nullor is attached to the I/O
ports. After we go through a similar AM procedure we come
up with T21 = −g2. Therefore, we get

Zm = T12

T
= −g2

g1Gm
= −r1

r2
Rm (13)

which is the same as we found it analytically in (12).

VI. CIRCUIT EXAMPLES USING ADMITTANCE METHOD

Now, we are going to run some examples using the AM
procedure for conventional circuits.
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Fig. 12. (a) A nullor model of a CCII+ active device, and (b) a current
controlled voltage source – an application.

Fig. 13. An MOS amplifier; (a) the linear equivalent circuit for high
frequency, (b) graph representation, (c) nullor replacement for active devices
and I/O ports, (d) all passive circuit, (e) passive and active, and (f) passive
and I/O ports.

Example 1: Consider a single stage MOS amplifier. Fig-
ure 13(a) shows the high frequency small signal equivalent
circuit of the amplifier, and Fig. 13(b) is the circuit in a
graph representation. In Fig. 13(c) we have replaced the active
component (VCCS) with a nullor, and we have also removed
the input signal and replaced it with another nullor, according
to Theorem 2. So, now the circuit has two nullors, g1 (for the
VCCS) and g2 (for the I/O port). In addition, for simplicity, the
components’ labels have been changed in Fig. 13(c). Table I
shows the list of changes and the component values. However,
to make the analysis all resistive, the capacitors Cgs and
Cgd are replace with two resistors 2 KOhms and 50 KOhms,
respectively.

Circuit Analysis: According to Theorem 2, there are four
determinants related to the NAM of the amplifier circuit that
we need to compute. From (6) we can write the STP of the
amplifier as

T = T o + g1T 1 + g2T 2 + g1g2T 12 (14)

TABLE I

COMPONENT NAMES, LABELS, AND VALUES FOR EXAMPLE 1

Fig. 14. Processing all-nullor circuits for Example 1.

Basically, the analysis ends up with computing the four
determinants (STPs) T o, T 1, T 2, and T 12.

T o – This is the case when both nullors are removed from
the circuit and the circuit is all-passive. The graph representing
this case is shown in Fig. 13(d). We apply the AM operations
on the graph, starting with P/S operations. As it turns out,
after nine P/S and one Partition (removal and short circuiting
e5) operations the determinant value is found5 as T o = 0.544.

T 1 – This is the case of the active device (transistor) being
in the circuit with g1 = gm . The graph representing this case
is shown in Fig. 13(e). Again, we apply the AM operations to
the circuit and after ten P/S and one Partition operations the
graph is reduced to a single nullor, as shown in Fig. 14(a).
As we can see, the STP = 1 here. Hence the final determinant
becomes g1T 1 = 0.4, for g1 = 5 mA/V.

T 2 – For this case we need to remove the active source
gm and add the nullor g2 representing the I/O ports. This is
shown in graph of Fig. 13(f). We apply the AM operations
and after nine P/S and one Partition operations the graph is

5The simulation program CASD is used here and for later computations.
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TABLE II

STEPS TAKEN IN THE AM OPERATIONS IN EXAMPLE 1

reduced to a single nullor shown in Fig. 14(b). The nullor is
also positive here with STP = 1. Then the final determinant
becomes g2T 2 = 0.068, for g2 = 1 mA/V.

T 12 – The case is when we allow both nullors, associated
with g1 and g2, remain in the circuit. The graph for this case is
shown in Fig. 13(c). Again, after applying the AM operations
the graph is reduced to the one in Fig. 14(c). We notice
that, this nullor circuit has four nodes and two nullors. So,
according to Corollary 1 one passive element must be short-
circuited and the other one open circuited. So we have two
cases. We first short-circuit e6 and open circuit e5. This gener-
ates the all-nullor circuit shown in Fig. 14(d) with STP = −1.
After including the passive parts and the coefficients g1, we get
g1g2T 12 = −10.0. Similarly, we short-circuit e5 and open
circuit e6 this time. The graph associated with this case is given
in Fig 14(e). This case produces STP = 1, and after including
the passive parts and the coefficients we get g1 g2T 12 = 0.05.

A detailed list of the steps taken in the AM operations
are given in Table II. For simplicity, the parallel and series
operations are dismissed here and the Partition operations are
only displayed.

Finally, a similar procedure is conducted to find the cofactor
T11 for the input port. This is done by short circuiting the input
port.6 The resulted value is found to be T11 = 2.655. With the
three values T = Tmain , T41, and T11 found, we are now able
to calculate the amplifier gain, the input impedance, and the
trans-impedance as:

Av = T41/T11 = −12.382/2.655 = −4.66365 V/V

Rin = T11/T = 2.655/0.944 = 2.655 K Ohms

Rm = T41/T = −12.382/0.944 = −13.11365 K Ohms

The results are also checked with SPICE simulation, which
gives us the same responses.

Programming: A computer program in C++, called Circuit
Analysis, Simulation and Design (CASD), is developed for
finding the transfer functions in linear active circuits using the
proposed method. CASD produces the NAM determinants and
cofactors from which we get the input impedance, gain and any
other circuit transfer functions. The program is coded in such a
way that it can also produce the circuit parameters in symbolic
format. However, the program is still not commercialized
for general use, pending for some possible publications and

6The procedure is not reported here for brevity.

Fig. 15. A sample screen shot of the CASD program for Example 1.

Fig. 16. (a) An nMOS differential pair, (b) the high frequency model of the
transistor, and (c) the linearized amplifier circuit.

refinements. A sample screen shot of the CASD program
results is shown in Fig. 15.

Example 2: We take an nMOS differential pair for this
example [10]. The actual amplifier, the high frequency model
of the transistor, and the linearized amplifier circuit are given
in Figs. 16(a), (b), and (c).

For the convenience, the linear amplifier circuit is also given
in graph representation in Fig. 17(a) with the circuit elements
renamed, given in Table III.

Next, we apply the AM operations to the main circuit,
Fig. 17(a), by going through Algorithm 1. We realize that
there are three pairs of parallel elements, which after applying
P/S operations they are reduced to ea , eb, and ec, with the
admittances ya = y1||y3, yb = y6||y7, and yc = y4||y5,
where, || denotes parallel operation. Figure 17(b) shows the
new graph after the P/S operations are done. Next, according
to Algorithms 1 and 3, we get the graphs for No, Nm

1 , Nm
2 ,

Nm
3 , Nm

12, Nm
13, Nm

23, and Nm
123, shown in Figs. 17(c) to (h).

Graphs for Nm
13 and Nm

23 are missing purposely. We notice
that the circuit No is a P/S circuit and its determinant T o

is obtained by doing two series operations following by two
parallel operations. This is shown below, with ∗ indicating the
series operation.

yd = y8
∗ yb, ye = yc||yd , y f = y2 ∗ ye, and

yg = ya||y f . (15)
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Fig. 17. (a) Graph representation of the linear amplifier circuit; (b) The
same circuit with the input signal removed, and Step 1 in Algorithm 1 applied;
(c) the passive circuit No ; (d) the active circuit Nm

1 ; (e) the active circuit Nm
2 ;

(f) the active circuit Nm
3 (g) the active circuit Nm

1,2; (h) the active circuit Nm
1,2,3.

Ultimately, the circuit is reduced to a single element eg

with the admittance yg . Now, if we symbolically expand yg

and write it in terms of s we get yg(s), also as the input
admittance of the amplifier with g1 = g2 = 0 as

yo
in = yg = T 0

T 0
1,1

= 6 ∗ 103

12 ∗ 102 ∗ 12s3+82s2+87s + 20

3s2 + 4s + 1
µA/V

(16)

where, the conductances are in µA/V , the capacitors in fF,
and the frequencies in GHz. Also note that, because there is
no division involved in computing determinants, the coefficient
6000/1200 remains as a ratio in (16).

Likewise, we get the passive portion of the voltage gain
Avo = vout/vin as

v0
out

vin
= T 0

1,2

T 0
1,1

= 600

1200
∗ s

3s2 + 4s + 1
V/V (17)

It is interesting to note that, because Avo is the gain when
all active devices are removed, the voltage gain is less than 1
for any value of s. Specifically, when s = 0 the gain becomes
zero, as expected. This is evident, because C2 for DC opens
the feedback between the input and the output ports of the
amplifier.

Active – g1, g2, g3 . . . : Next, we continue with the circuits
that contain active devices plus the I/O ports, individually and
in combinations.

g1 – The graph of the amplifier, with only g1 present, is
shown in Fig. 17(d). The circuit is again a P/S circuit. After
applying P/S operations the circuit reduces to a single nullor
with the STP = 1. Here is the sequence of the operations:

TABLE III

COMPONENT NAMES, LABELS, AND VALUES FOR EXAMPLE 2

The element ec in parallel with the norator is removed with
no effect on the STP. The element ea with ya = na/1 is in
series with the nullator. Short circuitting ea multiplies the STP
by na (Theorem 6). This generates a single nullor with the
STP = 1. Finally, the elments e8 and eb become parallel,
creating a single element ed with yd = nd/dd . So, the circuit
determinant is T m

1 = nd , which in expanded form become

T m
1 = ya ∗ (yb||y8) = 100(3s2 + 62s + 40) (18)

g2- The circuit graph is shown in Fig. 17(e), which is also
a P/S circuit. We follow the same rout as we did for g1.

The element ec in parallel with the nullator is removed, and
the element e8 in parallel with the norator is also removed. The
element eb is in series with the norator. Short circuitting eb

multiplies the STP by nb . This generates a single nullor with
the STP = 1. Finally, the elments e2 and ea become parallel
creating a single element ed . So, the circuit determinant is
T m

2 = nd , which in expanded form become

T m
2 = yb

∗ (ya||y2) = 100(21s2 + 67s + 20) (19)

g3- The circuit graph is shown in Fig. 17(f), and the STP
can be simply found as.

T m
3 = y2

∗ y8 = 600s (20)

g1g2- The circuit graph for g1g2 is shown in Fig. 12(g), and
it is a P/S circuit. However, the resulted graph ends up with
two nullors, one series and one parallel. Both nullors have
negative signs. The parallel nullor makes the STP = −1, but
the series one produces the STP = 0. Therefore, T m

1,2 = 0.
g1g3– A similar analysis will reduce the associated graph

(not shown) to a single element e8, and with the STP = 1 for
the all-nullor circuit we get T m

1,3 = 20.
g2g3– The graph (not shown) for this case is also reduced

to a single element e2, and with the STP = 1 for the all-nullor
circuit we get T m

2,3 = 30s.
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g1g2g3– The circuit graph representing this case is shown
in Fig. 17(h). There are five passive elements e2, e8, ea, eb,
and ec in the graph, and all five are parallel with nullors’
elements. Thus, we can simply remove then all with no effect
on the determinant (Theorem 6, and di = 1). We are now left
with an all-nullors, as shown in Fig. 7(a). Therefore, as we
investigated previously, the ST P = T m

1,2,3 = 1.
Finally, we are prepared to get the circuit transfer functions

such as the gains, input impedance and transfer impedance.
The approach makes it possible to write the functions in
symbolic forms, both in terms of gm and s. We begin by
writing the circuit determinant T , and the cofactors T21 and
T11.

T = T 0 + g1T m
1 + g2T m

2 + g1g2T m
12 (21)

T2,1 = g3T m
3 + g1g3T m

13 + g2g3T m
23 + g1g2g3T m

123 (22)

After replacing the values, we get

T = 100 ∗ [720s3 + (4920 + 3g1 + 21g2)s
2

+ (5220 + 62g1 + 67g2)s + 1200 + 40g1 + 20g2] (23)

Similarly, we get

T2,1 = 30 ∗ (20 + g2)s + (20 + g2)g1 (24)

T1,1 = 3600s2 + (4800 + 60g1 + 60g2)s

+ 1200 + 40g1 + 20g2 (25)

So, we can simply replace for T , T21, and T11 to write the
input impedance, the voltage gain, and the transfer impedance
as

zin = T1,1

T
(26)

Av = T2,1

T1,1
(27)

zm = T2,1

T
(28)

This concludes our Example 2.

A. Comparing the AM With Others Methods Reported

Now, we need to discuss about the claims made in this
presentation, i.e., why the presented procedure, both the AM
technique and the nullor methodology, are advantageous com-
pare with other reported techniques? The major portion of this
comparison is given in Section I, Introduction. The fundamen-
tal message here, however, is the following: No matter how
much complex and involved is a linear active circuit, the use of
the Tree Enumeration Method (TEM) is limited to the passive
portion of the circuit plus the use of an all-nullor circuit
that specifies the sign. This major achievement categorically
removes any other requirements such as two-graphs and 2-
trees that have been essential parts of most reported methods
in dealing with TEM.

The keys to this simplicity are two. First, the ability to
replace active (VCCS) devices as well as I/O ports with
nullors. Second, the use of AM, which is basically a simple
sequence of parallel and series (P/S) operations that systemi-
cally reduces a circuit to a single element, where, it represents

the determinant or a cofactor of the NAM of the circuit, or the
reduced circuit reaches to an all-nullor circuit. It is shown that
the P/S operations shrink the passive portion of the circuit
quickly and accurately to a final element. This is especially
true for large and sparser circuits, where finding a set of P/S
operations is a matter of search or removal of a few elements.
Although in many cases the circuits are P/S circuits (simply
reduced to a single element through a series of P/S operations),
in more complex cases the removal of one or more elements
will smoothly resume the P/S operations. Another property of
the AM is the absence of the division in the operations, as there
is no division involved in finding determinants. Finally, it is
important to note that, because of the systematic reduction
of the circuit, the AM is ideal for symbolic representation of
transfer functions.

VII. CONCLUSION

The purpose in this presentation is to develop a uniform
and comprehensive procedure for symbolic analysis of linear
active circuits using the tree enumeration techniques such as
the Sum of the Tree Products (STP) of the circuit. We have
achieved our objective in two stages. In the first stage a circuit
with active devices (VCCSs), and I/O ports, is converted to a
nullor circuit, i.e., to a circuit with no active devices but only
passive components and nullors. For further simplification,
the nullor circuit is also partitioned into two distinct parts,
a passive circuit and an all-nullor circuit. We have shown
that the magnitude of the determinant of the NAM of the
circuit is the same as the STP (determinant) of the passive
part. Whereas, the sign (0, 1, or −1) of the STP comes from
its all-nullor circuit.

The other unique development in this presentation is the
replacement of the normal STP methodology, based on the
tree enumeration, with an advanced Admittance Method (AM)
procedure. As we have shown, by applying the AM procedure
the entire two-graph theory for active circuits as well as the
use of 2-tree techniques for I/O ports analysis are eliminated.
Overall, the new developments substantially simplifies the
circuit analysis and makes it quite efficient for symbolic rep-
resentation of transfer functions, so that it might present itself
as a viable alternative to numerical algorithms, particularly for
well sparse circuits.

Finally, a computer program in C++, called Circuit Analy-
sis, Simulation and Design (CASD), is developed for the
project. CASD produces the NAM determinants and any
transfer functions of circuits with VCCS and multiple I/O
ports. The extension of the program is underway to cover
circuits with other kinds of active devices, namely VCVS,
CCVS, and CCCS, in preparing the transfer functions of the
circuit in symbolic format.

APPENDIX A
EFFICIENT PROGRAMMING

One of the draw backs in the AM operations, like any
other Tree Enumeration Method in general, is that when the
circuit is partitioned the same AM operations may get repeated
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Fig. 18. Flow diagram for finding determinants and cofactors of a NAM.
x and y both specify exhaustive P/S operations. However, in x no passive
element that is in parallel or in series with a nullor element is removed. �gi
denotes the removal of gi from the circuit.

Algorithm 4 Efficient Programming to Find the Circuit
Determinant

1. Apply the P/S operations to reduce a circuit N to a P/S
free circuit No . Store No in a stack. Next, remove the
active component g3 and apply the P/S operations to
No to reduce it to a P/S free circuit N3. Store N3 in
the stack. Continue the process until no active device
remains in the circuit and the circuit is all-passive.
Apply AM operations to the circuit to reduce it to a
single element with the determinant To.

2. Now, get the last item N32 stored in the stack out and
apply the P/S operations to reduce it to a single element.
However, because the circuit N32 did contain g1 the
determinant becomes g1T1.

3. Next, move one-step back and get N3 out of the stack
and move on as discussed in 1. As it is shown in
Fig. 18, the operation ends up getting g2T2. Similar
procedures will result in computing g1g2T12, g3T3,
g1g3T13, g2g3T13, and g1g2g3T123.

4. Finally, all the terms so computed are added up together
in (6) to obtain the determinant or a cofactor of the
circuit NAM.

for different parts. This evidently increases the computational
overhead, reducing the effectiveness of the method.

One way to reduce this difficulty is to establish a hierarchi-
cal structure for reducing the circuit to a final single element.

The following procedure is given for a linear active circuit
N that has three active (VCCS) components (or alternatively,
two VCCSs and one I/O ports). The method is certainly
applicable to circuits with more devices and multiple I/O
ports. A flow diagram of the entire AM operations, in steps,
is demonstrated in Fig. 18, and the procedure is explained in
Algorithm 4.

APPENDIX B

A. Dealing With 4-Terminal Devices

As stated in Section II, determining signs for 4-terminal
devices such as VCCSs and nullors is not simple. In Section II
we broke a 4-terminal VCCS into two 3-terminal devices and
solved the sign problem. However, this increase the number of
active devices; hence, more computation is required. The fact
that the AM process removes the entire passive elements in
the circuit and at the end only an all-nullor circuit remains is
a great achievement. This means that, if the passive elements
in the circuit are eliminated (short circuited) the chances are
that some of the 4-terminal devices become 3-terminal or even
2-terminal devices. In addition, it is shown that, in any circuit,
if there are three or less number of 4-terminal nullors, they will
eventually convert to 3-terminals when we reach to the final
all- nullor circuit. So, in conclusion, at least three 4-terminal
nullors (devices) are permissible in a nullor circuit.

B. Circuits With Three or Less 4-Terminal Devices

Let us assume that a circuit N , after all its active devices and
I/O ports are replace with nullors, is reduced to an all-nullor
circuit Nn . Further, let us assume that Nn contains n nullors,
three of which are 4-terminals. Now, in order to find the sign
(0, 1, or −1) of Nn we need to use Algorithm 2. However,
in ordering the nullors for the process in Step 2, we start with
the 3-terminals and then go to the 4-terminals only when the
3-terminals are all exhausted. So, basically, for the all-nullor
circuit that remains we have nullators and norators trees, each
having three branches. With all possible combinations of the
branches it is simple to see that at least one nullor comes up
with 3-terminal, and the rest will follow suite. This is stated
in Theorem 1B.

Theorem 1B: The sign of the STP of any active circuit N
is determined if its all-nullor circuit Nn does not have more
than three 4-terminal nullors.

In conclusion, the process of sign determination for cofac-
tors can be extended to include circuits with up to three 4-
terminal active devices or I/Os.

C. 3-Terminal Nullors With Shared Common Node

In some rare cases we may end up with an all-nullor circuit
that contains two or more nullors in a group that share their
common nodes. The problem with this case is that, when
we short-circuit the elements of a nullor in the group the
common node disappears, leaving the other nullors in the
group 4-terminals. An ad hoc solution to the problem is to
leave such cases to the end of the process. The chances are
that they turn into 3-terminals, as discussed earlier in this
Appendix.
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