Publication Date

2009

Document Type

Dissertation/Thesis

First Advisor

Erdelyi, Bela

Degree Name

Ph.D. (Doctor of Philosophy)

Department

Department of Physics

LCSH

Superconducting magnets--Computer simulation

Abstract

The next generation of nuclear physics research will require advanced exotic beam facilities based on heavy-ion drivers. Exotic beams of rare nuclei will be produced via fragmentation and fission reactions resulting from a high-energy heavy-ion beam hitting a target. A large aperture fragment separator with superconducting magnets is needed for capture, selection, and transport of rare isotopes for experiments. The code COSY INFINTIY uses powerful differential algebra (DA) methods for computing the dynamics of the beam in the fragment separator. A hybrid map-Monte Carlo code has been developed and added to COSY to calculate beam-material interactions. This code tracks the fragmentation and fission of the beam in target and absorber material while computing energy loss and energy and angular straggling as well as charge state evolution of the beam by implementing auxiliary codes such as ATIMA and GLOBAL. EPAX has been utilized to return the cross-sections of fragmentation products. The special case of fission has been treated by integrating the code MCNPX to accurately predict cross-sections and dynamics of exotic beams produced by a 238U beam incident on a Li or C target. Fragment separator designs based on optical symmetries and optimized to be aberration-free are presented. For isotope separation, the Brho-DeltaE-Brho method is used, requiring the addition of an energy absorber. Shaped surfaces are used in order to reduce optical aberrations, resulting in a high-purity rare isotope beam. Beam purity is investigated for four rare isotope production mechanisms, namely light and heavy nuclear fragmentation and light and heavy nuclear fission. Each of these presents unique challenges due to the dynamics of the beam and background contamination produced. Optimized fragment separator settings are presented for each production reaction mechanism and purity results are shown after each selection stage. These include a first- and second-stage achromatic selection and gas cell branch with monochromatic wedge. The hybrid map-Monte Carlo code extensions added to COSY provide an integrated beam dynamics-nuclear processes design optimization and simulation framework that is efficient and accurate. The code may be used to optimize any fragment separator system for the selection of any rare isotope.

Comments

Adviser: Bela Erdelyi.

Extent

xi, 192 pages

Language

eng

Publisher

Northern Illinois University

Rights Statement

In Copyright

Rights Statement 2

NIU theses are protected by copyright. They may be viewed from Huskie Commons for any purpose, but reproduction or distribution in any format is prohibited without the written permission of the authors.

Media Type

Text

Share

COinS