Document Type



Background: Rhodospirillum centenum is a photosynthetic non-sulfur purple bacterium that favors growth in an anoxygenic, photosynthetic N2-fixing environment. It is emerging as a genetically amenable model organism for molecular genetic analysis of cyst formation, photosynthesis, phototaxis, and cellular development. Here, we present an analysis of the genome of this bacterium. Results: R. centenum contains a singular circular chromosome of 4,355,548 base pairs in size harboring 4,105 genes. It has an intact Calvin cycle with two forms of Rubisco, as well as a gene encoding phosphoenolpyruvate carboxylase (PEPC) for mixotrophic CO2 fixation. This dual carbon-fixation system may be required for regulating internal carbon flux to facilitate bacterial nitrogen assimilation. Enzymatic reactions associated with arsenate and mercuric detoxification are rare or unique compared to other purple bacteria. Among numerous newly identified signal transduction proteins, of particular interest is a putative bacteriophytochrome that is phylogenetically distinct from a previously characterized R. centenum phytochrome, Ppr. Genes encoding proteins involved in chemotaxis as well as a sophisticated dual flagellar system have also been mapped. Conclusions: Remarkable metabolic versatility and a superior capability for photoautotrophic carbon assimilation is evident in R. centenum.

Publication Date


Original Citation

Lu Y.K., Marden J., Han M., Swingley W.D., Mastrian S.D., Chowdhury S.R., Hao J., Helmy T., Kim S., Kurdoglu A.A., Matthies H.J., Rollo D., Stothard P., Blankenship R.E., Bauer C.E., Touchman J.W. (2010) Metabolic flexibility revealed in the genome of the cyst-forming alpha-1 proteobacterium Rhodospirillum centenum. BMC Genomics. 11, 325.


Department of Biological Sciences

Legacy Department

Department of Biological Sciences


This work was supported by the U.S. National Science Foundation Phototrophic Prokaryotes Sequencing Project, grant number 0412824, by a Grantin- Aid for Creative Scientific Research (No. 17GS0314) from the Japanese Society for Promotion of Science, and a Indiana University MetaCyt grant. W.D.S. is funded by the Japanese Society for Promotion of Science Postdoctoral Fellowship for Foreign Researchers (No. P07141).






BioMed Central



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.