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ABSTRACT

3D GLOBAL ACCELERATION ESTIMATION USING INERTIAL
MEASUREMENT UNIT FOR BIOMECHANICAL RESEARCH

Revanth Raghuram Konda, M.S.
Department of Mechanical Engineering

Northern Illinois University, 2018
Dr. Ji-Chul Ryu, Director

The effects of mechanical vibrations on the body of a driver in off-road vehicles such as

mining vehicles have become one of the intriguing research topics. To reduce the injuries

of the operator of an off-road vehicle where vibrations of high magnitude occur, an in-

depth study of the nature of these vibrations must be done. The first step towards this

objective is the correct estimation of acceleration of the vehicle by taking into consideration

all the translational and rotational motion. The main goal of this study is the estimation of

acceleration of an off-road vehicle in 3D space using an inertial measurement unit (IMU). In

the past biomechanical studies, IMU along with a digital low-pass filter such as Butterworth

filter has been used to estimate acceleration, but the estimation was only limited to vertical

Z-direction. Also, the use of a low-pass filter requires deciding a threshold frequency by trial

and error.

In this study, to obtain the best estimate of three-dimensional acceleration, an algorithm

is proposed using 3D transformations, Fourier analysis, and magnitude-based filtering meth-

ods. The use of magnitude-based filtering eliminates the trial-and-error process of selecting

the threshold frequency for filtering and filters out the white noise and other sources of error

present in the measurement signal.



A preliminary experiment was first conducted in order to check the accuracy of the

IMU used in this work. In the experiment, one-dimensional vibrations were produced in the

vertical Z-direction using a heavy-duty excitor and the position was estimated using the IMU.

The generated vibrations were sinusoidal with a frequency of 3Hz and a peak acceleration

of 2.3 m/s2. The estimated data using the IMU had a peak displacement of 2.38 m/s2 with

3Hz frequency. A final experiment was conducted to verify the proposed algorithm in which

a three-dimensional motion including rotation about Z-axis was generated at three different

frequencies using a 6-DOF robot (Adept 850s Viper). Based on a detailed error analysis, the

final experiment results indicate that the proposed algorithm produces an acceptable degree

of accuracy in estimation of 3D global accelerations.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The effects of mechanical vibrations on the body of a driver in off-road vehicles such as

mining vehicles (Fig. 1.1) has become one of the intriguing research topics. In ordinary

vehicles, the nature of vibrations is mostly in the vertical (Z-axis) direction, which can

be controlled to some extent by employing vertical suspension systems. But in off-road

vehicles, the combined effect of vibrations in the directions perpendicular to the Z-axis are

as important as that in the vertical direction. This leads to whole-body vibration of the

vehicle operator that further could lead to severe injuries and/or musculoskeletal disorders.

Figure 1.1: Mining vehicle1.

In order to determine the effects of vibrations on the operator’s body, the differences

between single-axis and multi-axis vibrations need to be studied in depth. The first step

1http://www.npkce.com/product-categories/mining-vehicles/mining-dump-trucks/
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toward this objective is the correct estimation of the global acceleration of such a vehicle.

Although, a tri-axial accelerometer is typically used to capture the acceleration profile of the

vibrations, it only measures linear accelerations in X, Y, and Z directions without considering

rotational motion if it is present. In the off-road terrain, the vehicles are subject to angular

motions that are not negligible compared to normal terrain. Under such conditions, the

correct estimation of acceleration in all the three directions can be achieved by considering

the angular motion. Since tri-axial accelerometers cannot capture angular motion, an inertial

measurement unit (IMU) is used in which a tri-axial gyroscope is fabricated along with a

tri-axial accelerometer. To simulate the vibrations of off-road vehicles, a 6-DOF Stewart

platform will be used which operates with global data input. Since for the measurement

of acceleration of an off-road vehicle conventional technologies such as global positioning

systems (GPS) and high-quality vision systems are not suitable, in this research an IMU

was used. This research will serve as a first step in finding remedies to reduce the effect of

whole-body exposure to vibrations.

1.2 Literature Review

Since its origin, MEMS inertial measurement units have been used for various unconven-

tional purposes besides navigation in different areas such as aerospace, biomechanical analysis

and robotics. They are mainly used as a supporting unit for a different set of measurements

taken using other technologies such as GPS or high-quality vision because IMUs estimate

position using a method called dead reckoning. In dead reckoning, the process of estimating

the current state of a system is only based on the previous state of the system. Even if there

is a small error in one of the intermediate states, that error keeps accumulating over time

and forms a larger error in the estimation of the final state. For this purpose, IMUs are not
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used individually for position estimation. Decribed below are a few works in which IMU has

been used as a supporting unit for other more reliable technologies. Sakib [1] demonstrated

how an IMU can be implemented for increasing the accuracy of hydrographic survey in which

emphasis was laid on attitude estimation of the vessel, which cannot be captured with high

degree of accuracy by GPS. In robotics, IMUs are widely implemented in mobile robots and

unmanned arial vehicles. Zaidner and Shapiro [2] and Wendel et al. [3] have used an IMU

along with GPS for position estimation of mobile robots and UAVs respectively using sensor

fusion techniques. Lou and Xin [4] used an IMU to estimate the attitude of a mobile robot

by applying sensor fusion to accelrometer, gyroscope and magnetometer data. Jiang and

Yin [5] used an IMU along with a vision system for robust pedestrian tracking. Ferrara et al.

[6] have developed a buried object locator system by integrating ground penetrating radar

(GPR) technology with GPS and IMU. For the purpose of estimating accurate location of

buried objects, GPR and GPS/IMU technologies were combined such that the buried object

was detected by the GPR technology and the location of the buried object was estimated by

the combination of GPS and IMU. Li et al. [7] have attempted to improve the reliability and

availability of GPS/INS systems by introducing range observation through ultra-wideband

(UWB). An improved Kalman filter was proposed to resist the influence of gross error from

UWB observation in GPS/UWB/INS tightly coupled navigation. Tian et al. [8] in their

work have fused data from inertial sensors of IMU and IMU data with Kinect in order to

provide robust hand position estimation. Unscented Kalman filter was employed for the

purpose of sensor fusion. IMUs have also been employed for the measurement of elastic

deformation. Dai et al. [9] and Lialiang et al. [10] have used IMU for this purpose.

In the past years, IMUs have been employed for biomechanical analysis. Karchnak et al.

[11] in their work have employed IMU for evaluation of human biomechanical parameters

by using it to evaluate the basic shoulder movements such as flexion, extension and abduc-

tion. IMU was placed on the backside of the forearm and experimental data was collected.
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For accuracy purposes, the experiment was simultaneoulsy monitered by the SMART video

capturing system for motion analysis. Esser et al. [12] in their work have used IMU and

optical motion capture system (OMCS) to measure the center of mass position in the ver-

tical direction and compared the results. Quaternions were used instead of roll-pitch-yaw

angles to represent orientation of the person. A low-pass Butterworth filter was used to filter

the transposed acceleration data before it was double integrated and compared with OMCS

measurement data. Kim et al. [13] have used an IMU to measure whole-body vibrations of

an agricultural tractor to improve multi-axial suspension systems. Both linear accelerations

and angular accelerations were recorded to get a more realistic simulation. Noise was filtered

out from the accelerometer and gyroscope data using Fourier analysis and low-pass filter to

get practical position values which were within the limits of a 6-DOF motion platform that

was used to simulate the whole-body vibrations in an indoor environment. IMUs have found

applications in the sports industry and wearable portable devices for biomechanical anal-

ysis. The use of IMU with GPS over object tracking systems for position estimation has

an advantage in terms of the operating space. Zihajehzadeh et al. [14] have used IMU

along with GPS to estimate position for the purpose of gauging the overall performance of

an athlete. The IMU was mounted onto the body of the athlete using a wearable portable

device. Extended Kalman filter was used for data fusion to achieve higher accuracy over a

linear Kalman filter. Schmidt et al. [15] have also used IMU for similar purposes in their

work. IMU was used for field-based performance analysis through an accurate detection of

step parameters in sprinting.

As can be noticed from the above-mentioned works, IMUs are mainly used as a supporting

system for another measuring unit such as GPS or vision system along with Kalman filter

when it comes to position measurement. IMU cannot be used individually for estimating

position using Kalman filter from the acceleration data as the mathematical model describing

the functioning of an IMU was found to be unobservable (see [16] for the definition of
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unobservability). Hence only global acceleration with minimum error can be obtained using

an IMU. Traditional signal-processing tools can be used to filter the signals from an IMU

but the accuracy of acceleration calculation will be compromised to some extent because of

the complexity of the algorithm [17] being used to calculate it from the accelerometer and

gyroscope readings.

1.3 Objective

The main goal of this research is to accurately estimate global accelerations of an off-road

vehicle to study the effects of whole-body vibrations on the driver. Due to the limitations

of an IMU regarding position estimation which was explained above, the scope of this study

is limited to correct estimation of global acceleration using an IMU. Since both the sensor

readings contain different sources of error, the process of combining the data becomes com-

plex. In order to deal with this problem, two engineering tools will be used: coordinate

frame transformations and digital signal processing.

1.4 Outline

The rest of this thesis is organized as follows. The in-depth details of an inertial mea-

surement unit including error characteristics are discussed in Chapter 2. The explanation of

the background theory for the proposed algorithm, inertial navigation algorithm and digital

signal processing are presented in Chapter 3. The experiments performed to verify the pro-

posed algorithm and the results are discussed in Chapter 4, followed by concluding remarks

in Chapter 5.



CHAPTER 2

INERTIAL MEASUREMENT UNIT

Inertial navigation is a self-contained navigation technique in which the position and

orientation of a body is calculated without utilizing any external medium such as satellites,

provided that the initial position, velocity and orientation of the object are known. This

technique is commonly known as dead reckoning. Because of this dead reckoning, IMU is

typically used with another object tracking technology, such as global positioning system or

vision system, to minimize the effect of dead reckong on the estimated data. Fig. 2.1 shows

the IMU which was used in this work.

Figure 2.1: ADIS16405 mounted on EVAL ADISZ evaluation board.

An IMU typically consists of a 3-axis accelerometer, which gives the acceleration of

the object, and a 3-axis gyroscope, which gives the angular velocity of the object [17]. A

more sophisticated IMU utilizes a 3-axis magnetometer along with a gyroscope to measure

rotations with higher degree of accuracy. By processing the signals obtained from these

sensors, the position and orientation of an object can be estimated. Inertial measurement

units have a wide range of applications in various fields. Among them are navigation of

aircrafts, guided missiles, submarines and ships. Recent advances in MEMS technology
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have enabled the fabrication of light-weight, compact inertial measurement units allowing

researchers to capture the motion of human beings and animals. The IMU (Analog Devices

ADIS16405) used in this thesis consists of a 3-axis accelerometer, a 3-axis gyroscope and a 3-

axis magnetometer. A companion board (EVAL ADISZ) can be used for easier processing of

data. A specific software package (IMU Evaluation) also provided by analog devices is used

to record the output data of the module. This module is mainly designed for postprocessing

purposes and is not for real-time applications. The maximum sampling rate at which the

module operates is 819.2 samples per second [18], with lower sampling rates available.

2.1 Error Characteristics and Problems in Postprocessing

The drawback of using an IMU is that it utilizes dead reckoning for the estimation of po-

sition and orientation. Dead reckoning is a process of calculating current position of a system

using its previous position. A small error in the previous position propagates throughout

the estimation, which would cause erroneous end result. Hence, in order to minimize this

error, the error in the measurements taken by an IMU along with the approximation errors

in the calculations have to be minimized. Various types of noises due to calibration errors,

offset in orientation and temperature effects are present in the output signal of an IMU. The

three main noises which show significant effect on the output of the IMU when subjected to

postprocessing are listed below:

1. White noise

2. Constant bias

3. Flicker noise
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2.1.1 White Noise

White noise is a set of serially uncorrelated random numbers with zero mean and a finite

variance. White noise is present in almost all sensor data in general and in most cases

can be eliminated using traditional filtering methods such as low-pass filtering. For IMUs, a

thermo-mechanical noise is present, which fluctuates continuously at a rate much higher than

the sampling rate of the sensors. This noise can be modelled as white noise. Post-processing

of IMU output data involves subjecting the data to double integration. Double integrating

white noise would lead to accumulation of error over time and causes something known as

random walk. The manufacturer mentions the effect of this random walk on the output with

respect to time. This information can be used to minimize the effect of white noise on the

position estimates to a certain extent.

2.1.2 Constant Bias

Bias is nothing but the difference between the actual value and the sensor value when

the sensor is not subjected to any kind of change. Both the accelerometers and gyroscopes

in the IMU have a small offset or bias which accumulates over time when subjected to

integration. This can be removed by simply subtracting the offset value from the sensor

readings. Removing offset or bias is very critical, as it exhibits maximum effect on the

output.
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2.1.3 Flicker Noise

The bias of the sensor wanders randomly over time due to flicker noise. The effects of

flicker noise are generally observed when the IMU is being operated at low frequencies. At

high frequencies, the flicker noise is over-shadowed by white noise. Flicker noise also causes

random walk, the effect of which is specified with respect to time by the manufacturer.

Table 2.1 shows the specifications of the gyroscope and the accelerometer modules, which

denote the effects of the above-described noises on the output with respect to time. More

detailed explanations on the terms mentioned in the table is available in [17].

Table 2.1: Error Characteristics of ADIS16405
PARAMETERS COMMENTS TYPICAL VALUE UNITS

GYROSCOPE
Initial Bias 1σ 3 ◦/sec

In-run Bias Stability 1σ 0.007 ◦/sec

Angular Random Walk 1σ 2.0 ◦/
√
hr

ACCELEROMETER
Initial Bias 1σ 50 mg

In-run Bias Stability 1σ 0.2 mg

Random Walk 1σ 0.2 m/sec/
√
hr

The integration of white noise and bias instability result in the first-order and the second-

order random walk. The variance with which these random walks grow is given by the typical

values for in-run bias stability and random walk mentioned in the table. The typical value

for initial bias is also mentioned in the table.



CHAPTER 3

THEORETICAL BACKGROUND AND ALGORITHM DESIGN

3.1 Inertial Navigation Algorithm

The output of the IMU represents the acceleration of an object with respect to its own co-

ordinate frame attached to the body (the body frame hereafter). These acceleration readings

must be accurately transformed to the global coordinate frame in order to be properly used

in biomechanical studies such as operating a Stewart motion platform. For this purpose,

the gyroscope readings are utilized. Using the gyroscope readings, a rotation matrix, which

defines an orientation between two different coordinate frames [19], is constructed at every

time step and is used to transform the raw IMU data expressed in the body frame to the

global frame. Numerical double integration can then be used for position estimation. The

inertial navigation algorithm (INA) is typically used to estimate position. For this reason

the INA will be explained from a position estimation point of view in this section. However,

in this thesis, since global acceleration estimation is critical, the utilization of INA will be

focused on global acceleration estimation. The procedure above is summarized in the fol-

lowing steps:

1. Collect the raw data.

2. For each time step, construct a transformation matrix.

3. Using the transformation matrix, convert the local values to global values.

4. Perform a double integration on the converted global data.

Fig. 3.1 shows these steps graphically.
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Figure 3.1: Inertial navigation algorithm.

While the basic theory for the suggested method is available in [17], we present it here

since it is central to understand the proposed algorithm. As mentioned earlier, the IMU

outputs the acceleration and angular velocity of a body in its local frame, not in the global

frame. Therefore the raw acceleration data cannot be simply double integrated to estimate

position. The acceleration data has to be first transformed from the local frame to the

global frame before integration. For this purpose, rotation matrix is needed, which can be

constructed using the angular velocity data from the gyroscope. The construction of the

rotation matrix is a vital step in the algorithm, as any errors in this step would lead to

an inaccurate transformation of the acceleration data. The theoretical backgrounds of the

proposed algorithm are separately explained in detail below.

3.1.1 Orientation Estimation

The rotation matrix is used to provide a relation between the representations of a vector

in two different reference frames. By assuming small angle approximation, it can be con-

structed by numerically integrating the angular velocities obtained as gyroscope readings.
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The constructed rotation matrix can then be used for coordinate transformation of a vector

such that

vg = Cvb

where vg is the representation of a vector v in the global frame, vb is the representation of v in

the body frame and C is the rotation matrix. Numerical integration of angular velocity does

not always lead to orientation. This applies only for infinitesimally small rotations, as it will

be shown below. To estimate the orientation at a given time, simultaneous transformations

have to be performed. The rotation matrix has to be tracked through time. The rate of

change of the rotation matrix C is given by

Ċ(t) = lim
δt→0

C(t+ δt)− C(t)

δt
(3.1)

and C(t+ δt) can be written as a product of two matrices as follows:

C(t+ δt) = C(t)A(t)) (3.2)

where A(t) is the rotation matrix that relates the body frame at time t to the body frame

at time t+ δt. Let δφ, δθ and δψ be the small rotations by which the body is rotated about

X, Y and Z axes respectively. Using the small angle approximation, A can be written as

follows:

A(t) = I + δτ

where

δτ =


0 −δψ δθ

δψ 0 −δφ

−δθ δφ 0
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Substituting C(t+ δt) in Eqs. (3.1) and (3.2), we obtain

Ċ = C(t) lim
δt→0

∂τ

∂t

using the small angle approximation

lim
δt→0

∂τ

∂t
= Ω(t)

where

Ω(t) =


0 −ωbz(t) ωby(t)

ωbz(t) 0 −ωbx(t)

−ωby(t) ωbx(t) 0


Here Ωbx, Ωby, and Ωbz are the angular velocities about each axis of the local frame. Hence,

the rotation matrix can be obtained by solving the following differential equation:

Ċ(t) = C(t)Ω(t) (3.3)

The solution of the above equation is given by

C(t) = C(0) exp(

∫ t

0

Ω(t)dt) (3.4)

where C(0) is the initial orientation of the body. Practically, the IMU outputs data at a

fixed time interval. Hence the above equation can be modified as follows:

C(t) = C(t) exp(

∫ t+δt

t

Ω(t)dt)
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By applying the rectangular rule for numerical integration

∫ t+δt

t

Ω(t)dt = B =


0 −ωbz(t) ωby(t)

ωbz(t) 0 −ωbx(t)

−ωby(t) ωbx(t) 0

 δt

with ωb = (ωbx, ωby, ωbz)
T and σ = |ωb|δt and by performing Taylor expansion of the expo-

nential term, the rotation matrix at a discrete time can be written as

C(t+ δt) = C(t)(I +
sinσ

σ
B +

1− cosσ

σ2
B2)

3.1.2 Transformation of Local Data to Global Data

Once the rotation matrix is obtained, the next step is to transform the local acceleration

data to global acceleration data using this rotation matrix. Then double integration of the

transformed acceleration data gives the global position data. Assuming the acceleration

signal obtained from the IMU to be ab(t) = [abx(t), aby(t), abz(t)]
T , these operations can be

done using the following equations at a time t:

ag(t) = C(t)ab(t) (3.5)

vg(t+ δt) = vg(t) + ag(t)δt

sg(t+ δt) = sg(t) + vg(t)δt+
1

2
agδt

2

where vg is the global velocity and sg is the global position of the body.
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3.1.3 Simulation

In order to verify the correct implementation of the algorithm explained in the previous

section, a simulation was conducted. For this purpose, artificial global accelerations and

orientations with respect to each global axis were first chosen as a function of time. Using

these global accelerations and orientation, corresponding artificial local accelerometer and

gyroscope data were computed at given times, which represent raw IMU readings at a se-

lected sampling rate. Then the position was estimated using the method described in the

previous section as if it were done using actual IMU data. Finally, the estimated position

was compared with the actual position that can be precisely calculated using the artificial

global accelerations and orientations we defined in the beginning. The sampling rate selected

was 1 kHz. In the numerical implementation of the integration algorithm, the rectangular

integration method was employed. The units of the estimated position are meters. The

artificial values for the global acceleration (m/s2) and orientation (rad) chosen as a function

of time are

agx(t) = 2t+ 3

agy(t) = 3t+ 4

agz(t) = 4t+ 5

Orientations α, β, γ with respect to X, Y and Z axes, respectively:

α = 3 cos(t+ π/3)

β = 2 cos(t+ π/5)

γ = cos(t)
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where the global acceleration ag = [agx, agy, agz]
T . Let Rx, Ry and Rz be the rotation matrices

when the object under consideration is rotated by an angle α, β, γ about the global (fixed)

X, Y and Z axes respectively. Then the rotation matrix C can be obtained as follows [19]:

C = RzRyRx

where, with the shorthand notation cθ = cos(θ) and sθ = sin(θ),

Rx =


1 0 0

0 cα −sα

0 sα cα

 , Ry =


cβ 0 sβ

0 1 0

−sβ 0 cβ

 , Rz =


cγ −sγ 0

sγ cγ 0

0 0 1


Using this rotation matrix with the predefined global acceleration and orientation, the local

angular velocities are derived using Eq. (3.3) as follows:

Ω(t) = C(t)T Ċ(t)

Also, the local accelerations are obtained using Eq. (3.5).

ab(t) = C(t)Tag(t)

Fig. 3.2 shows the actual and estimated positions. Fig. 3.3 shows the error of the

estimated values from the actual ones.
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Figure 3.2: Plots representing the actual and estimated values of position.

Figure 3.3: Plots representing the increase of error in the position estimation with time.

As shown, the error between the actual and estimated values increases over time, which

results from numerical integration and the small angle approximation considered in the

rotation matrix construction. This type of error in estimation is unavoidable since the

numerical integration and constructing rotation matrix using the small angle approximation

are required for position estimation as explained in the previous section. We do not show

the results here, but it is clear that the error will be reduced with a higher sampling rate.
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An effort was made to obtain acceleration from the estimated position using numerical

differentiation, and this acceleration was compared with the original acceleration. The pur-

pose of this work is to observe the effect of the error in position estimation on acceleration

generated using the estimated position. This is the case when a vibration simulator would

take (estimated) position input while generated acceleration is of more interest. Fig. 3.4

shows the recalculated acceleration obtained from numerically differentiating the estimated

position (shown in Fig. 3.2) with respect to the same sampling time.

Figure 3.4: Acceleration obtained from double-differentiating estimated position.

The error between the estimated global acceleration and the acceleration recalculated

from the estimated position is shown in Fig. 3.5. It should be noted that we compare the

recalculated acceleration with the estimated, not the actual, global acceleration. That is be-

cause in practice the actual global acceleration would not be available unlike this simulation.

As shown in Fig. 3.5 , the difference between the two compared variables is practically

zero. In fact, it is easily expected because they are simply numerical double integration

and numerical double differentiation with the same amount of time interval δt. For this

reason, no noticeable error between the estimated global acceleration and the acceleration



19

recalculated from the estimated position would be obtained even with the simulation data

with noise or experimental data. Hence, it can be concluded that obtaining a better estimate

of global acceleration from body acceleration is much more critical.

Figure 3.5: Error between the estimated global acceleration and the acceleration recalculated
from the estimated position.

3.2 Signal Processing

All the physical quantities in the real world are continuous or analog signals. However,

the process of measuring sensor data should be dealt with in a discrete or digital fashion. In

addition, the actual measured values are influenced by the imperfections of the measuring

device or the sensor. For these reasons, some important characteristics of the measured

signal could be masked. To extract the necessary information from the measured signal,

certain mathematical operations have to be performed. Signal processing is a process of

modifying a given signal to eliminate noise and other interferences to obtain the desired

characteristics from it. Sometimes, handling the data in frequency domain is desirable.
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Based on the application, frequency terms that are related to unwanted values are eliminated.

The frequency content of a given signal is obtained through Fourier transform and the

removal of unwanted frequencies is done by a mathematical operation called convolution.

Although these two concepts are well known, they are explained below since they are crucial

to understand the proposed algorithm in section 3.3.

3.2.1 Fourier Transform

Fourier transform is one of the major mathematical tools which comes under a broader

area of study known as the Fourier analysis. The other mathematical tool of the Fourier

analysis is the Fourier series. Fourier analysis is mainly used to represent any given signal

(defined in time domain) in the frequency domain. For periodic functions, Fourier series

is used, and for signals with finite energy, Fourier transform is used. In this thesis Fourier

transform is used, as signals with finite energy are being dealt with. The main aim of Fourier

analysis is to represent any given signal in terms of scaled sinusoidal waves, which in turn

define the frequency content of the signal. For non-periodic signals this can be achieved by

the Fourier transform. The Fourier transform of a given signal is defined as follows [20]:

F [f ](ω) =

∫ ∞
−∞

f(t)e−iωtdt

where ω is the frequency. For mathematical convenience, to define negative frequencies

harmonically related complex exponentials are used [21]. Since in the present work digital or

discrete signals are being dealt with, discrete Fourier transform (DFT) has to be employed.
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The discrete Fourier transform of a given signal u described by N discete data points is

defined as follows [20]:

D[u](k) =
N−1∑
j=0

uje
−2πijk/N

where D is the DFT operator and k is the frequency in discrete format. Using these math-

ematical tools, the frequency content of a given signal can be studied and can be further

used to extract important information using filtering methods, which will be explained in

the next section.

3.2.2 Convolution and Filtering

Convolution is a mathematical operation which takes in two functions as an input to

produce a new function. In mathematical terms it is defined by the following equation [20]:

f ∗ g =

∫ ∞
−∞

f(t− τ)g(τ)dτ

where f(t) and g(t) are two functions of time and τ is a dummy variable used to perform the

integration. The symbol ∗ is used to define the convolution operation. The Fourier transform

has an interesting property known as the convolution property. The property states that the

convolution of two functions in the time domain is equivalent to the product of them in the

frequency domain, i.e.,

(f ∗ g)(t)↔ F (ω)G(ω)

A more detailed proof of this property is explained in [22]. This property forms the basis

for digital filter design. Using this property, any given signal can be altered or modified to

extract useful information.
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As stated earlier, through Fourier analysis a given signal can be decomposed into the sum

of infinite scaled sinusoidal terms of different fequencies. The frequencies of the sinusoidal

waves represent the frequency content of the signal and the scaled values represent the

amplitude or magnitude of the sinusoidal terms. In filtering, the signal is modified such

that it is a linear combination of only a handful of sinusoidal terms, not all the infinite

terms which actually represent it. The filter is always designed in frequency domain based

on either frequency or magnitude because it is mathematically convenient. Typically in

frequency-based filtering sinusoidal signals with frequencies less than a certain threshold

frequency, only is considered for the linear combination and the rest are eliminated. This

type of filter is called a low-pass filter. Mathematically it can be written as [20]

fo(ω) =


f(ω) for ω ≤ ωo

0 for all other conditions

(3.6)

where fo is the filtered signal in frequency domain, f is the actual signal in frequency

domain and ωo is the threshold frequnecy. On the contrary, in a high-pass filter, signals with

frequencies higher than the threshold frequency will only be considered. The other kind of

filter is a band-pass filter, which only passes signals with frequencies in a certain range. This

type of filtering has one shortcoming, called Gibbs phenomenon [20]. This appears when the

filtered signal is transformed into time domain through inverse Fourier transform. There are

filter designs that tackle this problem but they are beyond the scope of this thesis [22].

The other type of filtering is based on magnitude, where similar to frequency-based

filtering, signals with magnitude greater than a certain threshold magnitude are considered

and the other signals are eliminated. This can be written mathematically as
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fo(ω) =


f(ω) for f(ω) ≥ A

0 for all other conditions

(3.7)

where fo is the filtered signal in frequency domain, f is the actual signal and A is the

threshold magnitude.

3.3 Proposed Algorithm

As discussed in Chapter 1, IMUs are typically used as a supporting unit to improve the

displacement estimates or acceleration estimates from another source of measurement. In

this thesis, however, the IMU is being used individually to capture the acceleration profile of

vibrations. In order to accurately capture the vibrational characteristics of the motion, the

raw data collected by the IMU has to be processed before the inertial navigation algorithm

is applied. The algorithm proposed in this thesis takes in the raw IMU data and filters out

the unwanted characteristics such as noise and linearity in the signals and passes them onto

the inertial navigation algorithm, which transforms local acceleration to global acceleration.

Fig. 3.6 shows the sequence of operations performed by the proposed algorithm.

Figure 3.6: Proposed algorithm.
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Among the two types of filters, frequency-based filter and magnitude-based filter, in

this work magnitude-based filter is used. The threshold magnitude for the filter is calculated

such that signals with considerably lower magnitudes than the other signals are removed from

the data. This is achieved by calculating the average of magnitudes of all the signals and

multiplying the average by a scale factor. The algorithm is designed such that it minimizes

the various sources of error such as bias, bias instability and white noise. By also removing

the zero-frequency term, it eliminates the linearity in the output signals and only captures

the profiles related to vibrations that can be used for further biomechanical analysis. Using

this proposed algorithm, the global acceleration values of an off-road vehicle in all the three

X, Y, and Z directions can be estimated. The proposed algorithm can be summarized by

algorithm 1:

Algorithm 1: Proposed algorithm

Input : Raw IMU data (Accelerometer and Gyroscope readings)
Output: Global acceleration in X,Y,Z directions

1 FILTER:
2 for Each signal do
3 f(ω = 0) = 0;
4 Calculate threshold magnitude;
5 if f(ω) < ThresholdMagnitude then
6 f(ω) = 0;
7 else
8 f(ω) = f(ω);
9 end

10 end
11 TRANSFOMATION:
12 for Each timestep: Using filtered signals do

13 Calculate rotation matrix: B =

 0 −ωbz(t) ωby(t)
ωbz(t) 0 −ωbx(t)
−ωby(t) ωbx(t) 0

 δt
ωb = (ωbx, ωby, ωbz)

T ; σ = |ωb|δt C(t+ δt) = C(t)(I + sinσ
σ
B + 1−cosσ

σ2 B2);
14 Transform data from local frame to global frame: ag(t) = C(t)ab(t)

15 end



CHAPTER 4

EXPERIMENT AND RESULTS

The verification of the proposed algorithm was achieved through two experiments. In

the preliminary experiment, the accuracy of the combined pair of the IMU and the pro-

posed algorithm under no rotation condition was verified, and in the final experiment the

performance of the algorithm under rotation was studied.

4.1 Preliminary Experiment

As mentioned above, the main purpose of the preliminary experiment is to verify the ac-

curacy of the IMU in combination with the proposed algorithm under no rotation condition.

Fig. 4.1 shows the experimental setup of the preliminary experiment. The experimental

setup consists of a heavy-duty excitor (used to generate a periodic motion), a well-calibrated

uni-axial accelerometer, whose measurements are considered as the reference for the experi-

ment, and the IMU placed on the top of the excitor.

The excitor was set up such that it generates a sinusiodal motion in the vertical Z-

direction with a peak acceleration of 2.3 m/s2 at a frequency of 3 Hz. Since the purpose of

this experiment was to only verify the accuracy of the algorithm under no rotation condition,

the periodic motion was generated only in the vertical direction. The sampling frequency of

the IMU was set to be 409.601 samples per second. The data was collected for 12 seconds

during the experiment. Fig. 4.2 shows the estimated acceleration in Z-direction using the

inertial navigation algorithm (INA) without the application of the digital filtering.
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Figure 4.1: Experimental setup for the preliminary experiment.

As it is clearly seen, although the sinusiodal characteristic of the motion was captured

by the INA, there is a continuous increase in the profile which arises due to the numerical

integration of noisy and biased angular velocity readings as discussed in Chapter 2. Fig. 4.3

shows the obtained estimates for acceleration in Z-direction using the proposed algorithm,

i.e., when the raw IMU data is filtered using the proposed magnitude-based filter and then

passed to the inertial navigation algorithm.
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Figure 4.2: Acceleration in Z-direction without filter.

As can be noticed from the figure, the continously increasing nature observed in the

previous case as well as the overall noise is eliminated. As shown in Fig. 4.4 the obtained

signal has a frequency of 3Hz and a peak acceleration value of 2.38 m/s2 giving an error of

0.08 m/s2 from the reference signal. Therefore, we conclude that the IMU in combination

with the proposed algorithm estimates the global acceleration with an acceptable amount of

accuracy under no rotation condition.
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Figure 4.3: Acceleration in Z-direction obtained through the proposed algorithm.

Figure 4.4: Acceleration in Z-direction presented in frequency spectrum.
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4.2 Experimental Results

In this section, we present experimental results showing the performance of the proposed

algorithm under rotation condition. In order to generate a three-dimensional motion with

rotation, Adept 850s Viper robot was used. Fig. 4.5 shows the experimental setup.

Figure 4.5: Experimental setup for the final experiment.

The IMU is mounted on the end effector of the robot such that the Z-axis of the IMU

is aligned with the rotational axis of the end effector. Due to the limitations of the robot

functionalities, the position of the end effector could not be recorded continuously between

short time intervals, which meant that there was no reference data to check the performance

of the algorithm. In order to overcome this drawback, an experiment was conducted in which

the end effector moved in a periodic motion in all three X, Y, and Z directions simultaneously

without any rotations. Then, using the IMU, the acceleration data was collected. With the
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proven accuracy from the preliminary experiment, the data collected were used as a reference

for the final experiment.

A periodic motion was generated using the robot such that the end effector moves through

a distance of 9 cm in all three directions with a frequency of 2.3 cycles per second. The same

motions of experiment were conducted three times to check the repeatability of the motion

generated by the robot. Fig 4.6 shows the results of the three experiments.

Figure 4.6: Acceleration profiles in X,Y and Z directions.

The figures show that the profiles obtained from the three experiments are very close, as

the repeatability for this particular motion was calculated to be 1.42 m/s2, 0.78 m/s2, 0.38

m/s2 in X, Y and Z directions respectively. At each time step, for each axis, the standard

deviation of global acceleration values obtained from the three trials was calculated. Then

the obtained standard deviations were averaged to obtain the repeatability. The reference

data was determined by calculating the average of the three data sets. The peak values of

the reference are 5.87 m/s2, 6.04 m/s2 and 5.83 m/s2 in X, Y, and Z directions respectively.
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Figure 4.7: Comparison of reference and estimated acceleration profiles in X,Y and Z direc-
tions in time domain.

For the final experiment, on top of the same translational motion described above, a

rotation about Z-axis was added. The end effector moved through an angular displacement

of 25◦ while simultaneously moving through a distance of 9 cm in X, Y and Z directions.

The frequency of this motion was 2.3 cycles per second. Since the global accelerations of

the end effector in the both cases are the same, the acceleration estimates through the

proposed algorithm can be compared with the no rotation case as a reference. Fig. 4.7

shows a comparison between the profiles of the reference and estimated accelerations in time

domain.

As can be seen, the algorithm performs satisfactorily in estimating the accelerations

in terms of peak accelerations and frequency components when compared to the reference

estimates. The peak accelerations of the data obtained from the experiment are 6.62 m/s2,

4.73 m/s2 and 5.84 m/s2 in X, Y, and Z directions respectively. The RMS error in the
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three directions was found to be 1.67 m/s2, 1.19 m/s2, and 0.42 m/s2. The periodicity and

the overall profile are captured but there is a minor error in the peak values between the

estimates and the reference data. Fig. 4.8 shows a comparison between the profiles of the

reference and estimated acceleration in frequency domain.

Figure 4.8: Comparison of reference and estimated acceleration profiles in X,Y and Z direc-
tions in frequency domain.

The same estimation procedure was conducted with motions of frequencies of 4.5 cycles

per second and 8.5 cycles per second. The results obtained from all three motions are

presented in Tables 4.1 and 4.2.

There might be multiple reasons for the errors in estimated peak values of the motion.

One source of error might be the small angle assumption which was considered while con-

structing the rotation matrix at each time step. Also this assumption is followed by numerical

integration of the angular velocity data, which might also be accountable for the error.
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Table 4.1: Repeatability

Frequency
(Hz)

Distance moved along each axis Repeatability(m/s2)

(mm) X-Axis Y-Axis Z-axis

2.3 90 1.42 0.78 0.38

4.5 20 0.51 0.66 0.30

8.5 7 1.42 1.73 0.95

Table 4.2: Error Analysis

Frequency
(Hz)

Added rotation RMS error (m/s2)

(degrees) X-Axis Y-Axis Z-axis

2.3 25 1.67 1.19 0.42

4.5 8 0.69 1.13 0.36

8.5 5 1.59 2.26 1.28

Another source of error is the measurement of unwanted accelerations due to the rota-

tional motion of the IMU. The cause for this is the improper alignment of the center of IMU

and the center of the end effector about which the rotation takes place. It is practically

impossible to eliminate this source of error, as it is difficult to find the center of rotation

of the IMU. Since the combined motion of rotation and translation is carried out at the

same frequencies, it becomes difficult for the filter to eliminate the effect of these unwanted

acceleration components. However, in a real-world scenario, the rotational motion and trans-

lational motion might not be taking place at the same frequencies. In that case, the filter

will not fail to remove the unwanted acceleration components. Due to the limitations of the

robot, this type of scenario was not tested.

One way to eliminate the errors caused by the construction of rotation matrix is by

employing a different method of representing the rotations. The small angle approximation

was considered in this work to eliminate the need to know the exact order of rotation since

multiplication of matrices does not obey the commutative law. However, when the rotations

are represented using quarternions, the need to know the order of rotation is eliminated,
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subsequently eliminating the small angle approximation. In [12] quaternions were used to

represent the rotations experienced by the rigid body and the error between the estimates

and the actual acceleration was small. Another way to get better estimation of the rotation

matrix is by combing the gyroscope data and the data captured by the mangnetometer that

is also present in the IMU by using sensor fusion techniques. For better noise removal, multi-

level wavelet decomposition can be employed instead of using magnitude-based filtering.



CHAPTER 5

CONCLUSION

In this thesis, an algorithm to capture the acceleration profile of vibrations experienced

by the driver of an off-road vehicle has been proposed. The inertial navigation algorithm

in combination with a magnitude-based filter was used to obtain acceptable estimates of

the global accelerations in three-dimensional space. The proposed algorithm was verified

through experiments. The first experiment was conducted to check for the accuracy of the

IMU in combination with the proposed algorithm in the absence of rotation. The estimated

results show relatively small errors when compared to the reference signal. This indicates

that the combined pair of IMU and the proposed algorithm performs with acceptable amount

of accuracy.

The second experiment was conducted to evaluate the performance of the IMU in combi-

nation with the proposed algorithm in the presence of rotation. Even though the proposed

algorithm is able to accurately estimate the overall profile of the global acceleration, the peak

values of the estimated results had errors when compared with the reference profiles. Error

analysis indicates that the proposed algorithm produces results at an acceptable degree of

accuracy although further evaluation with actual field data is suggested.

The errors could be mainly attributed to two sources. The first source could be the small

angle approximation used to contruct the rotation matrix at each time step followed by the

numerical integration of the angular velocity data, and the second source of error could be

the unwanted accelerations being measured by the IMU due to the misalignment between

the IMU and the rotational axis.
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